
A GENERALIZED KONTSEVICH-VISHIK TRACE FOR

FOURIER INTEGRAL OPERATORS AND THE LAURENT

EXPANSION OF ζ-FUNCTIONS

TOBIAS HARTUNG AND SIMON SCOTT

Abstract. Based on Guillemin’s work on gauged Lagrangian distributions,
we will introduce the notion of a poly-log-homogeneous distribution as an ap-
proach to ζ-functions for a class of Fourier Integral Operators which includes
cases of amplitudes with asymptotic expansion ∑k∈N amk

where each amk
is

log-homogeneous with degree of homogeneity mk but violating R(mk) → −∞.
We will calculate the Laurent expansion for the ζ-function and give formulae for
the coefficients in terms of the phase function and amplitude as well as inves-
tigate generalizations to the Kontsevich-Vishik quasi-trace. Using stationary
phase approximation, series representations for the Laurent coefficients and
values of ζ-functions will be stated explicitly. Additionally, we will introduce
an approximation method (mollification) for ζ-functions of Fourier Integral
Operators whose symbols have singularities at zero by ζ-functions of Fourier
Integral Operators with regular symbols.
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Introduction

In [4], Guillemin showed the existence of ζ-functions of gauged Lagrangian distri-
butions, investigated their residues, and used the residues to study the commutator
structure of certain algebras of Fourier Integral Operators. Having extended the
residue trace (cf. [20]) to Fourier Integral Operators many special cases have been
studied; e.g. the class of Toeplitz operators (cf. [2]), wave traces (cf. e.g. [6, 21]),
and operators with log-terms (cf. e.g. [14]). However, many questions about ζ-
functions are still to be answered. For instance, is there a natural extension of the
Kontsevich-Vishik (quasi-)trace (cf. [12])? Other questions may revolve around
ζ-determinants or other traces induced by the ζ-function.
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For such questions, knowing the Laurent expansion would be very helpful. Fur-
thermore, it would be quite interesting to know in itself how the Laurent expansion
of ζ-functions of Fourier Integral Operators relates to the special case of pseudo-
differential operators (cf. [16]). Hence, taking derivatives, i.e. being able to handle
log-terms, will be crucial. We will, therefore, assume a generalized approach and
define the notion of a gauged poly-log-homogeneous distribution which is based on
Guillemin’s approach in [4]. It is interesting to note that all the cases above are cov-
ered and some other cases (including some relaxations which might be advantageous
in explicit calculations) can be considered, as well.

We will, however, start with the rather restrictive notion of gauged poly-log-
homogeneous distributions which only contain holomorphic families A such that
the degrees of homogeneity d in the expansion are of the form

∀z ∈ C ∶ d(z) = d(0) + z.
As it turns out, this will be sufficient as the most general families we will consider
(these are holomorphic families A in an open, connected subset of C where the de-
grees of homogeneity are non-constant holomorphic functions) are germ equivalent
to this special form and, hence, all local properties are shared, that is, in particular,
the Laurent expansion.

In sections 1-3 we will calculate those Laurent expansions, extend them to more
general poly-log-homogeneous distributions, and apply them to Fourier Integral
Operators whose amplitudes have no singularities. This will yield the following
Laurent expansion (in a neighborhood of zero).

Theorem Let (A(z))z∈C be a family of Fourier Integral Operators with phase func-
tion ϑ and amplitudes a(z)(x, y, ξ) = a0(z)(x, y, ξ)+∑ι∈I aι(z)(x, y, ξ) holomorphic
in z such that each a(z) ∈ C∞ (X ×X ×RN), the a0(z)(x,x, ξ) are integrable in a
neighborhood of {z ∈ C; R(z) ≤ 0}, and the aι(z) are homogeneous in ξ with degree
of homogeneity dι + z, I ⊆ N, I0 ∶= {ι ∈ I; dι = −N}, and ∆(X) is the diagonal in
X2, i.e. ∆(X) = {(x, y) ∈X2; x = y}.
Then, there exists c ∈ R such that trA(z) is well-defined for R(z) < c and z ↦
trA(z) has a meromorphic extension ζ(A) to C. Furthermore, ζ(A) has the Lau-
rent series (locally)

ζ(A)(z) = ∑
ι∈I0

− ´
∆(X)×∂B

RN
eiϑaι(0) dvol∆(X)×∂B

RN

z

+ ∑
n∈N

0

∑
ι∈I0

− ´
∆(X)×∂B

RN
eiϑ∂n+1aι(0) dvol∆(X)×∂B

RN

(n + 1)! zn

+ ∑
n∈N

0

´

X

´

B
RN
(0,1) e

iϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)
n!

zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) e

iϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN
)

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0

(−1)j+1j! ´
∆(X)×∂B

RN
eiϑ∂n−jaι(0) dvol

n!(N + dι)j+1 zn

(1)
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in a neighborhood of zero. In particular, we obtain the residue trace

− ∑
ι∈I0

ˆ

X×∂B
RN

eiϑ(x,x,ξ)aι(0)(x,x, ξ) dvolX×∂B
RN
(x, ξ)(2)

and the residue density1

− ∑
ι∈I0

ˆ

∂B
RN

eiϑ(x,x,ξ)aι(0)(x,x, ξ) dvol∂B
RN
(ξ) dvolX(x),

as well as the generalized Kontsevich-Vishik density
ˆ

RN

eiϑ(x,x,ξ)a0(0)(x,x, ξ)dξ dvolX(x)
+ ∑

ι∈I∖I0

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)aι(0)(x,x, ξ)dξ dvolX(x)

+ ∑
ι∈I∖I0

− ´
∂B

RN
eiϑ(x,x,ξ)aι(0)(x,x, ξ) dvol∂B

RN
(ξ)

N + dι dvolX(x)
(3)

or, in short,

trKV(A(0)) = ζ(fp0A)(0)(4)

where fp0A has the amplitude a−∑ι∈I0 aι, i.e. we split off those aι that have critical
degree of homogeneity.

In particular, the generalized local Kontsevich-Vishik density at zero is given by
the evaluation of “ζ minus pole at zero minus ’residue’ of the derivative of the pole
inducing term of the expansion” at zero.

Note that these formulae are local representations. We will have a closer look at
the Kontsevich-Vishik generalization, as well as global properties, in section 6.

Using the Laurent expansion, we can reproduce many well-known facts about ζ-
functions of pseudo-differential operators and Fourier Integral Operators like (2.21)
in [12], (9) in [15], (0.12), (0.14), (0.17), (0.18), and (2.20) in [16], as well as

tr e−t∣∆∣ = volRN /Γ (RN /Γ)
(4πt)N

2

∑
γ∈Γ

exp
⎛
⎝−
∥γ∥2ℓ2(N)

4t

⎞
⎠

on the flat torus R
N/Γ where ∆ is the Dirichlet Laplacian, and

ζ (s↦√∣∆∣s+α) (z) = 2ζR(−z − α),
or

ζ (s ↦ (h +√∣∆∣)s+α)(z) = 2ζH(−z − α;h) − hz+α
on R/2πZ where ζR denotes the Riemann-ζ-function and ζH the Riemann-Hurwitz-
ζ-function. We will, then, introduce an approximation method, which we call
mollification, to extend the results to Fourier Integral Operators with asymptotic
expansions which have singularities at zero, that is, justify the calculations for

ζ (s↦√∣∆∣s+α).

1cf. section 4.8.4.2 in [17] for pseudo-differential analogue
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Furthermore, we will have a closer look at the coefficients. For polyhomogeneous
amplitudes, we will obtain the residue trace (as Guillemin has shown to exist). For
poly-log-homogeneous amplitudes we will find a generalization of the Kontsevich-
Vishik (quasi-)trace and we can generalize Lesch’s main statements about the
residue trace and the Kontsevich-Vishik (quasi-)trace for pseudo-differential opera-
tors in [14] to Fourier Integral Operators. We will show that both (the residue trace
and the generalized Kontsevich-Vishik (quasi-)trace) induce globally well-defined
densities on the underlying manifold (provided that we started with globally de-
fined kernels). We will see that the Laurent coefficients vanish if and only if the
corresponding term eiϑa in the Schwartz kernel is a divergence on X × ∂BRN

Finally, we will use stationary phase approximation to treat the integrals

I(x, y, r) =
ˆ

∂B
RN

eirϑ(x,y,η)a(x, y, η)dvol∂B
RN
(η)

which appear as coefficients in the Laurent expansion for r = 1. The stationary
phase approximation also allows us to calculate the kernel singularity structure of
certain Fourier Integral Operators by integrating I(x, y, r) over r ∈ R>0. This yields
many “exotic” algebras of Fourier Integral Operators which happen to be subsets
of the Hilbert-Schmidt operators and ζ-functions in such algebras have no poles.
The kernel singularity structure also allows us to produce analogues of Boutet de
Monvel’s result that the residue trace is the trace of the logarithmic coefficient for
a certain class of Fourier Integral Operators (equations (3) and (4) in [1]).

Additionally to Boutet de Monvel’s result, we can also calculate the Kontsevich-
Vishik (quasi-)trace. In the case of [1] (one dimensional Fourier integrals on the
half-line bundle with phase function satisfying ϑ(x,x, r) = 0), we will see that the
generalized Kontsevich-Vishik trace reduces to the pseudo-differential form. More
precisely, let A have the amplitude a ∼ ∑j∈N

0

ad−j, each ad−j homogeneous of degree

d − j, d ∈ C ∖Z≥−1, and N ∈ N
0,>R(d)+1. Then,

trKV A =

ˆ

X

ˆ

R>0

a(x,x, r) − N∑
j=0

ad−j(x,x, r) dr dvolX(x)
independent of N . In general, this cannot be expected. However, there are some
cases in which we can prove such a statement.

Theorem Let A be a Fourier Integral Operator with kernel

k(x, y) =
ˆ

RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
whose phase function ϑ satisfies ∀x ∈ X ∀ξ ∈ RN ∶ ϑ(x,x, ξ) = 0, and whose ampli-
tude has an asymptotic expansion a ∼ ∑ι∈N aι where each aι is log-homogeneous with
degree of homogeneity dι and logarithmic order lι, and R(dι) → −∞. Let N0 ∈ N

such that ∀ι ∈ N>N0
∶ R(dι) < −N and let

ksing(x, y) =
ˆ

RN

eiϑ(x,y,ξ)
N0∑
ι=1
aι(x, y, ξ)dξ

denote the singular part of the kernel.

Then, the regularized kernel kreg ∶= k − ksing is continuous along the diagonal and
independent of the particular choice of N0 (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density is given by

kreg(x,x)dvolX(x) =
ˆ

RN

a(x,x, ξ) − N0∑
ι=1
aι(x,x, ξ)dξdvolX(x).
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Note that kreg(x,x)dvolX(x) need not patch together globally. This is only the
case if we explicitly start with kernels that patch together and if there are no
singular terms of critical order (dι = −N) or at least all those contributions to the
constant Laurent coefficient regularize to zero; i.e. “the generalized Kontsevich-
Vishik density is globally defined if and only if the generalized Kontsevich-Vishik
(quasi-)trace is tracial and independent of gauge.”

Furthermore, reduction to the pseudo-differential form is highly non-trivial and
false in general. Consider, for instance,
ˆ

X

ˆ

R

eiΘ(x,x)rr−ndrdvolX(x) =
ˆ

X

−iπ(−2πiΘ(x,x))n−1 sgn(Θ(x,x))
(n − 1)! dvolX(x).

If Θ(x,x) = 1 and n = 4, then this term reduces to 4π4vol(X)
3

. In other words, such
a term would violate independence of N .

Regarding the Laurent coefficients
´

∂B
RN
eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B

RN
(ξ), we can use

a partition of unity such that a0(x, y, ⋅) has no stationary point in its support and

each as(x, y, ⋅) has exactly one stationary point ξ̂s(x, y) ∈ ∂BRN of ϑ(x, y, ⋅) in the
support of as(x, y, ⋅). Then,
ˆ

∂B
RN

eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ)

=

ˆ

∂B
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ)

+

S∑
s=1

eiϑ̂
s(x,y) ∑

j∈N
0

(2π)N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)
j!(2i)j ∆

j
∂B,Θsa

s (x, y, ξ̂s(x, y))
holds with ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), sgnΘs(x, y)
the number of positive eigenvalues minus the number of negative eigenvalues of
Θs(x, y), and ∆∂B,Θs(x,y) = ⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B

RN
Θs(x, y)−1 grad∂B

RN
.

The full kernel singularity structure will include another summation over ι ∈ I. Let
Ĩ ∶= I ∪ {0} and

hsj,ι(x, y) ∶= (2π)
N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)
j!(2i)j ∆

j
∂B,Θsa

s
ι (x, y, ξ̂s(x, y)) .

Then, we will show
ˆ

RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ =∑
ι∈Ĩ

ˆ

RN

eiϑ(x,y,ξ)a0ι (x, y, ξ)dξ +
S∑
s=1
∑
j∈N

0

hsj,ι(x, y)gsj,ι(x, y)
with

gsj,ι(x, y) ∶= ∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0)
for q = dι +

N+1
2
− j ∈ C ∖ (−N0) and

gsj,ι(x, y) ∶= ∂lι
⎛⎜⎝z ↦

−Γ(z + 1)
2πi (−q)!

ˆ

c+iR
(−σ)−q (cln + lnσ)
(−iϑ̂s(x, y) + 0 − σ)z+1 dσ

⎞⎟⎠(0)

for q = dι +
N+1
2
− j ∈ −N0, c ∈ R>0, and some constant cln ∈ C.
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Using these results, we will prove the following two results.

Theorem Let A be a Fourier Integral Operator with phase function ϑ satisfying
∂23 (ϑ∣X×X×∂BRN

) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0 (in a neighborhood

of the diagonal) and ξ̂s (s ∈ N≤S) the stationary points. Furthermore, let

∀x ∈ X ∀s ∈ N≤S ∶ ϑ (x,x, ξ̂s(x,x)) ≠ 0.
Then,

( X ∋ x↦ k(x,x) ∈ C ) ∈ C(X)
and

trA =

ˆ

X

k(x,x)dvolX(x)
is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, ζ-functions of
such operators have no poles (since the trace integral always exists).

Corollary Let Γ be a co-compact discrete group on a manifold X acting con-
tinuously2 and freely3 on X/Γ, k̃ a Γ × Γ-invariant4 Schwartz kernel on X, and

k = ∑γ∈Γ k(x, γy) its projection to X/Γ. Suppose k̃ is pseudo-differential, i.e.

k̃(x, y) = ´
RN e

i⟨x−y,ξ⟩
RN a(x, y, ξ)dξ and

k(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−γy,ξ⟩RN a(x, γy, ξ)dξ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶kγ(x,y)

.

Then, kid is the kernel of a pseudo-differential operator and the kγ , for γ ∈ Γ∖{id},
are continuous.

Before diving into the calculation of the Laurent expansion, let us have a look
at some examples highlighting some of the technical tweaks poly-log-homogeneous
distributions allow us to use directly due to their generalized form. In particular,
we would like to point out that we can replace the sphere ∂BRN by a family of
manifolds Mx which might be advantageous if we want to calculate residue traces,
for instance, since (at least in some cases) we are reduced to the pseudo-differential
case (cf. concluding remark of the introduction).

Example Let us consider a quotient manifold X = Y /Γ where Γ is a co-compact,
torsion-free, discrete lattice in the isometries of Y and the Laplacian on Y has the

symbol ∥G− 1

2 (x)ξ∥2
ℓ2(N) (for the sake of simplicity). Then, the ζ-regularized wave

trace of the Laplacian is given by

∑
γ∈Γ
(2π)−N

ˆ

X

ˆ

RN

e
it∥G− 1

2 (x)ξ∥
ℓ2(N)ei⟨x−γx,ξ⟩RN dξdx.

For x ∈X , let Mx ∶= {∥G− 1

2 (x)ξ∥−1
ℓ2(N) ξ ∈ R

N ; ξ ∈ ∂BRN}. Then,

(2π)−N
ˆ

X

ˆ

RN

e
it∥G− 1

2 (x)ξ∥
ℓ2(N)ei⟨x−γx,ξ⟩RN dξdx

=

ˆ

X

ˆ

R>0

ˆ

rMx

e
it∥G− 1

2 (x)µ̃∥
ℓ2(N)

+i⟨x−γx,µ̃⟩
RN ∥G− 1

2 (x)µ̃∥
ℓ2(N)(2π)N ∥G−1(x)µ̃∥ℓ2(N) dvolrMx

(µ̃)drdx
2Γ ×X/Γ ∋ (γ, x) ↦ γx ∈X/Γ is continuous
3∀γ ∈ Γ ∶ (∃x ∈X/Γ ∶ γx = x) ⇒ γ = id
4∀γ ∈ Γ ∀x, y ∈ X ∶ k̃(x, y) = k̃(γx, γy)
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=(2π)−N
ˆ

X

ˆ

R>0

ˆ

Mx

eir(t+⟨x−γx,µ⟩RN )
∥G− 1

2 (x)µ∥
ℓ2(N)∥G−1(x)µ∥ℓ2(N) r

N−1dvolMx
(µ)drdx

=(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1
ˆ

Mx

eir⟨x−γx,µ⟩RN ∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)drdx

follows from Fubini’s theorem5 applied to f(ξ) = ∥G− 1

2 (x)ξ∥
ℓ2(N) on R

N
∖ {0}, i.e.

gradf(ξ) = G
−1(x)ξ

∥G− 1
2 (x)ξ∥

ℓ2(N)

. Note that the integrals
´

X

´

Mx
are integrals over the

sphere bundle of X with inverted metric. However, they can be written as integrals
over the sphere bundle and as integrals over X × ∂BRN .

In particular, if gij(x) = g(x)2δij for some g > 0 (e.g. on a hyperbolic manifold),

then dvolX(x) = g(x)−Ndx, ∥G−1(x)µ∥
ℓ2(N) = g(x) ∥G− 1

2 (x)µ∥
ℓ2(N) = g(x), and

Mx = g(x)−1∂BRN imply

(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1
ˆ

Mx

eir⟨x−γx,µ⟩RN ∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)drdx
=(2π)−N

ˆ

X

ˆ

R>0

eirtrN−1
ˆ

Mx

eir⟨x−γx,µ⟩RN g(x)−1dvolMx
(µ)drdx

=(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1g(x)−1
ˆ

g(x)−1∂B
RN

eir⟨x−γx,µ⟩RN dvolg(x)−1∂B
RN
(µ)drdx

=(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1g(x)−1
ˆ

∂B
RN

eirg(x)
−1⟨x−γx,η⟩

RN g(x)1−Ndvol∂B
RN
(η)drdx

=(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1
ˆ

∂B
RN

eirg(x)
−1⟨x−γx,η⟩

RN dvol∂B
RN
(η)drdvolX(x).

For γ = id, this reduces to

(N − 1)!vol∂B
RN
(∂BRN )volX(X)

(−2πit)N .

For γ ≠ id, we can use stationary phase approximation and obtain

(2π)−N
ˆ

X

ˆ

R>0

eirtrN−1
ˆ

∂B
RN

eirg(x)
−1⟨x−γx,η⟩

RN dvol∂B
RN
(η)drdvolX(x)

=∑
±

ˆ

X

ˆ

R>0

eirtrN−1 ( π
2∥x−γx∥ℓ2(N)

)
N−1
2

e
iπ
4
(1−N)

(2π)N e
±irg(x)−1∥x−γx∥ℓ2(N)drdvolX(x)

=∑
±

ˆ

X

( π
2∥x−γx∥ℓ2(N)

)
N−1
2

e
iπ
4
(1−N)

(2π)N
ˆ

R>0

e
irt±irg(x)−1∥x−γx∥ℓ2(N)rN−1drdvolX(x)

5

Theorem (Fubini) Let Ω ⊆ Rn be open, ϕ ∈ Cc(Ω), f ∈ C1(Ω,R), ∀x ∈ Ω ∶ grad f(x) ≠ 0, and
Mr ∶= [{r}]f = {x ∈ Ω; f(x) = r}. Then,

ˆ

Ω

ϕ(x)dx =

ˆ

R

ˆ

Mr

ϕ(ξ) ∥grad f(ξ)∥−1ℓ2(n) dvolMr (ξ)dr.



8 TOBIAS HARTUNG AND SIMON SCOTT

=∑
±

ˆ

X

( π
2∥x−γx∥ℓ2(N)

)
N−1
2

e
iπ
4
(1−N)

(2π)N
(N − 1)!

(−i (t ± g(x)−1 ∥x − γx∥ℓ2(N)))N
dvolX(x)

=∑
±
(N − 1)! (π

2
)N−1

2 e
iπ
4
(1−N)

(−2πi)N
ˆ

X

∥x − γx∥ 1−N2
ℓ2(N)

(t ± g(x)−1 ∥x − γx∥ℓ2(N))N
dvolX(x).

∎

Remark Replacing ∂BRN by Mx becomes even more interesting if we want to
calculate the Laurent coefficients

ˆ

∆(X)×∂B
RN

eiϑ(x,x,ξ)∂n+lι+1ãι(0)(x,x, ξ) dvol∆(X)×∂B
RN
(x, ξ)

which are now integrals

ˆ

X

ˆ

Mx

eiϑ(x,x,ξ)∂n+lι+1ãι(0)(x,x, ξ) dvolMx
(ξ)dvolX(x).

In cases such as the example above, the integration over Mx is now without a phase
function because Mx ∋ ξ ↦ ϑ(x,x, ξ) is a constant ϑx, leaving us with integrals of
the form

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ)

where ax is homogeneous of some degree d. For Mx = Tx [∂BRn] with Tx ∈ GL(Rn),
this is equivalent to

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ) =eiϑx

ˆ

∂BRn

ax(ξ) ∥T −1x ξ∥−n−d dvol∂BRn
(ξ).

In particular, for the case of the residue trace, we have d = −n, i.e.

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ) =eiϑx

ˆ

∂BRn

ax(ξ)dvol∂BRn
(ξ),

which shows that we have reduced the pointwise residue of the Fourier Integral Op-
erator to the pointwise residue of a suitably chosen pseudo-differential operator and
a rotation in the complex plane ϑx. In fact, the symbol of that pseudo-differential
operator can be chosen to be the amplitude of the Fourier Integral Operator itself.

∎

1. Gauged poly-log-homogeneous distributions

In this section, we consider distributions of the form

ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ)
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where M is an orientable,6 compact, finite dimensional manifold without boundary
and α is a holomorphic family given by an expansion7

α = α0 +∑
ι∈I
αι

where I ⊆ N, α0(z) ∈ L1(R≥1 ×M) in an open neighborhood of {z ∈ C; R(z) ≤ 0}
and each of the αι(z) is log-homogeneous with degree of homogeneity dι + z ∈ C

and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ C
M
∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι+z(ln r)lι α̃ι(z)(ν).

