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ABsTRACT. Based on Guillemin’s work on gauged Lagrangian distributions,
we will introduce the notion of a poly-log-homogeneous distribution as an ap-
proach to (-functions for a class of Fourier Integral Operators which includes
cases of amplitudes with asymptotic expansion Y.y am, where each am, is
log-homogeneous with degree of homogeneity my, but violating R(my) —» —oc.
We will calculate the Laurent expansion for the ¢-function and give formulae for
the coefficients in terms of the phase function and amplitude as well as inves-
tigate generalizations to the Kontsevich-Vishik quasi-trace. Using stationary
phase approximation, series representations for the Laurent coefficients and
values of (-functions will be stated explicitly. Additionally, we will introduce
an approximation method (mollification) for (-functions of Fourier Integral
Operators whose symbols have singularities at zero by (-functions of Fourier
Integral Operators with regular symbols.
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INTRODUCTION

In [4], Guillemin showed the existence of (-functions of gauged Lagrangian distri-
butions, investigated their residues, and used the residues to study the commutator
structure of certain algebras of Fourier Integral Operators. Having extended the
residue trace (cf. [20]) to Fourier Integral Operators many special cases have been
studied; e.g. the class of Toeplitz operators (cf. [2]), wave traces (cf. e.g. [6,21]),
and operators with log-terms (cf. e.g. [14]). However, many questions about (-
functions are still to be answered. For instance, is there a natural extension of the
Kontsevich-Vishik (quasi-)trace (cf. [12])? Other questions may revolve around
(-determinants or other traces induced by the (-function.
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For such questions, knowing the Laurent expansion would be very helpful. Fur-
thermore, it would be quite interesting to know in itself how the Laurent expansion
of (-functions of Fourier Integral Operators relates to the special case of pseudo-
differential operators (cf. [16]). Hence, taking derivatives, i.e. being able to handle
log-terms, will be crucial. We will, therefore, assume a generalized approach and
define the notion of a gauged poly-log-homogeneous distribution which is based on
Guillemin’s approach in [4]. It is interesting to note that all the cases above are cov-
ered and some other cases (including some relaxations which might be advantageous
in explicit calculations) can be considered, as well.

We will, however, start with the rather restrictive notion of gauged poly-log-
homogeneous distributions which only contain holomorphic families A such that
the degrees of homogeneity d in the expansion are of the form

VzeC: d(z)=d(0)+z.

As it turns out, this will be sufficient as the most general families we will consider
(these are holomorphic families A in an open, connected subset of C where the de-
grees of homogeneity are non-constant holomorphic functions) are germ equivalent
to this special form and, hence, all local properties are shared, that is, in particular,
the Laurent expansion.

In sections 1-3 we will calculate those Laurent expansions, extend them to more
general poly-log-homogeneous distributions, and apply them to Fourier Integral
Operators whose amplitudes have no singularities. This will yield the following
Laurent expansion (in a neighborhood of zero).

THEOREM Let (A(2)).ec be a family of Fourier Integral Operators with phase func-
tion 9 and amplitudes a(2)(x,y,€) = ao(2)(x,y,£) + 2,5 a.(2)(x,y,&) holomorphic
in z such that each a(z) € C (X x X xRN, the ag(2)(z,x,£) are integrable in a
neighborhood of {z € C; R(z) <0}, and the a,(z) are homogeneous in & with degree
of homogeneity d, +z, [ €N, In:={veI; d, =-N}, and A(X) is the diagonal in
X2 de. A(X)={(2,y) e X? z=y}.

Then, there exists ¢ € R such that tr A(z) is well-defined for R(z) < ¢ and z
tr A(z) has a meromorphic extension ((A) to C. Furthermore, ((A) has the Lau-
rent series (locally)

- fA(X)xaB]RN ¢ a,(0) dvola(x)xoB,x

(A=) =Y

el z
i gn+1
LYY _fA(X)xaB]RN 9" a,(0) dvola(x)xoB,x o
neN, telg (n + 1)'

I Jox oy €790 a(0) (2, 2,€) dE dvolx (x)

(1) + ) 2"

|
neNg n.

i qn
fA(X)x(R>lxaBRN)€ 9"an(0) dVOlA(X)x(]RzlxaBRN) N
+ Z = ' .
nEN0 n.
n (—1)j+1j!fA(X)xaBRN e”9" 7 a,(0) dvol .

EPIRPIDY Al (N +d, )i :

neN, telNIp j=0
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i a neighborhood of zero. In particular, we obtain the residue trace
@ SN[ 00,0) (0,0,6) dvolaon, (2.)
ely XXBBRN
and the residue density*
-3 / @28, (0)(x,2,€) dvolap,, (€) dvoly (z),
wely /OBy N
as well as the generalized Kontsevich-Vishik density
/N em(x’x’g)ao(())(x,x,f)df dvolx (z)
R
3 + > / @8, (0)(x,z,€)dE dvolx (z)
( ) teINIp Byn (0,1)

~Jopy €T a,(0)(z,2,€) dvolop,y (€)
N +d,

dvolx (z)

>

velNIp

or, in short,

(4) trv (A(0)) = C(froA4)(0)

where fpoA has the amplitude a—3, 1, a,, i.e. we split off those a, that have critical
degree of homogeneity.

In particular, the generalized local Kontsevich-Vishik density at zero is given by
the evaluation of “C minus pole at zero minus 'residue’ of the derivative of the pole
inducing term of the expansion” at zero.

Note that these formulae are local representations. We will have a closer look at
the Kontsevich-Vishik generalization, as well as global properties, in section 6.

Using the Laurent expansion, we can reproduce many well-known facts about (-
functions of pseudo-differential operators and Fourier Integral Operators like (2.21)
in [12], (9) in [15], (0.12), (0.14), (0.17), (0.18), and (2.20) in [16], as well as

2
_ga) _ Vol (R /r) S exp (_ |7|e2(N))
el

tre
(4rt) 5 4t

on the flat torus R /r where A is the Dirichlet Laplacian, and

(s> VIAT) () = 2 (-2 - a),

C(S — (h+ \/W)SM) (2) =2¢g (-2 —a;h) — K™+

on R/2,7 where (g denotes the Riemann-(-function and (g the Riemann-Hurwitz-
(-function. We will, then, introduce an approximation method, which we call
mollification, to extend the results to Fourier Integral Operators with asymptotic
expansions which have singularities at zero, that is, justify the calculations for

C(sm |A|W).

Lef. section 4.8.4.2 in [17] for pseudo-differential analogue
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Furthermore, we will have a closer look at the coefficients. For polyhomogeneous
amplitudes, we will obtain the residue trace (as Guillemin has shown to exist). For
poly-log-homogeneous amplitudes we will find a generalization of the Kontsevich-
Vishik (quasi-)trace and we can generalize Lesch’s main statements about the
residue trace and the Kontsevich-Vishik (quasi-)trace for pseudo-differential opera-
tors in [14] to Fourier Integral Operators. We will show that both (the residue trace
and the generalized Kontsevich-Vishik (quasi-)trace) induce globally well-defined
densities on the underlying manifold (provided that we started with globally de-
fined kernels). We will see that the Laurent coefficients vanish if and only if the
corresponding term e*’a in the Schwartz kernel is a divergence on X x dBgn

Finally, we will use stationary phase approximation to treat the integrals
I(x,y,r) = / @Y (2, y, n)dvolap, (1)
8Byn

which appear as coefficients in the Laurent expansion for » = 1. The stationary
phase approximation also allows us to calculate the kernel singularity structure of
certain Fourier Integral Operators by integrating I(z,y,r) over r € R,,. This yields
many “exotic” algebras of Fourier Integral Operators which happen to be subsets
of the Hilbert-Schmidt operators and (-functions in such algebras have no poles.
The kernel singularity structure also allows us to produce analogues of Boutet de
Monvel’s result that the residue trace is the trace of the logarithmic coefficient for
a certain class of Fourier Integral Operators (equations (3) and (4) in [1]).

Additionally to Boutet de Monvel’s result, we can also calculate the Kontsevich-
Vishik (quasi-)trace. In the case of [1] (one dimensional Fourier integrals on the
half-line bundle with phase function satisfying ¢(x,x,7) = 0), we will see that the
generalized Kontsevich-Vishik trace reduces to the pseudo-differential form. More
precisely, let A have the amplitude a ~ ZjeNO ag4-j, each aq_; homogeneous of degree

d-j,deC~\Z,_;, and N6N0>m(d)+1. Then,

N
trgy A :/ / a(z,z,7) = Y ag-j(z,z,r) dr dvolx(z)
xJr,,

§=0
independent of N. In general, this cannot be expected. However, there are some
cases in which we can prove such a statement.
THEOREM Let A be a Fourier Integral Operator with kernel

M%w:/,JWW@ML%O%
]RN

whose phase function V¥ satisfies Vo e X V¢ e RN« I(x,2,€) =0, and whose ampli-
tude has an asymptotic expansion a ~ Y.,y @, where each a, is log-homogeneous with
degree of homogeneity d, and logarithmic order 1,, and R(d,) - —oo. Let Ny € N
such that Yi e N,y R(d,) < -N and let

. ) No
() = [0 S (o)
RN =1
denote the singular part of the kernel.

Then, the regularized kernel k™8 = k — kS8 is continuous along the diagonal and
independent of the particular choice of Ny (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density is given by

k'8 (xz, x)dvolx (x) = /

a(x,x,€) - % a,(z,z,&)dédvolx ().
RN =1
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Note that k*&(x,z)dvoly (z) need not patch together globally. This is only the
case if we explicitly start with kernels that patch together and if there are no
singular terms of critical order (d, = —NN) or at least all those contributions to the
constant Laurent coefficient regularize to zero; i.e. “the generalized Kontsevich-
Vishik density is globally defined if and only if the generalized Kontsevich-Vishik
(quasi-)trace is tracial and independent of gauge.”

Furthermore, reduction to the pseudo-differential form is highly non-trivial and
false in general. Consider, for instance,

// ©@2)r = g dvol x () = / —im(-2mi6( x(z))z)lsgn(e(x I)) volx (7).

47tvol(X)
3

If ©(x,x) =1 and n = 4, then this term reduces to
a term would violate independence of N.

. In other words, such

Regarding the Laurent coefficients [, , N V@Y a(z,y, §)dvolpp, (£), we can use
R

a partition of unity such that a®(x,y,-) has no stationary point in its support and
each a®(x,y,-) has exactly one stationary point £*(x,y) € OBy~ of J(x,y,-) in the
support of a®*(z,y,-). Then,

/ eiﬂ(mvyvf)a(aj,y,g)dV01aBRN 6
0By~

:/ eiﬂ(wvyvﬁ)ao(x,y,{)dVOlaBRN (6)
0ByN

S R N-1 s _1 im g 0 O° (,y)
i9° (, (27) 77 |det ©%(z,y)| 2 es %8 ) ) . .
L) 71(2i)7 App o0’ (2.,6 (2,y))

s=1 JjeN,

holds with 0° () =9 (2,,€° (x,9)). ©°(x,y) = 0550 (2,4.£°(,1)), sen ©°(,y)
the number of positive eigenvalues minus the number of negative eigenvalues of
©°(2,y), and App s (z,y) = (0°(2,y) ' 0op,0on) = —divas,_ O (z,y)" gradyp_ -

‘The full kernel singularity structure will include another summation over ¢ € I. Let
I:=Tu{0} and

(27) 5" |det © (z,y)[ 2 T 50O (@) A
j1(2i)7 App e, (2.9.6(.9)).-

h . (x,y) =

Then, we will show

/RN “9(xy§)a/(x Y, 5 dé’ Z/ 119(acy§) O LL‘ , Y, §)d§+ Z Z h (iCay)QJS,L(%y)

vel s=1jeN,

with
g;,L('r7y) = O (z - T (q +1+ Z) jar1+z (195(:17, y) N Z_O)qul—z) (O)

f01"q:dL+NJrl -jeC~(-Ny) and

- _y)
guley) =0" 20 AL, (AU) (Cln+lna)z+1dff (0)
' 2mi (_Q)' c+iR (—l’ﬁs(fﬂ, y) +0- 0—)

for ¢ =d, + ¥2= N” -je-Ny, ceR,,, and some constant ¢, € C.
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Using these results, we will prove the following two results.

THEOREM Let A be a Fourier Integral Operator with phase function ¥ satisfying
02 (mXxXx@BRN ) (x,y,£) e GL (RNfl) whenever 039(x,y,£) =0 (in a neighborhood

of the diagonal) and és (s € NSS) the stationary points. Furthermore, let
VeeX VseNgg: ﬁ(x,x,és(x,x)) +0.
Then,
(Xs2zvk(z,z)eC )eC(X)

and
trA:/ k(x,x)dvolx (x)
X

is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, (-functions of
such operators have no poles (since the trace integral always exists).

COROLLARY Let I' be a co-compact discrete group on a manifold X acting con-
tinuously® and freely’ on X|/r, k a T x D-invariant* Schwartz kernel on X, and
k = Y. er k(x,vy) its projection to X[r. Suppose k is pseudo-differential, i.e.
k(z,y) = S eHr=v8en g (2,1, €)dE and

k(z,y) =Y [ €0 a(a, vy, €)de .
~el' /RN

::k'y (z,y)

Then, kiq is the kernel of a pseudo-differential operator and the k, for v e '~ {id},
are conlinuous.

Before diving into the calculation of the Laurent expansion, let us have a look
at some examples highlighting some of the technical tweaks poly-log-homogeneous
distributions allow us to use directly due to their generalized form. In particular,
we would like to point out that we can replace the sphere 0By~ by a family of
manifolds M, which might be advantageous if we want to calculate residue traces,
for instance, since (at least in some cases) we are reduced to the pseudo-differential
case (cf. concluding remark of the introduction).

EXAMPLE Let us consider a quotient manifold X =Y /r where I' is a co-compact,
torsion-free, discrete lattice in the isometries of Y and the Laplacian on Y has the

2
symbol HG_% (w)ng ) (for the sake of simplicity). Then, the (-regularized wave
2

trace of the Laplacian is given by

PICOR | [

1

G (2)¢

() gHE=7T,E )N déda.

For r € X, let M, := {HG’%(:Z:)gH EeRY; ¢e 8B]RN}. Then,

L2(N)

1
7: G_7 x .
(27)_]\]/ / ¢ L e2(N) e E)e gy
X JrN
it G_%(w)ﬂ , (N)+i(w—ym,ﬂ)RN HG—%( )~
e 2 2) i
£2(N) .
i - dvol, g, (@) drdx

et N G @l

2I'x X/ 3 (y,2) = vz € X/r is continuous
3Yyel: (3zeX/riyz=2) = vy=id
Wy el Va,ye X« k(z,y) = k(vz,7y)
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2 (2)p
27T / / / zr(t+;E READ) N)H L2(N) N ld le(/J,)d’f‘d(E
M, |G- (x)MHZQ(N)

:(27T)*N /X/]R eirt N-1 /M G EN I ”G*l(x)'u”l;(N) dvolys, (p)drdx
>0 x

follows from Fubini’s theorem® applied to f(&) = HG_% (x)§H on RV~ {0}, i.e.

L2(N)

-1
grad f(&) = Hg_f% Note that the integrals [ ¥ f A, are integrals over the
Y6

sphere bundle of X with inverted metric. However, they can be written as integrals
over the sphere bundle and as integrals over X x 0Bpn.

In particular, if g” (z) = g(x)?6" for some g > 0 (e.g. on a hyperbolic manifold),
then dvolx (z) = g(z) Ndax, 1(3:);LHE2(N) = g(x) HG‘%(Q:);LH

oy g(z), and

M, = g(x) 0By~ imply
(2m) ™ / / irty Nt / e G (@) ) gy dvola, () drda
xJr,, ; 2(N)
:(27T)_N/ / eiTtTN_l/ TN g (1) dvolyy, (p)drda
X JR,, M,
:(27T)7N// eiTtTNilg(I)il eiT(I*'YI,IQRNdvolg(x)_laBRN (,u)drd:z
X JR,, a(z)"10ByN

:(27T)_N/ / emrN_lg(:lc)_l/(9 e"g(m)_%m_”’")wg(x)l"NdvolaBRN (n)drdz
x Jr, By

:(27T)7N// eirtTN—l/ eirg(x)*l(x*'yz,n)mzvdvolaBRN (n)drdvolx(x).
X JR dByn

For « =id, this reduces to

(N = 1)Ivolop, (0Bgn )volx (X)
(—2mit)™ '

For ~ # id, we can use stationary phase approximation and obtain

(27T)_N/ / eirtN-1 / eiTg(w)-l(m—Vm,mRN dVOlaBRN (n)drdvolx (z)
OBy

zrt N 1 s
2\|x—’yz”[2(N)

(2m)™

N-1

2 im
eT(l—N)

eii?‘g(x)*lHI*’YIHQ(N)deVOlX(I)

N-1

2 im
eT(l—N)

/ 2”90 ’YUﬁ”eQ(N))

(2m)N R eirtiim(z)il”%W”@(N)TN*ldrdVOlX (z)

>0

5

TueoreM (FuBiNi) Let Q € R™ be open, ¢ € Cc(Q), fe CH(Q,R), Vo e Q: grad f(z) # 0, and
M, :=[{r}]f ={z€Q; f(z)=r}. Then,

[ e@a=[ [ PO lawad SOy dvolar, ().
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N-1

=,
T(1-N)

-2 2Hw W”@(N)) ‘ (- 1) dvolx ()
/ (2m)N (=i (r= 0 e =r2lim)) X

- 1-N
—Z (N - 1)!( ) iz (1-N) H:v—vae;(N) dvoly (2)
4 <—2m>N 1 N
(t+0(@) |2 =72l 0 )

REMARK Replacing 0Br~ by M, becomes even more interesting if we want to
calculate the Laurent coefficients

/ EED GG, (0) (2,2, €) dvola(xyxop,y (2,€)
A(X)xOByn ®
which are now integrals

// eV@T)gntlitla (0)(z, 2, €) dvoly, (€)dvoly (z).
xJm,

In cases such as the example above, the integration over M, is now without a phase
function because M, > £ — ¥(x,x,€) is a constant J,, leaving us with integrals of
the form

ee /A . az(€) dvolyy, (€)

where a, is homogeneous of some degree d. For M, = T, [0Bg~ | with T,, € GL(R"),
this is equivalent to

¢ /Mz a,(€) dvolyy, (€) =¢™ /BBM a0() |75 ¢ dvolap.. (€)-

In particular, for the case of the residue trace, we have d = -n, i.e.

i /Mz 0(6) dvolu, (6) = [ .. a(©dvolan (©),

which shows that we have reduced the pointwise residue of the Fourier Integral Op-
erator to the pointwise residue of a suitably chosen pseudo-differential operator and
a rotation in the complex plane 1J,. In fact, the symbol of that pseudo-differential
operator can be chosen to be the amplitude of the Fourier Integral Operator itself.