We will furthermore assume the following.

● The family (R(dι))ι∈I is bounded from above. (Note, we do not require
R(dι) → −∞. ∀ι ∈ I ∶ R(dι) = 42 is entirely possible.)
● The map I ∋ ι↦ (dι, lι) is injective.
● There are only finitely many ι satisfying dι = d for any given d ∈ C.
● The family ((dι − δ)−1)ι∈I is in ℓ2(I) for any δ ∈ C ∖ {dι; ι ∈ I}.
● Each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).

Any such family α will be called a gauged poly-log-homogeneous distribution. Note
that the generic case (that is, applications to Fourier Integral Operators with am-
plitudes of the form a ∼ ∑j∈N

0

am−j) implies that I is a finite set and all these

conditions are, therefore, satisfied.

Example Let A(z) be a pseudo-differential operator on an N -dimensional man-
ifold X whose amplitude has an asymptotic expansion a(z) ∼ ∑j∈N aj(z) where
each aj(z) is homogeneous of degree m− j + z. Then, we may want to evaluate the
meromorphic extension of

trA(z) =ˆ
X

ˆ

RN

a(z)(x,x, ξ)dξdvolX(x)
=

ˆ

X

ˆ

R≥1×∂BRN

a(z)(x,x, ξ)dξdvolX(x)
+

ˆ

X

ˆ

B
RN
(0,1)

a(z)(x,x, ξ)dξdvolX(x)
at zero. The poly-log-homogeneous distribution here is

ˆ

X

ˆ

R≥1×∂BRN

a(z)(x,x, ξ)dξdvolX(x).(∗)

At this point, we have many possibilities to write it (∗) in the form
ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ).

6Replacing α(z)(r, ξ)dvolR
≥1
×M (r, ξ) by some family dω(z)(r, ξ) allows us to also treat non-

orientable manifolds but we will not need this in the following and choose orientability for the
sake of simplicity.

7This is not meant to be an asymptotic expansion but an actual identity. However, for a
classical symbol a with asymptotic expansion ∑j∈N aj where aj is homogeneous of degree m − j

for some m ∈ C, it is possible to choose a finite set I = {0,1, . . . , J} and α0 will correspond to
a −∑J

j=0 am−j .

This is completely analogous to the Kontsevich-Vishik trace, i.e. splitting off finitely many terms
with large degrees of homogeneity while the rest is integrable. The only difference is that those
terms (that have been split off) might not regularize to zero anymore.
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The easiest choice is M ∶= ∂BRN and I ∶= {j ∈ N; R(m) − j ≥ −N}. This ensures
that

ˆ

X

a(z)(x,x, ξ) −∑
j∈I
aj(z)(x,x, ξ)dvolX(x)

is integrable in R≥1 × ∂BRN . Furthermore, having a finite I ensures that all of the
conditions above are satisfied and α can be defined by

α0(z)(r, ν) ∶=ˆ
X

a(z)(x,x, rν) −∑
j∈I
aj(z)(x,x, rν)dvolX(x)

and

αj(z)(r, ν) ∶=ˆ
X

aj(z)(x,x, rν)dvolX(x) = rm−j+z ˆ
X

aj(z)(x,x, ν)dvolX(x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶α̃j(z)(ν)

for j ∈ I.

∎

Remark Note that these distributions are strongly connected to traces of Fourier
Integral Operators, as well. In fact, Guillemin’s argument in [4] relies heavily on
the fact that the inner products ⟨u(z), f⟩ at question are integrals of the form

ˆ

R≥1×∂BRN

α(z)(ξ)dvolR≥1×∂BRN
(ξ)

where α is a gauged polyhomogeneous distribution; cf. equation (2.15) in [4].

∎

If the conditions above are satisfied, we obtain formally
ˆ

R≥1×M
α(z)dvolR≥1×M =

ˆ

R≥1×M
α0(z)dvolR≥1×M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶τ0(z)∈C

+∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

=τ0(z)+∑
ι∈I

ˆ

R≥1

ˆ

M

αι(z)(̺, ν)̺dimMdvolM(ν)d̺
=τ0(z)+∑

ι∈I

ˆ

R≥1

̺dimM+dι+z (ln̺)lι d̺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶cι(z)

ˆ

M

α̃ι(z)dvolM´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶resαι(z)∈C

=τ0(z)+∑
ι∈I
cι(z) resαι(z)

which now needs to be justified.

Lemma 1.1. cι(z) = (−1)lι+1lι! (dimM + dι + z + 1)−(lι+1)
Proof. Let Γui be the upper incomplete Γ-function given by the meromorphic ex-
tension of

Γui(s, x) ∶= ˆ ∞
x

ts−1e−tdt (R(s) > 0, x ∈ R≥0).
Γui satisfies Γui(s,0) = Γ(s) where Γ denotes the (usual) Γ-function, Γ(s,∞) = 0,
and ∂2Γui(s, x) = −xs−1e−x. Then, we obtain

(R>0 ∋ y ↦ −Γui(l + 1,−(d + 1) lny)(−(d + 1))l+1 )′ (x) =−∂2Γui(l + 1,−(d + 1) lnx)−(d+1)x(−(d + 1))l+1
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=
(−(d + 1) lnx)le(d+1) lnx

(−(d + 1))lx
=
(lnx)lxd+1

x

=xd(lnx)l.
Hence, for d < −1,

ˆ

R≥1

xd(lnx)ldx = (−1)l+1l!(d + 1)l+1
which yields

cι(z) =ˆ
R≥1

̺dimM+dι+z (ln ̺)lι d̺ = (−1)lι+1lι!(dimM + dι + z + 1)lι+1
in a neighborhood of R<−dimM−dι−1 (because any real analytic function can be
extended locally to a holomorphic function) and, thence, by meromorphic extension
everywhere in C ∖ {−dimM − dι − z − 1}.

�

Since the resαι are holomorphic functions, we now know that ∑ι∈I cι resαι is
a meromorphic function with isolated poles only (if it converges), because ((dι +
δ)−1)ι∈I ∈ ℓ2(I) implies that there may be at most finitely many dι in any compact
subset of C.

Lemma 1.2. For every z ∈ C ∖ {−dimM − dι − 1; ι ∈ I}, ∑ι∈I cι(z) resαι(z) con-
verges absolutely.

Proof. By assumption, (cι(z))ι∈I ∈ ℓ2(I) and ∑ι∈I α̃ι(z) converges unconditionally
in L1(M). This allows us to utilize the following theorem.

(Theorem 4.2.1 in [10]) Let p ∈ R≥1, q =
⎧⎪⎪⎨⎪⎪⎩
2 , p ∈ [1,2]
p , p ∈ R>2

, and ∑j∈N xj converges

unconditionally in Lp. Then, ∑j∈N ∥xj∥qLp
converges.

Hence,

∑
ι∈I
∣cι(z) resαι(z)∣ ≤∑

ι∈I
∣cι(z)∣ ∥α̃ι(z)∥L1(M)

= ∥(∣cι(z)∣ ∥α̃ι(z)∥L1(M))ι∈I∥ℓ1(I)
= ∥(∣cι(z)∣)ι∈I∥ℓ2(I) ∥(∥α̃ι(z)∥L1(M))ι∈I∥ℓ2(I)
= ∥(cι(z))ι∈I∥ℓ2(I)

√
∑
ι∈I
∥α̃ι(z)∥2L1(M) <∞.

�

Definition 1.3. Let α be a gauged poly-log-homogeneous distribution. Then, we
define the ζ-function of α to be the meromorphic extension of

ζ(α)(z) ∶= ˆ
R≥1×M

α(z)dvolR≥1×M ,
i.e.

ζ(α)(z) = τ0(z) +∑
ι∈I

(−1)lι+1lι! resαι(z)(dimM + dι + z + 1)lι+1 .
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Now, that we know ζ(α) exists as a meromorphic function, we will calculate its
Laurent expansion.

Definition 1.4. Let f be a meromorphic function defined by its Laurent expansion

∑n∈Z an(z − z0)n at z0 ∈ C without essential singularity at z0, that is, ∃N ∈ Z ∀n ∈
Z≤N ∶ an = 0. Then, we define the order of the initial Laurent coefficient oilcz0(f)
of f at z0 to be

oilcz0(f) ∶=min{n ∈ Z; an ≠ 0}
and the initial Laurent coefficient ilcz0(f) of f at z0

ilcz0(f) ∶= aoilcz0(f).
Lemma 1.5. Let α = α0 + ∑ι∈I αι and β = β0 + ∑ι∈I′ βι be two gauged poly-log-
homogeneous distributions with α(0) = β(0) and resαj(0) ≠ 0 if lj is the maxi-
mal logarithmic order with dj = −dimM − 1. Then, oilc0(ζ(α)) = oilc0(ζ(β)) and
ilc0(ζ(α)) = ilc0(ζ(β)).
In other words, oilc0(ζ(α)) and ilc0(ζ(α)) depend on α(0) only and are, thus,

independent of the gauge.

Proof. Since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)
z

is a gauged poly-
log-homogeneous distribution again. Furthermore,

oilc0(ζ(γ)) ≥min{oilc0(ζ(α)),oilc0(ζ(β))} =∶ −l = −lj − 1
holds because each pair (dι, lι) in the expansion of γ appears in at least one of the
expansions of α or β. This implies that z ↦ zlζ(γ)(z) = zl−1 (ζ(α)(z) − ζ(β)(z))
is holomorphic at zero (equality holds for R(z) sufficiently small and, thence, in
general by meromorphic extension). Hence, the highest order poles of ζ(α) and
ζ(β) at zero must cancel out which directly implies oilc0(ζ(α)) = oilc0(ζ(β)) and
ilc0(ζ(α)) = ilc0(ζ(β)).

�

Lemma 1.6. Let α = α0 + ∑ι∈I αι and β = β0 + ∑ι∈I′ βι be two gauged poly-log-
homogeneous distributions with α(0) = β(0) and ∀ι ∈ I ∪ I ′ ∶ dι ≠ −dimM − 1.
Then, ζ(α)(0) = ζ(β)(0).
Proof. Again, since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)

z
is a gauged

poly-log-homogeneous distribution and oilc0(ζ(γ)) ≥ 0. Hence

ζ(α)(0) − ζ(β)(0) = res0 (z ↦ ζ(α)(z) − ζ(β)(z)
z

) = res0 ζ(γ) = 0
where res0 denotes the residue of a meromorphic function at zero.

�

Definition 1.7. Let α = α0+∑ι∈I αι be a gauged poly-log-homogeneous distribution
and Iz0 ∶= {ι ∈ I; dι = −dimM − 1 − z0}. Then, we define

fpz0(α) ∶= α − ∑
ι∈Iz0

αι = α0 + ∑
ι∈I∖Iz0

αι.

Corollary 1.8. ζ(fp0α)(0) is independent of the chosen gauge.

Definition 1.9. Let α = α0+∑ι∈I αι be a gauged poly-log-homogeneous distribution
and resαι ≠ 0 for some ι ∈ I0. Then, we say ζ(α) has a structural singularity at
zero.
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Remark Note that the pole structure of ζ(α) does not only depend on the resαι

but also on derivatives of α. A structural singularity is a property of α(0) in the
sense that it cannot be removed under change of gauge. More precisely, choosing
β such that α(0) = β(0) does not imply that the principal part of the Laurent
expansion of ζ(α) − ζ(β) vanishes. However, if all resαι vanish (ι ∈ I0), then there
exists a β with α(0) = β(0) such that ζ(β) is holomorphic in a neighborhood of
zero (e.g. β being M-gauged; see below). Having a non-vanishing resαι for some
ι ∈ I0, on the other hand, implies that every ζ(β) with α(0) = β(0) has a pole at
zero.

∎

Definition 1.10. Let α = α0 + ∑ι∈I αι be a gauged poly-log-homogeneous distri-
bution. If all α̃ι are independent of the complex argument, i.e. αι(z)(r, ν) =
rdι+z(ln r)lι α̃ι(0)(ν) = rzαι(0)(r, ν), then we call this choice of gauge an M-gauge
(or Mellin-gauge).

Remark TheM-gauge for Fourier Integral Operators can always be chosen locally.

∎

Corollary 1.11. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribu-
tion.

(i) If α is M-gauged, then all resαι are constants.
(ii) If resαι(0) = 0 for ι ∈ I, then the corresponding pole in ζ(α) can be removed

by re-gauging.
(iii) If resαι(0) ≠ 0 for ι ∈ I0, then the corresponding pole in ζ(α) in independent

from the gauge. In particular, resαι(0) does not depend on the gauge.

Proof. (i) trivial.

(ii) The corresponding pole contributes the term (−1)lι+1lι! resαι(z)
(dimM+dι+z+1)lι+1 to the ex-

pansion of ζ(α). Choosing anM-gauge yields

(−1)lι+1lι! resαι(z)(dimM + dι + z + 1)lι+1 =
(−1)lι+1lι! resαι(0)(dimM + dι + z + 1)lι+1 = 0

by holomorphic extension.
(iii) Lemma 1.5 shows that oilc0ζ(αι) and ilc0(ζ(αι)) are independent of the

gauge. Since, resαι(0) ≠ 0, we obtain oilc0ζ(αι) = −lι − 1 and

resαι(0) = ilc0ζ(αι)(−1)lι+1lι! .
�

Remark Suppose we have a gauged distribution α such that

∀z ∈ C ∀(r, ξ) ∈ R≥1 ×M ∶ α(z)(r, ξ) = rzα(0)(r, ξ)
is satisfied and we artificially continue α by zero to R>0 ×M . Then,

ˆ

R>0×M
α(z)(r, ξ)dvolR>0×M(r, ξ) =

ˆ

R>0

rdimM+z
ˆ

M

α(0)(r, ξ)dvolM(ξ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A(r)

dr

=M(A)(dimM + z + 1)
holds whereM denotes the Mellin transform

Mf(z) = ˆ
R>0

tz−1f(t)dt
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for f ∶ R>0 → R measurable whenever the integral exists. Hence, the name “M-
gauge”.

∎

Proposition 1.12 (Laurent expansion of ζ(fp0α)). Let α = α0+∑ι∈I αι be a gauged
poly-log-homogeneous distribution with I0 = ∅. Then,

ζ(α)(z) = ∑
n∈N

0

ζ(∂nα)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Let β = β0 +∑ι∈I′ βι be a gauged poly-log-homogeneous distribution without struc-

tural singularities at zero, i.e. ∀ι ∈ I ′0 ∶ resβι = 0. Then, there exists a gauge β̂
such that

ζ (β̂) (z) = ∑
n∈N

0

ζ(∂nfp0β)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Proof. The first assertion is a direct consequence of the facts that the nth Laurent

coefficient of a holomorphic function f is given by ∂nf(0)
n!

and

∂nζ(α) = ∂n ˆ
R≥1×M

α dvolR≥1×M =
ˆ

R≥1×M
∂nα dvolR≥1×M = ζ(∂nα).

Now,

ζ (β̂) (z) = ∑
n∈N

0

ζ(∂nfp0β)(0)
n!

zn

follows from the fact that we may choose anM-gauge for βι with ι ∈ I ′0 which yields

ζ (β̂) = ζ(fp0β).
�

M-gauging will, furthermore, yield the following theorem which can be very
handy with respect to actual computations. In particular, the fact that we can
remove the influence of higher order derivatives of αι with critical degree of homo-
geneity will imply that the generalized Kontsevich-Vishik density (which we will
define in section 6) is globally defined, i.e. for M-gauged families with polyhomo-
geneous amplitudes the residue trace density and the generalized Kontsevich-Vishik
density both exist globally (provided the kernel patches together).

Theorem 1.13. Let α = α0+∑ι∈I αι be a gauged poly-log-homogeneous distribution.
Then, there exists a gauge α̂ such that

ζ (α̂) (z) = ∑
ι∈I0
(−1)lι+1lι! resαι(0)

zlι+1 + ∑
n∈N

0

ζ(∂nfp0α)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Proof. This follows directly from Proposition 1.12 using an M-gauge for αι with
ι ∈ I0.

�

Remark In general, there will be correction terms arising from the Laurent ex-
pansion of resαι. Incorporating these yields

ζ(α)(z) =∑
ι∈I0
((−1)lι+1lι! resαι(0)

zlι+1 +

lι∑
n=1
(−1)lι+1lι!∂n resαι(0)

n!
zn−lι−1)
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+ ∑
n∈N

0

⎛⎝ζ(∂
nfp0α)(0)
n!

+ ∑
ι∈I0
(−1)lι+1lι!∂n+lι+1 resαι(0)(n + lι + 1)!

⎞⎠ zn.
∎

Corollary 1.14. Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I βι be two gauged poly-log-
homogeneous distributions with α(0) = β(0) and such that the degrees of homogene-
ity and logarithmic orders of αι and βι coincide. Then,

ζ(α)(z) − ζ(β)(z) =∑
ι∈I0

lι∑
n=1
(−1)lι+1lι!∂n res (αι − βι) (0)

n!
zn−lι−1

+ ∑
n∈N

0

ζ(∂nfp0 (α − β))(0)
n!

zn

+ ∑
n∈N

0

∑
ι∈I0
(−1)lι+1lι!∂n+lι+1 res (αι − βι) (0)(n + lι + 1)! zn

holds in a sufficiently small neighborhood of zero.

In section 3, we will see that Corollary 1.14 applied to pseudo-differential oper-
ators implies many well-known formulae, e.g. (2.21) in [12], (9) in [15], and (2.20)
in [16].

Example Let α = α0+∑ι∈I αι and β = β0+∑ι∈I βι be two gauged poly-homogeneous
distributions with α(0) = β(0) and such that the degrees of homogeneity of αι and
βι coincide. Then, #I0 ≤ 1 and (because) all lι are zero. Hence,

ζ(α)(z) =∑
ι∈I0
− resαι(0)

z
+ ∑

n∈N
0

⎛⎝ζ(∂
nfp0α)(0)
n!

− ∑
ι∈I0

∂n+1 resαι(0)(n + 1)! ⎞⎠ zn
and

ζ(α)(z) − ζ(β)(z) = ∑
n∈N

0

⎛⎝ζ(∂
nfp0 (α − β))(0)

n!
− ∑

ι∈I0
∂n+1 res (αι − βι) (0)(n + 1)! ⎞⎠ zn

holds in a sufficiently small neighborhood of zero. This shows that the residue trace
−∑ι∈I0 resαι(0) is well-defined and independent of the gauge for poly-homogeneous
distributions. Higher orders of the Laurent expansion depend on the gauge.

Furthermore, ζ(α) − ζ(β) is holomorphic in a neighborhood of zero and

(ζ(α) − ζ(β)) (0) =ζ(fp0 (α − β))(0) − ∑
ι∈I0

∂ res (αι − βι) (0)
= ζ(fp0α)(0) − ζ(fp0β)(0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=0

−∑
ι∈I0

∂ res (αι − βι) (0)
= − ∑

ι∈I0
∂ res (αι − βι) (0).

Defining γι(z) ∶= αι(z)−βι(z)
z

and γ(z) ∶= α(z)−β(z)
z

we, thus, obtain

(ζ(α) − ζ(β)) (0) = − ∑
ι∈I0

∂ res (αι − βι) (0) = −∑
ι∈I0

resγι(0) = res0 ζ(γ).
Since resγι(0) ≠ 0 implies that it is independent of gauge, we obtain that res0 ζ(γ)
is independent of gauge which directly yields

(ζ(α) − ζ(β)) (0) = res0 ζ(γ) = res0 ζ (∂(α − β)) .
In other words, (ζ(α) − ζ(β)) (0) is a trace residue.

∎
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Theorem 1.15 (Laurent expansion of ζ(α)). Let α = α0 + ∑ι∈I αι be a gauged
poly-log-homogeneous distribution. Then,

ζ(α)(z) =∑
ι∈I0

lι∑
n=0
(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM

n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn

holds in a sufficiently small neighborhood of zero.

In particular, if α is poly-homogeneous, we obtain

ζ(α)(z) =∑
ι∈I0
−
´

M
αι(0)dvolM
z

+ ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)j+1j! ´

M
∂n−jαι(0)dvolM

n!(dimM + dι + 1)j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

−
´

M
∂n+1αι(0)dvolM(n + 1)! zn

in a sufficiently small neighborhood of zero.

Proof. Note that having a gauged log-homogeneous distribution

β(z)(r, ξ) = rd+z(ln r)lβ̃(z)(ξ)
the residue resβ =

´

M
β̃ dvolM does not depend on the logarithmic order. Hence, we

may assume without loss of generality that l = 0 and we had a gauged homogeneous
distribution in the first place, i.e. replace β by

β̂(z)(r, ξ) = rd+z β̃(z)(ξ)
Then, we observe

∂nβ(z)(r, ξ) = n∑
j=0
(n
j
)rd+z(ln r)l+j∂n−jβ̃(z)(ξ)

and

∂nβ̃(z)(ξ) =∂n (x↦ r−d−xβ̂(x)(ξ)) (z) = n∑
j=0
(n
j
)r−d−z(− ln r)j∂n−j β̂(z)(r, ξ)

for every n ∈ N0, r ∈ R≥1, and ξ ∈M . In particular, for r = 1, we deduce

∂nβ̃(z) =∂nβ̂(z)∣M ,
i.e.

∂n resβ = ∂n
ˆ

M

β̃ dvolM =

ˆ

M

∂nβ̃ dvolM =

ˆ

M

∂nβ̂ dvolM .

Especially, for β homogeneous, we have β̂ = β and, therefore,

∂n resβ =

ˆ

M

∂nβ̃ dvolM =

ˆ

M

∂nβ̂ dvolM =

ˆ

M

∂nβ dvolM .
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Hence,

ζ(∂nfp0α)(z) =
ˆ

R≥1×M
∂nα0(z)dvolR≥1×M

+ ∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(z)dvolM(dimM + dι + z + 1)lι+j+1 .

This directly yields

ζ(α)(z) =∑
ι∈I0
((−1)lι+1lι!

´

M
α̃ι(0)dvolM

zlι+1 +

lι∑
n=1
(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM

n! zlι+1−n )
+ ∑

n∈N
0

⎛⎝ζ(∂
nfp0α)(0)
n!

+ ∑
ι∈I0
(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)!

⎞⎠ zn

=∑
ι∈I0

lι∑
n=0
(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM

n! zlι+1−n + ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn

=∑
ι∈I0

lι∑
n=0
(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM

n! zlι+1−n + ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn.