1. GAUGED POLY-log-HOMOGENEOUS DISTRIBUTIONS

In this section, we consider distributions of the form

/ (=) (€)dvolz_ i (€)

>1
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where M is an orientable,® compact, finite dimensional manifold without boundary
and « is a holomorphic family given by an expansion”
a=ap+ Z a,
vel
where I € N, ag(z) € L1(R,; x M) in an open neighborhood of {z € C; R(z) <0}
and each of the «,(2) is log-homogeneous with degree of homogeneity d, + z € C
and logarithmic order [, € N, that is,

Ja, eCM vreR,, Yve M: a,(2)(r,v) =r**(Inr)a,(2)(v).

We will furthermore assume the following.

e The family (93(d,)).cr is bounded from above. (Note, we do not require
R(d,) > —o0. Veel: R(d,) =42 is entirely possible.)

The map I5¢+~ (d,,l,) is injective.

There are only finitely many ¢ satisfying d, = d for any given d € C.

The family ((d, —6)™1) e is in €o(I) for any § e C\ {d,; v € I}.

Each ¥,.; @,(z) converges unconditionally in Ly (M).

Any such family « will be called a gauged poly-log-homogeneous distribution. Note
that the generic case (that is, applications to Fourier Integral Operators with am-
plitudes of the form a ~ ¥;cy, am-j) implies that I is a finite set and all these
conditions are, therefore, satisfied.

ExaMPLE Let A(z) be a pseudo-differential operator on an N-dimensional man-
ifold X whose amplitude has an asymptotic expansion a(z) ~ ¥ oy a;(2) where
each a;(z) is homogeneous of degree m — j + z. Then, we may want to evaluate the
meromorphic extension of

tr A(z) :/X/RN a(z)(z,z,&)dédvol x ()
:/.X/R>1><BB i a(2)(z,z,&)dédvol x ()

+/X/BRN(O)I)CL(Z)(SC,CC,f)ddeOIX(I)

at zero. The poly-log-homogeneous distribution here is

(%) /X/RZIXBBRN a(z)(x,x,&)dédvol x ().

At this point, we have many possibilities to write it () in the form

/ a () (E)dvols_ ar (€).
R, xM

>1

6Replacing; a(z)(r,f)dvolR>lxM (r,€) by some family dw(z)(r,&) allows us to also treat non-
orientable manifolds but we will not need this in the following and choose orientability for the
sake of simplicity.

"This is not meant to be an asymptotic expansion but an actual identity. However, for a
classical symbol a with asymptotic expansion ¥ ey a; where a; is homogeneous of degree m — j
for some m € C, it is possible to choose a finite set I = {0,1,...,J} and ag will correspond to
a— ZJJ:() Am—j -

This is completely analogous to the Kontsevich-Vishik trace, i.e. splitting off finitely many terms
with large degrees of homogeneity while the rest is integrable. The only difference is that those
terms (that have been split off) might not regularize to zero anymore.



10 TOBIAS HARTUNG AND SIMON SCOTT

The easiest choice is M = O0Bgn~ and T := {j € N; R(m) —j > -N}. This ensures
that

/ a(z)(z,z,8) - Z;a](z x,x,&)dvol x (x)

is integrable in R,; x 0Bg~. Furthermore, having a finite I ensures that all of the
conditions above are satisfied and « can be defined by

ao(2)(r,v) :—/ a(z)(z,z,mv) = > a;(2)(z,z, rv)dvol x (z)

gel

and

a;(z)(r,v) ::/Xaj(z)(:v,:v,rl/)dvolx(x) :rm_j+z/Xaj(z)(:v,:v,u)dvolx(x)

=, (2)(v)
for jel.
u

REMARK Note that these distributions are strongly connected to traces of Fourier
Integral Operators, as well. In fact, Guillemin’s argument in [4] relies heavily on
the fact that the inner products (u(z), f) at question are integrals of the form

/ a(z)(§)dvolr_ xaB,y (£)
R_,x0B

where « is a gauged polyhomogeneous distribution; cf. equation (2.15) in [4].

If the conditions above are satisfied, we obtain formally

/ a(z)dvolR M = / ap(2) dvolg XM+Z aL(Z)dV01R>1><M
R, xM el JR  xM z

=79 (2)eC

“r(2) + / / au(2) (2 ) "™ M dvolyy (v)do
el

=19(2) + Z pdim Mrd,+z (In g) ‘ dg/ a,(z)dvolyy
M

el YRy,
—_—

=:ic,(2) =rresa, (z)eC

:7'0(2) + Z CL(Z) res aL(Z)

vel

which now needs to be justified.
Lemma 1.1. ¢,(z) = (-1)%* 17,1 (dim M +d, + z + 1)~V

Proof. Let I'y; be the upper incomplete I'-function given by the meromorphic ex-
tension of

Do (s,2) ::/ Pletdt (R(s) >0, zeRy).

Ty, satisfies T'y;(s,0) = T'(s) where I' denotes the (usual) I-function, I'(s,00) =0
and 02T i (s,2) = —2*Le™®. Then, we obtain
R s Tui(l+1,-(d+1)Iny) ’(x) ~95Tyi(1+1,~(d + 1) Inz) &1
[N =
ot (~(@d+1)™ (~(@d+ 1)
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(~(d+1)Ing)le(® ) inz
(~(d+1))z
)lIdJrl

(Inw
- x
=z¢(Inz)".

Hence, for d < -1,

- (_1)l+1“
/R z%(Inz) dx @D

21
which yields
; —1)kr1y
c.(z) :/ oMM (I g)* do = — CUeL )
R,, (dimM +d, +z+1)"
in a neighborhood of R__ ;. Med, -1 (because any real analytic function can be
extended locally to a holomorphic function) and, thence, by meromorphic extension
everywhere in C \ {-dim M -d, - z - 1}.

O

Since the resa, are holomorphic functions, we now know that },.;c, resq, is
a meromorphic function with isolated poles only (if it converges), because ((d, +
8) 1) ser € £2(1) implies that there may be at most finitely many d, in any compact
subset of C.

Lemma 1.2. For every z € C~{-dimM -d, - 1; te I}, ¥, c(z)resa,(z) con-
verges absolutely.

Proof. By assumption, (¢,(z)).er € l2(I) and ¥,y &,(z) converges unconditionally
in Ly (M). This allows us to utilize the following theorem.
2, pefl,2]

p o, peR,,
unconditionally in L,. Then, ¥y |z; HqLp converges.

(THEOREM 4.2.1 IN [10]) Let peR,,, ¢ = { , and ¥ oy x; converges

Hence,

Yl resan(@) < Tl 18 s,
(CICIEACTPRETY BN

= (le.(2)]) er sz(j) (”&L(Z)HM(M))LEI (D)

N 2
=l CceCz)) ety \/ z; la. ()%, (ary < oo

Definition 1.3. Let a be a gauged poly-log-homogeneous distribution. Then, we
define the C-function of a to be the meromorphic extension of

C(a)(2) ::/]R Ma(z)dVOIR21XM7

vel

O

i.€.

s (1) res a, (2)
¢(@)(z) =m(z) + ; (dimM +d, +z + 1)1L+1 '
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Now, that we know ((«) exists as a meromorphic function, we will calculate its
Laurent expansion.

Definition 1.4. Let f be a meromorphic function defined by its Laurent expansion
Ynez an(z — 20)™ at zg € C without essential singularity at 2o, that is, AN € Z Yn €
Z.y: an=0. Then, we define the order of the initial Laurent coefficient oilc., (f)
of f at zy to be

oile,, (f) :==min{n € Z; a, 0}
and the initial Laurent coefficient ile., (f) of [ at zg

ilez, (f) = aole., ()-

Lemma 1.5. Let a = ag+ 2y, and = Bo+ X, B be two gauged poly-log-
homogeneous distributions with «(0) = 5(0) and resa;(0) = 0 if I; is the maxi-
mal logarithmic order with d; = —dim M - 1. Then, oilco({(a)) = oilco(¢(B)) and

ileg(¢(a)) =ileg(C(5)).-

In other words, oilco(¢()) and ilcg(¢()) depend on «(0) only and are, thus,
independent of the gauge.

Proof. Since a(0) = 5(0), we obtain that z — v(z) = M is a gauged poly-
log-homogeneous distribution again. Furthermore,

oileg(¢(7)) > min{oilee(C(a)),oilea(C(8))} = =1 = =1, ~ 1

holds because each pair (d,,l,) in the expansion of v appears in at least one of the
expansions of a or 4. This implies that z = 2!¢(7)(2) = 2571 (¢(a)(2) - ¢(B)(2))
is holomorphic at zero (equality holds for Ji(z) sufficiently small and, thence, in
general by meromorphic extension). Hence, the highest order poles of ((«) and
¢(B) at zero must cancel out which directly implies oilco({(a)) = oilco(¢(8)) and

ileg (¢(a)) = ileo (¢(B))- 0

Lemma 1.6. Let a = ag+ 2 ey, and B = Bo+ X,ep B be two gauged poly-log-
homogeneous distributions with «(0) = (0) and Ve e Tul': d, + —dim M - 1.
Then, ¢(a)(0) = ¢(5)(0).

Proof. Again, since «(0) = 5(0), we obtain that z — v(z) := w is a gauged
poly-log-homogeneous distribution and oileg(¢()) > 0. Hence

, Sa)(2) -<(B)(2)

z

C(@)(0) - C(B)(0) =reso ( ) — resy C(7) =0

where resy denotes the residue of a meromorphic function at zero.
O

Definition 1.7. Let a = ag+Y,.; a, be a gauged poly-log-homogeneous distribution
and I, :={tel; d,=-dim M - 1-z¢}. Then, we define

prQ(a) =a— Z Q, = Qo+ Z Q.

el telNIy,
Corollary 1.8. ((fpya)(0) is independent of the chosen gauge.

Definition 1.9. Let a = ag+Y,.; a, be a gauged poly-log-homogeneous distribution
and resa, # 0 for some v € Iy. Then, we say ((«) has a structural singularity at
zero.
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REMARK Note that the pole structure of («) does not only depend on the resa,
but also on derivatives of «. A structural singularity is a property of «(0) in the
sense that it cannot be removed under change of gauge. More precisely, choosing
B such that «(0) = B(0) does not imply that the principal part of the Laurent
expansion of ((«) — ¢(3) vanishes. However, if all res, vanish (¢ € Ij), then there
exists a 8 with «(0) = 8(0) such that ¢(8) is holomorphic in a neighborhood of
zero (e.g. 8 being M-gauged; see below). Having a non-vanishing res«, for some
¢ € Iy, on the other hand, implies that every (() with «(0) = 8(0) has a pole at
zZero.

Definition 1.10. Let a = agp + X,y , be a gauged poly-log-homogeneous distri-
bution. If all &, are independent of the complex argument, i.e. «,(z)(r,v) =
r*2(Inr)ta, (0)(v) = r*a,(0)(r,v), then we call this choice of gauge an M-gauge
(or Mellin-gauge).

REMARK The M-gauge for Fourier Integral Operators can always be chosen locally.
u

Corollary 1.11. Let a = ag + X,y v, be a gauged poly-log-homogeneous distribu-
tion.

(i) If « is M-gauged, then all resa, are constants.
(ii) Ifresc,(0) =0 for e I, then the corresponding pole in () can be removed
by re-gauging.
(iii) Ifresa,(0) #0 for e Iy, then the corresponding pole in ((«) in independent
from the gauge. In particular, resa,(0) does not depend on the gauge.

Proof. (i) trivial.

L,+1
(ii) The corresponding pole contributes the term CD - Livesan(z) ¢ the ex-

(dim M+d, +z+1)%+?

pansion of ((«). Choosing an M-gauge yields
(D M resa,(2)  (=1)% ! resa, (0)
(dim M +d, +z+ D" (dim M +d, + 2+ 1)

by holomorphic extension.
(iii) Lemma 1.5 shows that oileoC (e, ) and ilcg(¢(e,)) are independent of the

gauge. Since, resa,(0) # 0, we obtain oilco((c,) = -1, — 1 and
ilCOC(aL)
(=1)L+1g,1”

resa, (0) =

REMARK Suppose we have a gauged distribution « such that
VzeC V(r,§) eRyy x M a(z)(r,&) =r*a(0)(r,§)

is satisfied and we artificially continue o by zero to R, x M. Then,

/ (=) (r.€)dvols xar(r.€) = / plim a1z / a(0)(r, €)dvoly (€) dr
R, xM R, M

=:A(r)
=M(A)(dimM +z+1)
holds where M denotes the Mellin transform

Mi(z) = /R ()t
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for f: R,y - R measurable whenever the integral exists. Hence, the name “M-
gauge”.
]

Proposition 1.12 (Laurent expansion of {(fpyr)). Let o = ap+Y. .1 v, be a gauged
poly-log-homogeneous distribution with Iy = @. Then,

|
neNg n:

holds in a sufficiently small neighborhood of zero.

Let B = 0o+ 2, B be a gauged poly-log-homogeneous distribution without struc-
tural singularities at zero, i.e. Vv € I : resB, = 0. Then, there exists a gauge 5
such that

; ¢(9"1peB)(0) ,,
C(B)(2)= 2 =1z

|
neNy n:

holds in a sufficiently small neighborhood of zero.

th

Proof. The first assertion is a direct consequence of the facts that the n'" Laurent

coeflicient of a holomorphic function f is given by 97/ (©)

9" C(a) = 8"/ )

R, xM

and
a dvolg_ xnr = / " dvolg_ xnr = (0" ).
- R, xM -

Now

C(B) ()= 3 SRR

Zn
n!

neNy

follows from the fact that we may choose an M-gauge for 8, with ¢ € I/ which yields

¢(B) = ¢(fpo ).
O

M-gauging will, furthermore, yield the following theorem which can be very
handy with respect to actual computations. In particular, the fact that we can
remove the influence of higher order derivatives of «, with critical degree of homo-
geneity will imply that the generalized Kontsevich-Vishik density (which we will
define in section 6) is globally defined, i.e. for M-gauged families with polyhomo-
geneous amplitudes the residue trace density and the generalized Kontsevich-Vishik
density both exist globally (provided the kernel patches together).

Theorem 1.13. Let o = ap+Y,c; o, be a gauged poly-log-homogeneous distribution.
Then, there exists a gauge & such that

~1)+ 1 lres o "o
- 3 CUIme0) | 5 (@ )0).

n!

el neNg

holds in a sufficiently small neighborhood of zero.
Proof. This follows directly from Proposition 1.12 using an M-gauge for «, with

LEI().
g

REMARK In general, there will be correction terms arising from the Laurent ex-
pansion of res«,. Incorporating these yields

1)\l +1 res o l, 1\l +1 19 res v
C(Oé)(z):Z(( 1)L+1], I ves L(o)+z( 1)l+17,19" res L(O)ZMJ)

l,+1 |
el z n.

n=1
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n! (n+1,+1)!

+Z(dﬁﬂwﬂm+z(%ﬂ“mmﬂ“mwdm%¢

neNy vely

Corollary 1.14. Let o =g+ X ,c; v, and B = Po+ X, B be two gauged poly-log-
homogeneous distributions with «(0) = 8(0) and such that the degrees of homogene-
ity and logarithmic orders of «, and B, coincide. Then,

I, 1\l +1 " res (v, —
L)) - C(B)(z) = 3 3 0 ves (@ 2 B) (0) ot

n'

velg n=1 .
.y S@ro (=)
neNg n!

(_1)lL+1lL!(‘:)"+li'+l res (o, - 3,) (0) ,
+ Z Z (n+1,+1)! :

neNg el

holds in a sufficiently small neighborhood of zero.

In section 3, we will see that Corollary 1.14 applied to pseudo-differential oper-
ators implies many well-known formulae, e.g. (2.21) in [12], (9) in [15], and (2.20)
in [16].

EXAMPLE Let a = g+, @, and 3 = fo+Y o1 B. be two gauged poly-homogeneous
distributions with «(0) = 5(0) and such that the degrees of homogeneity of «, and
B, coincide. Then, #I; < 1 and (because) all [, are zero. Hence,

-resa TN "lresa
(@) )= sxm+z(wwmxm_za sxm%n

rely neN, n! vely (7’L + 1)'
and
mmawmz<mMWWWZWﬂ@ﬁW%n
neNg n: el (7’1, + 1)

holds in a sufficiently small neighborhood of zero. This shows that the residue trace
- Y e, tes a, (0) is well-defined and independent of the gauge for poly-homogeneous
distributions. Higher orders of the Laurent expansion depend on the gauge.

Furthermore, ¢(«) — ¢(3) is holomorphic in a neighborhood of zero and
(¢(@) = ¢(8)) (0) =¢(fpo (= 8))(0) = 3 Ores (e, ~ B,) (0)

el
=((fpo) (0) = C(fpo8)(0) - ZI: dres (o, - B,) (0)
=0 0
=— Y Ores(a, - ) (0).
vely
Defining v, (z) = 7°‘L(z);m(z) and y(z) = 70‘(’2)?@) we, thus, obtain

(¢(a) =¢(8)) (0) == 3 dres(a, = 3,) (0) = = 3 res,(0) = reso ((7)-

vely telp

Since res~,(0) # 0 implies that it is independent of gauge, we obtain that resg ()
is independent of gauge which directly yields

(¢(a) =€(B)) (0) =reso ¢ () =reso ¢ (I = B)).-
In other words, ({(a) - ¢(8)) (0) is a trace residue.
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Theorem 1.15 (Laurent expansion of ((«)). Let o = ag + ¥, v, be a gauged

poly-log-homogeneous distribution. Then,

(o)) -3 $ CD L 26 O)dvoly

l,+1-
elg n=0 n! b "
3
fR>lxM8 ap(0)dvolr_ xr .
+ Y == z

|
neNy n:

n (1), + ) [, 0T d (0)dvoly,
z

UDIEDNDD

: l,+7+1
neNy el To 120 n!(dim M +d, + 1)4+3

. Z Z( 1)l +1l|f an+l +1~ (O)dVOIM n

neNg telp (TL+Z +1)'

holds in a sufficiently small neighborhood of zero.

In particular, if « is poly-homogeneous, we obtain

= [3y @ (0)dvolys fRleM 9" ag(0)dvolr_,xn n

>

z neN, n!

no(=1)7 gt [, 0"y (0)dvoly,
z

SDIEDIDY

i j+1
neN, teI\Io j=0 n!(dlmM+dL+1)j

. Z Z ~Ju 8”+1ab(0)dvolMZn

neNg el (n + 1)'

Cla)(2) =2

el

n a sufficiently small neighborhood of zero.
Proof. Note that having a gauged log-homogeneous distribution
B(2)(r,€) =r"*(lnr) 5(2)(€)

the residue res 8 = f M B dvolys does not depend on the logarithmic order. Hence, we
may assume without loss of generality that [ = 0 and we had a gauged homogeneous
distribution in the first place, i.e. replace 3 by

B(2)(r,€) =15 (2) ()

Then, we observe
73(:):8) = 3 () ) B ©
and
IO = (B0 ()= 5 () )
for every n € Ny, r € Ry;, and € € M. In particular, for r = 1, we deduce

0"B(2) =0"B(2)\ar,

ie.
0" resf = 8"/ B dvoly, :/ "B dvoly, :/ 9" B dvolyy.
M M M
Especially, for § homogeneous, we have B = 3 and, therefore,

O resf = / "3 dvolys = / "B dvoly = / "B dvoly;.
M M M
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Hence,

C(0"fpoa)(2) = 9" ag(z)dvolg_ xm
R, xM

S 1
=+ 3 .
(dim M +d, + z + 1)k+i+1

velNIp j=0
This directly yields

(~DMY [y @ (0)dvolyy Ly (=1)HFLL [ ™6, (0)dvol
“O‘)(Z):LGZIU( fé‘ff M > n!fgmfn v M)

C(@”fpoa)(O) (_1)ll'+1lL!fM an+lL+10~éL(O)dV01]w n

+H€EN:O( n! +LEZI:O (n+1,+1)! -

Lo (=1)!*,) [, 0md, (0)dvoly, N

=2 2

relp n=0

2

neNg

& (DT )y 0 @ (0)dvolyr
uDIEDDY n!(dim M +d, + 1)k+i+1 ’

neNg telNIg j=0

253 (-1)!*L [y, 0™ &, (0)dvolys
+ z
neNg telp (n + lL + 1)'

Lo (=1)!*1) [, 0md, (0)dvoly, .

=22

velp n=0

nl zletl-n n!

2

neNg

nl Zltl-n n!

o (DT )y 0 @ (0)dvolyr
DD NDY n!(dim M +d, +1)L+i+1 ’

neNg telNIp j=0

LYY (—1)“1@!fM@"”L“dL(O)dvolen

neNg telp (n + lL + 1)'

17

fR21X1W 8"0&0(0)dVOlelxM Zn

fR21X1W 8"0&0(0)dVOlelxM o

O

Definition 1.16. Let o = g+, @, be a gauged poly-log-homogeneous distribution
such that ((«) is holomorphic in a neighborhood of zero. Then, we define the

generalized (-determinant

det¢(a) = exp (¢(a)'(0)) -

REMARK This generalized (-determinant reduces to the (-determinants as studied
by Kontsevich and Vishik in [12,13]. In other words, we do not expect it to be
multiplicative if « corresponds to a general Fourier Integral Operator. Though
an interesting question, we will not study classes of families of Fourier Integral

Operators satisfying the multiplicative property, here.

Knowing the Laurent expansion of {(«) we know that
(@)= [ ah0)dvole
R, xM B
5 le (-1)LH (1, + ) [y, 0 @, (0)dvol
+ :
LTI, 120 (dim M +d, + 1)l+5+1

.y (=1)4 L1 [, 82, (0)dvol
vely (lb + 1)'
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holds. In particular, if Iy = @,
(@Y= aj(O)dwls .
R, xM B

! (_1)l['+j+1 (ZL + .7)' fM al_jdL(O)dVOIJW

2

vel j=0 (dim M +d, +1)k+i+l

If o were poly-homogeneous we obtained
C@y©)= [ ah(0)dvole
R, xM B

> 21: (-1)7*L [, 0¥ e, (0)dvolys 3 o”(0)dvol
teI~Io 5=0 (dim M +d, +1)i*+ It M

_ " (0)

= "(0)dvolg xus + _—res(a) (0)
/RleMQO( Jdvole, i+ ), dimM +d, +1

el
+ > resa.(0) - > res()') (0)

velNIy (dlmM + dL + 1)2 el

If we were to choose an M-gauge we would find da, = 0 and may assume Iy = @
(¢(@) cannot have a structural singularity and non-structural singularities do not
appear within the ¢-function of an M-gauged poly-log-homogeneous distribution),
ie.

(-1)k(l, + 1)! [, &, (0)dvolps
"(0) = ' (0)dvolg M
((a)'(0) . ag(0)dvolg_ M+L€IZ\:I() (@m M+ d, + 1)L

1)k (1, + 1)! res a, (0)
= 0(0)dvolg_ xar ( - -
/R>1Xwa0( Jdvolg,, +; (dim M +d, +1)1+2

and, for a additionally poly-homogeneous,

Cy©)= [ ah(0)dvola s +

>1

res o, (0)
“(dim M +d, +1)2°

REMARK Note that ((«)’(0) depends on the first 1 + max ({l, +1; ¢ € Iy} u{0})
derivatives of a. Hence, the generalized (-determinant does so, too, and is, thus,
not independent of the gauge.

2. REMARKS ON MORE GENERAL GAUGED POLY-log-HOMOGENEOUS
DISTRIBUTIONS

The results obtained for gauged poly-log-homogeneous distributions can largely
be generalized. In fact, the degree of homogeneity d,(z) can be chosen arbitrarily
as long as it is not germ equivalent to a critical constant. In this section, we will
investigate these direct generalizations and consider distributions of the form

/ o) (E)dvols_ rr (€)
]R>1><M

where M is an orientable, compact, finite dimensional manifold without boundary
and the holomorphic family « is given by an expansion

a:a0+ZaL
el
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where I ¢ N, ag(z) € L1(R,; x M) in an open neighborhood of {z € C; R(z) <0}
and each of the a,(z) is log-homogeneous with degree of homogeneity d,(z) € C
and logarithmic order [, € N, that is,

Ja, eCM VreRy,, YveM: a,(z)(r,v) = r ) (Inr)lea, (2) (v).
We will furthermore assume (for now) that every d, is an entire function,
VzeC: (d(z)=-dimM -1 = d/(2)#0),

the family (93(d,(2))).er is bounded from above for every z € C, sup,.; R(d,(z)) —
—o00 (R(z) - —00), the maps I 3¢+ (d,(2),l,) are injective, there are only finitely
many ¢ satisfying d,(z) = d for any given d,z € C, the families ((d,(2) +)™).es
are in lo(I) for any z € C and 6 € C~{d,(2); ¢t €I}, and each ¥,.; @, (2) converges
unconditionally in L;(M). Any such family « will be called a gauged poly-log-
homogeneous distribution with holomorphic order.

If the conditions above are satisfied, we obtain

/ a(z)dvolR>lxM :/ Oéo(Z)dVOlR>1xM + z aL(z)dvolR>lxM
R, xM - R,y xM - el JR, xM -

=19(2)eC
- (-1 Ires o, (2)
=To(z) + z, (dim M + 1+d,(2))l+

which converges absolutely. For d,(0) # —dim M - 1, we observe

L (dim M+1+d, (0)+2)"+1
(cDE W resan(z) (D" tres (i Gt o) (2)

(dim M + 1 +d,(2))b+1 (dim M + 1 +d,(0) + z)bL~+1

in a neighborhood of zero. Hence, let

B,(2)(r,€) = r4 = (In )

(dim M +1+d,(0) + z)l*!
(dimM +1+d,(z))h+!

a,(2)(8) -

=B.(2)(§)
For d,(0) = —dim M - 1, there exists an entire function §, such that
dim M +1+d,(2) =d (0)z+6,(2)2*
and, since d! (0) # 0, we obtain that z — d/ (0)+4,(z)z has no zeros in a neighborhood
of zero. Then, we observe
(- M 0resa,(2)  (“D)MIres o, (2)
(dim M +1+d,(2))*t (dI(0)z +0,(z)22)b+1
(=DM res o, (2)
2L (d(0) +6,(2)2)" !
(—1)l1'+1lblres(—o”(z) )

(d;(0)+6.(2)2)"!
le'+1

_1\l+17 o, (z)
(-1) l“res((d:(o>+6[,(z)z>h”)

(dim M +1+d,(0) + z)b+!

and define
&,(2)(€)
(d/(0) +6,(2)z)" "

=B.(2)(€)

B.(2)(r, €) = 14 O*= (In )"
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Thus, we obtain the following observation.

Observation 2.1. Let o = ap + Y, , be a gauged poly-log-homogeneous distri-
bution with holomorphic order. Then, the (-function ((«) is germ equivalent to
¢(B) with B as defined above. Thus, ((«) inherits all local properties from ((B),
i.e. all local properties of (-functions associated with gauged poly-log-homogeneous
distributions.

In particular, if resa, (0) # 0 with d,(0) = —dim M — 1 and I, mazimal, then the
initial Laurent coefficient of ((«) is
(-1, Ires o, (0)
Ty

and the {(«) has the Laurent expansion

(o)) =3 3 ED Ty 075, (0)dvoluy

elp n=0

nl l+l-n

fR21X1W 8"0&0(0)dV01R21XM

+ ) 2"

|
neNg n.

n (=D)L, + ) [, 077 B,(0)dvolyy
UPIRpIDY al(dim M +d, + 1)l+1 :

neNy telNIg j=0

-1 lL+llL! 8n+lb+1 NL 0)dvol
+zz( ) fM ﬂ()VOMZn

neNg telp (n+lb + 1)!

in a sufficiently small neighborhood of zero.

Proof. Note that zero is either a pole of ((«) or a regular value, that is, we can
choose a neighborhood uniformly for all ¢ with d,(0) # —dim M - 1. Since there are
only finitely many ¢ with d,(0) = —dim M - 1, we obtain germ equivalence of the
series representations and, since the Laurent expansion was solely determined from

the series representation, the observation follows.
O

We may generalize this even further. Suppose « is meromorphic in C, that is,
holomorphic in 2 Copen € such that C \ € is a set of isolated points in C. Let 0 € 2
and let « satisfy all properties of being a gauged poly-log-homogeneous distribution
with holomorphic order but on 2 instead of C. Then, we call & a meromorphic
gauged poly-log-homogeneous distribution with respect to zero. Since 0 € €2, we
directly obtain that « is locally a gauged poly-log-homogeneous distribution and
still all local properties are preserved just as they are in Observation 2.1.

Now, we can even drop the assumption
VzeC: (d(z)=-dimM -1 = d,(z2) #0)

in the definition of a meromorphic gauged poly-log-homogeneous distribution with
respect to zero (in exchange for an increased logarithmic order). Instead, let

d(z)=-dimM -1+6,(z)z™
with 6,(0) # 0 and call any such « a generalized meromorphic gauged poly-log-

homogeneous distribution with respect to zero. Then,

(-1 I res o, (2)
(dimM +1+d,(z))0+!
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(-1)4* 1 res o, (2)
(6,(z)zme )b+l
(-=1)b+, res (5L‘lt‘1ozb) (2)

ZmL(lL+1)
i (—1)m"(l"+l)(mL(lL +1)—1)!res ((_1)mL(lL+1)+lL+1 le)—l)!ézh_laL) (2)
- ZmL(lLJrl)
()™ D 1+ 1) = Dbres ()™ 0D g0 ) (2)

(dim M +1 +d,(0) + z)m(L+1)
shows that choosing

_1)mL(lL+1)+lL+1lL!

(mL(lL + 1) - 1)'

B,(2)(r,€) = r O+ (1 pyme )t 8.(2) " a (2)(€)

=B.(2)(€)
for ¢ € I with d,(0) = —dim M -1 also yields germ equivalence and, again, all local
properties are preserved.
Hence, we can state the following Definition and Theorem.

Definition 2.2. Let © Copen C, Q0 Sopen 2, 0€ Q, and a = (a(2))zeq a holomor-
phic family of the form

a:ao+ZaL

vel
where
e /CN,
o VzeQ: ap(z) e Li(Ryy x M),
o VzeQy: a(z)e Li(Ry; x M),
e cach of the o, (2) is log-homogeneous with degree of homogeneity d,(z) € C

and logarithmic order 1, € Ny, that s,
Ja, eCM VreR,, YveM: a,(2)(rv) = r G (Inr)led, (2) (v),

e cach d, is holomorphic in 2,
e none of the d, is germ equivalent to —dim M -1 at zero (i.e. none of the
d, is the constant —dim M - 1),
o the maps I3~ (d,(2),l,) are injective,
e there are only finitely many v satisfying d,(z) = d for any given d € C and
z€e),
e the families ((d,(2) + 6)™V).er are in lo(I) for any z € Q and 6 € C ~
{d,(2); tel},
o and each Y,y &, (z) converges unconditionally in L,(M).
If every connected component of Q has non-empty intersection with gy, then we
call o a generalized gauged poly-log-homogeneous distribution and

(-1)4*1, I res a,
= dvolg  xnr +
¢(@) /R>1xM AOAVOIR,, <M Z, (dim M + 1 +d, )i+t

the associated C-function of a.

Otherwise (in particular, if Qo = @), we call a an abstract generalized gauged
poly-log-homogeneous distribution and

(-1)4*, I res a,
= dvolg wnr +
¢(@) /Rano‘O VOB, XM ;(dimM+1+dL)h+1

the associated C-function of a.
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REMARK Because abstract generalized gauged poly-log-homogeneous distributions
have empty 2y on some connected component of €2, we will still obtain the Laurent
expansion and all other local properties derived from the series expansion we used
to define the (-function here but applications to Fourier Integral Operators might
lose all properties that are obtained from meromorphic extension of the classical
trace, e.g. traciality.

u

Theorem 2.3. Let a = ap+ Y, and B = Po+ 2,1 B, be (abstract) generalized
gauged poly-log-homogeneous distributions with By = oy,

. d(0)+z 5, (dim M +1+d,(0) + z)b+t
e ) i M+ 1% d,(2)) 7

a,(2)(€)

=B.(2)(&)
for ve I with d,(0) # —dim M -1, and
_1)m[,(ll,+1)+ll,+llL|

ﬂL(Z)(T,f) - TdL(0)+z (ln T)m[,(lﬁ—l)—l ((m (l " 1) - 1)' : 5L(Z)7IL716£L(Z)(€)

=B.(2)(&)

for v € I with d,(z) = —dimM -1+ §,(2)2™ in a neighborhood of zero and 6,
holomorphic such that 6,(0) # 0.

Then, the C-function ((«) is germ equivalent to ((B) at zero. In particular, ()
has the Laurent expansion

me (D=1 (1 ymerD (1, +1) = 1)1 [, 0B, (0)dvoly

(a)2)=) ¥

ely n=0

f]R>l><M 6"ao(O)dvolelxM

+ Yy == 2"

|
neN, n:

n! ZmL(lL+1)—n

n (D)8, + ) [, 0779 B (0)dvolays
UPIRpDY l(dim M +d, + 1)1 :

neNy telNIp j=0
1) D (m, (1, + 1) = 1) [, 97D B (0)dvol
+ZZ( ) (mo(l+1) =D [y, Bu(0)dvolyr

neNg el (n+mb(lL+ 1))'

in a sufficiently small neighborhood of zero.

3. APPLICATION TO GAUGED LLAGRANGIAN DISTRIBUTIONS

If we consider a dual pair (u(z), f) where u: C - I(X x X,A) is a gauged
Lagrangian distribution and f € I(X x X,A) (cf. [4] and chapter 25 in [7]) such
that A and A intersect cleanly at 7, then Theorem 21.2.10 in [7] yields homogeneous
symplectic coordinates (z,£) near 7 such that v = (1,0,...,0), A = {(0,£)}, and
[} = {(0752'7570)} }Vhere €T = (j:v‘%)’ z= (l’l, cee 7xk)’ z= (Axlﬁ—lu cee 7xdimX)) §= (gaé)a
E=(&, &), €= (Ckery - &dimx ), and k =dim A n A.

Since f can be written as f = P!§y for some pseudo-differential operator P, we
obtain (u(z), f) = (Pu(z),do) and, using the coordinates above, Pu(z) is an oscil-
latory integral of the form

ik e
/k elzj=11gfga(z) (karlv"'7xdimX;€17"'7§k)d(§la"'7§k)7
R
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ie.
(o) = [ ) 0.6) .

As pointed out by Guillemin in the proof of Theorem 2.1 in [4], this is a gauged poly-
log-homogeneous distribution, i.e. the formalism developed above is applicable.

In order to treat
(). dans) = [ [ 70 Da(z)(0,6) de dvolx = [ ae)(©)de,
X JRN Rk
we will split off the integral
W)= [ a)© d
Byn (0,1)
which defines a holomorphic function and we are left with

/ a(2)(€)dvole_ apy (€)
R,,x0Bgn

which is a distribution as considered in section 1. In other words, if A is a gauged
Fourier Integral Operator with phase function ¥ and amplitude a on X, then

_ W (x,z,£)
C(A)(2) /X /B oy O € vl ()

=70(A)(2)

+/ / V@2 (2) (x, 2, ) dvolg_ xap,y (§) dvolx ()
X JR,,x0Byn -

exists and inherits all properties described in section 1.

Theorem 3.1. If a is poly-log-homogeneous and A, the gauged Fourier Integral
Operator with phase ¥ and amplitude a, then

res A,(2) = / / @ 0q, (2)(x,2,€) dvolx (x) dvolap,  (€)
dByn J X

and
C(A)(2)
fX fBRN(o,l)em(z’z’g)ana(o)(%fﬂ,g) d¢ dvolx () "
:nEZI\; TL' ?

1)t i an~
.y i (-1) lL'fA(X)xBBRN e 0"a,(0) dvola(x)xoB, x
velp n=0
Z fR>1xaBRN fX em(x7x7£)8na0(0)(xaxa§) dvolx (z) dVOlRZIXaBRN (€) "
+ z z

|
neNg n.