.
�

Definition 1.16. Let α = α0+∑ι∈I αι be a gauged poly-log-homogeneous distribution
such that ζ(α) is holomorphic in a neighborhood of zero. Then, we define the
generalized ζ-determinant

detζ(α) ∶= exp (ζ(α)′(0)) .
Remark This generalized ζ-determinant reduces to the ζ-determinants as studied
by Kontsevich and Vishik in [12, 13]. In other words, we do not expect it to be
multiplicative if α corresponds to a general Fourier Integral Operator. Though
an interesting question, we will not study classes of families of Fourier Integral
Operators satisfying the multiplicative property, here.

∎

Knowing the Laurent expansion of ζ(α) we know that

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+ ∑

ι∈I∖I0

1∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂1−jα̃ι(0)dvolM(dimM + dι + 1)lι+j+1

+ ∑
ι∈I0
(−1)lι+1lι! ´M ∂lι+2α̃ι(0)dvolM(lι + 1)!
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holds. In particular, if I0 = ∅,

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+∑

ι∈I

1∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂1−jα̃ι(0)dvolM(dimM + dι + 1)lι+j+1 .

If α were poly-homogeneous we obtained

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+ ∑

ι∈I∖I0

1∑
j=0
(−1)j+1 ´

M
∂1−jαι(0)dvolM(dimM + dι + 1)j+1 − ∑

ι∈I0

ˆ

M

α′′ι (0)dvolM
=

ˆ

R≥1×M
α′0(0)dvolR≥1×M + ∑

ι∈I∖I0
− res (α′ι) (0)
dimM + dι + 1

+ ∑
ι∈I∖I0

resαι(0)(dimM + dι + 1)2 − ∑ι∈I0 res (α′′ι ) (0)
If we were to choose an M-gauge we would find ∂α̃ι = 0 and may assume I0 = ∅
(ζ(α) cannot have a structural singularity and non-structural singularities do not
appear within the ζ-function of anM-gauged poly-log-homogeneous distribution),
i.e.

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M + ∑
ι∈I∖I0

(−1)lι(lι + 1)! ´M α̃ι(0)dvolM(dimM + dι + 1)lι+2
=

ˆ

R≥1×M
α′0(0)dvolR≥1×M +∑

ι∈I
(−1)lι(lι + 1)! resαι(0)(dimM + dι + 1)lι+2

and, for α additionally poly-homogeneous,

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M +∑
ι∈I

resαι(0)(dimM + dι + 1)2 .
Remark Note that ζ(α)′(0) depends on the first 1 + max ({lι + 1; ι ∈ I0} ∪ {0})
derivatives of α. Hence, the generalized ζ-determinant does so, too, and is, thus,
not independent of the gauge.

∎

2. Remarks on more general gauged poly-log-homogeneous
distributions

The results obtained for gauged poly-log-homogeneous distributions can largely
be generalized. In fact, the degree of homogeneity dι(z) can be chosen arbitrarily
as long as it is not germ equivalent to a critical constant. In this section, we will
investigate these direct generalizations and consider distributions of the form

ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ)

where M is an orientable, compact, finite dimensional manifold without boundary
and the holomorphic family α is given by an expansion

α = α0 +∑
ι∈I
αι
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where I ⊆ N, α0(z) ∈ L1(R≥1 ×M) in an open neighborhood of {z ∈ C; R(z) ≤ 0}
and each of the αι(z) is log-homogeneous with degree of homogeneity dι(z) ∈ C
and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ C
M
∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι(z)(ln r)lι α̃ι(z)(ν).

We will furthermore assume (for now) that every dι is an entire function,

∀z ∈ C ∶ (dι(z) = −dimM − 1 ⇒ d′ι(z) ≠ 0) ,
the family (R(dι(z)))ι∈I is bounded from above for every z ∈ C, supι∈I R(dι(z))→
−∞ (R(z) → −∞), the maps I ∋ ι↦ (dι(z), lι) are injective, there are only finitely
many ι satisfying dι(z) = d for any given d, z ∈ C, the families ((dι(z) + δ)−1)ι∈I
are in ℓ2(I) for any z ∈ C and δ ∈ C ∖ {dι(z); ι ∈ I}, and each ∑ι∈I α̃ι(z) converges
unconditionally in L1(M). Any such family α will be called a gauged poly-log-
homogeneous distribution with holomorphic order.

If the conditions above are satisfied, we obtain
ˆ

R≥1×M
α(z)dvolR≥1×M =

ˆ

R≥1×M
α0(z)dvolR≥1×M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶τ0(z)∈C

+∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

=τ0(z)+∑
ι∈I

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1
which converges absolutely. For dι(0) ≠ −dimM − 1, we observe

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1 =
(−1)lι+1lι! res( (dimM+1+dι(0)+z)lι+1

(dimM+1+dι(z))lι+1 αι) (z)
(dimM + 1 + dι(0) + z)lι+1

in a neighborhood of zero. Hence, let

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι (dimM + 1 + dι(0)+ z)lι+1(dimM + 1 + dι(z))lι+1 α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶β̃ι(z)(ξ)

.

For dι(0) = −dimM − 1, there exists an entire function δι such that

dimM + 1 + dι(z) = d′ι(0)z + δι(z)z2
and, since d′ι(0) ≠ 0, we obtain that z ↦ d′ι(0)+δι(z)z has no zeros in a neighborhood
of zero. Then, we observe

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1 = (−1)
lι+1lι! resαι(z)(d′ι(0)z + δι(z)z2)lι+1

=
(−1)lι+1lι! resαι(z)

zlι+1 (d′ι(0) + δι(z)z)lι+1
=

(−1)lι+1lι! res( αι(z)
(d′ι(0)+δι(z)z)lι+1 )

zlι+1

=

(−1)lι+1lι! res( αι(z)
(d′ι(0)+δι(z)z)lι+1 )(dimM + 1 + dι(0) + z)lι+1

and define

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι α̃ι(z)(ξ)(d′ι(0) + δι(z)z)lι+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶β̃ι(z)(ξ)

.
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Thus, we obtain the following observation.

Observation 2.1. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distri-
bution with holomorphic order. Then, the ζ-function ζ(α) is germ equivalent to
ζ(β) with β as defined above. Thus, ζ(α) inherits all local properties from ζ(β),
i.e. all local properties of ζ-functions associated with gauged poly-log-homogeneous
distributions.

In particular, if resαι(0) ≠ 0 with dι(0) = −dimM − 1 and lι maximal, then the
initial Laurent coefficient of ζ(α) is

(−1)lι+1lι! resαι(0)
d′ι(0)lι+1

and the ζ(α) has the Laurent expansion

ζ(α)(z) =∑
ι∈I0

lι∑
n=0
(−1)lι+1lι! ´M ∂nβ̃ι(0)dvolM

n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jβ̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0
(−1)lι+1lι! ´M ∂n+lι+1β̃ι(0)dvolM(n + lι + 1)! zn

in a sufficiently small neighborhood of zero.

Proof. Note that zero is either a pole of ζ(α) or a regular value, that is, we can
choose a neighborhood uniformly for all ι with dι(0) ≠ −dimM −1. Since there are
only finitely many ι with dι(0) = −dimM − 1, we obtain germ equivalence of the
series representations and, since the Laurent expansion was solely determined from
the series representation, the observation follows.

�

We may generalize this even further. Suppose α is meromorphic in C, that is,
holomorphic in Ω ⊆open C such that C ∖Ω is a set of isolated points in C. Let 0 ∈ Ω
and let α satisfy all properties of being a gauged poly-log-homogeneous distribution
with holomorphic order but on Ω instead of C. Then, we call α a meromorphic
gauged poly-log-homogeneous distribution with respect to zero. Since 0 ∈ Ω, we
directly obtain that α is locally a gauged poly-log-homogeneous distribution and
still all local properties are preserved just as they are in Observation 2.1.

Now, we can even drop the assumption

∀z ∈ C ∶ (dι(z) = −dimM − 1 ⇒ d′ι(z) ≠ 0)
in the definition of a meromorphic gauged poly-log-homogeneous distribution with
respect to zero (in exchange for an increased logarithmic order). Instead, let

dι(z) = −dimM − 1 + δι(z)zmι

with δι(0) ≠ 0 and call any such α a generalized meromorphic gauged poly-log-
homogeneous distribution with respect to zero. Then,

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1
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=
(−1)lι+1lι! resαι(z)(δι(z)zmι)lι+1
=
(−1)lι+1lι! res (δ−lι−1ι αι) (z)

zmι(lι+1)

=
(−1)mι(lι+1)(mι(lι + 1) − 1)! res((−1)mι(lι+1)+lι+1 lι!(mι(lι+1)−1)!δ

−lι−1
ι αι) (z)

zmι(lι+1)

=
(−1)mι(lι+1)(mι(lι + 1) − 1)! res((−1)mι(lι+1)+lι+1 lι!(mι(lι+1)−1)!δ

−lι−1
ι αι) (z)

(dimM + 1 + dι(0) + z)mι(lι+1)
shows that choosing

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)mι(lι+1)−1 (−1)mι(lι+1)+lι+1lι!(mι(lι + 1) − 1)! δι(z)−lι−1α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶β̃ι(z)(ξ)
for ι ∈ I with dι(0) = −dimM − 1 also yields germ equivalence and, again, all local
properties are preserved.

Hence, we can state the following Definition and Theorem.

Definition 2.2. Let Ω ⊆open C, Ω0 ⊆open Ω, 0 ∈ Ω, and α = (α(z))z∈Ω a holomor-
phic family of the form

α = α0 +∑
ι∈I
αι

where

● I ⊆ N,
● ∀z ∈ Ω ∶ α0(z) ∈ L1(R≥1 ×M),
● ∀z ∈ Ω0 ∶ α(z) ∈ L1(R≥1 ×M),
● each of the αι(z) is log-homogeneous with degree of homogeneity dι(z) ∈ C

and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ C
M
∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι(z)(ln r)lι α̃ι(z)(ν),

● each dι is holomorphic in Ω,
● none of the dι is germ equivalent to −dimM − 1 at zero (i.e. none of the
dι is the constant −dimM − 1),
● the maps I ∋ ι↦ (dι(z), lι) are injective,
● there are only finitely many ι satisfying dι(z) = d for any given d ∈ C and
z ∈ Ω,
● the families ((dι(z) + δ)−1)ι∈I are in ℓ2(I) for any z ∈ Ω and δ ∈ C ∖{dι(z); ι ∈ I},
● and each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).

If every connected component of Ω has non-empty intersection with Ω0, then we
call α a generalized gauged poly-log-homogeneous distribution and

ζ(α) ∶=ˆ
R≥1×M

α0dvolR≥1×M +∑
ι∈I

(−1)lι+1lι! resαι(dimM + 1 + dι)lι+1
the associated ζ-function of α.

Otherwise (in particular, if Ω0 = ∅), we call α an abstract generalized gauged
poly-log-homogeneous distribution and

ζ(α) ∶=ˆ
R≥1×M

α0dvolR≥1×M +∑
ι∈I

(−1)lι+1lι! resαι(dimM + 1 + dι)lι+1
the associated ζ-function of α.
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Remark Because abstract generalized gauged poly-log-homogeneous distributions
have empty Ω0 on some connected component of Ω, we will still obtain the Laurent
expansion and all other local properties derived from the series expansion we used
to define the ζ-function here but applications to Fourier Integral Operators might
lose all properties that are obtained from meromorphic extension of the classical
trace, e.g. traciality.

∎

Theorem 2.3. Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I βι be (abstract) generalized
gauged poly-log-homogeneous distributions with β0 = α0,

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι (dimM + 1 + dι(0) + z)lι+1(dimM + 1 + dι(z))lι+1 α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=β̃ι(z)(ξ)
for ι ∈ I with dι(0) ≠ −dimM − 1, and

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)mι(lι+1)−1 (−1)mι(lι+1)+lι+1lι!(mι(lι + 1) − 1)! δι(z)−lι−1α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=β̃ι(z)(ξ)
for ι ∈ I with dι(z) = −dimM − 1 + δι(z)zmι in a neighborhood of zero and δι
holomorphic such that δι(0) ≠ 0.
Then, the ζ-function ζ(α) is germ equivalent to ζ(β) at zero. In particular, ζ(α)

has the Laurent expansion

ζ(α)(z) =∑
ι∈I0

mι(lι+1)−1∑
n=0

(−1)mι(lι+1)(mι(lι + 1) − 1)! ´M ∂nβ̃ι(0)dvolM
n! zmι(lι+1)−n

+ ∑
n∈N

0

´

R≥1×M ∂nα0(0)dvolR≥1×M
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)lι+j+1(lι + j)! ´M ∂n−jβ̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0
(−1)mι(lι+1)(mι(lι + 1) − 1)! ´M ∂n+mι(lι+1)β̃ι(0)dvolM(n +mι(lι + 1))! zn

in a sufficiently small neighborhood of zero.

3. Application to gauged Lagrangian distributions

If we consider a dual pair ⟨u(z), f⟩ where u ∶ C → I(X × X,Λ) is a gauged

Lagrangian distribution and f ∈ I(X ×X, Λ̂) (cf. [4] and chapter 25 in [7]) such

that Λ and Λ̂ intersect cleanly at γ, then Theorem 21.2.10 in [7] yields homogeneous
symplectic coordinates (x, ξ) near γ such that γ = (1,0, . . . ,0), Λ = {(0, ξ)}, and

Λ̂ = {(0, x̂, ξ̌,0)} where x = (x̌, x̂), x̌ = (x1, . . . , xk), x̂ = (xk+1, . . . , xdimX), ξ = (ξ̌, ξ̂),
ξ̌ = (ξ1, . . . , ξk), ξ̂ = (ξk+1, . . . , ξdimX), and k = dimΛ ∩ Λ̂.

Since f can be written as f = P tδ0 for some pseudo-differential operator P , we
obtain ⟨u(z), f⟩ = ⟨Pu(z), δ0⟩ and, using the coordinates above, Pu(z) is an oscil-
latory integral of the form

ˆ

Rk

ei∑
k
j=1 xjξja(z) (xk+1, . . . , xdimX , ξ1, . . . , ξk)d(ξ1, . . . , ξk),
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i.e.

⟨u(z), f⟩ = ˆ
Rk

a(z) (0, ξ)dξ.
As pointed out by Guillemin in the proof of Theorem 2.1 in [4], this is a gauged poly-
log-homogeneous distribution, i.e. the formalism developed above is applicable.

In order to treat

⟨u(z), δdiag⟩ = ˆ
X

ˆ

RN

eiϑ(x,ξ)a(z)(x, ξ) dξ dvolX = ˆ
Rk

α(z)(ξ)dξ,
we will split off the integral

τ̃0(z) ∶= ˆ
B

RN
(0,1)

α(z)(ξ) dξ
which defines a holomorphic function and we are left with

ˆ

R≥1×∂BRN

α(z)(ξ)dvolR≥1×∂BRN
(ξ)

which is a distribution as considered in section 1. In other words, if A is a gauged
Fourier Integral Operator with phase function ϑ and amplitude a on X , then

ζ(A)(z) =ˆ
X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a(z)(x,x, ξ) dξ dvolX(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶τ0(A)(z)

+

ˆ

X

ˆ

R≥1×∂BRN

eiϑ(x,x,ξ)a(z)(x,x, ξ) dvolR≥1×∂BRN
(ξ) dvolX(x)

exists and inherits all properties described in section 1.

Theorem 3.1. If a is poly-log-homogeneous and Aι the gauged Fourier Integral
Operator with phase ϑ and amplitude aι then

resAι(z) = ˆ
∂B

RN

ˆ

X

eiϑ(x,x,ξ)ãι(z)(x,x, ξ) dvolX(x) dvol∂B
RN
(ξ)

and

ζ(A)(z)
= ∑
n∈N

0

´

X

´

B
RN
(0,1) e

iϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)
n!

zn

+ ∑
ι∈I0

lι∑
n=0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑ∂nãι(0) dvol∆(X)×∂B

RN

n!
zn−lι−1

+ ∑
n∈N

0

´

R≥1×∂BRN

´

X
eiϑ(x,x,ξ)∂na0(0)(x,x, ξ) dvolX(x) dvolR≥1×∂BRN

(ξ)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j ãι(0) dvol∆(X)×∂B

RN

n!(N + dι)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑ∂n+lι+1ãι(0) dvol∆(X)×∂B

RN(n + lι + 1)! zn

in a neighborhood of zero where ∆(X) ∶= {(x, y) ∈X2; x = y}.
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For a poly-homogeneous a this reduces to

ζ(A)(z) = ∑
n∈N

0

´

X

´

B
RN
(0,1) e

iϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)
n!

zn

− ∑
ι∈I0

ˆ

∆(X)×∂B
RN

eiϑaι(0) dvol∆(X)×∂B
RN
z−1

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) e

iϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN
)

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0

(−1)j+1j! ´
∆(X)×∂B

RN
eiϑ∂n−jaι(0) dvol∆(X)×∂B

RN

n!(N + dι)j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

−
´

∆(X)×∂B
RN
eiϑ∂n+1aι(0) dvol∆(X)×∂B

RN(n + 1)! zn,

i.e.

ζ(A)(z) = − ∑
ι∈I0

resAι(0)z−1 − ∑
n∈N

0

∑
ι∈I0

res∂n+1Aι(0)(n + 1)! zn

+ ∑
n∈N

0

´

X

´

B
RN
(0,1) e

iϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)
n!

zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) e

iϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN
)

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0
(−1)j+1j! res∂n−jAι(0)

n!(N + dι)j+1 zn

where ∂nAι is the gauged Fourier Integral Operator with phase ϑ and amplitude
∂naι.

From this last formula and the knowledge that resAι(0) is independent of the
gauge we obtain the following well-known result (cf. [4]).

Theorem 3.2. Let A and B be poly-homogeneous Fourier Integral Operators. Let
G1 and G2 be gauged Fourier Integral Operators with G1(0) = AB and G2(0) = BA.
Then,

res0 ζ(G1) = res0 ζ(G2),
i.e. the residue of the ζ-function is tracial and A↦ res0 ζ (Â) is a well-defined trace

where Â is any choice of gauge for A.

Proof. This is a direct consequence of the following two facts.

(i) res0 ζ(G1) = −∑ι∈I0 res(G1)ι(0) is independent of the gauge.

(ii) ζ (ÂB) = ζ (BÂ) for any gauge Â ofA because it is true for R(z) sufficiently
small.

�

Similarly, for I0(AB) = ∅, we obtain that ζ(AB)(0) = ζ(BA)(0) where we used
that ζ(fp0α)(0) is independent of gauge. In other words, we may also generalize
the Kontsevich-Vishik (quasi-)trace to ζ(fp0A)(0) where fp0A is the gauged Fourier
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Integral Operator with phase ϑ and amplitude a −∑ι∈I0 aι. In particular, we may
also consider the regularized generalized determinant

detfp(A) ∶= exp ζ(fp0A)′(0)
where

ζ(fp0A)(z)
= ∑
n∈N

0

´

X

´

B
RN
(0,1) e

iϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)
n!

zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN

)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j ãι(0) dvol∆(X)×∂B

RN

n!(N + dι)lι+j+1 zn,

i.e.

ζ(fp0A)′(0) =
ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)

+ ∑
ι∈I∖I0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑã′ι(0) dvol∆(X)×∂BRN(N + dι)lι+1

+ ∑
ι∈I∖I0

(−1)lι+2(lι + 1)! ´∆(X)×∂B
RN
eiϑãι(0) dvol∆(X)×∂B

RN(N + dι)lι+2
which reduces to

ζ(fp0A)′(0) =
ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)

− ∑
ι∈I∖I0

´

∆(X)×∂B
RN
eiϑã′ι(0) dvol∆(X)×∂BRN

N + dι

+ ∑
ι∈I∖I0

´

∆(X)×∂B
RN
eiϑãι(0) dvol∆(X)×∂B

RN(N + dι)2
=τ0(∂A)(0) + ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)

− ∑
ι∈I∖I0

res(∂Aι)(0)
N + dι

+ ∑
ι∈I∖I0

resAι(0)(N + dι)2
for poly-homogeneous A. This will further reduce nicely if we choose an M-gauge
for the Aι and no gauge for a0 on X ×BRN (0,1) at all; namely, we obtain

ζ(fp0A)′(0) = ∑
ι∈I∖I0

resAι(0)(N + dι)2
in that case. To be fair, this would be a gauge in a generalized sense for Fourier Inte-
gral Operators because such a gauge may not yield a C∞ (X ×X ×RN)-amplitude
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a(z). Hence, we would have to gauge the X × BRN (0,1) part, as well, and the
correction term can easily be estimated by

∣τ0(A)′(0)∣ = ∣ˆ
X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)∣
≤volX(X)volRN (BRN (0,1))∥a′(0)∥L∞(∆(X)×BRN

(0,1))
≤volX(X)volRN (BRN (0,1))∥a′(0)∥L∞(X×X×BRN

) .
An important class of gauges are multiplicative gauges.

Definition 3.3. Let A be a Fourier Integral Operator and G a gauged Fourier Inte-
gral Operator with G(0) = 1 such that each G(z) and all derivatives are composable
with A. Then, we call AG(⋅) a multiplicative gauge of A.

Remark If we consider a canonical relation Γ and the corresponding algebra of
Fourier Integral Operators AΓ, then we may be inclined to search for multiplica-
tive gauges in AΓ. Unfortunately, the identity will not be an element of AΓ, in
general (otherwise, Γ would need to contain the (graph of the) identity on T ∗X ∖ 0
which would imply that all pseudo-differential operators are in AΓ, as well). An
appropriate candidate of an algebra to consider if looking for a multiplicative gauge
should, therefore, be the unitalization AΓ⊕C of AΓ. If AΓ is unital already, taking
the direct sum with C will not change anything at all. Note that we interpret the
element (a,λ) ∈ AΓ ⊕C to be a + λ which directly yields the following structure.

● (a,0) = a ∈ AΓ, (0,1) = 1
● ∀λ ∈ C ∶ λ(a,µ) + (b, ν) = (λa,λµ) + (b, ν) = (λa + b, λµ + ν)
● (a,λ)(b, µ) = (a + λ)(b + µ) = ab + aµ + λb + λµ = (ab + µa + λb,λµ)

Since derivatives should exists within the algebra and we might be interested in
using a functional calculus, it may be necessary to also include an L(L2(X)) closure
of AΓ ⊕C.

We may, however, gauge with properly supported pseudo-differential operators
G(z) (cf. section 18.4 in [18]).

∎

Let P be a gauged pseudo-differential operator. Then, we may also consider

⟨P (z)u, f⟩
as a gauge. This is due to Theorems 18.2.7 and 18.2.8 in [7]. In particular, if f is a

Lagrangian distribution, then it can be represented in the form
´

ei⟨x,ξ⟩af(x, ξ)dξ
which is nothing other than Pfδ0 where Pf is the pseudo-differential operator with
amplitude af . Hence,

⟨P (z)u, f⟩ = ⟨P ′fP (z)u, δ0⟩.
For traces, though, a multiplicative gauge yields

ζ(A)(z) = ⟨g(z) ○ kA, δdiag⟩
where g(z) ○ kA is the kernel of G(z)A and ∀ϕ ∈ C(X) ∶ δdiag(ϕ) = ´X ϕ(x,x)dx
(i.e. δdiag is the kernel of the identity).