Zn—l[,—l
n!

s ¥ i (~1)ri*1(y, + D [acxyom,n 9" 7a,(0) dvola(x)xoB, §
' j z
neN, teI\Ig j=0 n'(N + dL)lL+J+1

(D" 5 (xyxom,y €7 0" (0) dvolacx)yxon,y
LYY - .

neNg el (TL + lL + 1)'

in a neighborhood of zero where A(X) = {(z,y) € X?; v =1y}.
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For a poly-homogeneous a this reduces to

ew(m,w,f)a"a(o)(rg,x,f) d¢ dvolx ()

foBNO.l
Z = (0,1)

(A=) - ' .
neNo mn.
-2 ¢a,(0) dvola(x)xom,y 2"
ely A(X)XaB]RN L (X)x RN
9 qn
+ Z fA(X)X(RzlxaBRN) e’ aO(O) dV01A(X)X(R21xaBRN)Zn
néNO n'
LYY i (—1)j+1j!fA(X)XaBRN 9" q,(0) dvola(x)x0B,n n
neN, tel~Io j=0 n!(N +d,)i+!
_fA(X)xaB ~ 9" a,(0) dvola (x)xoB,x
5> :
neNj telp (7’L + 1)'
ie.
n+1A
C(A)(z) =- Z res A,(0)z" - Z Z Mz”

telp neN, velp (n + 1)!
fx fBRN (0,1) em(xyx’g)ana(o)(%xvf) d¢ dvolx ()

+Z z"

|
neNg n:

fA(X)x(R>1xaBRN) ¢ 9"ag(0) AVOIA(X)x(R,,x0B,n) .
+ Z — z

|
neNy n:

no(=1)7 gl res 0" A,(0) ,
+ Z Z Z( )n!(jNJrde)ﬁl ()z

neNg elNIy j=0

where 0" A, is the gauged Fourier Integral Operator with phase ¢ and amplitude
"a,.

From this last formula and the knowledge that res A,(0) is independent of the
gauge we obtain the following well-known result (cf. [4]).

Theorem 3.2. Let A and B be poly-homogeneous Fourier Integral Operators. Let
G1 and Gz be gauged Fourier Integral Operators with G1(0) = AB and G2(0) = BA.
Then,

reso ((G1) = res ((G2),

i.e. the residue of the (-function is tracial and A — resy C (fl) is a well-defined trace

where A is any choice of gauge for A.

Proof. This is a direct consequence of the following two facts.
(i) reso((G1) ==Y ,c1, res(G1).(0) is independent of the gauge.
(i) ¢ (AB) =C (Bfl) for any gauge A of A because it is true for R(2) sufficiently
small.
O

Similarly, for IH(AB) = @, we obtain that ((AB)(0) = ((BA)(0) where we used
that ((fpo)(0) is independent of gauge. In other words, we may also generalize
the Kontsevich-Vishik (quasi-)trace to {(fp,A4)(0) where fp, A is the gauged Fourier
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Integral Operator with phase ¥/ and amplitude a - 3,7, @,. In particular, we may
also consider the regularized generalized determinant

detfy (A) = exp ((fpoA4)'(0)
where
C(fpoA)(2)
I Jo 0,0y €790 a(0) (2, 2,€) d€ dvolx ()

= n

neNg n!
i an
fA(X)X(RzlxaBRN) eo CL()(O) dV01A(X)><(R21xaBRN) n
+ 2 nl -
neNg :

" (_1)l1,+j+1(lb_,'_j)!fA(X)XaBRN eiﬂan—jdL(O) dVOlA(X)XaBRN .
z

IR

I, +j+1 ’
neN, tel~Io j=0 n!(N +d, )l

i.e.

Ay = [ [ O (0) a,2,) d dvolx (o)
X JByn(0,1)
i !
' /A(X)X(R xOBgN ) el® dV01A(X)X(R21xaBRN)
>1 R
(_1)l['+1lL! fA(X)xBBRN ede(O) dVOlA(X)XaBJRN
ot (N + dL)l"J'l
L, i ~
. Z (_1) +2(ZL + 1)!fA(X)><BBRN e CLL(O) dVOlA(X)xaB]RN
velNIy (N + dL)lﬁQ

+

which reduces to

C(fyA)'(0) = /X /B oy €O O ,8) d vl ()

i
" ag(0) dVOlA(X)x(RZIXBBRN)

g/
A(X)x(Ry, x0Byn)

elNIp N+ db

5 fA(X)xBBRN ¢"?a,(0) dvola(xyxoB,
+
velNIy (N + dL)2

o (DA)(0) + /

fA(X)xaBRN e"a;(0) dvola(x)xoB,

e af(0) dvOla (x)x(R,, x0B,x)

A(X)x(Ry, x0Byn )
5 res(0A,)(0) 3 res A,(0)
elNIp N+db el (N+db)2

for poly-homogeneous A. This will further reduce nicely if we choose an M-gauge
for the A, and no gauge for ag on X x Bp~ (0,1) at all; namely, we obtain

i) ()= $ G

in that case. To be fair, this would be a gauge in a generalized sense for Fourier Inte-
gral Operators because such a gauge may not yield a C'*° (X x X x RN )—amplitude
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a(z). Hence, we would have to gauge the X x Brn(0,1) part, as well, and the
correction term can easily be estimated by

myo)l-|[ [ oy €O O3, e ol (2)

<volx (X )volgny (Bgn (0,1)) Ha,(o)HLOQ(A(X)XBRN(O,I))
<volx (X)volgs (Bea (0,1)) @' (0)] L _(xwxxp,y) -

An important class of gauges are multiplicative gauges.

Definition 3.3. Let A be a Fourier Integral Operator and G a gauged Fourier Inte-
gral Operator with G(0) = 1 such that each G(2) and all derivatives are composable
with A. Then, we call AG(-) a multiplicative gauge of A.

REMARK If we consider a canonical relation I" and the corresponding algebra of
Fourier Integral Operators Ay, then we may be inclined to search for multiplica-
tive gauges in Ap. Unfortunately, the identity will not be an element of A, in
general (otherwise, I' would need to contain the (graph of the) identity on T*X \ 0
which would imply that all pseudo-differential operators are in A, as well). An
appropriate candidate of an algebra to consider if looking for a multiplicative gauge
should, therefore, be the unitalization A, ® C of Ap. If A is unital already, taking
the direct sum with C will not change anything at all. Note that we interpret the
element (a,\) € A @ C to be a + A which directly yields the following structure.

e (a,0)=acAp, (0,1)=1

e YAeC: Ma,pn)+(b,v)=(Aa,\u) + (b,v) =(Aa+b,\u+v)

o (a,\)(b,p) =(a+N)(b+p)=ab+ap+ b+ A= (ab+ pa+ \b, \)
Since derivatives should exists within the algebra and we might be interested in
using a functional calculus, it may be necessary to also include an L(L2 (X)) closure
of Ap @ C.

We may, however, gauge with properly supported pseudo-differential operators
G(z) (cf. section 18.4 in [18]).

Let P be a gauged pseudo-differential operator. Then, we may also consider

(P(2)u, f)
as a gauge. This is due to Theorems 18.2.7 and 18.2.8 in [7]. In particular, if f is a
Lagrangian distribution, then it can be represented in the form [ e a(z,¢)d¢
which is nothing other than Pydy where Py is the pseudo-differential operator with
amplitude ay. Hence,

For traces, though, a multiplicative gauge yields

C(A)(2) = (8(2) 0 ka, baiag)
where g(z) o ka is the kernel of G(2)A and Vo € C(X) ¢ baiag() = [y (z, x)dx
(i.e. dgiag is the kernel of the identity).

EXAMPLE Suppose u is an M-gauged log-homogeneous distribution. We, thus,
obtain

u(0)(z) :TO(U(O))(CC)+/N i e "9u(0)(€) = 7o (u(0)) () + (Pudo) ()
\Bpn

where P, is a pseudo-differential operator with amplitude p,(z,&) = v(&§) for £ €

R™ \ Bgw. Furthermore, the complex power H* with H :=+/|A| has the amplitude
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p.(z,8) = 2m)™N H{“HZ(N) where |A] is the (non-negative) Dirichlet Laplacian be-
cause |A[" = F! HmHz( ~y F where m is the maximal multiplication operator with
the argument on Lo(R™Y)

D(m):={feLy(R"); (R"5&m£f(€) eCN) e Ly(RY;CY)},
m: D(m) € Ly(RY) - Lo(RY; CV); f o (€ ££(€)).

(-A)7! is well-known to be a compact operator. Hence, let r — 1 be its spectral
radius. Then, the holomorphic functional calculus yields

N O =y R A
i Lo O
i Ly 2 Z N (F Il 7)
:% rdBc A jeZN:O XU (HmHEf(N))j Fa
g ] BN (i) 07
:f_lﬁ rdBc )\_% ()\ B ‘|mH£22(N))71 d)\f

F (Il ) T F

=F |l F-

Using the composition formula for pseudo-differential operators, we obtain that
(27)N H? P, has the amplitude

ZN)n %85‘ ((2m)p2) (2,€) (=i01) *pu(, €) = [€17, () v(0) () = v(2)(£).

In other words,
u(z) = (2n)N H*u(0)
modulo whatever happens on Bpw.
[

EXAMPLE Let A be a poly-log-homogeneous Fourier Integral Operator and u a
poly-log-homogeneous distribution with Io(A) = Iy(u) = @. Suppose G and P are
exponential multiplicative gauges, that is,

G'(2) = G(2)Go and P'(2)= P(2) P,
for A and u, respectively. Then

(A -y, LG 0 5 wzn: 5 wzn
neNg : neN, : neN, |
and
P = 3 PO > PO > (PO

hold in sufficiently small neighborhoods of zero. Using

(GG A)(2)
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x Jo 0,0y €790 0 (GG A) (0) (w,2,€) dE dvolx ()

neN,

n!
0

i Qn k
fA(X)X(RZIXBBRN)e 8 U(GGoA)O(O) dVOIA(X)X(RzlxaBRN)Zn
n!

55 i (—1)l*i+1(g, +‘j)!fA(X)XaB]RN oI5 (GGEA),(0) dVOla (x)xdB,x .
+ | -
neN, tel j=0 n!(N +d, )l +i+1

)
neN,

0

where o(GEA) denotes the amplitude of G§ A, we obtain

k
((Ga)(z) = 3 HEADO)
keNg :

1

-y o (/ o (GFA) dvola(x)yxs,y
keN, ™+ A(X)xBpn

i k
+ eo(GyA)o dvol (R
/A(X)X(RzlxaBRN) 041)0 A(X)x(R,,x0ByN)
- (-1)4*1, res(GEA) ) &
(N +d,)k*t

el

in a sufficiently small neighborhood of zero. For ((PPju)(0), we will denote the
gauged poly-log-homogeneous distribution associated with PPJu by « (PPé“u) and
use

1
C(PPécu)(z) = Z — / 0"« (PPécu) (0)dvolg._ (0,1)2"
ety ™ By (0,1) :
Jz xom, 0" (PPyu), (0)dvolg_ «o8, .
+ " z
n (=1)k+ti(], +j)!faBRN 0" (PPyu), (0)dvolyp,

+ Z ZZ ’rL!(N+dL)lL+j+1 2"

neNy el j=0

to obtain

ku

keNg k!

1
2
keNy ™* B (0,1)

k
+ / « (Po u)o dvolelxaBRN
]R>1><{)B]RN

(-1 * 1 res o (Pé“u)b k
(N +d,)b+1 '

+ 2,

vel

ExaMPLE If we consider a multiplicatively gauged A(z) = BQ* where ) may be
non-invertible but is an element of an admissible algebra of Fourier Integral Oper-
ators with holomorphic functional calculus, e.g. a pseudo-differential operator of
order 1 (order ¢ > 0 can be obtained using the results of section 2) and spectral cut
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(the following is to be interpreted in this setting), then Q° =1 -1{0,(Q) where
1 _
L@ =55 [ (-
9B(0,¢)

211

with e sufficiently small such that B(0,e) no(Q) = {0}. Thus, assuming Iy = @
(that is, the Kontsevich-Vishik trace is well-defined and coincides with ((A)(0)),
we obtain (abusing the notation tr because ( is gauge invariant)

C(A)(0) =tr (BQ") = tr (B) - tr (Bl (Q))

and

Yk eN: ¢((0FA)(0) =tr (B(InQ)*Q") = tr (B(InQ)*) - tr (B(In Q)" 116, (Q))

where we note that there still is a dependence on the spectral cut used to define
the operators @* and In Q. These generalize the formulae (0.17) and (0.18) in [16]
(note that the factors (—=1)* are due to sign convention Q* vs. Q7).

Proposition 3.4. Let A(z) = BQ? be poly-homogeneous, fpl the finite part of
¢, and try, the finite part of the trace integral (cf. [12], [18], [14], and [16]).

Furthermore, let ¢y, be the coefficient of ’Z—T in the Laurent coefficient with k € N.

Then, we obtain

cr =C (a’“fpo ) (0) + Z/ / @O gk (0)(2,,€) dE dvolx ()
By (0,1)

ely
-2

el

" 1res (8’”114 ) (0)

=fpC (9°4) (0) - ,H ;
=trjp (B(InQ)*Q°) -

In particular,

res (9"1 A) (0)

! 1 res (B(InQ)*'Q°).

co = trp (B) ~res (BInQ) -ty (Bl (Q))

and

VkeN: ¢ =trjp (B(an)k) TR (B(an)kH) — trjp (B(ln Q)kl{o}(Q))

generalize equations (0.12) and (0.14) in [16] (keeping in mind the factors (=1)*
due to sign convention).

If Q is invertible, then 170y(Q) = 0, and for another admissible and invertible
operator Q', we obtain

(*) c0(Q) —co(Q") = -res (B (InQ -n Q"))

which is a generalization of equation (2.21) in [12] and (9) in [15]. Furthermore,
we obtain for A(z) = [B,CQ?] with invertible Q, that ((A) =0, i.e. ¢ =0 and

trip ([B,C]) =res ([B,CInQ])
a generalization of (2.20) in [16].

Applying our (-calculus and the considerations above to complex powers also
allows us to reproduce the variation formula for the multiplicative anomaly (2.18)
in [12] using effectively the same proof. However, it should be noted that this
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approach now also works in algebras of Fourier Integral Operators provided they
contain complex powers.

8,5(95 (< (Z = (AtB)Z)
=0 (0, (2 = (A¢B)7)

s)=C(z = A7) (s) = C(z = B7) (s))
s) = 0iC (2 = A7) (s))

can be evaluated using a suitable contour I' and C' € { B, 1} which yields

(
(

8t§(zr—>(AtC)Z):C(zwati,//\z(/\—AtO)’ld)\)
(2 5 [ VA - A0 de)

¢ (A’C)—/F/\Z (=0a(A - 4,C)1 )d)\)

(-3
(
C(z - (A410) o /(aw)(A A,0) 1d)\)

(z (A’C)—/z)\z‘l()\—AtC)‘ld/\)
=( (2 » 2(AJ0)(AC) (A C)?)

=C (2 m zA]A]T (A C)7).
Taking the other derivative, we obtain
050¢C (2~ (AC)?) (s) =0sC (z — zA;At’l(AtC’)Z) (s)
=C (2~ 0. (zA4] A7 (A0)7)) (s)
=C (2~ AJATN(AC)* + 20, (ATAT (A:C)7)) ()
=(1+s05)C (z - A;A;l(AtC)Z) (s).
However, by assumption ((z > A;A;l(AtC)Z) is holomorphic near zero, i.e. its
derivative ¢ (z A;A;l(AtC)z)’ is holomorphic near zero, and
s@SC(ZHA;Agl(AtC’)Z)(s) -0 (s —0).
In other words,

010 (C (2= (AtB)?) (s) - C (2= A7) (s) - C (2 = B7) (5))
=C(z > AJAT (AtB)?) (s) = ¢ (2 > ALAT A7) (s)

which, according to (*) above, yields

8, In F(Ay, B) =0,0, (¢ (z = (A:B)?) (8) = C (2 = A?) (5) = C (2 = B?) (s))
=C (z > A;A;l(AtB)Z) (s)-¢ (Z e A;AZIA;?) (5)

_ ln(AtB) In At
= —res| Aj A -
res ( i ( order A; B order 4; ) )

with the multiplicative anomaly

exp (¢ (2 = (AB)*)'(0))

T G A @) G B ()




A GENERALIZED KV TRACE FOR FIOS 31

Choosing a multiplicative gauge G with G’ = GoG, we obtain a different variation
formula of the multiplicative anomaly; namely,

O (C(ABiG) = C(AiG) = ((BiG)") =C(ABiG) + (A B{G)' = ((AG) = {(B(G)'
=C(A(B: - 1)G) +¢((A - 1) B;G)’
=C(Ay(B: - 1)G") + (A - 1) BiG)
=C(Ay(B: - 1)GoG) + C((Ar - 1) BiGoG).

REMARK Note that the mechanism explored in this chapter also works when-
ever there is a representation [py fX @2 q(x, 2, €)dvolx (x) d¢ with poly-log-

=a(¢

homogeneous «. In particular, we may consider algge)bras that do not have the form
Ap where I intersects the co-normal bundle of the identity cleanly. Above, we used
that (k,ddiag) can be written as (Pk,dy) for some pseudo-differential operator P,
i.e. we used the clean intersection property to obtain the poly-log-homogeneous
distribution form. However, for 2(z) sufficiently small, the gauged k(z) is contin-
uous, that is, (k(2), ddiag) is well-defined and extends, thus, not needing the clean
intersection property.

4. THE HEAT TRACE, FRACTIONAL, AND SHIFTED FRACTIONAL LLAPLACIANS ON
FLAT TORI

In this section, we will apply Theorem 3.1 to some examples which are well-
known or can be easily checked through spectral considerations.

EXAMPLE (THE HEAT TRACE ON THE FLAT TORUS RY/r) Let T' ¢ RY be a dis-
crete group generated by a basis of R, |A| the Dirichlet Laplacian on RY, § the
Dirichlet Laplacian on RY/p, and T the semi-group generated by -6 on RY /p. It
is well-known that

2
VOl]RN/F (RN/F) Z exp| - HVHZQ(N)
(4mt) = o 4t

holds; cf. e.g. equation 3.2.3.28 in [17]. Furthermore, the kernel ks of § is given by
the kernel x| via r5(2,y) = Xoer 51a)(2,y7); cf. e.g. section 3.2.2 in [17]. In other
words,

trT'(t) =

W(r—y— - 2
ks(z,y) =, etrvr8) (o)~ 1€1%, vy €
yel' RN

Hence, using functional calculus, we obtain
kry(z,y) =), ei(x*y*’y-ﬁ)(27T)7N6—t|\§|\§2(N)d€.
~el JRN

Considering some gauge of T'(t) we obtain from the Laurent expansion (Theorem
3.1)

¢(T(t))(0)

:/ Z e*’i(’)’w‘g)(27T)*Ne*t”‘£”§2(N) dVOlRN/pr]RN (z,6)
R

N [rxByn ~yel'

_‘_/]R Z e—i('Y:f)(2ﬂ_)—N (e—t”‘”Zg(N))O (5) dVOlRN/FX(RzlxaBRN)(x7§)

N frx(Byy x0Byn ) el
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(-5 N res(T' (1)),
+> (N +d,)l+ '

vel

Since (5 - eft”E”?ﬂN)) e S(RY), we can choose I = @ and (eft”'ﬁz(m) = ¢ M,y
0
which yields

¢(T(t))(0)

:/ Z e i{y,£) (27’1’) N t”f”Q(N) dVOlRN/pr N((E 5)
R

N/pxByn ~yel'
+ e (270) N I, (v dvoly x,
/RN/FX(R>1><BBRN) ’7;‘ ( ) N/FX(R XOBRN)( 5)

:V01]RN/I‘ (R /F) Z efi(’y-,E)eftl\fﬂz(N) dvolp_,, (€)
R

(27T)N Byn ~el’
VOl]RN/F (RN/F)/ —1( ~tl€l;
L Yoy (RT/T) e M8 el gvolg wop., (€)
(2m)N Ry, xdBy N wze;“ B
N
_voler e (RY/r) > [ e 18l g
(2m)N vel
_VOIRN/F (RN/F) Z % _% _\\w\u2<zv>
(47r2)% yel

(4mt) T o 4t

i.e. precisely what we wanted to obtain.
u

Please note that the following example exceeds the applicability of the (-function
Laurent expansion as it is for now. However, we will show in section 5 that the
formulae still hold.