Example Suppose u is an M-gauged log-homogeneous distribution. We, thus,
obtain

u(0)(x) =τ0(u(0))(x)+ ˆ
RN∖B

RN

ei⟨x,ξ⟩v(0)(ξ) = τ̃0(u(0))(x)+ (Puδ0)(x)
where Pu is a pseudo-differential operator with amplitude pu(x, ξ) = v(ξ) for ξ ∈

R
n
∖BRN . Furthermore, the complex power Hz with H ∶=

√∣∆∣ has the amplitude
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pz(x, ξ) = (2π)−N ∥ξ∥zℓ2(N) where ∣∆∣ is the (non-negative) Dirichlet Laplacian be-

cause ∣∆∣−1 = F−1 ∥m∥−2ℓ2(N)F where m is the maximal multiplication operator with

the argument on L2(RN)
D(m) ∶ = {f ∈ L2(RN); (Rn

∋ ξ ↦ ξf(ξ) ∈ CN) ∈ L2(RN ;CN)} ,
m ∶ D(m) ⊆ L2(RN) → L2(RN ;CN); f ↦ (ξ ↦ ξf(ξ)) .

(−∆)−1 is well-known to be a compact operator. Hence, let r − 1 be its spectral
radius. Then, the holomorphic functional calculus yields

Hz
= (∣∆∣−1)− z

2

=
1

2πi

ˆ

r∂BC

λ− z
2 (λ − (−∆)−1)−1 dλ

=
1

2πi

ˆ

r∂BC

λ− z
2 ∑
j∈N

0

λ−(j+1) ((−∆)−1)j dλ
=

1

2πi

ˆ

r∂BC

λ− z
2 ∑
j∈N

0

λ−(j+1) (F−1 ∥m∥−2ℓ2(N)F )j dλ
=

1

2πi

ˆ

r∂BC

λ− z
2 ∑
j∈N

0

λ−(j+1)F−1 (∥m∥−2ℓ2(N))j Fdλ
=F
−1 1

2πi

ˆ

r∂BC

λ− z
2 ∑
j∈N

0

λ−(j+1) (∥m∥−2ℓ2(N))j dλF
=F
−1 1

2πi

ˆ

r∂BC

λ− z
2 (λ − ∥m∥−2ℓ2(N))−1 dλF

=F
−1 (∥m∥−2ℓ2(N))− z

2

F

=F
−1 ∥m∥zℓ2(N)F .

Using the composition formula for pseudo-differential operators, we obtain that(2π)NHzPu has the amplitude

∑
α∈Nn

0

1

α!
∂α2 ((2π)Npz) (x, ξ) (−i∂1)αpu(x, ξ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=0 ⇐ α≠0

= ∥ξ∥zℓ2(N) v(0)(ξ) = v(z)(ξ).
In other words,

u(z) ≡ (2π)NHzu(0)
modulo whatever happens on BRN .

∎

Example Let A be a poly-log-homogeneous Fourier Integral Operator and u a
poly-log-homogeneous distribution with I0(A) = I0(u) = ∅. Suppose G and P are
exponential multiplicative gauges, that is,

G′(z) = G(z)G0 and P ′(z) = P (z)P0,

for A and u, respectively. Then

ζ(GA)(z) = ∑
n∈N

0

∂nζ(GA)(0)
n!

zn = ∑
n∈N

0

ζ(∂nGA)(0)
n!

zn = ∑
n∈N

0

ζ(GGn
0A)(0)
n!

zn

and

ζ(Pu)(z) = ∑
n∈N

0

∂nζ(Pu)(0)
n!

zn = ∑
n∈N

0

ζ(∂nPu)(0)
n!

zn = ∑
n∈N

0

ζ(PPn
0 u)(0)
n!

zn

hold in sufficiently small neighborhoods of zero. Using

ζ(GGk
0A)(z)
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= ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂nσ(GGk

0A)(0)(x,x, ξ) dξ dvolX(x)
n!

zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂nσ(GGk

0A)0(0) dvol∆(X)×(R≥1×∂BRN
)

n!
zn

+ ∑
n∈N

0

∑
ι∈I

n∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j σ̃(GGk

0A)ι(0) dvol∆(X)×∂BRN

n!(N + dι)lι+j+1 zn,

where σ(Gk
0A) denotes the amplitude of Gk

0A, we obtain

ζ(GA)(z) = ∑
k∈N

0

ζ(GGk
0A)(0)
k!

zk

= ∑
k∈N

0

1

k!
(ˆ

∆(X)×B
RN

eiϑσ(Gk
0A) dvol∆(X)×B

RN

+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑσ(Gk

0A)0 dvol∆(X)×(R≥1×∂BRN
)

+∑
ι∈I
(−1)lι+1lι! res(Gk

0A)ι(N + dι)lι+1 ) zk
in a sufficiently small neighborhood of zero. For ζ(PPn

0 u)(0), we will denote the
gauged poly-log-homogeneous distribution associated with PP k

0 u by α (PP k
0 u) and

use

ζ(PP k
0 u)(z) = ∑

n∈N
0

1

n!

ˆ

B
RN
(0,1)

∂nα (PP k
0 u) (0)dvolB

RN
(0,1)zn

+ ∑
n∈N

0

´

R≥1×∂BRN
∂nα (PP k

0 u)0 (0)dvolR≥1×∂BRN

n!
zn

+ ∑
n∈N

0

∑
ι∈I

n∑
j=0

(−1)lι+j+1(lι + j)! ´∂B
RN
∂n−jα̃ (PP k

0 u)ι (0)dvol∂BRN

n!(N + dι)lι+j+1 zn

to obtain

ζ(Pu)(z) = ∑
k∈N

0

ζ(PP k
0 u)(0)
k!

zk

= ∑
k∈N

0

1

k!
(ˆ

B
RN
(0,1)

α (P k
0 u)dvolB

RN
(0,1)

+

ˆ

R≥1×∂BRN

α (P k
0 u)0 dvolR≥1×∂BRN

+∑
ι∈I
(−1)lι+1lι! resα (P k

0 u)ι(N + dι)lι+1
⎞⎠ zk.

∎

Example If we consider a multiplicatively gauged A(z) = BQz where Q may be
non-invertible but is an element of an admissible algebra of Fourier Integral Oper-
ators with holomorphic functional calculus, e.g. a pseudo-differential operator of
order 1 (order q > 0 can be obtained using the results of section 2) and spectral cut
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(the following is to be interpreted in this setting), then Q0 = 1 − 1{0}(Q) where

1{0}(Q) ∶= 1

2πi

ˆ

∂B(0,ε)
(λ −Q)−1 dλ

with ε sufficiently small such that B(0, ε) ∩ σ(Q) = {0}. Thus, assuming I0 = ∅

(that is, the Kontsevich-Vishik trace is well-defined and coincides with ζ(A)(0)),
we obtain (abusing the notation tr because ζ is gauge invariant)

ζ(A)(0) = tr (BQ0) = tr (B) − tr (B1{0}(Q))
and

∀k ∈ N ∶ ζ(∂kA)(0) = tr (B(lnQ)kQ0) = tr (B(lnQ)k) − tr (B(lnQ)k1{0}(Q))
where we note that there still is a dependence on the spectral cut used to define
the operators Qz and lnQ. These generalize the formulae (0.17) and (0.18) in [16]
(note that the factors (−1)k are due to sign convention Qz vs. Q−z).

Proposition 3.4. Let A(z) = BQz be poly-homogeneous, fpζ the finite part of
ζ, and trfp the finite part of the trace integral (cf. [12], [13], [14], and [16]).

Furthermore, let ck be the coefficient of zk

k!
in the Laurent coefficient with k ∈ N0.

Then, we obtain

ck =ζ (∂kfp0A) (0)+ ∑
ι∈I0

ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)∂kaι(0)(x,x, ξ) dξ dvolX(x)
− ∑

ι∈I0
1

k + 1
res(∂k+1Aι) (0)

=fpζ (∂kA) (0) − 1

k + 1
res(∂k+1A) (0)

= trfp (B(lnQ)kQ0) − 1

k + 1
res(B(lnQ)k+1Q0) .

In particular,

c0 = trfp (B) − res (B lnQ) − trfp (B1{0}(Q))
and

∀k ∈ N ∶ ck = trfp (B(lnQ)k) − 1

k + 1
res(B(lnQ)k+1) − trfp (B(lnQ)k1{0}(Q))

generalize equations (0.12) and (0.14) in [16] (keeping in mind the factors (−1)k
due to sign convention).

If Q is invertible, then 1{0}(Q) = 0, and for another admissible and invertible
operator Q′, we obtain

c0(Q) − c0(Q′) = − res (B (lnQ − lnQ′))(∗)

which is a generalization of equation (2.21) in [12] and (9) in [15]. Furthermore,
we obtain for A(z) = [B,CQz] with invertible Q, that ζ(A) = 0, i.e. c0 = 0 and

trfp([B,C]) = res ([B,C lnQ])
a generalization of (2.20) in [16].

Applying our ζ-calculus and the considerations above to complex powers also
allows us to reproduce the variation formula for the multiplicative anomaly (2.18)
in [12] using effectively the same proof. However, it should be noted that this
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approach now also works in algebras of Fourier Integral Operators provided they
contain complex powers.

∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Az
t ) (s) − ζ (z ↦ Bz) (s))

=∂s (∂tζ (z ↦ (AtB)z) (s) − ∂tζ (z ↦ Az
t ) (s))

can be evaluated using a suitable contour Γ and C ∈ {B,1} which yields

∂tζ (z ↦ (AtC)z) =ζ (z ↦ ∂t
1

2πi

ˆ

Γ

λz(λ −AtC)−1dλ)
=ζ (z ↦ 1

2πi

ˆ

Γ

λz(A′tC)(λ −AtC)−2dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

λz (−∂λ(λ −AtC)−1)dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

(∂λλz)(λ −AtC)−1dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

zλz−1(λ −AtC)−1dλ)
=ζ (z ↦ z(A′tC)(AtC)−1(AtC)z)
=ζ (z ↦ zA′tA−1t (AtC)z) .

Taking the other derivative, we obtain

∂s∂tζ (z ↦ (AtC)z) (s) =∂sζ (z ↦ zA′tA−1t (AtC)z) (s)
=ζ (z ↦ ∂z (zA′tA−1t (AtC)z)) (s)
=ζ (z ↦ A′tA−1t (AtC)z + z∂z (A′tA−1t (AtC)z)) (s)
=(1 + s∂s)ζ (z ↦ A′tA−1t (AtC)z) (s).

However, by assumption ζ (z ↦ A′tA−1t (AtC)z) is holomorphic near zero, i.e. its

derivative ζ (z ↦ A′tA−1t (AtC)z)′ is holomorphic near zero, and

s∂sζ (z ↦ A′tA−1t (AtC)z) (s)→ 0 (s→ 0).
In other words,

∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Az
t ) (s) − ζ (z ↦ Bz) (s))

=ζ (z ↦ A′tA−1t (AtB)z) (s) − ζ (z ↦ A′tA−1t Az
t ) (s)

which, according to (∗) above, yields

∂t lnF (At,B) =∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Az
t ) (s) − ζ (z ↦ Bz) (s))

=ζ (z ↦ A′tA−1t (AtB)z) (s) − ζ (z ↦ A′tA−1t Az
t ) (s)

= − res(A′tA−1t ( ln(AtB)
orderAtB

−
lnAt

orderAt

))
with the multiplicative anomaly

F (A,B) ∶= exp (ζ (z ↦ (AB)z)′ (0))
exp (ζ (z ↦ Az)′ (0)) exp (ζ (z ↦ Bz))′ (0) .
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Choosing a multiplicative gauge G with G′ = G0G, we obtain a different variation
formula of the multiplicative anomaly; namely,

∂t (ζ(AtBtG)′ − ζ(AtG)′ − ζ(BtG)′) =ζ(A′tBtG)′ + ζ(AtB
′
tG)′ − ζ(A′tG)′ − ζ(B′tG)′

=ζ(A′t(Bt − 1)G)′ + ζ((At − 1)B′tG)′
=ζ(A′t(Bt − 1)G′) + ζ((At − 1)B′tG′)
=ζ(A′t(Bt − 1)G0G) + ζ((At − 1)B′tG0G).

∎

Remark Note that the mechanism explored in this chapter also works when-
ever there is a representation

´

RN

´

X
eiϑ(x,x,ξ)a(x,x, ξ)dvolX(x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶α(ξ)

dξ with poly-log-

homogeneous α. In particular, we may consider algebras that do not have the form
AΓ where Γ intersects the co-normal bundle of the identity cleanly. Above, we used
that ⟨k, δdiag⟩ can be written as ⟨Pk, δ0⟩ for some pseudo-differential operator P ,
i.e. we used the clean intersection property to obtain the poly-log-homogeneous
distribution form. However, for R(z) sufficiently small, the gauged k(z) is contin-
uous, that is, ⟨k(z), δdiag⟩ is well-defined and extends, thus, not needing the clean
intersection property.

∎

4. The heat trace, fractional, and shifted fractional Laplacians on
flat tori

In this section, we will apply Theorem 3.1 to some examples which are well-
known or can be easily checked through spectral considerations.

Example (the Heat Trace on the flat torus R
N /Γ) Let Γ ⊆ R

N be a dis-
crete group generated by a basis of RN , ∣∆∣ the Dirichlet Laplacian on R

N , δ the
Dirichlet Laplacian on R

N /Γ, and T the semi-group generated by −δ on R
N /Γ. It

is well-known that

trT (t) = volRN /Γ (RN /Γ)(4πt)N
2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠
holds; cf. e.g. equation 3.2.3.28 in [17]. Furthermore, the kernel κδ of δ is given by
the kernel κ∣∆∣ via κδ(x, y) = ∑γ∈Γ κ∣∆∣(x, yγ); cf. e.g. section 3.2.2 in [17]. In other
words,

κδ(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−y−γ,ξ⟩(2π)−N ∥ξ∥2ℓ2(N) dξ.
Hence, using functional calculus, we obtain

κT (t)(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−y−γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N)dξ.
Considering some gauge of T (t) we obtain from the Laurent expansion (Theorem
3.1)

ζ(T (t))(0)
=

ˆ

RN /Γ×BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvolRN /Γ×BRN
(x, ξ)

+

ˆ

RN /Γ×(R≥1×∂BRN
)
∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−N (e−t∥⋅∥2ℓ2(N))
0
(ξ) dvol

RN /Γ×(R≥1×∂BRN
)(x, ξ)
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+∑
ι∈I
(−1)lι+1lι! res(T (t))ι(N + dι)lι+1 .

Since (ξ ↦ e
−t∥ξ∥2ℓ2(N)) ∈ S(RN ), we can choose I = ∅ and (e−t∥⋅∥2ℓ2(N))

0
= e
−t∥⋅∥2ℓ2(N)

which yields

ζ(T (t))(0)
=

ˆ

RN /Γ×BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvolRN /Γ×BRN
(x, ξ)

+

ˆ

RN /Γ×(R≥1×∂BRN
)
∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvol
RN /Γ×(R≥1×∂BRN

)(x, ξ)
=
volRN /Γ (RN /Γ)(2π)N

ˆ

B
RN

∑
γ∈Γ

e−i⟨γ,ξ⟩e−t∥ξ∥
2

ℓ2(N) dvolB
RN
(ξ)

+
volRN /Γ (RN /Γ)(2π)N

ˆ

R≥1×∂BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩e−t∥ξ∥
2

ℓ2(N) dvolR≥1×∂BRN
(ξ)

=
volRN /Γ (RN /Γ)(2π)N ∑

γ∈Γ

ˆ

RN

e−i⟨γ,ξ⟩e−t∥ξ∥
2

ℓ2(N) dξ

=
volRN /Γ (RN /Γ)(4π2)N

2

∑
γ∈Γ

π
N
2 t−

N
2 e−

∥γ∥2
ℓ2(N)

4t

=
volRN /Γ (RN /Γ)(4πt)N

2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠ ,
i.e. precisely what we wanted to obtain.

∎

Please note that the following example exceeds the applicability of the ζ-function
Laurent expansion as it is for now. However, we will show in section 5 that the
formulae still hold.

Example (fractional Laplacians on R/2πZ) On T ∶= R/2πZ , let us consider

the operator H ∶=
√∣∆∣ where ∣∆∣ denotes the (non-negative) Laplacian. It is well-

known that the spectrum σ(H) = N0 is discrete and each non-zero eigenvalue has
multiplicity 2. Furthermore, the symbol of Hz has the kernel

κHz(x, y) = ∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ ∣ξ∣z
2π

dξ.

The singular part is given for n = 0 and ∑n∈Z∖{0}
´

R
ei(x−y−2πn)ξ ∣ξ∣

z

2π
dξ is regular.

Let α ∈ (−1,0). Since ζ is the spectral ζ-function, we obtain (µλ denoting the
multiplicity of λ and R(z) < −1)

ζ (s ↦HsHα) (z) = ∑
λ∈σ(H)∖{0}

µλλ
z+α
= 2∑

n∈N
nz+α

= 2ζR(−z − α)
where ζR denotes Riemann’s ζ-function. In particular,

ζ (s ↦HsHα) (0) =2ζR(−α).
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On the other hand, we have the Laurent expansion (Theorem 3.1)

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk,

i.e.

ζ (s↦HsHα) (0) =ˆ
∆(T)×BR

eiϑσ (Hα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR )
eiϑσ (Hα)0 dvol∆(T)×(R≥1×∂BR )

+∑
ι∈I
(−1)lι+1lι! res (Hα)ι(1 + dι)lι+1 .

Plugging in our kernel yields

ζ (s↦HsHα) (0) =∑
n∈Z

ˆ 2π

0

ˆ 1

−1

e−2πinξ
∣ξ∣α
2π

dξ dx

+ ∑
n∈Z∖{0}

ˆ 2π

0

ˆ

R≤1∪R≥1

e−2πinξ
∣ξ∣α
2π

dξ dx

−
1

1 + α

ˆ 2π

0

ˆ

∂BR

∣ξ∣α
2π

dvol∂BR
(ξ) dx

=

ˆ 1

−1

∣ξ∣α dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ
−

1

1 + α

ˆ

∂BR

∣ξ∣α dvol∂BR
(ξ).

Since α ∈ (−1,0) and vol∂BR
is the sum of point measures δ−1 + δ1, we obtain

ˆ 1

−1

∣ξ∣α dξ =2ˆ 1

0

ξαdξ =
2

α + 1
=

1

1 + α

ˆ

∂BR

∣ξ∣α dvol∂BR
(ξ),

i.e.

ζ (s ↦HsHα) (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ.
Using that the Fourier transform of ξ ↦ ∣ξ∣α is

ˆ

R

e−2πixξ ∣ξ∣α dξ = 2 sin (−απ
2
)Γ(α + 1)

∣2πx∣α+1
and Riemann’s functional equation

ζR(z) = 2(2π)z−1 sin(πz
2
)Γ(1 − z)ζR(1 − z),

we obtain (in the sense of meromorphic extensions)

ζ (s↦HsHα) (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ = ∑
n∈Z∖{0}

2 sin (−απ
2
)Γ(α + 1)

∣2πn∣α+1
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=
2 sin (−απ

2
)Γ(α + 1)(2π)α+1 ⋅ 2∑

n∈N
1

nα+1

=2 2(2π)(−α)−1 sin(−απ
2
)Γ(1 − (−α))ζR(1 − (−α))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ζR(−α)

.

∎

Remark Using identification via meromorphic extension of

ζR(z) = ∑
n∈Z∖{0}

sin (−zπ
2
)Γ(z + 1)

∣2πn∣z+1
and, therefore,

∀z ∈ C ∖ {−1} ∶ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣z dξ = 2ζR(−z)
as well as

ˆ 1

−1

∣ξ∣z dξ = 1

1 + z

ˆ

∂BR

∣ξ∣z dvol∂BR
(ξ),

we can extend the example above to all α ∈ C ∖ {−1}, i.e.

ζR = (α ↦ 1

2
ζ (s ↦HsH−α) (0)) .

∎

Example (generalized ζ-determinant of s↦HsHα on R/2πZ) In order to
calculate detζ (s↦HsHα) = exp (ζ (s↦HsHα)′ (0)), it suffices to know the de-

rivative ζ (s ↦HsHα)′ (0). From the spectral ζ-function we directly obtain

ζ (s ↦HsHα)′ (0) = ∂ (z ↦ 2ζR(−z))(α) = −2ζ′R(−α).
On the other hand, we may invest (Theorem 3.1)

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk,

again, to find

ζ (s ↦HsHα)′ (0) =ˆ
∆(T)×BR

eiϑσ (lnHHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ (lnHHα)0 dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I
(−1)lι+1lι! res (lnHHα)ι(1 + dι)lι+1 .

Using the symbol
ln∣ξ∣
2π

of lnH on R, yields that

∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ ∣ξ∣α ln ∣ξ∣
2π

dξ
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is the kernel of lnHHα on T. Again, the singular part is given for n = 0 yielding
#I = 1, dι = α, and lι = 1, as well as

ζ (s ↦HsHα)′ (0) =ˆ 2π

0

ˆ 1

−1

∑
n∈Z

e−2πinξ
∣ξ∣α ln ∣ξ∣

2π
dξ dx

+

ˆ 2π

0

ˆ

R<−1∪R>1

∑
n∈Z∖{0}

e−2πinξ
∣ξ∣α ln ∣ξ∣

2π
dξ dx

+
1(1 + α)2

ˆ 2π

0

ˆ

∂BR

∣ξ∣α ln ∣ξ∣
2π

dvol∂BR
(ξ) dx

=

ˆ 1

−1

∣ξ∣α ln ∣ξ∣ dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α ln ∣ξ∣ dξ + 2(1 + α)2 .
Note that

ˆ 1

−1

∣ξ∣α ln ∣ξ∣ dξ =2ˆ 1

0

ξα ln ξ dξ = −
2(α + 1)2

holds for R(α) > −1 and, hence, by meromorphic extension

ζ (s↦HsHα)′ (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α ln ∣ξ∣ dξ
= ∑
n∈Z∖{0}

ˆ

R

e−2πinξ∂ (β ↦ ∣ξ∣β) (α) dξ
=∂
⎛⎝β ↦ ∑

n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣β dξ
⎞⎠(α)

=∂ (β ↦ 2ζR(−β)) (α)
= − 2ζ′R(−α).

∎

Similarly, we can take higher order derivatives.

Example (∂kζ (s ↦HsHα) (0) on R/2πZ) Regarding higher order derivatives the
spectral ζ-function yields

∂kζ (s ↦HsHα) (0) = ∂k (z ↦ 2ζR(−z))(α) = (−1)k ⋅ 2∂kζR(−α).
From

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk

(Theorem 3.1) we obtain

∂kζ (s↦HsHα) (0) =ˆ 2π

0

ˆ 1

−1

∑
n∈Z

e−2πinξ
∣ξ∣α (ln ∣ξ∣)k

2π
dξ dx

+

ˆ 2π

0

ˆ

R∖BR

∑
n∈Z∖{0}

e−2πinξ
∣ξ∣α (ln ∣ξ∣)k

2π
dξ dx
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+
(−1)k+1k!(1 + α)k+1

ˆ 2π

0

ˆ

∂BR

∣ξ∣α
2π

dvol∂BR
(ξ) dx

=2

ˆ 1

0

ξα (ln ξ)k dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α (ln ∣ξ∣)k dξ
−
2 ⋅ (−1)kk!(1 + α)k+1

=2∂k (β ↦ ˆ 1

0

ξβdξ)(α) − 2 ⋅ (−1)kk!(1 + α)k+1
+ ∂k

⎛⎝β ↦ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣β dξ⎞⎠(α)
=2∂k (β ↦ (1 + β)−1) (α)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(−1)kk!(1+α)−(k+1)
−
2 ⋅ (−1)kk!(1 + α)k+1 + ∂k (β ↦ 2ζR(−β)) (α)

=(−1)k ⋅ 2∂kζR(−α).
∎

Finally, let us calculate the residue of ζ (s ↦HsH−1).
Example (res0 ζ (s↦HsH−1) on R/2πZ) ζ (s↦HsH−1) (z) = 2ζR(1 − z) shows

that res0 ζ (s↦HsH−1) = −2 res1 ζR = −2. Also, using the Laurent expansion (The-

orem 3.1) of ζ(A) for A = (s ↦HsH−1), we obtain

res0 ζ (s↦HsH−1) = − ˆ 2π

0

ˆ

∂BR

∣ξ∣−1
2π

dvol∂BR
dx = −2.

∎

Furthermore, we can consider shifted fractional Laplacians which do not have singu-
lar amplitudes, that is, these are actually covered by the theory we have developed
so far. They will also lead to the crucial observation that will help incorporate the
case of singular amplitudes and, thus, justify the example of fractional Laplacians.

Example (shifted fractional Laplacians on R/2πZ) Again, let H ∶=
√∣∆∣

on R/2πZ , h ∈ (0,1], and G ∶= h +H . Then,

ζ (s↦ Gs+α) (z) =∑
n∈Z
(h + ∣n∣)z+α = 2 ∑

n∈N
0

(h + n)z+α − hz+α = 2ζH(−z − α;h) − hz+α
where ζH(z;h) denotes the Riemann-Hurwitz-ζ-function. In order to use our for-
malism above (Theorem 3.1), we will need to write ξ ↦ (h + ∣ξ∣)α as a series of
poly-homogeneous functions. Using

(h + ∣ξ∣)α = ∑
k∈N

0

(α
k
) ∣ξ∣α−k hk

for ∣ξ∣ ≥ 1 yields that the kernel of Gz+α

kGz+α(x, y) = ∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ 1

2π
(h + ∣ξ∣)z+αdξ

is, in fact, poly-log-homogeneous. For α = −1, the critical term in zero is given by

the k = 0 term of ∑k∈N
0

(α
k
) ∣ξ∣α−k hk, i.e.

res0 ζ (s↦ Gs−1) = − ˆ
∂BR

∣ξ∣−1 dvol∂BR
(ξ) = −2.
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On the other hand,

res0 ζ (s↦ Gs−1) = res0 (z ↦ 2ζH(−z + 1;h) − hz+α) = 2 res0 (z ↦ ζH(−z + 1;h))
= − 2 res0 (z ↦ ζH(z − 1;h)) = −2 res1 ζH(⋅;h) = −2.

For α ≠ −1 and ∣ξ∣ ≥ 1,
(h + ∣ξ∣)α = ∑

k∈N
0

(α
k
)hk ∣ξ∣α−k

implies α − k ∈ I0 if and only if k = α + 1 ∈ N0. However, since ( α

α+1
) = 0 for α ∈ N0,

we obtain I0 = ∅ and

ζ (s ↦ Gs+α) (0) =∑
n∈Z

ˆ 1

−1

e−2πinξ(h + ∣ξ∣)αdξ
+ ∑

n∈Z∖{0}

ˆ

R∖[−1,1]
e−2πinξ(h + ∣ξ∣)αdξ

+ ∑
k∈N

0

−1

1 + α − k

ˆ

∂BR

(α
k
)hk ∣ξ∣α−k dvol∂BR

(ξ)
=

ˆ 1

−1

(h + ∣ξ∣)αdξ − ∑
k∈N

0

2

1 + α − k
(α
k
)hk

+ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
Observing

ˆ 1

−1

(h + ∣ξ∣)αdξ =2ˆ 1

0

(h + ξ)αdξ = 2ˆ 1+h

h

ξαdξ =
2

α + 1
((1 + h)α+1 − hα+1)

=
−2hα+1

α + 1
+

2

α + 1
∑
k∈N

0

(α + 1
k
)hk

=
−2hα+1

α + 1
+ 2 ∑

k∈N
0

1

α − k + 1
(α
k
)hk

leaves us with

ζ (s↦ Gs+α) (0) =−2hα+1
α + 1

+ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

non-singular

.

This is precisely what we expect since the principal part of ζH(z;h) near 1 is h
1−z

z−1

(cf. equation 3.1.1.10 in [17]), i.e.

ζ (s ↦ Gs+α) (0) = 2ζH(−z − α;h) − hz+α
has principal part 2 h1+α

−α−1
.

Unfortunately, evaluating ∑n∈Z∖{0}
´

R
e−2πinξ(h + ∣ξ∣)αdξ is a wee tricky. We will

use that
ˆ

R

(h + ∣ξ∣)αdξ =2ˆ
R≥0

(h + ξ)αdξ = 2ˆ
R
≥h

ξαdξ = −
2hα+1

α + 1

holds for Rα < −1 and, hence,

ζ (s↦ Gs+α) (0) =∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
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by meromorphic extension. Furthermore, we obtain

ζ (s↦ Gs+α) (0) =∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
=∑
n∈Z

ˆ

R≥0

e−2πinξ(h + ∣ξ∣)αdξ + ∑
n∈Z

ˆ

R<0

e−2πinξ(h + ∣ξ∣)αdξ
=∑
n∈Z

e2πinh
ˆ

R
≥h

e−2πinξξαdξ + ∑
n∈Z

ˆ 0−

−∞

e−2πinξ(h − ξ)αdξ
=∑
n∈Z

e2πinh
ˆ

R
≥h

e−2πinξξαdξ + ∑
n∈Z
−

ˆ h+

∞

e−2πin(h−ξ)ξαdξ

=∑
n∈Z

e2πinh
ˆ

R
≥h

e−2πinξξαdξ + ∑
n∈Z

e−2πinh
ˆ

R
>h

e2πinξξαdξ

=∑
n∈Z

e2πinh
ˆ

R
≥h

e−2πinξξαdξ + ∑
n∈Z

e2πinh
ˆ

R
>h

e−2πinξξαdξ

=∑
n∈Z

e2πinh (ˆ
R

e−2πinξ1R
≥h
(ξ)ξαdξ + ˆ

R

e−2πinξ1R
>h
(ξ)ξαdξ) .

For ε ∈ (0,1) let

ϕε(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ∈ R≤h−ε
ε−1(x − h + ε) , x ∈ (h − ε, h)
1 , x ∈ R≥h

and

ψε(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ∈ R≤h
ε−1(x − h) , x ∈ (h,h + ε)
1 , x ∈ R≥h+ε

.

Then

ζ (s ↦ Gs+α) (0) =∑
n∈Z

e2πinh (ˆ
R

e−2πinξ1R
≥h
(ξ)ξαdξ + ˆ

R

e−2πinξ1R
>h
(ξ)ξαdξ)

=∑
n∈Z

e2πinh lim
ε↘0
(ˆ

R

e−2πinξϕε(ξ)ξαdξ + ˆ
R

e−2πinξψε(ξ)ξαdξ)
can be evaluated using the Poisson summation formula on a lattice Λ (cf. Chapter
VII.2 Theorem 2.4 in [19])

∑
λ∈Λ

f(x + λ) = ∑
λ∈Λ
F f(λ)e2πiλx

which yields (we can move limε↘0 freely in and out of integrals and series due
to meromorphic extension, dominated convergence, and since the series converges
absolutely for R(α) < −1)
ζ (s ↦ Gs+α) (0) = lim

ε↘0
∑
n∈Z

e2πinh (ˆ
R

e−2πinξϕε(ξ)ξαdξ + ˆ
R

e−2πinξψε(ξ)ξαdξ)
= lim
ε↘0
∑
n∈Z
(ϕε(h + n)(h + n)α +ψε(h + n)(h + n)α)

= lim
ε↘0

⎛⎝∑n∈N
0

ϕε(h + n)(h + n)α + ∑
n∈N

ψε(h + n)(h + n)α⎞⎠
= ∑
n∈N

0

(h + n)α + ∑
n∈N
(h + n)α
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=2ζH(−α;h) − hα.
Considering higher order derivatives, we obtain

∂mζ (s↦ GsGα) (0) = 2(−1)m∂mζH(−α;h) − hα(lnh)m
from the spectral ζ-function while the Laurent expansion yields

∂mζ (s↦ GsGα) (0)
=∑
n∈Z

ˆ 1

−1

e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∑
n∈Z∖{0}

ˆ

R∖[−1,1]
e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∑
k∈N

0

m∑
j=0

(−1)j+1j! ´
∂BR

∂m−j (β ↦ (β
k
)hk ∣ξ∣β−k) (α) dvol∂BR

(ξ)
(α − k + 1)j+1

=∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

− 2

ˆ

R≥1

(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∂m
⎛⎝β ↦ ∑k∈N

0

−
´

∂BR

(β
k
)hk ∣ξ∣β−k dvol∂BR

(ξ)
β − k + 1

⎞⎠(α)
=∂m (β ↦ ∑

n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)β dξ)(α)
− 2∂m

⎛⎝β ↦
ˆ

R≥1

(h + ∣ξ∣)β dξ⎞⎠(α) + ∂m ⎛⎝β ↦ ∑k∈N
0

−2(β
k
)hk

β − k + 1

⎞⎠(α)
=∂m (β ↦ 2ζH(−β;h) − hβ) (α)
− 2∂m (β ↦ −(1 + h)β+1

β + 1
)(α) − 2∂m (β ↦ (1 + h)β+1

β + 1
)(α)

=2(−1)m∂mζH(−α;h) − hα(lnh)m.
∎

5. Mollification of singular amplitudes

In this section we will address the fact that many applications consider ampli-
tudes which are homogeneous on R

N
∖{0}. In particular for pseudo-differential op-

erators, this does not add too many problems because we can use a cut-off function
near zero and extend the symbol as a distribution to R

N (which is uniquely possi-
ble up to certain critical degrees of homogeneity which are related to the residues).
Then, we are left with a Fourier transform of a compactly supported distribution,
i.e. the corresponding kernel is continuous and we can take the trace. In the general
Fourier Integral Operator case, the situation is more complicated. Hence, in this
section, we will show that the Laurent expansion holds for such amplitudes, as well,
and not just modulo trace-class operators. We will prove this result by showing
that we can always find a sequence of “nice” families of operators such that their
ζ-functions converge compactly.
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In the previous section, our calculations of ζ (s ↦HsHα) have been pushing the
boundaries of our formula in the sense that the Laurent expansion of Fourier Integral
Operators assumes integrability of all amplitudes a(z) on BRN . This is obviously
not true for a(z)(x, y, ξ) = ∣ξ∣z+α (at least not for all z ∈ C). Hence, we would have
to consider the Laurent expansion in a more general version where we also allowed

z ↦

ˆ

X

ˆ

B
RN

eiϑ(x,x,ξ)a(z)(x,x, ξ) dξ dvolX(x)
to have a non-vanishing principal part.

However, we may use ζ (s ↦ GsGα) to justify the calculations as they are by taking
the limit h↘ 0 in ζ (s ↦ GsGα). In fact, it is possible to show

lim
h↘0

ζ (s ↦ GsGα) =ζ (s↦HsHα) compactly.

Here, we regularized the kernel a(z)(x, y, ξ) = ∣ξ∣z by adding an h ∈ (0,1) yielding a
perturbed amplitude ah(z)(x, y, ξ) = (h + ∣ξ∣)z which has no singularities. Showing
that the limit h ↘ 0 exists, then, justifies our calculations. Using Vitali’s theorem
(cf. e.g. chapter 1 in [9]) we can largely generalize this approach.

Theorem 5.1 (Vitali). Let Ω ⊆open,connected C, f ∈ C∞(Ω)N locally bounded, and
let

{z ∈ Ω; (fn(z))n∈N converges}
have an accumulation point in Ω. Then, f is compactly convergent.

Let (An)n∈N be a sequence of gauged Fourier Integral Operators with C∞-
amplitudes and A a gauged Fourier Integral Operator whose amplitudes may con-
tain singularities. Furthermore, let An(z) → A(z) for every z in the generalized
sense (cf. Chapter IV in [11]). Let d ∈ R such that ∀z ∈ C ∶ (R(z) < d ⇒ A(z) is
of trace-class) and Ω ∶= C

R(⋅)<d−1. Then, for every z ∈ Ω, (An(z))n∈N is eventually

a sequence of bounded operators and An∣Ω → A∣Ω converges pointwise in norm.
Furthermore, let (λk(z))k∈N be the sequence of eigenvalues of A(z) counting mul-
tiplicities and (λk(z) + hnk(z))k∈N be the sequence of eigenvalues of An(z) counting
multiplicities. Suppose that hn(z) ∶= ∑k∈N ∣hnk(z)∣ exists and converges to zero for
z ∈ Ω. Then,

∣ζ(An)(z) − ζ(A)(z)∣ = ∣∑
k∈N
(λk(z)+ hnk(z)) − ∑

k∈N
λk(z)∣ = ∣∑

k∈N
hnk(z)∣ ≤ hn(z)→ 0

for z ∈ Ω shows

{z ∈ Ω; (ζ(An)(z))n∈N converges} = Ω.
Let Ω̃ ⊆ C be open and connected with Ω ⊆ Ω̃ such that all ζ(An)∣Ω̃ are holomorphic

and {ζ(An)∣Ω̃; n ∈ N} is locally bounded. Then,

lim
n→∞

ζ(An)∣Ω̃ = ζ(A)∣Ω̃.
In particular, if hn admits an analytic continuation to Ω̃, then limn→∞ ζ(An)∣Ω̃ =
ζ(A)∣Ω̃.

Remark Note that An(z)→ A(z) in the generalized sense implies that the hnk(z)
exist and for every k and z we have limn→∞ h

n
k(z)→ 0. However, in general, we will

not have any uniform bound on them, let alone find an hn(z); cf. Section IV.3.5 in
[11].

∎
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Definition 5.2. Let A be an operator with purely discrete spectrum. For every
λ ∈ σ(A) let µλ be the multiplicity of λ. Then, we define the spectral ζ-function
ζσ(A) to be the meromorphic extension of

ζσ(A)(s) ∶= ∑
λ∈σ(A)∖{0}

µλλ
−s

and the spectral Θ-function Θσ(A)
∀t ∈ R>0 ∶ Θσ(A)(t) ∶= ∑

λ∈σ(A)
µλ exp (−tλ)

if they exist.

Definition 5.3. Let T ∈ R>0 and ϕ ∈ C(R>0). We define the upper Mellin transform
as

M
T (ϕ)(s) ∶= ˆ

(0,T )
ϕ(t)ts−1dt

and the lower Mellin transform

MT (ϕ)(s) ∶=
ˆ

R
≥T

ϕ(t)ts−1dt
(if the integrals exist). If both integrals exist and with non-empty intersection Ω of
domains of holomorphy (that is, the maximal connected and open subset admitting
an analytic continuation of the function), then we define the generalized Mellin
transform of ϕ to be the meromorphic extension of

M(ϕ) ∶=MT (ϕ)∣Ω +MT (ϕ)∣Ω.
Example Let ϕ(t) ∶= tα for some α ∈ C. Then

M
T (ϕ)(s) =ˆ

(0,T )
ts+α−1dt =

T s+α

s + α

for R(s) > α extending to C ∖ {−α} and

MT (ϕ)(s) =
ˆ

R
≥T

ts+α−1dt = −
T s+α

s + α

for R(s) < α extending to C ∖ {−α}. Hence,M(ϕ) exists with

M(ϕ)(s) = T s+α

s + α
−
T s+α

s + α
= 0

on C ∖ {−α}, i.e. M(ϕ) = 0.
∎

Example Let λ ∈ R>0 and s ∈ C with R(s) > 0. Then
ˆ

R>0

e−λtts−1dt =

ˆ

R>0

e−ττs−1λ−sdt = λ−sΓ(s)
shows that λ↦

´

R>0
e−λtts−1dt extends analytically to C ∖R≤0.

∎

Example Let A be an operator with purely discrete spectrum. For every λ ∈ σ(A)
let µλ be the multiplicity of λ and R(λ) ≥ 0. M(1) = 0, then, implies

M (Θσ(A)) (s) = ∑
λ∈σ(A)

µλM (t ↦ exp(−tλ)) (s)
= ∑
λ∈σ(A)∖{0}

µλM (t↦ exp(−tλ)) (s)
= ∑
λ∈σ(A)∖{0}

µλλ
−sΓ(s)
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=ζσ(A)(s)Γ(s).
∎

Lemma 5.4. limh↘0M (t ↦ exp(−th)) =M(1) = 0 compactly.

Proof. For R(s) > 1, we obtain

1

Γ(s)M (t↦ exp(−th))(s) = 1

Γ(s)
ˆ

R>0

e−thts−1dt

=h−s

= ∑
k∈N

0

(k + h)−s − ∑
k∈N

0

(k + 1 + h)−s
=ζH(s;h) − ζH(s; 1 + h).

Hence,

M (t↦ exp(−th))(s) =Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h)
holds on C ∖ Z≤1. Furthermore, Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h) is locally bounded
on C ∖Z≤1 for h↘ 0 which implies

lim
h↘0
M (t↦ exp(−th))(s) = lim

h↘0
(Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h))

=Γ(s)ζH(s; 0) − Γ(s)ζH(s; 1)
=Γ(s)ζR(s) − Γ(s)ζR(s)
=0,

i.e. limh↘0M (t ↦ exp(−th)) exists and vanishes on C ∖ Z≤1. Vitali’s theorem,
thence, proves the assertion.

�

Corollary 5.5. Let A and Ah be operators with spectral ζ-functions. Let ζσ(A)
be the meromorphic extension of ∑k∈N λ−sk for some N ⊆ N and ζσ(Ah) the mero-

morphic extension of ∑n
j=1 h̃−sj + ∑k∈N (λk + hk)−s where all h̃j ∈ R>0. Suppose

Ah converges to A in the generalized sense and the meromorphic extension fh of

∑k∈N (λk + hk)−s is locally bounded and converges to ζσ(A) pointwise.

Then, ζσ(Ah) converges to ζσ(A) compactly.

Proof. The assertion is a direct consequence of ∑n
j=1 h̃−sj → 0 compactly (Lemma

5.4) and fh → ζσ(A) compactly (Vitali’s theorem).
�

Proposition 5.6. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribu-
tion on R>0 ×M with I finite and α0 regular. Then, ζ(α) can be mollified.

In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)
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for hι ∈ R>0, hι ↘ 0.

Proof. The part
ˆ

R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
creates no problems in the formalism used to obtain the Laurent expansion. Hence,
we only need to consider

∑
ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

=∑
ι∈I

ˆ

(0,1)
∂lι (s ↦ rdimM+dι+s) (z)dr resαι(z)

=∑
ι∈I
∂lι (s↦ ˆ

(0,1)
rdimM+dι+sdr) (z) resαι(z)

=∑
ι∈I
∂lι ( 1

dimM + dι + s + 1
) (z) resαι(z)

=∑
ι∈I

(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z).
Introducing hι ∈ R>0 we obtain

∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

ˆ

(0,1)
∂lι (s↦ (hι + r)dimM+dι+s) (z)dr resαι(z)

=∑
ι∈I
∂lι (s ↦ ˆ

(0,1)
(hι + r)dimM+dι+sdr)(z) resαι(z)

=∑
ι∈I
∂lι (s ↦ (1 + hι)dimM+dι+s+1 − hdimM+dι+s+1

ι

dimM + dι + s + 1
)(z) resαι(z)

=∑
ι∈I

lι∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
−∑

ι∈I

lι∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−j resαι(z).

Since each of the (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j is locally bounded for hι → 0

(taking derivatives in Lemma 5.4) and

(1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j → ⎧⎪⎪⎨⎪⎪⎩
0 j ≠ lι

1 j = lι

for hι → 0, we obtain

lim
hι↘0
∑
ι∈I

lι∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
=∑

ι∈I
(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z)

compactly. Furthermore,

hdimM+dι+z+1
ι (lnhι)lι−j =hdimM+dι+z+1+j−lι

ι (hι lnhι)lι−j
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being locally bounded for hι → 0 and converging to zero compactly shows

ζ(αh)(z)
=

ˆ

R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

lι∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
−∑

ι∈I

lι∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j resαι(z)

→

ˆ

R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I
(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z)

=ζ(α)(z)
where the convergence is compact by Vitali’s theorem.

�

Example (re-re-visiting ζ (s↦HsHα)) Let Γ ⊆ RN be a discrete group gener-
ated by a basis of RN , ∣∆∣ the Dirichlet Laplacian on R

N , δ the Dirichlet Laplacian

on R
N /Γ, and H ∶=

√
δ. Then,

ζ (s ↦Hs) (z) =volRN /Γ (RN /Γ)∑
γ∈Γ

ˆ

RN

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N) dξ
where

∑
γ∈Γ∖{0}

ˆ

RN

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N) dξ
is regular, i.e.

α0(z)(ξ)=̂volRN /Γ (RN /Γ) ∑
γ∈Γ∖{0}

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N)
and

∑
ι∈I
αι(z)(ξ) = volRN /Γ (RN/Γ) (2π)−N ∥ξ∥zℓ2(N) .

Hence, Proposition 5.6 is applicable.

∎

In the following, we will use Abel’s summation.