EXAMPLE (FRACTIONAL LAPLACIANS ON R/2:7) On T := R/2.7, let us consider
the operator H := \/m where |A| denotes the (non-negative) Laplacian. It is well-
known that the spectrum o(H) = N, is discrete and each non-zero eigenvalue has
multiplicity 2. Furthermore, the symbol of H* has the kernel

KH= (,T,y) = Z ei(w—y—2ﬂ'n)f|§_|d§'
neZ J R ™

The singular part is given for n =0 and ¥,z 10} fR ei(x’y’%")f%dﬁ is regular.

Let a € (-1,0). Since ¢ is the spectral (-function, we obtain (u) denoting the
multiplicity of A and R(z) < -1)

C(s»HH*)(z) = > N =2 Y =2(p(~2 - )
Aeo(H)N{0} neN

where (i denotes Riemann’s (-function. In particular,

C(s—>H H®)(0) =2¢r(-a).
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On the other hand, we have the Laurent expansion (Theorem 3.1)

(s HUHY) ()= 3 (/ o ((nH)* H*) dvolaryson,
keN, A(T)xBgr

i kE rra
+ eVol(InH)"H dvol (B x
/A(T)X(R xOBg) ( )0 A(T)x(R,,x0Bz)

(-1)" 4, res ((n H)* H®)
+ Z (1+dL)lL+1 Z5

vel

ie.

(s HH®)(0) = Vo (H®) dvola(ryxaBs
A(T)xBgr

+ Vo (H)y dvola ryo(r «
/A('Jl‘) (R,,x0Bz) 0 A(T)x(R,, x8Bz )

(-1)l*1], I ves (H®),
+Z (1+dL)lL+1

vel

Plugging in our kernel yields

2
< (S . HSHOz) (0) Z / —2miné |§| dé— de'

nez

/271’/ 727T’L’n,§ |§| d§ dx
neZ\{O} R_;UR,,

27
SN
- = dvol d
1+a/ /QB]R 2 VOBBR(O .

/ 61" de + e 2T |¢| de
neZ\{O}

1
1+«

/ €1* dvolag, ().
OBgr

Since a € (-1,0) and volpp, is the sum of point measures d_; + d1, we obtain

1 o 1 N 2 1 o
[ ez [ era= 2o [ avoton, (6),

i.e.

C(sw HH")(0)= 3 [ ™" de.

neZ~{0} VR

Using that the Fourier transform of & ~ |¢|* is
Comin e 2sin P(a+1)
[ e - 05)

|27Tx|0(+1

and Riemann’s functional equation
Cr(2) = 2(2m) s () P(1- 2)GR(1 - 2),

we obtain (in the sense of meromorphic extensions)

28111( O"T)F(a-kl)

Csm HHY) ()= 3 [ emmejgrac= ¥

a+1
neZ~\{0} /R neZ~\{0} |27T7’L|
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1
na+1

_2sin(=§7)T(a+1)

(2m)oH

~22(27) " sin (i;) (1 = (=a))Cr(1 - () .

22

neN

=Cr(-a)
u
REMARK Using identification via meromorphic extension of
sin (ZZ) (2 +1)
<R(z) = Z 2 z+1
neZ~{0} |27TTL|
and, therefore,
VzeC~{-1}: Z e 2mnE|€)* de = 2¢r(-2)
neZ~{0} VR
as well as
! 1
[ e de = [ el dvolon. (o).
-1 1+z 9Bg
we can extend the example above to all a € C ~ {-1}, i.e.
1
Ce=(ar 3¢ G HH™) (0),
[

EXAMPLE (GENERALIZED (-DETERMINANT OF s+ H*H® ON R/3:7z) In order to
calculate det¢ (s H*H®) = exp (¢ (s —» H*H*)"(0)), it suffices to know the de-
rivative ¢ (s » H*H®)' (0). From the spectral (-function we directly obtain

((sm HH*)'(0) =8 (2 = 2(r(=2)) () = ~2(R ().
On the other hand, we may invest (Theorem 3.1)

1 .
C(sm H'HY) ()= ¥ (/ o (nH)" H*) dvolae)som,
keN, * \JA(T)xBr

iv) k rra
+ e“ol(lnH)"H dvol (R
/A(']l‘)x(R>1xaBR) ( )0 A(T)x(R,, x9Bx)

(-1)4+1, res ((lnH)lC Ha)L

+ Z (1+dL)lL+1 Z5

vel

again, to find

(s HSHY) (0) = o (In HH®) dvola(ryxos,
A(T)XBR

9 o
+ e“o(InHH®), dvol (R«
/A(T)X(R>1xaBR) 0 A(T) (Rzl aBR)

.y (-)!* 1 lres (In HH),
(1+d,)k*1

vel

Using the symbol 1121_\5\ of In H on R, yields that

Z/ez(m—y—2ﬂ'n)£|§| 1n|§| d§
nez, JR 2m
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is the kernel of In HH® on T. Again, the singular part is given for n = 0 yielding
#I=1,d,=a,and [, =1, as well as

, 2T 1 o Otl
C(S s HsHa) (0) :/0 /_1 %6 2ming |§| 2: |§| dé. dx

2 a
+/ / Z e—27‘rinf|§| ]‘n|§| dé— de'
o Jr_,uR 2

-1 neZ~{0} ™

1 o €% In |
+ a +a)2/0 /BBR T dvolpp, (&) dx

1
= “Inl¢| d e 2mE 1 n |¢] d 72 .
J i € BT el de
Note that
1 1
o _ o _ _ 2_
[ e ag=2 [ e de - -

holds for R(«) > -1 and, hence, by meromorphic extension

C(sm HH®) (0)= > [ 2™ |e|*In|e] de

neZ~{0} /R

:nezz\:{o}/Re—%mﬁa(ﬁ._) |§|B) (o) de

:a(ﬁ» S et d&)(a)

neZ~\{0} /R
=0 (B = 2¢r(-B)) (@)
== 2(g(-a).

Similarly, we can take higher order derivatives.

EXAMPLE (9%¢ (s~ H*H®) (0) ON R/2,7) Regarding higher order derivatives the
spectral (-function yields

0" (s> HH") (0) = 0" (2 = 2(r(-2)) (@) = (-1)" - 20" Cr(-0).

From
1 .
o N @ = 2 ([t (onn ) dslsgoan
keN, RS acry<s:
+/ o (I H)* HY)  dvolyry (s, vom)
A(T)x(R,, x8Br) ’
(—1)ZL+1ZL!res((lnH)kH°‘)
Y ;
el (1+dL)lL+1

(Theorem 3.1) we obtain

2T

27 et k
. 1
+/ / } : 6727”"5 |§| (2n |€|) d§ dx
0 JR\Br nez~{0} ™

27 1 «@ k
k s ER gl _ —2ming |§| (ln |€|)
95C (s HH) (0) /0 /_Mgze dé do
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( 1)k+1k| /27r/
1+a)k+1 0B, 2T S dvolpp, (§) du

-2 / o)t de s Y [ e (et ae
0

neZ~{0} /R
C2-(=D)FR!
(1+ )+t

=20" (ﬁ > /01 gﬂdg) (a) - 2 (DK

(1+a)k

+a’€(ﬁ» > e-2”"f|5|ﬁd5)(a>

neZ~{0} VR

(_1\F
20" (30> (1+9) 1) (@)~ T 10 (502 26n(-5)) (0)

=(-1)FE!(1+a)=(F+D

~(~1)* - 20%Ca(-a).

Finally, let us calculate the residue of ¢ (s ~ HH ’1).

EXAMPLE (reso( (s~ H*H™) ON R/2xz) ( (s~ H*H™")(z) = 2¢r(1 - 2) shows
that resg ¢ (s > HSH’l) = -2resy (g = —2. Also, using the Laurent expansion (The-
orem 3.1) of ((A) for A= (s HSH’l), we obtain

27 -1
YGSOC(SHHSH_1)=—/ / el dvolpp, dx =-2.
o Jopy, 2m

Furthermore, we can consider shifted fractional Laplacians which do not have singu-
lar amplitudes, that is, these are actually covered by the theory we have developed
so far. They will also lead to the crucial observation that will help incorporate the
case of singular amplitudes and, thus, justify the example of fractional Laplacians.

EXAMPLE (SHIFTED FRACTIONAL LAPLACIANS ON R/o,7) Again, let H := (/|4
on R/oq7, he(0,1], and G := h+ H. Then,

C(s=> G (2) =Y (h+|n))™™ =2 > (h+n)™* = h*** =20y (-2 — a;h) - K***

nez neNy

where (i (z;h) denotes the Riemann-Hurwitz-(-function. In order to use our for-
malism above (Theorem 3.1), we will need to write £ — (h +[¢])® as a series of
poly-homogeneous functions. Using

(el = ¥ ()t

keNg

for || > 1 yields that the kernel of G***

sz+cx €T y Z eil@-y- 27rn)£2 (h+ |§|)z+ad€

nez

is, in fact, poly-log-homogeneous. For o = -1, the critical term in zero is given by
-k .
the k=0 term of ¥pey (D)€" ¥, e

resg ¢ (s > Gs_l) = —/ |§|_1 dvolyp, (&) = -2.

OBr
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On the other hand,
resOC(s - Gsfl) =resy (2 = 2Cy (=2 + 1;h) = W) = 2resy (z = Cy (-2 + 1;h))
=-2resg (2~ Cu(z—1;h)) = —2res; (g (- h) = -2.
For ao# -1 and |¢| > 1,
o « a—-k
(i) = % ()w e
keNg

implies « — k € I if and only if £ = o + 1 € N;. However, since (Oﬁl) =0 for v e N,
we obtain Iy = @ and

1
Cls= G ) (0)= 3 [ ™S (h+¢])"dg

nez J -1

- / ¢2mn (1, 4 €])de
neZ~{0} RN[-1,1]

e
T hE1€1*7F dvolyp, (€)
k§01+a—k op. \k €l P

-/ 1(h+ 'g')ad":‘%ﬁ(g)hk
ooy [ geag

neZ~{0} /R

Observing
1 1 1+h
[ iehag=2 [ aorie=z [ erdg= 2 (@emy e
-1 0 h

:—2h°”1+ 2 Z(a+1)hk
a+1 oz+1k€NO k

_opoa+l
_ 2h +2 1 (Oé)hk
a+1 Ker, O~ k+1\k
leaves us with
_2h0c+1 o
C(s=>G)(0) = + o e T (h+ [€])dE .

a+l neZ~{0} VR

non-singular

1-z

This is precisely what we expect since the principal part of (g (2;h) near 1 is 2_1
(cf. equation 3.1.1.10 in [17]), i.e

C(sm> G (0) =2¢y (-2 —a;h) = K**™

. . h1+o¢
has principal part 22—

Unfortunately, evaluating ¥,z (0} [z e 2mInE (4 |€)¥dE is a wee tricky. We will
use that

2ha+1
a+1

/ (h+ [€))de =2 / (h+€)de =2 / godg = -
holds for Ra < —1 and, hence,

C (S s Gs+a Z —271'm£ h + |€|)

nez
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by meromorphic extension. Furthermore, we obtain

C(s=>G)(0)= 3 [ 7™ (h+|e])dg

neZ J R
= Z P (b ) dE+ Y [ e (b [E])dE
nez neZ JR_g
_ Z 27mnh/ e—2wzn£§ad§ + Z e—27rzn£(h _ §)ad§
nel R, nez J —oo
_ Z e27rznh/ e—2wzn£§ad§ i Z _/ e—27mn(h—£)§ozd§
nez R, nez oo
_ Z e27rznh/ e—2win£§ad€+ Z e—27rinh/ e2win£§ad§
nez R, nez R,
_ Z eQﬂ'inh/ e*QﬂinEé-adg_F Z eQﬂ'inh/ e*QﬂinEé-adé-
nez R,, nez R,
-y e ([ et @ [ et ©ge).
nez R R
For e € (0,1) let
0 ,xeR_, .
oe(x) =3 (x-h+e) , xe(h-eh)
1 , xeRy,
and
0 , reR_,
VYe(z):={e(xz-h) , ze(hh+e).
1 » T € R2h+€
Then
C (S . Gs+a) (O) _ Z e27rinh (/]R e—27rin£1R2h(§)€ad§ i /R e—27rin£1R>h (g)gadg)
nez

—Zezﬂ"’lhm( /R TS (€)M dE + / *2“"%(5)5%5)

nez N0

can be evaluated using the Poisson summation formula on a lattice A (cf. Chapter
VII.2 Theorem 2.4 in [19])

> fla+A) = 3 FfA)e™

AeA AeA

which yields (we can move lim.o freely in and out of integrals and series due
to meromorphic extension, dominated convergence, and since the series converges
absolutely for R(«w) < -1)

(s> G*) (0) =lim 37 e ( /R eI o ()67 dE + /R e*”"%@)sad&)

nGZ

=lim 3 (e(h+n)(h+n) + e (h+n)(h+n)*)

nGZ

_h\r‘%( > pe(h+n)(h+n)*+ ), 1/)5(h+n)(h+n)o‘)
neNg neN
= > (h+n)*+ > (h+n)®

neNg neN
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=2y (-a;h) — h™.
Considering higher order derivatives, we obtain

"¢ (s> G*G*) (0) = 2(=1)™0" (g (—a h) = h*(In h)™

from the spectral (-function while the Laurent expansion yields

6’”4(8 = G°G7) (0)
= Z% e (h+ €)™ (In(h + €)™

. / e~ ME (b 1 1€))” (In(h + €)™ dé
neZ~{0} [-1,1]

Ly (115! [y, 079 (8 (DP* 1) (@) dvolap, (€)

keN, j=0 (a—k+1)i+
=y, ’2””5(h+ €N (In(h +[¢)™ d
nez

_ 2/ (h+ €N (In(h +]E))™

2

faBu:g (k)hk |§|B g dVOlaBR (5)
keN ﬁ -k+1 (CY)

_om (ﬁ 5 [ ene ey’ d&) (a)

nez

- . -2()n"

=0" (B~ 2Cu(=B:h) ~h”) (a)

B+1 B+1
—23’”(5 (1;?1 )(a)-zam(ﬁﬁ%)(a)

=2(-1)"" ¢y (~az h) — h®(Inh)™.

5. MOLLIFICATION OF SINGULAR AMPLITUDES

In this section we will address the fact that many applications consider ampli-
tudes which are homogeneous on R \ {0}. In particular for pseudo-differential op-
erators, this does not add too many problems because we can use a cut-off function
near zero and extend the symbol as a distribution to RY (which is uniquely possi-
ble up to certain critical degrees of homogeneity which are related to the residues).
Then, we are left with a Fourier transform of a compactly supported distribution,
i.e. the corresponding kernel is continuous and we can take the trace. In the general
Fourier Integral Operator case, the situation is more complicated. Hence, in this
section, we will show that the Laurent expansion holds for such amplitudes, as well,
and not just modulo trace-class operators. We will prove this result by showing
that we can always find a sequence of “nice” families of operators such that their
(-functions converge compactly.
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In the previous section, our calculations of ¢ (s = H*H®) have been pushing the
boundaries of our formula in the sense that the Laurent expansion of Fourier Integral
Operators assumes integrability of all amplitudes a(z) on Bpw~. This is obviously
not true for a(2)(z,y,&) = [£]""" (at least not for all z € C). Hence, we would have
to consider the Laurent expansion in a more general version where we also allowed

z »—>/ / @28 () (z,z,€) dE dvolx (z)
X J By

to have a non-vanishing principal part.

However, we may use ¢ (s = G*G®) to justify the calculations as they are by taking
the limit A N 0 in ¢ (s~ G°G?). In fact, it is possible to show

}11111(1)( (s> G°GY)=C(s— H°H®) compactly.
N

Here, we regularized the kernel a(2)(x,y,£) = €| by adding an h € (0, 1) yielding a
perturbed amplitude ar(2)(x,y,£) = (h +|£])* which has no singularities. Showing
that the limit & \ 0 exists, then, justifies our calculations. Using Vitali’s theorem
(cf. e.g. chapter 1 in [9]) we can largely generalize this approach.

Theorem 5.1 (Vitali). Let Q Sopen,connected C, f € C=(Q)N locally bounded, and
let

{2 e (fu(2))nen converges}

have an accumulation point in Q. Then, f is compactly convergent.

Let (Ap)nen be a sequence of gauged Fourier Integral Operators with C°-
amplitudes and A a gauged Fourier Integral Operator whose amplitudes may con-
tain singularities. Furthermore, let A, (2) — A(z) for every z in the generalized
sense (cf. Chapter IV in [11]). Let d € R such that VzeC: (R(z) <d = A(z) is
of trace-class) and Q := Cpy(y_, ;- Then, for every z € Q, (An(2))nen is eventually
a sequence of bounded operators and A,|q — Al converges pointwise in norm.
Furthermore, let (A;(2)),y be the sequence of eigenvalues of A(z) counting mul-
tiplicities and (A (2) + hj;(2)) .y be the sequence of eigenvalues of A, (z) counting
multiplicities. Suppose that h"™(z) := ¥,y |h}(2)| exists and converges to zero for
z € ). Then,

C(An) (2) = C(A) () =| 20 (A (2) + B (2)) = 3 Ak(2)

keN keN

=2 hi(2)

keN

<h™(z)=>0

for z € {2 shows
{z e (C(An)(2)),.n converges} = (.

Let Q ¢ C be open and connected with € ¢ Q such that all {(A,,)|g are holomorphic
and {C(4,)|g; n €N} is locally bounded. Then,

Tim ¢(An)lg = C(A)lg-

In particular, if A" admits an analytic continuation to €2, then lim, e ¢ (An)lg =
(Dlg-
REMARK Note that A, (z) - A(z) in the generalized sense implies that the A} (z)
exist and for every k and z we have lim,, . h} () - 0. However, in general, we will
not have any uniform bound on them, let alone find an h™(z); cf. Section IV.3.5 in
[11].