Lemma 5.7 (Abel’s summation). Let a, b ∈ GN for some group G and ∀n ∈ N ∶
Bn ∶= ∑n

k=1 bk. Then,
n∑

k=1
akbk = an+1Bn +

n∑
k=1
(ak − ak+1)Bk.

Proposition 5.8. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribu-
tion on R>0 ×M with I ⊆ N, α0 regular on (0,1) ×M ,

αι(z)(r, ξ) =rdι+z(ln r)lι α̃ι(z)(ξ),
where (R(dι))ι∈I is bounded from above, each ( 1

dimM+dι+z+1
)
ι∈I ∈ ℓ2(I), (lι)ι∈I ∈

ℓ∞(I), l ∶= ∥(lι)ι∈I∥ℓ∞(I), and each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).
Then, ζ(α) can be mollified.
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In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

for h ∶= (hι)ι∈I ∈ ℓ∞(I;R>0) and h↘ 0 in ℓ∞(I) such that

Zι(z) ∶= ∣ζH(l − dι − z;hι) − ζH(l − dι − z; 1 + hι)∣
defines (Zι(z))ι∈I ∈ ℓ∞(I) which is bounded on an exhausting family of compacta
as h↘ 0.

Proof. Proposition 5.6 yields the assertion for finite I. Hence, we may assume I = N
without loss of generality. Furthermore, we only need to consider the part

A(h) ∶=∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j
−∑

ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j ,

i.e. show that it converges compactly to zero. Recall that ∑ι∈I resαι(z)
dimM+dι+z+1

con-

verges absolutely and ∣dimM + dι + z + 1∣ → ∞ (ι → ∞). Hence, we will assume,
without loss of generality, ∀ι ∈ I ∶ ∣dimM + dι + z + 1∣ ≥ 1 (as there can only be
finitely many with ∣dimM + dι + z + 1∣ < 1 which is handled by Proposition 5.6).
Then, we observe (for h0 ∶= ∥h∥ℓ∞(I) < e − 1)RRRRRRRRRRR∑ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−jRRRRRRRRRRR
≤∑

ι∈I

lι∑
j=0

j! ∣resαι(z)∣∣dimM + dι + z + 1∣j+1 ∣(1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j ∣
≤l!∑

ι∈I

lι∑
j=0

∣resαι(z)∣∣dimM + dι + z + 1∣ ∣(1 + hι)dimM+dι+z+1∣ (ln(1 + h0))lι−j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1 (h0<e−1)

≤l! ⋅ l∑
ι∈I

∣resαι(z)∣∣dimM + dι + z + 1∣ (1 + h0)dimM+R(dι+z)+1

≤l! ⋅ l (1 + h0)max{dimM+R(z)+1+supι∈I R(dι),0}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1 (h↘0)

∑
ι∈I

∣resαι(z)∣∣dimM + dι + z + 1∣
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which is locally bounded by absolute convergence of ∑ι∈I resαι(z)
dimM+dι+z+1

and compact

convergence of (1 + hι)dimM+dι+z+1. Furthermore, we obtain (for h0 ≤ e
−1)RRRRRRRRRRR∑ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

≤∑
ι∈I

lι∑
j=0

l! ∣resαι(z)hdι+z−l
ι (hι lnhι)l∣

∣dimM + dι + z + 1∣ hdimM+1
ι

≤l ⋅ l!hdimM+1
0 ∑

ι∈I

∣resαι(z)hdι+z−l
ι (hι lnhι)l∣

∣dimM + dι + z + 1∣ .

Note that

∣hι lnhι∣l → ⎧⎪⎪⎨⎪⎪⎩
1 , l = 0

0 , l ≠ 0

for hι → 0, i.e. it suffices to show that

∑
ι∈I

resαι(z)hdι+z−l
ι

dimM + dι + z + 1

converges absolutely. Since

∣hdι+z−l
ι ∣ = ∣ζH(l − dι − z;hι) − ζH(l − dι − z; 1 + hι)∣ = Zι(z)

holds (we can choose (Zι(z))ι∈I locally bounded because z ↦ ζH(l − dι − z;hι) −
ζH(l − dι − z; 1 + hι) converges to zero compactly as hι ↘ 0)8, we observe

∑
ι∈I
∣ resαι(z)hdι+z−l

ι

dimM + dι + z + 1
∣ ≤∑

ι∈I
∣ resαι(z)
dimM + dι + z + 1

∣Zι(z)
which is bounded by absolute convergence of ∑ι∈I ∣ resαι(z)

dimM+dι+z+1
∣ and the assumed

boundedness of (Zι(z))ι∈I . Furthermore, local boundedness (with respect to z)

follows from local boundedness of ∑ι∈I ∣ resαι(z)
dimM+dι+z+1

∣ and Zι. Observing

∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1 (ln(1 + hι))lι−j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→δj,lι

→∑
ι∈I

(−1)lιlι! resαι(z)(dimM + dι + z + 1)lι+1
and RRRRRRRRRRR∑ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

=

RRRRRRRRRRR∑ι∈I
lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+2+j−lι
ι (hι lnhι)lι−jhιRRRRRRRRRRR

≤h

RRRRRRRRRRR∑ι∈I
lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+2+j−lι
ι (hι lnhι)lι−jRRRRRRRRRRR

→0 (h↘ 0)
8Since we have to construct a sequence H ∈ ℓ∞(I;R>0)

N where each element Hn is of the form
h, it suffices to have uniform boundedness of (Zι)ι∈I on some compact set Ωn for Hn and choose
(Ωn)n∈N to satisfy ∀n ∈ N Ωn ⊆ Ωn+1 ad ⋃n∈N Ωn = C ∖ {dι; ι ∈ I}.
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for R (dimM + dι + z + 2 − l) > 0 shows

A(h) =∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j
−∑

ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j

→∑
ι∈I

(−1)lιlι! resαι(z)(dimM + dι + z + 1)lι+1
compactly and, thus,

ζ(αh)→ ζ(α)
compactly.

�

Theorem 5.9. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribution
on R>0 ×M with I ⊆ N, α0 regular on (0,1)×M ,

αι(z)(r, ξ) =rdι+z(ln r)lι α̃ι(z)(ξ),
where (R(dι))ι∈I is bounded from above, each ( 1

dimM+dι+z+1
)
ι∈I ∈ ℓ2(I), and each

∑ι∈I α̃ι(z) converges unconditionally in L1(M). Then, ζ(α) can be mollified.

In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M

αι(z)dvolR≥1×M
+∑

ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

for h ∶= (hι)ι∈I ∈ ℓ∞(I;R>0) and h↘ 0 in ℓ∞(I) such that

Zι(z) ∶= lι lι∑
j=0
∣ζH(lι − j − dι − z;hι) − ζH(lι − j − dι − z; 1 + hι)∣

is bounded on an exhausting family of compacta as h↘ 0.

Proof. The proof works precisely as the proof of Proposition 5.8. The only difference
is that we have to show local boundedness of

∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j
and

∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−j
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since the estimates do not hold anymore. Since

∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1
is a well-defined meromorphic function, it is locally bounded. Furthermore, (1 +
hι)dimM+dι+z+1(ln(1 + hι))lι−j can be chosen uniformly bounded on any half plane{z ∈ C; R(z) < r} for any r ∈ R, i.e. we can construct a sequence that is eventually
uniformly convergent on any given compactum. Hence,

∑
ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j
is fine. Thus, choosing ∣hι lnhι∣ < 1 and ∣dimM + dι + z + 1∣ ≥ 1 without loss of
generality, RRRRRRRRRRR∑ι∈I

lι∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

≤∑
ι∈I
∣ resαι(z)
dimM + dι + z + 1

∣ lι! lι∑
j=0
∣hdimM+dι+z+1+j−lι

ι ∣ ∣(hι lnhι)lι−j ∣
≤∑
ι∈I
∣ resαι(z)
dimM + dι + z + 1

∣ lι! ∥h∥dimM+1

ℓ∞(I)
lι∑
j=0
∣hdι+z+j−lι

ι ∣
≤ ∥h∥dimM+1

ℓ∞(I) ∑
ι∈I
∣ resαι(z)
dimM + dι + z + 1

∣Zι(z)
completes the proof.

�

6. On structural singularities and the generalized
Kontsevich-Vishik trace

In this section, we will discuss the integrals appearing in the Laurent coefficients.
Most importantly, this will yield the generalized Kontsevich-Vishik density

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

R≥1×∂BRN

eiϑ(x,x,ξ)a0(0)(x,x, ξ) dvolR≥1×∂BRN
(ξ) dvolX(x)

+ ∑
ι∈I∖I0

−
´

∂B
RN
eiϑ(x,x,ξ)aι(0)(x,x, ξ) dvol∂B

RN
(ξ)

N + dι
dvolX(x),

as well as the fact that this density is globally defined in the I0 = ∅ case, that is
in the absence of terms with critical degree of homogeneity. We will be able to
calculate interesting examples by the end of section 7 leading up to (and including)
Theorem 7.5.

Considering classical pseudo-differential operators it is common to start with the
Kontsevich-Vishik trace which is constructed by removing those terms from the
asymptotic expansion which have degree of homogeneity with real part greater
than or equal to −dimX where X denotes the underlying manifold, i.e. if k is the
kernel of the pseudo-differential operator, then the regularized kernel is given by

kKV ∶= k −
N∑
j=0

kd−j
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where d−j is the degree of homogeneity of the corresponding term in the expansion
of the amplitude a ∼ ∑j∈N

0

ad−j and N sufficiently large. Then, kKV ∈ C(X ×X),
i.e.
´

X
kKV (x,x)dvolX(x) is well-defined. In other words, kKV and α0 play the

same role and we would like to interpret ζ(α0)(0) as a generalized version of the

Kontsevich-Vishik trace. The term ∑N
j=0
´

X
kd−j(x,x)dvolX(x) would, hence, be

analogous to spinning off ∑ι∈I ζ(αι)(0). Unfortunately, we have to issue a couple
of caveats.

(i) The observation above is fine if we are in local coordinates. However,
when patching things together some of the terms in our Laurent expansion
will not patch to global densities on X . This is no problem for Fourier
Integral Operators, per se, as they are simply defined as a sum of local
representations and in each of these representations the Laurent expansion
holds. It will become a problem if we want to write down formulae in terms
of kernels, though (especially if we require local terms to patch together
defining densities globally).

(ii) Since F (ad−j(x, y, ⋅))(z) is homogeneous of degree −dimX −d+j (where F
denotes the Fourier transform), we obtain F (ad−j(x, y, ⋅))(0) = 0 for d− j <
−dimX , i.e. kd−j(x,x) = limy→x kd−j(x, y) = limy→xF (ad−j(x, y, ⋅))(y−x) =
F (ad−j(x,x, ⋅))(0). Thus, kKV (x,x) is independent of N .

However, this property does not extend to α0 as we can easily construct
a counter-example. Let a(x, y, ξ) be homogeneous of degree d < −n in the
third argument and the phase function ϑ(x, y, ξ) = −⟨Θ(x, y), ξ⟩ℓ2(n) such
that Θ(x,x) has no zeros. Then,

k(x, y) =ˆ
Rn

e−i⟨Θ(x,y),ξ⟩ℓ2(n)a(x, y, ξ)dξ = F (a(x, y, ⋅))(Θ(x, y))
shows that k(x,x) is well-defined and continuous. Furthermore, since
F (a(x, y, ⋅)) is homogeneous, k(x,x) vanishing implies F (a(x, y, ⋅)) = 0

on {rΘ(x,x); r ∈ R>0}.
On the other hand, for pseudo-differential operators the terms ad−j with d − j =

−dimX define a global density on the manifold giving rise to the residue trace.
If this extends to poly-log-homogeneous distributions, then we obtain the residue
trace globally from ∑ι∈I0 αι. Furthermore, this would imply that

fp0α = α − ∑
ι∈I0

αι

induces a global density, if α does and the contributions of the αι for ι ∈ I0 to the
constant term Laurent coefficient vanish (in particular if I0 = ∅), which allows us
to interpret ζ(fp0α)(0) as the generalization of the Kontsevich-Vishik trace.

This, of course, needs to be interpreted in a gauged sense. ζ(fp0α)(0) corresponds
to the kernel k(x, y) − kd−j(x, y) where d − j = −dimX . Hence, all terms kd−j
with j ∈ N0,<d+dimX still appear in fp0α but not in kKV . Since ζ(fp0α)(0) is but
constructed by gauging, we should do the same for kd−j , i.e. consider kd−j+z which
is continuous for R(z) sufficiently small and vanishes along the diagonal. Therefore,

ζ(fp0α)(0) =
ˆ

X

kKV (x,x)dvolX(x).
holds in the regularized sense; particularly so since Corollary 1.8 guarantees that
ζ(fp0α)(0) is independent of the gauge. In other words, the objective is to show
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that

∑
χ

resαχ(0) =∑
χ

⟨ˆ
∂B

RN

α̃χ(0)dvol∂B
RN
, f⟩

=∑
χ

⟨P ˆ
∂B

RN

α̃χ(0)dvol∂B
RN
, δ0⟩

=∑
χ

⟨ˆ
∂B

RN

eiϑ(x,y,ξ)ãχ(0)(x, y, ξ) dvol∂B
RN
(ξ), δ0⟩

is globally well-defined (∑χ denotes a partition of unity and P is a suitable pseudo-
differential operator) if the aχ are log-homogeneous with degree of homogeneity
−N .

At this point, we return to the fact that we can find a representation
ˆ

R2dimX∖B
R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX) â(ξ) dvolR2dimX∖B
R2dimX

(ξ)
of

ˆ

RN∖B
RN

eiϑ(x,y,ξ)a(x, y, ξ) dvolRN∖B
RN
(ξ)

where â is poly-log-homogeneous with degree of homogeneity −2dimX and loga-
rithmic order l if a has degree of homogeneity −N and logarithmic order l. Thus,
we want to show that the locally defined

ˆ

∂B
R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX) ãχ(ξ) dvol∂B
R2dimX

(ξ)
patch together if aχ is log-homogeneous with degree of homogeneity −2dimX .

Let ϕ be a suitable test function, and
ˆ

X2

ˆ

R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX)a(x, y, ξ)ϕ(x, y) dξ dvolX2(x, y)
and

ˆ

X2

ˆ

R2dimX

eiϑ(x,y,ξ)aχ(x, y, ξ)ϕ(x, y) dξ dvolX2(x, y)
be two representations of ⟨u, f⟩ where ϑ is another linear phase function. Propo-
sition 2.4.1 in [8] warrants the existence of a C∞-map Θ taking values Θ(x, y) ∈
GL(R2dimX) such that

ϑ(x, y, ξ) = ⟨(x, y),Θ(x, y)ξ⟩ℓ2(2dimX)

holds. Hence,
ˆ

X2

ˆ

R2dimX

eiϑ(x,y,ξ)aχ(x, y, ξ)ϕ(x, y) dξ dvolX2(x, y)
=

ˆ

X2

ˆ

R2dimX

ei⟨x,Θ(x)ξ⟩ℓ2(2dimX)aχ(x, ξ)ϕ(x) dξ dvolX2(x)
=

ˆ

X2

ˆ

R2dimX

ei⟨x,ξ⟩ℓ2(2dimX)aχ(x,Θ(x)−1ξ)ϕ(x) ∣detΘ(x)−1∣ dξ dvolX2(x).
In other words, the amplitude a transforms into aχ(x,Θ(x)−1ξ) ∣detΘ(x)−1∣ for

some C∞-function Θ taking values in GL(R2dimX), more precisely

a(x, y, ξ) = aχ(χ(x, y),Θ(x, y)−1ξ) ∣detΘ(x, y)−1∣ ∣detχ′(x, y)∣
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for some diffeomorphism χ, and we need to show

resα(0) =ˆ
∂B

R2dimX

â(ξ)dvol∂B
R2dimX

(ξ)
=

ˆ

∂B
R2dimX

âχ(Θ−1ξ) ∣detΘ−1∣dvol∂B
R2dimX

(ξ)
?
=

ˆ

∂B
R2dimX

âχ(ξ)dvol∂B
R2dimX

(ξ)
= resαχ(0)

where â and âχ are the restrictions to the polyhomogeneous part of α and αχ, i.e.
â(rξ) = rdι α̃(ξ).
Lemma 6.1. Let a ∈ C (Rn

∖ {0}) be homogeneous of degree d, k ∈ N0, z ∈ C, and
T ∈ GL(Rn). Then

ˆ

∂BRn

a(Tξ) ∥Tξ∥z (ln ∥Tξ∥)k dvol∂BRn
(ξ)

=
(−1)k∣detT ∣

ˆ

∂BRn

a(ξ) ∥T −1ξ∥−n−d−z (ln ∥T −1ξ∥)k dvol∂BRn
(ξ).

This lemma (cf. e.g. equation (2.13) in [14] or Lemma 2.20 in [16] with mini-
mal changes to the proof), and the fact that ã is the restriction of a homogeneous
function with degree of homogeneity −N if a is log-homogeneous with degree of ho-
mogeneity −N , yield (using N = 2dimX , a suitable U ⊆open R

N , a diffeomorphism
χ ∶ U → χ[U], and a ϕ ∈ C∞c (χ[U]))

ˆ

U

ˆ

∂B
RN

ã(x, ξ)ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

ˆ

∂B
RN

ãχ(χ(x),Θ(x)−1ξ) ∣detΘ(x)−1∣ ∣detχ′(x)∣ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

ˆ

∂B
RN

ãχ(χ(x),Θ(x)−1ξ) ∣detΘ(x)−1∣ ∣detχ′(x)∣ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

∣detΘ(x)−1∣ˆ
∂B

RN

ãχ(χ(x),Θ(x)−1ξ)dvol∂B
RN
(ξ) ∣detχ′(x)∣ϕ(χ(x))dx

=

ˆ

U

ˆ

∂B
RN

ãχ(χ(x), ξ)dvol∂B
RN
(ξ) ∣detχ′(x)∣ϕ(χ(x))dx

=

ˆ

χ[U]

ˆ

∂B
RN

ãχ(x, ξ)ϕ(x)dvol∂B
RN
(ξ)dx,

i.e. the following theorem.

Theorem 6.2. res⟨u, f⟩ = resα(0) = ´
∂B

RN
α̃(0)dvol∂B

RN
is form-invariant under

change of coordinates if α(0) has degree of homogeneity −N .

In particular, ∑χ∑ι∈Iχ
0

resαχ
ι (0) induces a global density and ∑χ ζ (fp0αχ) (0) in-

duces a globally defined density provided ∑χ∑ι∈Iχ
0

∂ resαχ
ι (0) vanishes.

Remark Note that this means that if a is polyhomogeneous and ι0 is the index
such that aι0 is homogeneous of degree −N , then

∑
ι∈I0

ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι(x,x, ξ)dvol∂B
RN
(ξ)dvolX(x)
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=

ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι0(x,x, ξ)dvol∂BRN
(ξ)dvolX(x).

This, of course, extends to higher order residues
ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι(x,x, ξ)dvol∂B
RN
(ξ)dvolX(x).

with ι ∈ I0 and lι > 0; this generalizes Corollary 4.8 in [14] on the residue traces for
log-polyhomogeneous pseudo-differential operators.

∎

Uniqueness of the residue trace, then, directly implies the following proposition.

Proposition 6.3. Let a ∼ ∑j∈N
0

am−j be the amplitude of a Fourier Integral Op-

erator where m ∈ Z and am−j is homogeneous of degree m − j. If the residue
trace is the (projectively) unique non-trivial continuous trace, then none of the
´

∂B
RN
eiϑ(x,ξ)am−j(x, ξ)dvol∂B

RN
(ξ) with m−j ≠ −N can define a global density, in

general, unless they are trivial (i.e. vanish constantly).

In particular, removing non-trivial terms from ζ(fp0α) will, in general, destroy
global well-definedness of the induced density.

Now, we may ask when the residue vanishes. As a first result we obtain the
well-known fact that the residue trace vanishes for odd-class operators on odd-
dimensional manifolds.

Observation 6.4. Let α(−ξ) = −α(ξ). Then, resα =
´

∂B
RN
α(ξ)dvol∂B

RN
(ξ) = 0.

Note that the property α(−ξ) = −α(ξ) is invariant under change of linear phase
functions with the same “N ”. Choosing non-linear phase functions or changing N
might destroy this property. In fact, having phase functions with ϑ(−ξ) = −ϑ(ξ)
will yield

res(a,ϑ) = ˆ
∂B

RN

eiϑ(ξ)a(ξ)dvol∂B
RN
(ξ) = − (res(a,ϑ))∗ ,

i.e. R (res(a,ϑ)) = 0 but not necessarily I (res(a,ϑ)) = 0.
On the other hand, if N = 1, then

ˆ

∂BR

α(ξ)dvol∂BR
(ξ) = α(1) + α(−1)

shows that resα vanishes if and only if α is odd. Equivalently, we obtain
ˆ

∂BR

eiϑ(x,ξ)a(x, ξ)dvol∂BR
(ξ) = eiϑ(x,1)a(x,1) + eiϑ(x,−1)a(x,−1).

Note, this implies there are two residue traces for N = 1; namely, α−1(1) and
α−1(−1).
For N > 1, the de Rham co-homology of ∂BRN is given by

∀k ∈ N0 ∶ H
k
dR (∂BRN ) ≅ ⎧⎪⎪⎨⎪⎪⎩

R , k ∈ {0,N − 1}
0 , k ∈ N ∖ {N − 1} .

In other words, there exists ω0 ∈ Ω
N−1 (∂BRN ,C) such that

´

∂B
RN
ω0 = 1 and

∀ω ∈ ΩN−1 (∂BRN ,C) ∃c ∈ C ∃ω̃ ∈ ΩN−2 (∂BRN ,C) ∶ ω = cω0 + dω̃.

Thus, we obtain the following statements.
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(i)
´

∂B
RN
eiϑ(x,ξ)a(x, ξ)dvol∂B

RN
(ξ) = 0 if and only if the differential form

eiϑ(x,⋅)a(x, ⋅)dvol∂B
RN

is exact.

(ii) R(´
∂B

RN
eiϑ(x,ξ)a(x, ξ)dvol∂B

RN
(ξ)) = 0 if and only if the differential form

cos (ϑ(x, ⋅))a(x, ⋅)dvol∂B
RN

is exact.

(iii) I(´
∂B

RN
eiϑ(x,ξ)a(x, ξ)dvol∂B

RN
(ξ)) = 0 if and only if the differential form

sin (ϑ(x, ⋅))a(x, ⋅)dvol∂B
RN

is exact.