[
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Definition 5.2. Let A be an operator with purely discrete spectrum. For every
A€ o(A) let uy be the multiplicity of \. Then, we define the spectral ¢-function
(s (A) to be the meromorphic extension of

(M) (s)= 3 A"

Xea (A)N{0}

and the spectral ©-function ©,(A)
VieR,g: O,(A)(t):= > pxexp(-tA)
Aea(A)

if they exist.
Definition 5.3. Let T e R, and p € C(R, ). We define the upper Mellin transform
as

M (p)(s) ::/ p(t)t"dt
(0,7)
and the lower Mellin transform

Mr@)(s) = [ oot
>T
(if the integrals exist). If both integrals exist and with non-empty intersection 2 of
domains of holomorphy (that is, the mazimal connected and open subset admitting
an analytic continuation of the function), then we define the generalized Mellin
transform of ¢ to be the meromorphic extension of

M(p) = M (@)l + Mp(p)la.

EXAMPLE Let ©(t) :=t* for some « € C. Then

S+t
MIE)) = [ -
(0,7) S+«
for R(s) > a extending to C \ {-a} and
TS+O(
Mr(@)(s) = [ 1=
R, S+«

for R(s) < a extending to C \ {-a}. Hence, M (¢) exists with

M((ﬁ)(s) _ TS+OL B TS+O( B

on C~ {-a}, ie. M(p)=0.

0

S+« s+«

u
EXAMPLE Let A e R, and s € C with 2(s) > 0. Then
/ e MLt :/ e TTSTINTEdE = AT (s)
R>0 R>0
shows that A — fR e M5 1dt extends analytically to C \ R_.
>0 -
u

ExAMPLE Let A be an operator with purely discrete spectrum. For every A € o(A)
let g1 be the multiplicity of A and 93(\) > 0. M (1) =0, then, implies

M(0:(4)) ()= 33 M (t= exp(-tA)) (s)

Aeo(A)

Y M esp(-0) (5)
Aea(A)N{0}

= Z JZ5N AiSF(S)

Aea (A)N{0}
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=Co(A)(s)I(s).

Lemma 5.4. limyo M (t — exp(-th)) = M (1) =0 compactly.
Proof. For ER(S) > 1, we obtain

> ex s —thsl
G )M(t p(—th)) (s) )/ =l

=h"~
=Y (k+h)™= > (k+1+h)™
keN, keN,

=Cu(s;h) = Cu(s;1+h).
Hence,
M (t = exp(=th)) (s) =I'(s)Ca (s; h) = T(s)Ca(s;1+h)
holds on C \ Z_,. Furthermore, I'(s)(g(s;h) —T'(s)Ca(s;1+ h) is locally bounded
on C \Z, for h ~ 0 which implies

lim M (£ = exp(-th)) (5) = im (D(s)r (55 ) = T(5)Crr (551 + 1)

=T'(s)Crr(s;0) = T'(s)Car (53 1)
=T'(5)Cr(s) = T(s)Cr(s)
=0,

ie. limp\ oM (t+~ exp(—th)) exists and vanishes on C \ Z_. Vitali’s theorem,
thence, proves the assertion.
O

Corollary 5.5. Let A and Aj, be operators with spectral C-functions. Let (,(A)
be the meromorphic extension of Y.pen A,° for some N € N and (,(Ap) the mero-
morphic extension of Zj_lh + Ypen ( Ak + hi)™° where all hJ e R,y. Suppose
Ap, converges to A in the generalized sense and the meromorphic extension fr, of
Yken (A + i) ™% is locally bounded and converges to (,(A) pointwise.

Then, (5(Ap) converges to (5(A) compactly.

Proof. The assertion is a direct consequence of Z;Ll h;®

5.4) and f, = (,(A) compactly (Vitali’s theorem).

— 0 compactly (Lemma

O

Proposition 5.6. Let a = ag+ Y ,c; a, be a gauged poly-log-homogeneous distribu-
tion on R, g x M with I finite and a regular. Then, ¢(a) can be mollified.

In particular,

C(a)(z) = / ag(z)dvolg_xar + ) a,(2)dvolg_ xnr

el R21XM
+ Z/ pdimMrditz (1) (b drres o, (2)
el J(0,1)

is the compact limit of

C(an)(z) = ao(z)dvolg_ xnr + Z a,(z)dvolg_ xnm
R xM el SR, xM B

+ Z/ (h, +7)imMrdez (1 (p, 4 1)) e drres o, (2)
el J(0,1)
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for h, eR g, h, 0.
Proof. The part

/ Oéo(Z)dVOlR>0x]w + Z OéL(Z)dVOIR>1x]u
R xM el RzlxM B

creates no problems in the formalism used to obtain the Laurent expansion. Hence,
we only need to consider

Z/ TdimM+dL+z(hl’l”)lLd’l”I'eSOéL(Z)

eI /(0,1)

3 [ () (s ()
eI /(0,1)

=y ok (s = / TdimMer“rsdr) (z)resa,(z)
(0,1)

vel

1
=2 0" (dimM+d P 1) (z)rescu(2)

el
~ (-1)kq,!
A (dim M +d, + 2+ 1)LL

resa,(2).

Introducing h, € R,, we obtain

Z/ (h, +r)dmMrdetz oy (g 4 ) edrresa, (2)
el J(0,1)

= Z/ ol (s > (h, + r)dim M+d”s) (z)drresa,(z)
el J(0,1)

vel

:ZalL

vel

= Z@h (s - / (h, +r)dim M+d”sdr) (z)resa,(2)
(0,1)

dim M +d, +s+1 dim M +d, +s+1
(S . (1+h,) ~ R4

dimM +d, +s+1 )(Z)YGSQL(z)

S (-1)7;! . |
= ’ _ 1 hL dim M+d,+z+1 In(1 + h’L l,—j ,
;jz:(:)(dimM+dL+z+1)J+1( +h) (In( ) resa,(z)

v lZ (-1)75! plim Meditz+1 (1 b Y peg o, (2)
vel j=0 (dlmM + dL +2z+ 1)j+1 ' L L |

Since each of the (1 + h,)dimM+di+z+1(In(1 + b))~ is locally bounded for h, — 0
(taking derivatives in Lemma 5.4) and

0 7%,

(1 +hL)dimM+dL+z+l(1n(1 + hL))lij N {1 'l
J1=4

for h, - 0, we obtain

lim Zﬁ: (-1’3

dim M+d, +z+1 l,—7
o043 S5 (dim M +d, + 2 +1)i+1 (1+h,) (In(1 +h,)) 7 resa, (2)

5 (1),

= 2 (dim M +d, + z + 1)1L+1 resa, (2)

compactly. Furthermore,

htLilm M+d, +z+1 (ln hL)ll,—] :h'lem M+d,+z+1+75-1, (hL In hL)l[,—g
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being locally bounded for h, — 0 and converging to zero compactly shows

Clan)(2)

:/ ao(z)dvolR>oxM + Z oeb(z)dvolRﬂxM
R xM el SR, xM B

I, (_1)jjl . ;
+ . : 1+ h/[, dim M+d, +z+1 In(1 + hL l,—j .
L;;J(dimM+dL+z+1)J+1( ) (In(1+h))*resa(2)

o (-1)74! dim Metdi+241 (1) ) Yo=T pes v, (2)
el 3=0 (dlmM + dL +z+ 1)j+1 ' L L

—>/ ao(z)dV01R>0x]w + Z OéL(Z)dVOIR>1xM
R, xM el ]R21><M B

(1),
+2, (dim M + d, + 2+ 1)+l
el L

=((a)(2)

where the convergence is compact by Vitali’s theorem.

resa,(z)

O

EXAMPLE (RE-RE-VISITING ( (s + H*H®)) Let I' ¢ RY be a discrete group gener-
ated by a basis of RY | |A| the Dirichlet Laplacian on RY, § the Dirichlet Laplacian
on RN /p, and H :=+/. Then,

(s H®) (2) =volgn ;. (RN /p) 3 » e 00 (2m) N g7 ) de
el

where
Z / e—i(%5>e2(N)(27r)—N HgHZ(N) dé
~veI'N{0} RN
is regular, i.e.
ao(2)(€)2volgny. (RV /) 30 e 8l (2m) ™V [€]7, ny

~vyel'\{0}

and
>, (2)(€) = volgw . (RY 1) (2m) ™ €17, vy -

vel

Hence, Proposition 5.6 is applicable.

In the following, we will use Abel’s summation.

Lemma 5.7 (Abel’s summation). Let a,b € G for some group G and Vn € N :
B, =¥y, br. Then,

n n
> akbi = ane1Bn + Y (ar — aks1)Br.
k=1 k=1

Proposition 5.8. Let a = ag+ Y ,c; a, be a gauged poly-log-homogeneous distribu-
tion on Ryyx M with I ¢ N, ag regular on (0,1) x M,

. (2)(r,€) =" (Inr)" a(2)(6),

where (R(d,)),.; is bounded from above, each (m) L€ Uo(I), (1), €
L LE

boo(I), Li=[[(L)eer |l (1) and each ¥,ep & (2) converges unconditionally in Ly(M).
Then, ((«) can be mollified.



A GENERALIZED KV TRACE FOR FIOS 45

In particular,

C(a)(2) = / ag(z)dvolg_xar + ) o, (2)dvolr_ xn

el JR, xM

+ Z/ pdimMrditz (1) (b drres o, (2)
el J(0,1)
s the compact limit of

C(an)(z) = ag(z)dvolr_ xnr + > a,(z)dvolg_ xnm
R, xM el R21XM B

+ Z/ (h, + r)dim M+dL+Z(1n(hL + r))lLdr resa,(z)
el J(0,1)

for hi=(h,),.; € loo(L;R.g) and h 0 in Lo (1) such that
Z,(z)=Cu(l-d,—2z;h,)—Cu(l—d,— z;1+h,)|

defines (Z,(2))ier € boo(I) which is bounded on an exhausting family of compacta
as h ~ 0.

Proof. Proposition 5.6 yields the assertion for finite I. Hence, we may assume I = N
without loss of generality. Furthermore, we only need to consider the part

A(h) =), (h, + )3 Mrderzn (4 ) edrresa, (2)
eI J(0,1)
L (-1)75!res o, (2)

= dim M+d,+z+1 1,—j
_ngj—o (dim M +d, + z + 1)+ (1+h,) (In(1+ h,))"

_ Z Z 1)3 i res OZL(Z) hdlmM+dL+z+1(lnh )lL*j
LEIJO(dlmM+d +z+1)]+1 ¢ L R

i.e. show that it converges compactly to zero. Recall that ¥, ; ﬁiiu

verges absolutely and |dim M +d, + z+ 1| - oo (v - o0). Hence, we will assume,
without loss of generality, Ve € I : |dim M +d, + z+ 1| > 1 (as there can only be
finitely many with |[dim M +d, + z + 1| < 1 which is handled by Proposition 5.6).
Then, we observe (for ho :=[h[,_y<e-1)

con-

Z Z lres CYL(Z) (1 +h )dimM+dL+z+1(1n(1 +h ))lﬁj
LEI]O dlmM+d +Z+1)J+1 ' '

L

Jlresa, (2)]

< |j+1 |(1 +hL)dimM+dL+z+1(1n(1 +hL))lL—j|

el j=0 [dim M +d, +z + 1

L [res v, (2)] ) ‘
<! L 1+hL dim M+d,+z+1 In(1l+h l,—j
B ;;J|dimM+dL+z+1||( ) |£11(_/_0))—/
<1 (ho<e-1)
<. |r€S OéL(Z)| (1 +h )dim M+R(d, +z)+1
T S dim M +d, + 2+ 1] 0

[res o, (2)]

<-I(1+h max{dim M+R(z)+1+sup,.; R(d,),0}
( 0) T |dim M +d, + 2+ 1]

—1 (h\0)
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resa, (z)
tel dim M+d, +z+1

. Furthermore, we obtain (for ho <e™!)

which is locally bounded by absolute convergence of .
)dim M+d, +z+1

and compact
convergence of (1+ h,

(-1)7j!res v, (2)

ZZ — d1mM+d +z+1(1 h )lL -j
iz ( d1rnM+d +z+1)7

1, 1! ‘resab(z)h‘fﬁz_l (h,Inh,) | Qi Mt 1
< 1m
_L;jzo |[dim M +d, + 2 + 1] ‘

) ‘resab(z)h‘fﬁz_l (h, lnhL)l|
Sl . l!hglmM+l Z

vy |dim M +d, + z + 1]
Note that
1 =0
lh Inh| -1
0 ,1+0

for h, — 0, i.e. it suffices to show that

resa, (z)hdt#

TGdimM+d, +z+1

converges absolutely. Since
|hd* = = (¢ (1 -d, - 2h) = Ca(I-d, = 231+ h,)| = Z,(2)

holds (we can choose (Z,(z)).er locally bounded because z — (g (I -d, — z;h,) -
Ca(l-d, - z;1+h,) converges to zero compactly as h, ~ 0)%, we observe

D res o, (z)hdr=t resa, (z) 7.(2)
< (=
gldmM+d, +z+1| F|dimM+d, +z+1
resa, (z)

which is bounded by absolute convergence of 3, ; and the assumed

dim M+d, +z+1
boundedness of (Z,(2)),.;. Furthermore, local boundedness (with respect to z)

resa, (z)

dim M+d, +2+1 and ZL. Observmg

follows from local boundedness of ¥, ;

Z Z 'res aL(Z) (1 +h )dimM+d[,+z+1 (111(1 +h ))ll,—j
LEIJO(dlmM+d +2z+ 1)+ ’ NS
=01,

3 (-1l res o, (2)
N
~(dimM +d, +z+1)k+1

and
Z Z (_1)j Jlresa,(2) d1mM+d +z+1 (Inh, )l —J
&2 (dim M +d, +z+1)3+1"
_ Z i (_I)J '|I‘€SOéL(Z) d1mM+d +2z+2+5-1, (h lnh )lL gh
o2 (dimM +d, +z+1)3+0 "
5 Z (-1)7j!res v, (2) dim Mord,+242+5 L (1 V)
1550 (dim M +d, + z + 1)J+! ‘ ‘
-0 (h ~0)

8Since we have to construct a sequence H € loo (I; R>0)N where each element H, is of the form
h, it suffices to have uniform boundedness of (Z,),c; on some compact set Q, for H, and choose
(O ) nen to satisfy Vne N Q, € Qpi1 ad Upeny Qn =C N {d,; teI}.
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for R (dim M +d, + z+2—1) >0 shows

A(h) = Z/ (h, + )3 Mederz (1 (h, 4 1)) e drresa, (2)
el J(0,1)

L

=33 (-1)7jlres a, (2) (14 p, )dimMedivzsl (1 g 4 gy y)l=s
el j=0 (dimM+dL+Z+1)j+1 L ,

le (1) jlres v, (2)
S (dim M +d, +z+1)7%0 "

5 (-4 res a, (2)
=
~(dimM +d, + z+ 1)L+

d1mM+d +z+1(1 h )lL -j

compactly and, thus,

¢(an) = ((a)
compactly.
O

Theorem 5.9. Let o =g+ Y,cr, be a gauged poly-log-homogeneous distribution
on Rygx M with I ¢ N, ag regular on (0,1) x M,

a(2)(r,€) =r®** (Inr) 6, (2)(€),

. 1
where (R(d,)),; is bounded from above, each (m)Ld € lo(I), and each
Y1 @ (2) converges unconditionally in Li(M). Then, ((«) can be mollified.

In particular,

((a)(z) = ag(2)dvolr_ xnr + Z a,(z)dvolg_ xnm
R xM el SR, xM B

+ Z/ pdimMrditz (1) (b drres o, (2)
el J(0,1)
is the compact limit of

C(an)(z) = ag(z)dvolr_ xnr + > a,(z)dvolg_ xnm
R xM el JR, xM B

+ Z/ (h, +r)8mMederz (1 (h 4 1)) e drresa, (2)
el J(0,1)
for hi:=(h,),; € loo(I;Ryy) and h 0 in Lo (I) such that
L,
Z,(z):=1, Z (1, —j-d,—zh,)=Cu(l,-j—-d,—z;1+h,)]
j=0

s bounded on an exhausting family of compacta as h \ 0.

Proof. The proof works precisely as the proof of Proposition 5.8. The only difference
is that we have to show local boundedness of

L (=1)7j!res v, (2) . ;
. L _ 1 hL dim M+d,+z+1 In(1 h/[, l,—j
;g(dimM+dL+z+1)ﬁ1( +h.) (In(1+h.))

and

jlresa,(2) Qi Motd42s1 L
pdim +d,+z+ 1 h/L )
;;)(dlmM+d +z+ 1)t (Inh.)
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since the estimates do not hold anymore. Since

ZIZ: (-1)7j!res v, (2)

o120 (dim M +d, + z+1)7+1

is a well-defined meromorphic function, it is locally bounded. Furthermore, (1 +
h,)dim M+ditz+1(1n (1 + b, )77 can be chosen uniformly bounded on any half plane
{z€C; R(z) <r} for any r € R, i.e. we can construct a sequence that is eventually
uniformly convergent on any given compactum. Hence,

le: (=1)7j!res r, (2)
100 (dim M +d, + 2+ 1)7+!

(1 +hL)dimM+dL+z+1(ln(1 +hb))lb—j

is fine. Thus, choosing |h,Inh,| < 1 and |dim M +d, + z + 1| > 1 without loss of
generality,

Z ﬁ: (_1)jj! S CYL(Z) pdim M+d[,+z+1(1nh )ll,—j
el 5=0 (dimM+dL+Z+1)j+1 L .

)

vel

<y

el

dim M+1
SHhHe:I(11)+ >
el

resa,(z)
dimM +d, +z+1

L,
dim M+d,+z+1+j-1,
LYY |hS
J=0

(h,Inh,)" |

. L, )
LRI ™ 0 [t

j=0

Z,(2)

resa,(2)
dimM +d, +z+1

resa, (2)
dimM +d,+z+1

completes the proof.

6. ON STRUCTURAL SINGULARITIES AND THE GENERALIZED
KONTSEVICH-VISHIK TRACE

In this section, we will discuss the integrals appearing in the Laurent coefficients.
Most importantly, this will yield the generalized Kontsevich-Vishik density

/ @) (0 (x, 2,€) d¢ dvolx (x)

By (0,1)

+/ eiﬁ(z,z,f)ao(())(x,x,g) dVOlR>1X33RN (&) dvolx (x)
R>1XOB]RN 7

~Jomn e mq,(0)(z,2,£) dvolyp, (£)
N +d,

>

velNIp

dvolx (z),

as well as the fact that this density is globally defined in the Iy = @ case, that is
in the absence of terms with critical degree of homogeneity. We will be able to

calculate interesting examples by the end of section 7 leading up to (and including)
Theorem 7.5.

Considering classical pseudo-differential operators it is common to start with the
Kontsevich-Vishik trace which is constructed by removing those terms from the
asymptotic expansion which have degree of homogeneity with real part greater
than or equal to —dim X where X denotes the underlying manifold, i.e. if k is the
kernel of the pseudo-differential operator, then the regularized kernel is given by

N
kv i=k= kq;
j=0
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where d-j is the degree of homogeneity of the corresponding term in the expansion
of the amplitude a ~ ¥ ey aa-; and N sufficiently large. Then, kxv € C(X x X)),
Le. [y kxv(z,z)dvolx(x) is well-defined. In other words, kxy and ag play the
same role and we would like to interpret ((ao)(0) as a generalized version of the
Kontsevich-Vishik trace. The term ij\io [ ka-j (2, x)dvolx (x) would, hence, be
analogous to spinning off ¥,.; ((«,)(0). Unfortunately, we have to issue a couple
of caveats.

(i) The observation above is fine if we are in local coordinates. However,
when patching things together some of the terms in our Laurent expansion
will not patch to global densities on X. This is no problem for Fourier
Integral Operators, per se, as they are simply defined as a sum of local
representations and in each of these representations the Laurent expansion
holds. It will become a problem if we want to write down formulae in terms
of kernels, though (especially if we require local terms to patch together
defining densities globally).

(i) Since F(aq-;(z,y,-))(#) is homogeneous of degree —dim X —d+j (where F
denotes the Fourier transform), we obtain F (aq—;(z,y,-))(0) =0 for d—j <
—dim X, ie. kg_j(z,2) = limy_y ka—j(z,y) = limy_y F (ag-;(z,y,-))(y-2) =
F(ag-j(x,z,-))(0). Thus, kxy (z,2) is independent of N.

However, this property does not extend to ag as we can easily construct
a counter-example. Let a(z,y,&) be homogeneous of degree d < —n in the
third argument and the phase function ¥(z,y,£) = —(0(z,y),£)s,(n) such
that ©(«,z) has no zeros. Then,

k(wy) = [ e O Duma(e,y, )d¢ = F(a(z,y,)(O(z,y))
RTL
shows that k(z,z) is well-defined and continuous. Furthermore, since
F(a(x,y,)) is homogeneous, k(x,x) vanishing implies F(a(z,y,-)) = 0
on {rO(z,z); reR 4}

On the other hand, for pseudo-differential operators the terms aq—; with d —j =
—dim X define a global density on the manifold giving rise to the residue trace.
If this extends to poly-log-homogeneous distributions, then we obtain the residue
trace globally from 3 .; «,. Furthermore, this would imply that

foa=a- Y a,

el

induces a global density, if o does and the contributions of the «, for ¢ € Iy to the
constant term Laurent coefficient vanish (in particular if Iy = @), which allows us
to interpret ((fpya)(0) as the generalization of the Kontsevich-Vishik trace.

This, of course, needs to be interpreted in a gauged sense. ((fp,a)(0) corresponds
to the kernel k(z,y) — kq-j(x,y) where d - j = —dim X. Hence, all terms kq_;
with j € Ny s, qim x Still appear in fpoa but not in kxyv. Since ((fpoa)(0) is but
constructed by gauging, we should do the same for k4_;, i.e. consider kq4_;,. which
is continuous for 93(z) sufficiently small and vanishes along the diagonal. Therefore,

C(ipge)(0) = /X v (2, ) dvolx ().

holds in the regularized sense; particularly so since Corollary 1.8 guarantees that
¢(fpy)(0) is independent of the gauge. In other words, the objective is to show
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that

%:resaX(O) :Z</GB dX(O)dvolaBwa)

X

Z(P/ dX(O)dvolagkN,cSo)
8B]RN

X

X

D (/ @YX (0)(z,y,€) dvolop, v (5),50>
9By N

is globally well-defined (¥, denotes a partition of unity and P is a suitable pseudo-
differential operator) if the aX are log-homogeneous with degree of homogeneity
-N.

At this point, we return to the fact that we can find a representation
/ e’i((z_’y)vfﬂz(zdimX)d(é') dvolgzaimx S (6)
RZAM X\ Bpo dim x e
of

/ @Y gz, y,€) dvolgn. ., (€)
RN\Bpn )

where a is poly-log-homogeneous with degree of homogeneity —2dim X and loga-
rithmic order [ if a has degree of homogeneity —N and logarithmic order [. Thus,
we want to show that the locally defined

/ ei((acyy)-,f)tzz@dimx)dx(5) dvolaBmeX (6)
OBp2dim x

patch together if aX is log-homogeneous with degree of homogeneity —2 dim X .
Let ¢ be a suitable test function, and
/ / M) Qeacain (2, y, ) (2, y) dE dvoly:(z,y)
X2 JR2dim X
and
/ / DX (2,y,€)p(,y) dE dvolxz(z,y)
X2 JR2dimX

be two representations of (u, f) where ¥ is another linear phase function. Propo-
sition 2.4.1 in [8] warrants the existence of a C*°-map © taking values O(z,y) €
GL(R?4mX) such that

19(‘@7 Y, 5) = ((‘Tu y)7 @((E, y)§>€2(2dimX)
holds. Hence,

/ / @O X (1, ) p(x,y) dE dvolya(z,y)

X2 RZdimX

:/ / e O camx) X (7, €)p(z) dE dvoly: ()
X2 RZdimX

= / / - eRnean g X (2, 0(x) 1 E)p(x) |det ©(x) | dE dvoly: ().
X2 RZdlmX

In other words, the amplitude a transforms into aX(z,O(z)71¢) |det 6(w)‘1| for
some C*™-function © taking values in GL(R?d™X) more precisely

a(x,y.£) = a*(x(z,y),0(z,y)"'€) [det O (2, y) | |det x'(z, y)|
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for some diffeomorphism x, and we need to show

res a(O) = d(g)dV()laBR@dimX (5)

8B]R2 dim X
:/ X (07'€) |det 7 dvolop,, 4 x ()
O0Bp2dim x

2

= / ax (g)dvobBI@ dim X (5)
aB]RQ dim X
=resaX(0)

where a and aX are the restrictions to the polyhomogeneous part of o and aX, i.e.
a(ré) = ra(g).

Lemma 6.1. Let a € C(R™ \{0}) be homogeneous of degree d, k € Ny, z € C, and
T e GL(R™). Then

/8 (T Tl ([T dvolos (6)
(-1)*

_ -n—d-z (
|det T Jop,n

I [ 77¢])* dvoly s (£).

a(&) [T7¢]

This lemma (cf. e.g. equation (2.13) in [14] or Lemma 2.20 in [16] with mini-
mal changes to the proof), and the fact that a is the restriction of a homogeneous
function with degree of homogeneity —N if a is log-homogeneous with degree of ho-
mogeneity —N, yield (using N =2dim X, a suitable U Copen RY, a diffeomorphism
x: U-x[U], and a ¢ e CZ (x[U]))

/ / i, €)p(x(x) )dvolop,  (€)dz

U aB]RN

- / / X (x(2), 0 (x) 1) |det ©(2) | [det 1’ ()| @ (x () )dvolas. (€)dz
U JoByx

- / / X (x(2), 0 (x) 1) |det ©(2) | [det 1/ ()| @ (x () dvolas_ (€)dz
U aBRN

- / ldet ©(2) Y| / i (x (), ©(2) " €)dvolap._, (€) |det X' ()] 9 (x(x))dx
U aB]RN

[ @) dvolon, (O etk @) w(x(@))ds
U JoB,x

:/ / dx(f,g)@(x)dVOIé?BRN (g)dl',
x[U] OByn

i.e. the following theorem.

Theorem 6.2. res(u, f) = resa(0) = [,5 L, @(0)dvolop, is form-invariant under
R

change of coordinates if a(0) has degree of homogeneity —N .

In particular, ¥\ ¥,cpx resa¥(0) induces a global density and ¥, ¢ (fpoa®) (0) in-
duces a globally defined density provided 3, ¥ 1x OresaX(0) vanishes.

REMARK Note that this means that if a is polyhomogeneous and ¢ is the index
such that a,, is homogeneous of degree —N, then

Z// em(m’m’g)aL(a:,x,{)dvolaBRN({)dvolx(:zr)
welg / X JOByN
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:/ / eiﬂ(m,w,f)aw ($,$,§)dVOlaBRN (g)dVle(.’II)
X JOBy~
This, of course, extends to higher order residues
/ / V@O (11, §)dvolap, \ (§)dvolx (z).
X JoByn

with ¢ € Iy and [, > 0; this generalizes Corollary 4.8 in [14] on the residue traces for
log-polyhomogeneous pseudo-differential operators.

Uniqueness of the residue trace, then, directly implies the following proposition.

Proposition 6.3. Let a ~ ZjeNO am—; be the amplitude of a Fourier Integral Op-
erator where m € 7Z and Gm-j 15 homogeneous of degree m — j. If the residue
trace is the (projectively) unique non-trivial continuous trace, then none of the
fBBRN ew(w’f)am,j(x,{)dvolaBRN (&) with m—j + —N can define a global density, in

general, unless they are trivial (i.e. vanish constantly).

In particular, removing non-trivial terms from ((fpo) will, in general, destroy
global well-definedness of the induced density.

Now, we may ask when the residue vanishes. As a first result we obtain the
well-known fact that the residue trace vanishes for odd-class operators on odd-
dimensional manifolds.

Observation 6.4. Let a(~¢) = ~a(§). Then, resa = [, a(&)dvolgp, (§) = 0.
R

Note that the property a(-§) = —a(§) is invariant under change of linear phase
functions with the same “/N”. Choosing non-linear phase functions or changing N
might destroy this property. In fact, having phase functions with J(-¢§) = —9(¢)
will yield

res(a,v) = ew(g)a(@dvolagw (&) = - (res(a,¥))”,
0By N

ie. R (res(a,?)) =0 but not necessarily J (res(a,d)) = 0.
On the other hand, if NV =1, then
| a@dvolan, (€)= a(1) +a(-1)
BBR
shows that res a vanishes if and only if « is odd. Equivalently, we obtain
/ @ (g, €)dvolyp, (&) = @ Va(x,1) + @ Da(z,-1).
8B]R

Note, this implies there are two residue traces for N = 1; namely, a_1(1) and
a_l(—l).
For N > 1, the de Rham co-homology of dBgn~ is given by

R ,ke{O,N-1}

VkeNy: Hig (0Bgn) = :

ot Hir (0Bgx) {0  keN~{N-1}

In other words, there exists wy € @V~ (0Bg~,C) such that [, ,wo=1and
R

Vw e QN1 (0Bgy,C) 3ceC F0 e QY2 (0Bgn,C) & w = cwy + d.

Thus, we obtain the following statements.
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(i) fBBRN ew(m’g)a(:v,ﬁ)dvolaBRN (&) = 0 if and only if the differential form
e @)z, -)dvolpp,  is exact.

(i) | ( Jom, e a(x,&)dvolyp, (5)) = 0 if and only if the differential form

cos (¥(x,-)) a(z,-)dvolyp, is exact.
(iit) 3 ( Jop, €7 Oa(a, )dvolop, (€)) = 0 if and only if the differential form

sin (J(x,-)) a(z,-)dvolpp,, is exact.
REMARK Since we are integrating dim M-forms over a manifold M, we assume
that all manifolds are orientable as we can only integrate pseudo-dim M-forms if
M is non-orientable. So far everything can be re-formulated for pseudo-forms and,
thus, on non-orientable manifolds. From this point onwards, though, statements

will need orientability; in particular with respect to uniqueness of residue traces
and the commutator structure since

i R M orientabl ted
HgﬁmM(M) o { ) orientable, connecte

0 , M non-orientable, connected
[

Definition 6.5. Let A be a poly-homogeneous Fourier Integral Operator on a com-
pact manifold X and reso ((A) be locally given by

/ / ¢’ 9a(z,€) dvolop, (€) dvolx(z).
X JOByn

Then, we call the (N =1+ dim X)-form o(A) on X x OBgn~ locally defined as
0(A) :=expo(iv) -a dvolxxon,y

the residue form of A (in other words, *o(A) = e"’a where » denotes the Hodge-x-
operator).

Proposition 6.6. Let Y ¢ X be a connected component. Then, foaB N 0(A)=0
R
if and only if o(A) is exact on' Y x OBpn.

More precisely, let X = Y1 u...90Y) be composed of finitely many connected compo-
nents (v denotes the disjoint union) and let 0(A)|y,xoB,y = cjwj+dw; be the corre-

sponding decompositions of o(A) with w;j = voly,xap,  (Yj % 5BRN)_1dv01ijaBRN.

Then,
k
/ o(A) =3 ¢
XxdByn j=1

Using the Hodge-*-operator =, the co-derivative d* := (—1)NX(NX71)+1 * d* with
Nx :=N+dimX -1, as well as

0(A) =dw < ea=xdw
=% d* (—1)NX_1 * W
:d*(_1)NX(NX*1)+1(_1)NX*1 W
=d" (-1 xw),
and the divergence div F' = #d+ F* = (=1)Nx(Nx=D+14% P with the musical isomor-
phism
P T(X xOBgn) =T (X x OBgwn); 2 Fidi o ) Fida,

we can re-formulate Proposition 6.6.
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Theorem 6.7. Let X be connected. Then, the following are equivalent.

i) [y fBBRN e @ q(x, €) dvolpp, (§) dvolx (x) = 0.
(ii) There exists an (N + dim X - 2)-form w on X x OBy~ such that dw =
ea dvolXx&BRN locally.

(iii) There exists a 1-form w on X x OBgn such that d*w = ¢’ a locally.
(iv) There exists a vector field F on X x OBy~ such that div F = e*’a locally.

REMARK These results hold if we replace dBr~ by any other connected manifold
M and consider the residue terms resa = ||  @dvolyy for poly-log-homogeneous

distributions. In particular, we obtain res« = 0 if and only if there exists a vector
field F on M such that & =div F.

[
REMARK Condition (iv) can be extended to X x (RV ~{0}). Let M := X x 9Bgn,

(gi)i the local frame in which e”a is given by a, and (g'); the dual frame. Let
M :=R o x M= X x (RN \{0}) and the metric tensor is of the form

g(r,€) = ((1) T,2dim2/fg(§))u

ie. dvoly(r,&) =+/det §(r,&)dradé = rA™ M, /det g(&)dradé = r4™Mdradvol s (€).
Let F be a vector field on M and F be a vector field on M. Then,

dim M dim M . .
divF(§) =trgrad F(&) =tr Y, > 9;Fi(£)g’ (&) ®g'(€)
j=1 =1

dim M dim M

= Z Z 0;Fi(£)g" (€)

and
N dim M dim M ~ ) .
div F(r,€) =tr Z Z 0, Fi(r,§)§ ® g
=0 =0
j . dim M dim M N B
=0Fp(r, &) +r2 WM ST 5 95 F (1,97 (£).
j=1 =1
In other words, we obtain div F(1,£) = div F(€) if 9gFy(1,£) = 0 and 8;F;(1,€) =
9;Fi(€). On the other hand, we want div F(§) = a(¢) and div F(r,€) = f(r)a(€)
with f(1) = 1. Choosing Fy = 0 and Fy(r,&) = f(r)F;(€) implies div F(r,&) =
f(r)a(€) and div F(1,€) = div F(€).

Thus, knowing (iv) we can construct a vector field F' such that ¢’ = div F on
X x (RN N {O}) and F' satisfies the conditions above. Conversely, if F' has the
described properties, then F|x g B,y satisfies (iv).

]

At this point, using the framework of gauged poly-log-homogeneous distributions,
we can follow the lines of Theorem 1.1 in [4] to obtain the following theorem (The-
orem 1.2 in [4]) which we state here for completeness.

Theorem 6.8. Let A be an algebra of classical Fourier Integral Operators asso-
ciated with the canonical relation T' such that the twisted relation T (A€ A <
ka e I(X%T")) has clean and connected intersection with the co-normal bundle of
diagonal in X?*. Then, the residue-trace of A € A vanishes if and only if A is a
smoothing operator plus a sum of commutators [P;, A;] where the P; are pseudo-
differential operators and the A; € Ap.
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Guillemin also proved the following (more general) version of Theorem 6.8 (cf.
Proposition 4.11 in [5]).

Proposition 6.9. Let I' be connected. Then, the commutator of Ay is of co-
dimension one in A modulo smoothing operators.

Hence, resg o is either zero or the unique trace on A up to a constant factor.
Regarding the trace of smoothing operators, Theorems A.1 and A.2 in [5] yield the
commutator structure of smoothing operators (the following two definitions, the
theorem, and the remark can all be found in the appendix of [5]).

Definition 6.10. Let H be a separable Hilbert space and e := (¢;)en an orthonormal
basis of H. An operator A € L(H) is called smoothing with respect to e if and only

if
VneN JeeR: [(Aej,ej)u|<c(i+j)™".

Definition 6.11. Let H be a separable Hilbert space, e an orthonormal basis,
Q Sopen K™ with K € {R,C} and A € L(H)% such that each A(s) is smoothing
with respect to e. Then, A is said to be smooth/holomorphic if and only if all
s (A(s)ei,ej)m are C(Q).

Theorem 6.12. (i) If A is smoothing with respect to e and tr A = 0, then A
can be written as a finite sum of commutators [ B;, C;] where the B; and C;
are smoothing with respect to e.
(ii) If a family A e L(H) of smoothing operators is smooth/holomorphic, then
A can be written as a finite sum of commutators s = [B;(s),C;] on every
compact K € Q where the B;(s) and C; are smoothing, and the B; are
smooth/holomorphic.

REMARK (i) Let X be a compact Riemannian manifold, H = Ly(X), and e the
family of eigenfunctions of the Laplacian on X. An operator A € L (L2(X))
is smoothing with respect to e if it is smoothing with respect to the Sobolev
norms.

(ii) Let H = L2(R™) and e the family of Hermite functions. An operator A €
L(H) is e-smoothing if it is smoothing with respect to the Schwartz semi-
nOrms.

These theorems yield the following table assuming that the (unique) residue trace
reso o( is non-trivial and Ay = (A) + ([Ap, Ap]) + {smoothing operators} for some
A e Ap with reso () 0.