Remark Since we are integrating dimM -forms over a manifold M , we assume
that all manifolds are orientable as we can only integrate pseudo-dimM -forms if
M is non-orientable. So far everything can be re-formulated for pseudo-forms and,
thus, on non-orientable manifolds. From this point onwards, though, statements
will need orientability; in particular with respect to uniqueness of residue traces
and the commutator structure since

HdimM
dR (M) ≅ ⎧⎪⎪⎨⎪⎪⎩

R , M orientable, connected

0 , M non-orientable, connected
.

∎

Definition 6.5. Let A be a poly-homogeneous Fourier Integral Operator on a com-
pact manifold X and res0 ζ(A) be locally given by

ˆ

X

ˆ

∂B
RN

eiϑ(x,ξ)a(x, ξ) dvol∂B
RN
(ξ) dvolX(x).

Then, we call the (N − 1 + dimX)-form ̺(A) on X × ∂BRN locally defined as

̺(A) ∶= exp○(iϑ) ⋅ a dvolX×∂B
RN

the residue form of A (in other words, ∗̺(A) = eiϑa where ∗ denotes the Hodge-∗-
operator).

Proposition 6.6. Let Y ⊆X be a connected component. Then,
´

Y ×∂B
RN
̺(A) = 0

if and only if ̺(A) is exact on Y × ∂BRN .

More precisely, let X = Y1 ⋅∪ . . . ⋅∪Yk be composed of finitely many connected compo-
nents ( ⋅∪ denotes the disjoint union) and let ̺(A)∣Yj×∂BRN

= cjωj +dω̃j be the corre-

sponding decompositions of ̺(A) with ωj = volYj×∂BRN
(Yj × ∂BRN )−1dvolYj×∂BRN

.
Then,

ˆ

X×∂B
RN

̺(A) = k∑
j=1

cj .

Using the Hodge-∗-operator ∗, the co-derivative d∗ ∶= (−1)NX(NX−1)+1
∗ d∗ with

NX ∶= N + dimX − 1, as well as

̺(A) = dω ⇔ eiϑa = ∗ dω

= ∗ d ∗ (−1)NX−1 ∗ ω

=d∗(−1)NX(NX−1)+1(−1)NX−1 ∗ ω

=d∗ ((−1)N2

X ∗ ω) ,
and the divergence divF = ∗d∗F ♭ = (−1)NX(NX−1)+1d∗F ♭ with the musical isomor-
phism

⋅
♭
∶ T (X × ∂BRN )→ T ∗ (X × ∂BRN ) ; ∑

i

Fi∂i ↦∑
i

Fidxi,

we can re-formulate Proposition 6.6.
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Theorem 6.7. Let X be connected. Then, the following are equivalent.

(i)
´

X

´

∂B
RN
eiϑ(x,ξ)a(x, ξ) dvol∂B

RN
(ξ) dvolX(x) = 0.

(ii) There exists an (N + dimX − 2)-form ω on X × ∂BRN such that dω =
eiϑa dvolX×∂B

RN
locally.

(iii) There exists a 1-form ω on X × ∂BRN such that d∗ω = eiϑa locally.
(iv) There exists a vector field F on X × ∂BRN such that divF = eiϑa locally.

Remark These results hold if we replace ∂BRN by any other connected manifold
M and consider the residue terms resα =

´

M
α̂dvolM for poly-log-homogeneous

distributions. In particular, we obtain resα = 0 if and only if there exists a vector
field F on M such that α̂ = divF .

∎

Remark Condition (iv) can be extended to X × (RN
∖ {0}). Let M ∶= X × ∂BRN ,(gi)i the local frame in which eiϑa is given by α, and (gi)i the dual frame. Let

M̃ ∶= R>0 ×M ≅X × (RN
∖ {0}) and the metric tensor is of the form

g̃(r, ξ) = (1 0

0 r2dimMg(ξ)) ,
i.e. dvolM̃(r, ξ) =√det g̃(r, ξ)dr∧dξ = rdimM

√
detg(ξ)dr∧dξ = rdimMdr∧dvolM(ξ).

Let F be a vector field on M and F̃ be a vector field on M̃ . Then,

divF (ξ) = tr gradF (ξ) = tr dimM∑
j=1

dimM∑
i=1

∂jFi(ξ)gj(ξ)⊗ gi(ξ)
=

dimM∑
j=1

dimM∑
i=1

∂jFi(ξ)gji(ξ)
and

div F̃ (r, ξ) = tr dimM∑
j=0

dimM∑
i=0

∂jF̃i(r, ξ)g̃j ⊗ g̃i
=∂0F̃0(r, ξ) + r2dimM

dimM∑
j=1

dimM∑
i=1

∂jF̃i(r, ξ)gji(ξ).
In other words, we obtain div F̃ (1, ξ) = divF (ξ) if ∂0F̃0(1, ξ) = 0 and ∂jF̃i(1, ξ) =
∂jFi(ξ). On the other hand, we want divF (ξ) = α̃(ξ) and div F̃ (r, ξ) = f(r)α̃(ξ)
with f(1) = 1. Choosing F̃0 = 0 and F̃i(r, ξ) = f(r)Fi(ξ) implies div F̃ (r, ξ) =
f(r)α̃(ξ) and div F̃ (1, ξ) = divF (ξ).
Thus, knowing (iv) we can construct a vector field F̃ such that eiϑ = div F̃ on

X × (RN
∖ {0}) and F̃ satisfies the conditions above. Conversely, if F̃ has the

described properties, then F̃ ∣X×∂B
RN

satisfies (iv).

∎

At this point, using the framework of gauged poly-log-homogeneous distributions,
we can follow the lines of Theorem 1.1 in [4] to obtain the following theorem (The-
orem 1.2 in [4]) which we state here for completeness.

Theorem 6.8. Let AΓ be an algebra of classical Fourier Integral Operators asso-
ciated with the canonical relation Γ such that the twisted relation Γ′ (A ∈ AΓ ⇔

kA ∈ I(X2,Γ′)) has clean and connected intersection with the co-normal bundle of
diagonal in X2. Then, the residue-trace of A ∈ AΓ vanishes if and only if A is a
smoothing operator plus a sum of commutators [Pi,Ai] where the Pi are pseudo-
differential operators and the Ai ∈ AΓ.
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Guillemin also proved the following (more general) version of Theorem 6.8 (cf.
Proposition 4.11 in [5]).

Proposition 6.9. Let Γ be connected. Then, the commutator of AΓ is of co-
dimension one in AΓ modulo smoothing operators.

Hence, res0 ○ζ is either zero or the unique trace on AΓ up to a constant factor.
Regarding the trace of smoothing operators, Theorems A.1 and A.2 in [5] yield the
commutator structure of smoothing operators (the following two definitions, the
theorem, and the remark can all be found in the appendix of [5]).

Definition 6.10. Let H be a separable Hilbert space and e ∶= (ei)i∈N an orthonormal
basis of H. An operator A ∈ L(H) is called smoothing with respect to e if and only
if

∀n ∈ N ∃c ∈ R ∶ ∣⟨Aei, ej⟩H ∣ ≤ c(i + j)−n.
Definition 6.11. Let H be a separable Hilbert space, e an orthonormal basis,
Ω ⊆open K

n with K ∈ {R,C} and A ∈ L(H)Ω such that each A(s) is smoothing
with respect to e. Then, A is said to be smooth/holomorphic if and only if all
s↦ ⟨A(s)ei, ej⟩H are C∞(Ω).
Theorem 6.12. (i) If A is smoothing with respect to e and trA = 0, then A

can be written as a finite sum of commutators [Bi,Ci] where the Bi and Ci

are smoothing with respect to e.
(ii) If a family A ∈ L(H)Ω of smoothing operators is smooth/holomorphic, then

A can be written as a finite sum of commutators s ↦ [Bi(s),Ci] on every
compact K ⊆ Ω where the Bi(s) and Ci are smoothing, and the Bi are
smooth/holomorphic.

Remark (i) Let X be a compact Riemannian manifold, H = L2(X), and e the
family of eigenfunctions of the Laplacian on X . An operator A ∈ L (L2(X))
is smoothing with respect to e if it is smoothing with respect to the Sobolev
norms.

(ii) Let H = L2(Rn) and e the family of Hermite functions. An operator A ∈
L(H) is e-smoothing if it is smoothing with respect to the Schwartz semi-
norms.

∎

These theorems yield the following table assuming that the (unique) residue trace
res0 ○ζ is non-trivial and AΓ = ⟨A⟩ + ⟨[AΓ,AΓ]⟩ + {smoothing operators} for some
A ∈ AΓ with res0 ζ(A) ≠ 0.

I0 ≠ ∅ I0 = ∅

res0 ζ(A) ≠ 0 res0 ζ(A) = 0 ζ(A)(0) ≠ 0 ζ(A)(0) = 0
A = αA + S +∑k

i=1Ci

Ci ∈ [AΓ,AΓ]
α = (res0 ζ(A))−1 res0 ζ(A)
S smoothing

A = S +∑k
i=1Ci

Ci ∈ [AΓ,AΓ]
S smoothing

A = ∑k
i=1Ci

Ci commutators

Remark Note that the obstruction to the generalized Kontsevich-Vishik trace is
given by the derivatives of the aι for ι ∈ I0. Using the example above Theorem
1.15, we obtain that these are residue traces themselves if the operator is poly-
homogeneous. These residues are explicitly calculated for gauged families A(z) =
BQz in Proposition 3.4.

∎



56 TOBIAS HARTUNG AND SIMON SCOTT

7. Stationary phase approximation

In this section we would like to get to know a little more about the singularity
structure of

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ,
primarily to calculate the integrals

ˆ

∂B
RN

eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ).

We will skip many calculations in this chapter because they are very tedious and
differ only slightly (if at all) from the calculations that can be found in any account
on stationary phase approximation (e.g. chapter 7.7 in [7]).

We will prove the following theorem.

Theorem 7.3 Let k(x, y) = ´
RN e

iϑ(x,y,ξ)a(x, y, ξ)dξ be the kernel of a Fourier In-
tegral Operator with poly-log-homogeneous amplitude a = a0+∑ι∈I aι and phase func-
tion satisfying ∂23 (ϑ∣X×X×∂BRN

) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0.

Let Ĩ ∶= I ∪ {0} and choose a decomposition a = a0 + ∑S
s=1 as such that there is

no stationary point in the support of a0(x, y, ⋅) and exactly one stationary point

ξ̂s(x, y) ∈ ∂BRN of ϑ(x, y, ⋅) in the support of each as(x, y, ⋅).
Let ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), sgnΘs(x, y) the

number of positive eigenvalues minus the number of negative eigenvalues of Θs(x, y),
grad∂B

RN
= ∂∂B and div∂B

RN
are the gradient and divergence operators on the(N − 1)-sphere ∂BRN , and

∆∂B,Θs(x,y) = ⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B
RN

Θs(x, y)−1 grad∂B
RN
.

Furthermore, let

hsj,ι(x, y) ∶= (2π)
N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)

j!(2i)j ∆
j

∂B,Θs(x,y)a
s
ι (x, y, ξ̂s(x, y))

and

gsj,ι(x, y) ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0) , q ∈ C ∖ (−N0)
∂lι (z ↦ −Γ(z+1)

2πi (−q)!
´

c+iR

(−σ)−q(cln+lnσ)
(−iϑ̂s(x,y)+0−σ)z+1

dσ)(0) , q ∈ −N0

with q ∶= dι +
N+1
2
− j, c ∈ R>0, and some constant cln ∈ C.

Then,

k(x, y) =ˆ
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dξ +∑
ι∈Ĩ

S∑
s=1
∑
j∈N

0

hsj,ι(x, y)gsj,ι(x, y)
holds in a neighborhood of the diagonal in X2.

This will yield the following theorems.

Theorem 7.5 Let A be a Fourier Integral Operator with kernel

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
whose phase function ϑ satisfies ∀x ∈ X ∀ξ ∈ RN

∶ ϑ(x,x, ξ) = 0, and whose ampli-
tude has an asymptotic expansion a ∼ ∑ι∈N aι where each aι is log-homogeneous with
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degree of homogeneity dι and logarithmic order lι, and R(dι) → −∞. Let N0 ∈ N

such that ∀ι ∈ N>N0
∶ R(dι) < −N and let

ksing(x, y) = ˆ
RN

eiϑ(x,y,ξ)
N0∑
ι=1
aι(x, y, ξ)dξ

denote the singular part of the kernel.

Then, the regularized kernel k − ksing is continuous along the diagonal and in-
dependent of the particular choice of N0 (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density is given by

(k − ksing) (x,x)dvolX(x) =ˆ
RN

a(x,x, ξ) − N0∑
ι=1
aι(x,x, ξ)dξdvolX(x).

Theorem 7.7 Let A be a Fourier Integral Operator with phase function ϑ satisfying
∂23 (ϑ∣X×X×∂BRN

) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0 (in a neighborhood

of the diagonal) and ξ̂s (s ∈ N≤S) the stationary points. Furthermore, let

∀x ∈ X ∀s ∈ N≤S ∶ ϑ (x,x, ξ̂s(x,x)) ≠ 0.
Then,

( X ∋ x↦ k(x,x) ∈ C ) ∈ C(X)
and

trA =

ˆ

X

k(x,x)dvolX(x)
is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, ζ-functions of
such operators have no poles (since the trace integral always exists).

For the remainder of the section, let a be log-homogeneous. Then, we obtain

k(x, y) ∶=ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
=

ˆ

R>0

ˆ

∂B
RN

rN−1eirϑ(x,y,η)a(x, y, rη)dvol∂B
RN
(η)dr

=

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,η)a(x, y, η)dvol∂B
RN
(η)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶I(x,y,r)

dr.

Let (x, y) be off the critical manifold, i.e. ∀η ∈ ∂BRN ∶ ∂3ϑ(x, y, η) ≠ 0. Then, we
observe

∀n ∈ N ∶ ∣I(x, y, r)∣ =1
r
∣ˆ

∂B
RN

eirϑ(x,y,η)Da(x, y, η)dvol∂B
RN
(η)∣

=
1

rn
∣ˆ

∂B
RN

eirϑ(x,y,η)Dna(x, y, η)dvol∂B
RN
(η)∣

≤
1

rn
∥Dna∥L∞(X×X×∂BRN

) ,

where

Da(x, y, η) ∶= ∂∗3 a(x, y, η)∂3ϑ(x, y, η)∥∂3ϑ(x, y, η)∥2ℓ2(N) ,
which proves the well-known fact that k is C∞ away from the critical manifold.
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On the critical manifold, we will assume that

∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1)

if ∂3ϑ(x, y, ξ) = 0 (note that this holds for pseudo-differential operators). Then, we
are in a position to apply Morse’ Lemma.

Lemma 7.1 (Morse’ Lemma). Let (x0, y0, ξ0) ∈ X×X×∂BRN be stationary (in par-
ticular, ∂∂Bϑ(x0, y0, ξ0) = 0) and ∂2∂Bϑ(x0, y0, ξ0) ∈ GL (RN−1) where ∂∂B denotes
the spherical derivative, i.e. the derivative in ∂BRN .

Then, there are neighborhoods U ⊆open X ×X of (x0, y0) and V ⊆open ∂BRN of ξ0
and a function ξ̂ ∈ C∞(U,V ) such that

∀(x, y, ξ) ∈ U × V ∶ ∂∂Bϑ(x, y, ξ) = 0 ⇔ ξ = ξ̂(x, y).
Furthermore, there is a function η ∈ C∞ (U × V,RN) such that

∀(x, y, ξ) ∈ U × V ∶ η(x, y, ξ) − (ξ − ξ̂(x, y)) ∈ O (∥ξ − ξ̂(x, y)∥2
ℓ2(N))

and

∂3η (x, y, ξ̂(x, y)) = 1.
Corollary 7.2. Let ϑ be as in Morse’ Lemma (Lemma 7.1). Then, stationary
points of ϑ(x, y, ⋅) are isolated in ∂BRN . In particular, there are only finitely many.

Proof. For given stationary (x, y, ξ) we can find a neighborhood V ⊆open ∂BRN

such that ξ = ξ̂(x, y); thus, stationary points are locally unique. By compactness of
∂BRN they are isolated and at most finitely many.

�

Hence, we may assume that

k(x, y) = S∑
s=0

ˆ

RN

eiϑ(x,y,ξ)as(x, y, ξ)dξ
where a0 has no stationary points in its support and each of the as has exactly one

branch (x, y, ξ̂s(x, y)) in its support. As we have already treated the a0 case, we
will assume, without loss of generality, that a is of the form of one of the as.

Let η∂B be defined as the spherical part of η and

Θ(x, y) ∶= ∂2∂Bϑ (x, y, ξ̂(x, y)) .
Then,

⟨∂23ϑ (x, y, ξ̂(x, y)) η(x, y, ξ), η(x, y, ξ)⟩RN
= ⟨Θ(x, y)η∂B(x, y, ξ), η∂B(x, y, ξ)⟩RN−1

and, defining ϑ̂ ∶= ϑ (x, y, ξ̂(x, y)),
I(x, y, r) =ˆ

∂B
RN

eirϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ)

=eirϑ̂
ˆ

∂B
RN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩RN−1a(x, y, ξ)dvol∂B

RN
(ξ).

Let σ ∶ R
N−1 → ∂BRN be a stereographic projection with pole −ξ̂(x, y) (which is

assumed to be outside of spta(x, y, ⋅)),
ησ(x, y, ξ) ∶= η∂B(x, y, σ(ξ)),

and

aσ(x, y, ξ) ∶= a(x, y, σ(ξ))√det (σ′(ξ)∗σ′(ξ)).
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Then,

I(x, y, r) =eirϑ̂ ˆ
∂B

RN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩RN−1a(x, y, ξ)dvol∂B

RN
(ξ)

=eirϑ̂
ˆ

RN−1

ei
r
2
⟨Θ(x,y)ησ(x,y,ξ),ησ(x,y,ξ)⟩RN−1aσ(x, y, ξ)dξ

and

∂3ησ(x, y, ξ) = ∂3η∂B(x, y, σ(ξ))σ′(ξ)
combined with the fact that ∂3η (x, y, ξ̂(x, y)) = 1 yields that ησ(x, y, ⋅) is invertible

in a neighborhood of σ−1 (ξ̂(x, y)) = 0 (we will also use ησ(x, y)(⋅) for ησ(x, y, ⋅)).
Without loss of generality, let aσ(x, y, ⋅) have support in such a neighborhood and

ã(x, y, ξ) ∶= aσ(x, y, ησ(x, y)−1(ξ))√det ((ησ(x, y)−1)′ (ξ)∗ (ησ(x, y)−1)′ (ξ)).
This yields

I(x, y, r) =eirϑ̂ ˆ
RN−1

ei
r
2
⟨Θ(x,y)ησ(x,y,ξ),ησ(x,y,ξ)⟩RN−1aσ(x, y, ξ)dξ

=eirϑ̂
ˆ

RN−1

ei
r
2
⟨Θ(x,y)ξ,ξ⟩

RN−1 ã(x, y, ξ)dξ.
Using

F (z ↦ ei
1

2
⟨rΘ(x,y)ξ,ξ⟩

RN−1) (ξ)
= ∣det(rΘ(x, y))∣− 1

2 e
iπ
4

sgn(rΘ(x,y))e−i
1

2
⟨(rΘ(x,y))−1ξ,ξ⟩

RN−1

=
1

r
N−1
2

∣detΘ(x, y)∣− 1

2 e
iπ
4

sgn(Θ(x,y))e−i
1

2
⟨(rΘ(x,y))−1ξ,ξ⟩

RN−1

where sgn(Θ(x, y)) is the number of positive eigenvalues minus the number of
negative eigenvalues of Θ(x, y) (cf. Lemma 1.2.3 in [3] and noting that Duistermaat

uses “F =
´

RN ” whereas we are using “F = (2π)−N
2

´

RN ”), we obtain
ˆ

RN−1

ei
1

2
⟨rΘ(x,y)ξ,ξ⟩

RN−1 ã(x, y, ξ)dξ
=(2π

r
)N−1

2 ∣detΘ(x, y)∣− 1

2 e
iπ
4

sgnΘ(x,y) ∑
j∈N

0

(−i)jr−j
j!2j

⟨Θ(x, y)−1∂3, ∂3⟩j
RN−1 ã(x, y,0).

Hence, defining

hj(x, y) ∶=(2π)N−1
2 ∣detΘ(x, y)∣− 1

2 e
iπ
4

sgnΘ(x,y)

j!(2i)j ⟨Θ(x, y)−1∂3, ∂3⟩j
RN−1 ã(x, y,0)

we obtain

k(x, y) = S∑
s=0

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,ξ)as(x, y, ξ)dvol∂B
RN
(ξ) dr

=

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ) dr

+

S∑
s=1
∑
j∈N

0

hsj(x, y)
ˆ

R>0

rd+
N−1
2
−j(ln r)leirϑ̂s(x,y) dr.

For l = 0 we may invest the well-known fact

∀q ∈ CR(⋅)>−1 ∀s ∈ CR(⋅)>0 ∶
ˆ

R>0

tqe−stdt = Γ(q + 1)s−q−1
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about the Laplace transform to obtain
ˆ

R>0

rd+
N−1
2
−jeirϑ̂

s(x,y)dr =Γ(d + N + 1
2
− j) id+N+1

2
−j (ϑ̂s(x, y) + i0)−d−N+1

2
+j

if R (d + N+1
2
− j) > 0 where f(t+i0) ∶= limε↘0 f(t+iε). By meromorphic extension,

we obtain
ˆ

R>0

rd+
N−1
2
−jeirϑ̂

s(x,y)dr =Γ(d + N + 1
2
− j) id+N+1

2
−j (ϑ̂s(x, y) + i0)−d−N+1

2
+j

whenever d + N+1
2
− j ∈ C ∖ (−N0) and, for l ∈ N0,

ˆ

R>0

rq (ln r)l eirϑ̂s(x,y)dr =∂l (z ↦ ˆ
R>0

rq+zeirϑ̂
s(x,y)dr)(0)

=∂l (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0).
If d + N+1

2
− j ∈ −N0, i.e. d + N−1

2
− j ∈ −N, then we can use the following property

ˆ

R>0

ˆ t

0

f(τ)dτe−stdt = 1

s

ˆ

R>0

f(t)e−stdt
to obtain

∀q, s ∈ CR(⋅)>0 ∶
ˆ

R>0

tqe−stdt =

ˆ

R>0

ˆ t

0

qτq−1dτe−stdt =
q

s

ˆ

R>0

tq−1e−stdt

and, hence,
ˆ

R>0

tqe−stdt =
s

q + 1

ˆ

R>0

tq+1e−stdt =
sn

∏n
p=1(q + p)

ˆ

R>0

tq+ne−stdt

by meromorphic extension. Thus, for q ∈ −N and n = −q − 1, we have
ˆ

R>0

tqe−stdt =
(−s)−q−1(−q − 1)!

ˆ

R>0

t−1e−stdt

reducing the problem to finding
´

R>0
t−1e−stdt. Consider the Borel measure

µq,s ∶ B (R>0) → C; A↦

ˆ

A

tq−1e−stdt

on R>0 for q, s ∈ C
R(⋅)>0. Then,

∂ (σ ↦ ˆ
R>0

f(t)e−σtdt)(s) = −ˆ
R>0

tf(t)e−stdt
implies

∂ (σ ↦ µq,σ) (s) = −µq+1,s

and, hence,

∂ (σ ↦ µq,σ) (s) (R>0) = −µq+1,s (R>0) = −Γ(q + 2)sq+2
→ −

1

s
(q → −1).

In other words,
´

R>0
t−1e−stdt is logarithmic (up to a constant) and

´

R>0
tqe−stdt for

q ∈ −N is log-homogeneous; namely,

ˆ

R>0

rqeirϑ̂
s(x,y) dr = −

(iϑ̂s(x, y) − 0)−q−1(−q − 1)! (cln + ln (−iϑ̂s(x, y) + 0))
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with some constant cln. Finally, we can add the ln r terms for q ∈ −N by investing
the the multiplication property of the Laplace transform

L(fg)(s) = 1

2πi

ˆ

c+iR

L(f)(σ)L(g)(s − σ)dσ
where c ∈ R such that c + iR is a subset of the region of convergence for L(f) =(s↦ ´

R>0
f(t)e−stdt). Thence, for c ∈ R>0, q ∈ −N, and l ∈ N0, we obtain

ˆ

R>0

rq (ln r)l e−trdr∣
t=−iϑ̂s(x,y)+0

= ∂l (z ↦ ˆ
R>0

rqrze−trdr)(0)∣
t=−iϑ̂s(x,y)+0

= ∂l (z ↦ −Γ(z + 1)
2πi(−q − 1)!

ˆ

c+iR

(−σ)−q−1 (cln + lnσ) (t − σ)−z−1 dσ)(0)∣
t=−iϑ̂s(x,y)+0

.

Thus, we have proven the Theorem

Theorem 7.3. Let k(x, y) = ´
RN e

iϑ(x,y,ξ)a(x, y, ξ)dξ be the kernel of a Fourier

Integral Operator with poly-log-homogeneous amplitude a = a0 +∑ι∈I aι. Let Ĩ ∶=

I ∪{0} and choose a decomposition a = a0 +∑S
s=1 as such that there is no stationary

point in the support of a0(x, y, ⋅) and exactly one stationary point ξ̂s(x, y) ∈ ∂BRN

of ϑ(x, y, ⋅) in the support of each as(x, y, ⋅).
Let ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), sgnΘs(x, y) the

number of positive eigenvalues minus the number of negative eigenvalues of Θs(x, y),
and ∆∂B,Θs(x,y) = ⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B

RN
Θs(x, y)−1 grad∂B

RN
. Further-

more, let

hsj,ι(x, y) ∶= (2π)
N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘ
s(x,y)

j!(2i)j ∆
j
∂B,Θsa

s
ι (x, y, ξ̂s(x, y))

and

gsj,ι(x, y) ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0) , q ∈ C ∖ (−N0)
∂lι (z ↦ −Γ(z+1)

2πi (−q)!
´

c+iR

(−σ)−q(cln+lnσ)
(−iϑ̂s(x,y)+0−σ)z+1

dσ)(0) , q ∈ −N0

with q ∶= dι +
N+1
2
− j, c ∈ R>0, and some constant cln ∈ C.

Then,

k(x, y) =ˆ
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dξ +∑
ι∈Ĩ

S∑
s=1
∑
j∈N

0

hsj,ι(x, y)gsj,ι(x, y)
holds in a neighborhood of the diagonal in X2.

Remark Suppose ∂2∂Bϑ is not invertible at some stationary point but we can split
the third variable in a pair (ξ, ζ) such that ∂24ϑ(x0, y0, ξ0, ζ0) is invertible at the
stationary point. Then, we can find open neighborhoods U of ξ0 and V of ζ0 as well

as a function ζ̂ such that ∂4ϑ(x, y, ξ, ζ) = 0 if and only if ζ = ζ̂(ξ). In particular,
since U × V is open in the compact set ∂BRN , we can use a partition of unity to
reduce I(x, y, r) into a sum of integrals of the form

ˆ

U

ˆ

V

eirϑ(x,y,ξ,ζ)a(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ).



62 TOBIAS HARTUNG AND SIMON SCOTT

Using stationary phase with respect to ζ, then, yields
ˆ

U

ˆ

V

eirϑ(x,y,ξ,ζ)a(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ)
=

ˆ

U

eirϑ(x,y,ξ,ζ̂(ξ))
ˆ

V

eir⟨∂
2

4
ϑ(x,y,ξ,ζ̂(ξ))η(ζ),η(ζ)⟩Rna(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ)

which, again, yields an expansion of the form above but where the coefficients need
to be integrated once more.

∎

Example For a pseudo-differential operator, we have

ϑ(x, y, ξ) = (x − y)Tσ(ξ).
Choosing coordinates such that (x − y) = − ∥x − y∥ℓ2(N) eN and letting eN be the

pole of the stereographic projection, we obtain

σ(ξ) = ⎛⎜⎝
2ξ

1+∥ξ∥ℓ2(N−1)∥ξ∥ℓ2(N−1)−1
∥ξ∥ℓ2(N−1)+1

⎞⎟⎠
and

ϑ̃(ξ) ∶= ϑ(x, y, ξ)∥x − y∥ℓ2(N) =
1 − ∥ξ∥ℓ2(N−1)
1 + ∥ξ∥ℓ2(N−1) .

From Θ(x, y) ∶= ∂2∂Bϑ (x, y, ξ̂(x, y)) and ξ̂(x, y) = x−y

∥x−y∥ℓ2(N)
= σ(0) in these coordi-

nates, we obtain

Θ(x, y) = ∥x − y∥ℓ2(N) ϑ̃′′(0) = −4 ∥x − y∥ℓ2(N) .
Hence, using z ∶= x − y,

hj(x, y) =(π2 )
N−1
2 ∥z∥−N−1

2
−j

ℓ2(N) e−
iπ
4
(N−1)

j!(−8i)j ∆
j
∂B
a
⎛⎝x, y, z∥z∥ℓ2(N)

⎞⎠ .
Let

h̃j(x, y) ∶=(π2 )
N−1
2 e−

iπ
4
(N−1)

j!(−8i)j ∆
j
∂B
a
⎛⎝x, y, z∥z∥ℓ2(N)

⎞⎠ .
Then,

hj(x, y) = h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N)

and

∑
j∈N

0

hj(x, y)ˆ
R>0

rd+
N−1
2
−j(ln r)leirϑ̂(x,y) dr

= ∑
j∈N

0

h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N)

ˆ

R>0

rd+
N−1
2
−j(ln r)leir∥z∥ℓ2(N) dr

In particular, for l = 0 and d + N−1
2
− j ∈ C ∖ (−N),

∑
j∈N

0

hj(x, y)ˆ
R>0

rd+
N−1
2
−jeirϑ̂(x,y) dr

= ∑
j∈N

0

h̃j(x, y)Γ(d + N + 1
2
− j)(−i)−d−N+1

2
+j (∥z∥ℓ2(N) + i0)−d−N
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yields the following proposition since, for k = δdiag, we have ϑ(x, y, ξ) = ⟨x − y, ξ⟩
and a(x, y, ξ) = 1

2π
, i.e. d = 0 and

h̃j(x, y) ∶=⎧⎪⎪⎨⎪⎪⎩
1
2π
(π
2
)N−1

2 e−
iπ
4
(N−1) , j = 0

0 , j ∈ N
.

Proposition 7.4.

δdiag(x, y) = 1

2π
(π
2
)N−1

2

e−
iπ
4
(N−1)Γ(N + 1

2
) (−i)−N+1

2 (∥x − y∥ℓ2(N) + i0)−N
+

1

2π
(π
2
)N−1

2

e−
iπ
4
(N−1)Γ(N + 1

2
) (−i)−N+1

2 (− ∥x − y∥ℓ2(N) + i0)−N .

In particular, for N = 1, we obtain

δdiag(x, y) = i
2π
((∥x − y∥ℓ2(N) + i0)−1 − (∥x − y∥ℓ2(N) − i0)−1) .

This is precisely what we expect; cf. end of section 4.4.3.1 in [17].

∎

Remark Note that in the N = 1 case everything collapses as there are no spherical
derivatives. We will simply obtain

kd(x, y) =ˆ
R>0

rdeirϑ(x,y,1)ad(x, y,1)dr + ˆ
R>0

rdeirϑ(x,y,−1)ad(x, y,−1)dr
and

ˆ

R>0

rdeirϑ(x,y,±1)ad(x, y,±1)dr
=

⎧⎪⎪⎨⎪⎪⎩
cdad(x, y,±1) (ϑ(x, y,±1) + i0)−d−1 , d ∉ −N

ad(x, y,±1) (iϑ(x,y,±1)−0)−d−1(−d−1)! (cd + ln (−iϑ(x, y,±1) + 0)) , d ∈ −N

with some constants cd. Hence, for

k(x, y) ∼ ∑
j∈N

0

ˆ

R

eiϑ(x,y,ξ)ad−j(x, y, ξ)dξ
with d ∈ Z and ad−j homogeneous of degree d − j, the coefficient of the logarithmic
terms are

∑
j∈N

≥d+1

ad−j(x, y,±1)(iϑ(x, y,±1) − 0)j−d−1(j − d − 1)! .

In particular, in the critical case where ϑ(x, y,±1) = 0 (in fact, we are only interested
in ϑ(x,x,±1)) we are reduced to the fact (cf. formulae (3) and (4) in [1]) that
the densities of the residue traces at x (that is, a−1(x,x,±1)) coincide with the
coefficients of the logarithmic terms (that is, ln (−iϑ(x,x,±1) + 0)) in the singularity
structure of k.

Furthermore, we can calculate the generalized Kontsevich-Vishik trace for a =
a0 +∑ι∈I aι if ∀ι ∈ I ∶ dι ∈ R ∖ {−1} ∧ lι = 0. Then, the kernel k satisfies (note
ϑ(x,x, r) = 0 by assumption)

k(x,x) =ˆ
R>0

a0(x,x, r)dr +∑
ι∈I

ˆ

R>0

aι(x,x, r)dr.
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Since 1R>0aι(x,x, ⋅) is homogeneous of degree dι, we obtain that
´

R>0
aι(x,x, r)dr

vanishes for dι < −1 since the Fourier transform F (1R
>0
aι(x,x, ⋅)) over R is a ho-

mogeneous distribution of degree −1 − dι. For dι > −1, we obtain
ˆ

R>0

eiϑ(x,y,r)aι(x,x, r)dr = cιaι(x, y,1) (ϑ(x, y,1) + i0)−dι−1

which is precisely the other singular contribution (that is the f(x, y)(ϕ+0)−N term
in equation (3) of [1]) to the kernel singularity. In other words, the difference of
k(x, y) and its singular part ksing(x, y) satisfies

(k − ksing) (x,x) =ˆ
R>0

a0(x,x, r)dr.
In order to use Theorem 3.1, we will have to show that the regularized singular
terms vanish. This follows directly from the Laurent expansion with mollification.
For dι > −1, we have the two terms

∑
n∈N

0

´

X

´ 1

0
eiϑ(x,x,ξ)∂naι(0)(x,x, ξ)dξdvolX(x)

n!
zn

+ ∑
n∈N

0

n∑
j=0
(−1)j+1j! ´

X
eiϑ(x,x,1)∂naι(0)(x,x,1)dvolX(x)

n!(1 + dι)j+1 zn

to evaluate at z = 0, i.e.

lim
h↘0

ˆ

X

ˆ 1

0

(h + r)dιaι(x,x,1)drdvolX(x)
=

ˆ

X

aι(x,x,1) lim
h↘0

ˆ 1+h

h

rdιdrdvolX(x)
=

ˆ

X

aι(x,x,1) lim
h↘0

(1 + h)dι+1 − hdι+1

dι + 1
dvolX(x)

=

ˆ

X

aι(x,x,1)
dι + 1

dvolX(x)
and

−
´

X
aι(x,x,1)dvolX(x)

1 + dι
.

Hence, the generalized Kontsevich-Vishik trace reduces to the pseudo-differential
form. Let a ∼ ∑j∈N

0

ad−j and N be sufficiently large, then

trKV A =

ˆ

X

ˆ

R>0

a(x,x, r) − N∑
j=0

ad−j(x,x, r) dr dvolX(x)
which is independent of N .

∎

In fact, we can generalize the case above.

Theorem 7.5. Let A be a Fourier Integral Operator with kernel

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
whose phase function ϑ satisfies ∀x ∈ X ∀ξ ∈ RN

∶ ϑ(x,x, ξ) = 0 and whose ampli-
tude has an asymptotic expansion a ∼ ∑ι∈N aι where each aι is log-homogeneous with
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degree of homogeneity dι and logarithmic order lι, and R(dι) → −∞. Let N0 ∈ N

such that ∀ι ∈ N>N0
∶ R(dι) < −N and let

ksing(x, y) = ˆ
RN

eiϑ(x,y,ξ)
N0∑
ι=1
aι(x, y, ξ)dξ

denote the singular part of the kernel.

Then, the regularized kernel k − ksing is continuous along the diagonal and in-
dependent of the particular choice of N0 (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density9 is given by

(k − ksing) (x,x)dvolX(x) =ˆ
RN

a(x,x, ξ) − N0∑
ι=1
aι(x,x, ξ)dξdvolX(x).

Proof. Note that k −ksing is regular because it has an amplitude in the Hörmander
class Sm(X × X × RN) for some m ∈ R<−N . Hence, it suffices to show that the
ζ-regularized singular contributions of aι vanish for dι ≠ −N . Let ι ∈ N such that
dι ≠ −N . Then, we need to show that

ˆ

X

ˆ

B
RN
(0,1)

aι(0)(x,x, ξ) dξ dvolX(x)
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
vanishes. Mollifying
ˆ

B
RN
(0,1)

aι(0)(x,x, ξ)dξ =ˆ 1

0

ˆ

∂B
RN

rN−1aι(0)(x,x, rν)dvol∂B
RN
(ν)dr

=

ˆ 1

0

ˆ

∂B
RN

rN+dι−1(ln r)lι ãι(0)(x,x, ν)dvol∂B
RN
(ν)dr

yields (note that fn → f compactly implies f ′n → f ′ compactly for holomorphic
functions)

lim
h↘0

ˆ 1

0

(h + r)N+dι−1(ln(h + r))lιdr = lim
h↘0

ˆ 1+h

h

rN+dι−1(ln r)lιdr
= lim
h↘0

ˆ 1+h

h

∂lι (z ↦ rN+dι−1+z) (0)dr
= lim
h↘0

∂lι (z ↦ (1 + h)N+dι+z − hN+dι+z

N + dι + z
)(0)

=∂lι (z ↦ (N + dι + z)−1) (0)
=(z ↦ (−1)lιlι!(N + dι + z)lι+1 )(0),

i.e.
ˆ

X

ˆ

B
RN
(0,1)

aι(0)(x,x, ξ) dξ dvolX(x)
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
9Mind that this density is only locally defined. It only patches together (modulo pathologies)

if we assume the kernel patched together in the first place and the derivatives of terms of critical
dimension dι = −N regularize to zero, i.e. if ζ(fp0A)(0) is tracial and independent of gauge.
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=

(−1)lιlι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
=0.

�

Remark Instead of using mollification directly, we could have used the generalized
Mellin transform which yields

ˆ

R>0

rαdr =M (r ↦ rα) (1) = 0
where

´

R>0
rαdr is understood in the regularized sense. However, this does not

apply to the critical case dι = −N because the coefficients in the Laurent expansion
are integrals over ãι(0) on BRN and over ∂lι+1ãι(0) outside BRN . Hence, we cannot
re-write those integrals such that the generalized Mellin transform appears as a
factor and the critical terms will not vanish, in general.

∎

At this point, we can return to Proposition 3.4 where we had the formula

fp0ζ(z ↦ BQz) = ˆ
X

trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q))

with B and Q poly-homogeneous, Q admitting holomorphic functional calculus and
the logarithm, and with finite dimensional kernel (e.g. an elliptic classical pseudo-
differential operator on a closed manifold with spectral cut), and q is the order of
Q. In [16] (equation (2.14)) it was shown that

fp0ζ(z ↦ BQz) = −1
q
res (B lnQ) − tr (B1{0}(Q))

holds if (x↦ trx (fp0B)) = 0 (e.g. if B is a differential operator) and Sylvie
Paycha conjectured that this formula should hold more generally. (Note that
we are using a different notation as we might want to assume a global point
of view rather than just considering everything a sum of local patches without
patching properties. Under these stronger conditions, we cannot simply write
´

X
trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) = trKV (B) − 1

q
res (B lnQ) since they are

not separately globally defined densities.) The following corollary shows an equiv-
alent characterization of Paycha’s conjecture for Fourier Integral Operators as in
Theorem 7.5 (in particular for pseudo-differential operators) in terms of the regular
part of B.

Corollary 7.6. Let Q be as above and B be a Fourier Integral Operator whose
phase function ϑ satisfies ∀x ∈X ∀ξ ∈ RN

∶ ϑ(x,x, ξ) = 0 and whose amplitude has
an asymptotic expansion b ∼ ∑ι∈N bι where each bι is homogeneous (on R

N
∖ {0})

with degree of homogeneity dι and R(dι) → −∞. Furthermore, let I ⊆ N be such
that the amplitude b decomposes into the form b0 +∑ι∈I bι where b0 is integrable in
R

N (i.e. of Hörmander class Sm(X ×X ×RN) with m < −N), and let B0 the part
of B corresponding to b0. Then,

fp0ζ(z ↦ BQz) =ˆ
X

trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q))

=

ˆ

X

trx (B0) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q)) .

In particular, the following are equivalent.
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(i) Paycha’s conjecture: fp0ζ(z ↦ BQz) = − 1
q
res (B lnQ) − tr (B1{0}(Q)).

(ii) x↦
´

RN b0(x,x, ξ)dξdvolX(x) is a globally defined density on X and

tr (B0) = ˆ
X

ˆ

RN

b0(x,x, ξ)dξdvolX(x) = 0.
Remark If we remove the question of global patching and simply consider sums
of local representations, then we obtain

fp0ζ(z ↦ BQz) = trKV (B) − 1

q
res (B lnQ) − tr (B1{0}(Q))

= tr (B0) − 1

q
res (B lnQ) − tr (B1{0}(Q))

by default. In particular,

(i) Paycha’s conjecture: fp0ζ(z ↦ BQz) = − 1
q
res (B lnQ) − tr (B1{0}(Q)).

and

(ii’) tr (B0) = ´X ´RN b0(x,x, ξ)dξdvolX(x) = 0.
are equivalent.

∎

Finally, we will consider an example of linear phase functions which will be
generalized to find algebras of Fourier Integral Operators which are Hilbert-Schmidt
with continuous kernels.

Example Let ϑ(x, y, ξ) ∶= ⟨Θ(x, y), ξ⟩
RN and Θ(x0, y0) ≠ 0. Then,

k(x, y) =ˆ
RN

ei⟨Θ(x,y),ξ⟩RN a(x, y, ξ)dξ = F (a(x, y, ⋅)) (−Θ(x, y))
is continuous in a sufficiently small neighborhood of (x0, y0) for homogeneous a
because F (a(x, y, ⋅)) is homogeneous and Θ(x, y) non-zero. Hence, if Θ does not
vanish on the diagonal, then X ∋ x↦ k(x,x) ∈ C is continuous and, by compactness
of X ,

´

X
k(x,x)dvolX(x) well-defined.

The stationary phase approximation above generalizes this observation (ξ̂(x, y) =
±

Θ(x,y)
∥Θ(x,y)∥ℓ2(N)

, i.e. ϑ̂s(x, y) = (−1)s ∥Θ(x, y)∥ℓ2(N) with s ∈ {0,1}).
Theorem 7.7. Let A be a Fourier Integral Operator with phase function ϑ satisfy-
ing ∂23 (ϑ∣X×X×∂BRN

) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0 (in a neighbor-

hood of the diagonal) and {ξ̂s; s ∈ N≤n} the set of stationary points. Furthermore,
let

∀x ∈X ∀s ∈ N≤n ∶ ϑ (x,x, ξ̂s(x,x)) ≠ 0.
Then,

( X ∋ x↦ k(x,x) ∈ C ) ∈ C(X)
and

trA =

ˆ

X

k(x,x)dvolX(x)
is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, ζ-functions of
such operators have no poles (since the trace integral always exists).
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An example for such operators occurs on quotient manifolds. Let Γ be a co-compact
discrete group onM acting continuously10 and freely11 onM/Γ, k̃ a Γ×Γ-invariant12

Schwartz kernel on M , and k its projection to M/Γ. Then, k(x, y) = ∑γ∈Γ k̃(x, γy).
Suppose k̃ is pseudo-differential, i.e. k̃(x, y) = ´

RN e
i⟨x−y,ξ⟩

RN a(x, y, ξ)dξ. Then,

k(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−γy,ξ⟩RN a(x, γy, ξ)dξ.
Hence, for γ = id we have a pseudo-differential part and for γ ≠ id the phase
function ϑγ(x, y, ξ) = ⟨x − γy, ξ⟩RN has stationary points ± x−γy

∥x−γy∥ℓ2(N)
, that is,

ϑγ (x, y, ξ̂s(x, y)) = (−1)s ∥x − γy∥ℓ2(N) does not vanish in a neighborhood of the

diagonal.

∎

Remark Note that we may use the stationary phase approximation results to get
insights into the Laurent coefficients of the ζ-function without having to consider
all these Laplace transforms because those coefficients are of the form c ⋅ I(x, y,1)
with some constant c ∈ C, i.e. we do not need the radial integration and obtain an
asymptotic expansion
ˆ

∂B
RN

eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ)

=

ˆ

∂B
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ) + S∑

s=1
∑
j∈N

0

e
iϑ(x,y,ξ̂(x,y))

hsj(x, y)
=

ˆ

∂B
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ)

+

S∑
s=1

eiϑ̂
s(x,y) ∑

j∈N
0

(2π)N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)

j!(2i)j ∆
j
∂B,Θsa

s (x, y, ξ̂s(x, y))
with ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), ∆∂B,Θs(x,y) =⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B

RN
Θs(x, y)−1 grad∂B

RN
, and ξ̂s(x, y) is the unique

stationary point of ϑ(x, y, ⋅) in ∂BRN ∩ sptas(x, y, ⋅) while a0 has no such point in
its support.

∎
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