Iy +o Iy=9
resOC(Al;tO reso C(A) =01 ¢(A)(0) 0 C(A)(0)=0
A=A+ 5+Y,.,C; B koo
C; e [Ap, Ar] fé.—e‘i:{ Z.zl ]Oz A= Zle C;
o = (reso () ' reso C(A) Slsmoolgilinl?g C; commutators
S smoothing

REMARK Note that the obstruction to the generalized Kontsevich-Vishik trace is
given by the derivatives of the a, for ¢ € Iy. Using the example above Theorem
1.15, we obtain that these are residue traces themselves if the operator is poly-
homogeneous. These residues are explicitly calculated for gauged families A(z) =
BQ? in Proposition 3.4.
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7. STATIONARY PHASE APPROXIMATION

In this section we would like to get to know a little more about the singularity
structure of

k(z,y) = / @V, €)de,
RN

primarily to calculate the integrals
/ @Y q(z,y, §)dvolap, ().
OByn

We will skip many calculations in this chapter because they are very tedious and
differ only slightly (if at all) from the calculations that can be found in any account
on stationary phase approximation (e.g. chapter 7.7 in [7]).

We will prove the following theorem.

THEOREM 7.3 Let k(x,y) = [on e @v 8z, y,€)dE be the kernel of a Fourier In-
tegral Operator with poly-log-homogeneous amplitude a = ag+Y.,c; a, and phase func-
tion satisfying O3 (19|XxanB]RN)(I,y,§) e GL (RN—l) whenever 859(z,y,€) = 0.
Let T :=1TU {0} and choose a decomposition a = a° + Zle a® such that there is
no stationary point in the support of a®(x,y,-) and exactly one stationary point
és(a:,y) € OBgn of 9(x,y,-) in the support of each a®(x,y,-).

Let 9°(z,y) = 9 (2,y.€°(2.9)). ©°(z,y) = 5V (2,4,6°(z,y)). s5gn©°(2.y) the
number of positive eigenvalues minus the number of negative eigenvalues of ©°(x,y),
gradaBRN = Ogp and divep,, are the gradient and divergence operators on the

(N —1)-sphere OBgn, and

Nop6: (o) = (0°(2,9) ' 0o8,008) = —divop, , O°(z,y)"" gradyp -
Furthermore, let
(2m) "7 |det O (a, )| 2 T 50" ()

Ajp o5 (2% (2,y,6°(z,))
and

Oz T (g+1+2)i9t1*= (ﬁs(x,y) + i())iqiliz) (0) , geC~(-Ny)

95.(z,y) = .
’ 1, -T'(2+1) (—0) Y (cin+lno)
9 Z 2mi (—q)! fc+i]R (—iés(m,y)l-e—o—a)rrl dU) (O) , € _NO
with q :=d, + Ngl -7, ceR,y, and some constant cy, € C.
Then,

. s
Ka) = [ ey de+ T3 T B (wa)ai (o)

vel s=1 jeN,

holds in a neighborhood of the diagonal in X?2.
This will yield the following theorems.
THEOREM 7.5 Let A be a Fourier Integral Operator with kernel

k(z,y) = / @V oz, y, €)de
RN

whose phase function O satisfies Vo e X VE e RN : 9(x,z,£) =0, and whose ampli-
tude has an asymptotic expansion a ~ Y,y a, where each a, is log-homogeneous with
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degree of homogeneity d, and logarithmic order 1,, and R(d,) - —oo. Let Ng € N
such that Vi e N,y R(d,) <-N and let

. . No
By = [ 0O S (o)
RN =1
denote the singular part of the kernel.

Then, the reqularized kernel k — k*"8 is continuous along the diagonal and in-
dependent of the particular choice of No (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density is given by

. No
(k- ksmg) (z,x)dvolx (x) :/ a(z,z,8) - > a,(x,z,&)dédvol x (z).
RN 1=1

THEOREM 7.7 Let A be a Fourier Integral Operator with phase function 9 satisfying
02 (mXxXx@BRN ) (x,y,£) e GL (RNfl) whenever 039(x,y,£) =0 (in a neighborhood

of the diagonal) and és (s € NSS) the stationary points. Furthermore, let
VeeX VseN_g: 19(3:,3:,55(3:,33)) +0.
Then,
(Xs2wk(z,z)eC )eC(X)
and

trA:/Xk(a:,:zr)dvolx(:zr)

is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, (-functions of
such operators have no poles (since the trace integral always exists).

For the remainder of the section, let a be log-homogeneous. Then, we obtain

k(x,y) ::/ em(z’y’f)a(%yag)dg
RN
:/ / PN-Leird (@ m) g (5 . rn)dvolap,  (n)dr
R.o /0Byn

:/ rN+d_1(lnr)l/ e"ﬂ(m’y’”)a(x,y,n)dvolaBRN (n) dr.
2]

>0 B]RN

= (z,y,r)

Let (x,y) be off the critical manifold, i.e. Vi€ OBgn~ : 939(x,y,n) # 0. Then, we
observe

1
VneN: |I[(z,y,r)|=-
,

/ eirﬁ(z,ym)pa(m’y,n)dVOlaBRN (77)‘
0By~

1

,r.n

/ eirﬂ(w,y,n)pna(;ﬂ’y,n)dVOlaBRN (77)‘
0By

1 n
Sy ID"all L (xxxxoB,0)
where
ca(z,y,n)0s0(x, y,n
Da(‘ruyﬂ?) ::(93 ( ) : (2 )7
1059z, y,m) |2,y

which proves the well-known fact that k is C'™ away from the critical manifold.
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On the critical manifold, we will assume that
a32 (19|X><XX63RN ) (Ia Y, 5) eGL (RN?l)

if 939(x,y,£) =0 (note that this holds for pseudo-differential operators). Then, we
are in a position to apply Morse’ Lemma.

Lemma 7.1 (Morse’ Lemma). Let (xq,Yy0,%0) € X x X xdBgn~ be stationary (in par-
ticular, Oap(z0,Y0,&0) = 0) and 9359(x0,y0,&0) € GL (RNfl) where Jop denotes
the spherical derivative, i.e. the derivative in OBpn .

Then, there are neighborhoods U Copen X x X of (20,%0) and V Sopen OBry of &
and a function é e C*(U,V) such that
V(@,y,&) eUxV: gpd(2,y,6) =0 & &=E(a.y).
Furthermore, there is a function ne C'* (U X V,RN) such that

V(z,y,£) eUxV: n(x,y,&) - (é—é(x,y)) €0 (||€_é(x’y)HZ(N))
and
8377 (Iayvé('rvy)) =1

Corollary 7.2. Let ¥ be as in Morse’ Lemma (Lemma 7.1). Then, stationary
points of 9(x,y,-) are isolated in OB~ . In particular, there are only finitely many.

Proof. For given stationary (z,y,£{) we can find a neighborhood V' Copen 0B

such that & = é (x,y); thus, stationary points are locally unique. By compactness of
OBpgn~ they are isolated and at most finitely many.
O

Hence, we may assume that
S .
Kay) =3, [ e 9a’ (2,y,€)dg
s=0 JRN

where a has no stationary points in its support and each of the a® has exactly one
branch (z,y,£°(x,y)) in its support. As we have already treated the a° case, we
will assume, without loss of generality, that a is of the form of one of the a®.

Let ngp be defined as the spherical part of  and

O(z,y) = 0350 (2,y,£(2,y)) -
Then,

<8§19 (I’yvé(xvy))T](I5y7§)777(xay7§)>]RN = <®(I5y)naB(xvyag)anaB(Iayvg)%RN*l
and, defining ¥ := 9 (ZC, y,é(w,y)),

Iayr)= [ e a(a,y dvolos, (€
OB, n
:ei’”@ / ' 5(0@y)nan(z,y,.€)non(.y,6))zn-1 a(z,y, f)dVobBRN (6).
OBy

Let o: RN"1 - 9Bpn be a stereographic projection with pole —£(z,y) (which is
assumed to be outside of spta(z,y,-)),

nO'(x7y7§) = 7763(557% 0-(5))7
and

aq(,y,€) = a(z,y,0(€))\/det (o'(€)* 0" (€)).-
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Then,

I(I, v, 7‘) :eirﬁ / el’%(@(m,y)na}a (%,9,€),moB(x,Y,£))gN-1 a(:v, v, g)dVOIOB]RN (5)
OBy

:ema/ 5 O@V @y O M@V ON 1 (g €)de
RN-1

and

83”0(17’ Y, 5) = 837783(Ia Y, 0’(5))0”(5)

combined with the fact that d3n (x, v, &(x, y)) =1 yields that 7y (z,v,-) is invertible

in a neighborhood of o1 (é(w,y)) =0 (we will also use n,(x,y)(+) for n,(z,y,-)).
Without loss of generality, let ag(:v y,+) have support in such a neighborhood and

a(z,y,€) = as (2, 9,10 (2,y)” )\/det (1o (2,9)™) ()" (o (2, 9) 1) (8))-
This yields

I(z,y,7) —pir? /RN 1 o150 )no (2.5,€) 10 (2,5,6) Jpn-1 ag (2, y, €)de

:eir’@/\ ezg(o(z y)f f)RN 175 ('r y g)dg
RN-1
Using
F (Z e %(r@(w,y)f,f)w_l) ©
:|det(7°®(:c )|~ 3 o1 sen(ro(z.y)) —1;((7‘9(1,‘1/))_15)5)1{]\]71

1

=—-T N T |det@(x y)| 2 e I sgn(0(z,y)) —12((7“(—)(1,7;))’15,5)]{]\,71

where sgn(©(z,y)) is the number of positive eigenvalues minus the number of
negative eigenvalues of O(z,y) (cf. Lemma 1.2.3 in [3] and noting that Duistermaat

uses “F = fRN” whereas we are using “F = (27)~ fRN” we obtain

/ 13 (rO(@. )€ Ehpn-1 5 a(z,y,§)dé
RN-1

H

2m i)rI

- .

<(3) T oot e 32 S 00000 01f) . i0.0)
JeNy

Hence, defining

(277) z |d€t @(J: y)| 3 er T sgn©(z,y)
JgN(2i)

(:E )_ (@(I,y)_lag,ag);y\_lZl(x,y,())

we obtain

k(z,y) = Z PN (Inr)! /6 N Y (z,y, €)dvolap, , (€) dr
RN

>0

+ Z Z hs(:v y)/ J_j(lnr)leirﬁs(w’y) dr.

s=1jeN,

r]“d‘l(lnr)’ / @880 (2,y, €)dvolop, y (€) dr
dByN

For [ =0 we may invest the well-known fact

Vqe Cm(~)>—1 Vs e Cm(-)>0 : / tle™stdt = T(qg+ 1)57‘%1
R

>0
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about the Laplace transform to obtain

/ R (R S -5} (9 () 4i0) o
R

>0

if R(d+ % - j) >0 where f(t+i0) :=lim.o f(t+i€). By meromorphic extension,
we obtain
_N+1 +q

“1_; ;g8 N+1 +1_ oA —d
/ pdt S5t =i gird* (2.9) g, :F(d+ 2+ —j)f“%'] (9*(z,y) +i0) " 2 7
R

>0

whenever d + £ - j e C\ (-N;) and, for [ € Ny,

/ rd (lnr)l o0 (@) gy _ gl (z N / rq+zez‘m§3(m,y)dr) 0)
R R

>0 >0

=0/ (2 (4 1)1 (0 ) +i0) ) )

Ifd+ Nz*l -je-Ny, ie d+ % —j € -N, then we can use the following property

t
1
/ / f(r)dre *dt = —/ f(t)e*tat
R>0 0 $ R>0
to obtain

t
Vq,SGCm(.»O:/ tqe*“dt:/ /qr‘ﬂdre*stdtzg/ ti e st dt
R>0 R>0 0 § R>0

and, hence,

/ tqe‘stdt:i/ st gy = L/ (st gy
R q+1Jr [-1(q+p) Jr,

>0

by meromorphic extension. Thus, for ¢ € -N and n = -¢ -1, we have

—q-1
/ tqe_Stdt:ﬂ/ t~testdt
R (—¢-1)! R,

>0

reducing the problem to finding [, t'e *'dt. Consider the Borel measure
>0

ot B(Rg) > C: A [ 1etas
A

on R, for ¢,s ¢ (C%(-)>0' Then,

5(0 - /]R Fh)e dt) (s) = -/Rm LF(t)e

implies
(0 fig,0) (8) = ~Hgr1,s
and, hence,
['(g+2) 1
0(0 > pig.0) (5) (Rog) = ~igr1s (Rg) = —— 2= > == (¢~ -1).

In other words, [, ¢ 'e™*dt is logarithmic (up to a constant) and [, t9e”'dt for
>0 >0
q € —N is log-homogeneous; namely,

- 0% (z,y) - 0) " )
/]R raeV (@) g = (Z ((x_,j)_ 1;)|) (Cln +1n (—iﬁs(%y) + 0))
>0 :
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with some constant cj,. Finally, we can add the Inr terms for g € —N by investing
the the multiplication property of the Laplace transform

1
L(f9)(s) = 5 L(f)(0)L(g)(s—0)do
T J iR
where ¢ € R such that ¢+ iR is a subset of the region of convergence for L(f) =
(s e [ f(t)e—stdt). Thence, for ceR,,, g€ -N, and [ € N, we obtain
>0

/ rd (lnr)l e dr
R

>0

t=—i0° (x,y)+0

=9 (z > / Tqrzetrdr) (0)
R

>0

t=—i9° (x,y)+0

=9 (z > P+l (=0) " (e +1Ino) (t-0) " do) (0)

27Ti(_q - 1)' c+iR

t=—30° (x,y)+0

Thus, we have proven the Theorem

Theorem 7.3. Let k(x,y) = [pn e @Yz, y,€)dE be the kernel of a Fourier
Integral Operator with poly-log-homogeneous amplitude a = ay + Y,c;a,. Let I:=
Tu{0} and choose a decomposition a = a° + Zil a® such that there is no stationary
point in the support of a’(x,y,-) and exactly one stationary point és(a:,y) € 0Bgn~
of 9(x,y,-) in the support of each a®(x,y,-).

Let 9*(z,y) = 9 (2,9, (2,1)), ©%(z,y) = B30 (2,5, (2,)), sgn©°(z,y) the
number of positive eigenvalues minus the number of negative eigenvalues of ©°(x,y),
and App os(z,y) = <®S(x,y)71833,833) = —divop,y CHERN gradaBRN. Further-
more, let

(271') 7 |det @S(I y)| 3 e LT sgn ©° (z,y)

G(xy) = 20y AéB 6:0 (:17 Y, { (z, y))
and
Oz T (g+1+2)i9t1*= (ﬁs(x,y) + i())iqiliz) (0) , geC~(-Ny)
9; (2,y) = . B
’ . —T'(z+1) (=0)"*(cin+lno)
al " o (+q)| fc+1]R ( “gs(m’y)l_'_g_g)z*l dU) (O) y 4 € _No

with q :==d, + 5= N” -7j, ceR,y, and some constant cj, € C.

Then,

K(z.y) / Oy )+ T T B (2r0) (1)

el s=1jeNg
holds in a neighborhood of the diagonal in X?2.

REMARK Suppose 83 gV is not invertible at some stationary point but we can split
the third variable in a pair (£,¢) such that 939 (zo,vo,&0, o) is invertible at the
stationary point. Then, we can find open neighborhoods U of §0 and V of { as well
as a function ¢ such that 9,9(x,y,&,¢) = 0 if and only if ¢ = ((¢). In particular,
since U x V' is open in the compact set 0Bg~, we can use a partition of unity to
reduce I(x,y,r) into a sum of integrals of the form

//em(z,y,g,oa(aj,y,g,g)dvolv(c)dvolU(ﬁ)-
UuJv
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Using stationary phase with respect to (, then, yields

//eirﬁ(zﬂy@‘:)a(m,y,é,C)dVOlv(OdVOIU(g)
UuJv

_ / (.6 6©) / (039 ELOMO I o (1 € C)dvoly (C)dvoly (€)
U 14

which, again, yields an expansion of the form above but where the coeflicients need
to be integrated once more.

[
ExaMPLE For a pseudo-differential operator, we have
9(x,y,€) = (x =) o (€).
Choosing coordinates such that (z - y) = - |z - y|,,(y)en and letting ex be the
pole of the stereographic projection, we obtain
2¢
L+ ey (v-1)
(&) = el yeny-1

€0y (n-1)+1

and

15(5) _ I(z,y,§) 1- H§H€2(N—1)

HCU—ZJH@(N) 1+ H§H£2(N—1)'

From O(z,y) = BgBﬁ(x,y,é(x,y)) and &(z,y) = ‘L =0(0) in these coordi-

|I—y“/_72<N)

nates, we obtain

O(z,y) = |z - yHb(N) 15"(0) =4z - yHb(N) :

Hence, using z := x —y,

B m N i v
hi(z.9) (%) H2H52(§v) e 4 AJ z
i(z,y) = - - alz,y, ——|.
’ J(-8i)7 op [20l¢, )
Let
N-— .
} (E)T e E(N-) .
hi(z,y) = 27 — A alz,y, ——|.
! J1(=8i)7 oB 121l ¢, vy
Then,
- N1
h’J('rvy):h’J(Iay) HZ”[2(§\[)]
and

Z hj(l',y)/ rd+¥—j(1nr)leim§(z,y) dr
R

JeNgy >0
> _N-1_ s _ . .
= Z h](l’,y) H2H22(§V) ]/ Td+¥_] (lnr)le"”Z”’fz(N) dr
jENU R>0

In particular, for 1 =0 and d+ &2 - j e C \ (-N),

jeNo R>0

N+1

N —d-DLyg )N
—J) (=) (HZHez(N) + ’0)
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yields the following proposition since, for k = dgiag, we have 9(z,y,§) = (x - y,&)
and a(z,y,&) = ie. d=0 and

271"

1 .
- 1 (m\ 72 - (N-1) -
hj(z,y) = 27r(2) e ' J O.
0 , 7eN
Proposition 7.4.

N-1

1 (7T\ 2 _imon N +1 N1 \N
Odiag (2, y) “or (5) e TN 1)P(—2 )(—l) 2 (Hx ~Ylley +’O)
N-1
1 T\ 2 im N+1 _N+1 -N
_im(N-1) , -
+%(§) e s P(T)(—l) : (—Hx—yHeg(N)J”O)

In particular, for N =1, we obtain

1 . -1 . -1
Sutae (@) =5 (1 = sy +10) = (1= wlhiny - 10) ).

This is precisely what we expect; cf. end of section 4.4.3.1 in [17].
|

REMARK Note that in the IV = 1 case everything collapses as there are no spherical
derivatives. We will simply obtain

ka(z,y) :/ rde"ﬁ(w’y’l)ad(x,y,1)d7°+/ rde"ﬂ(w’y’_l)ad(x,y,—1)d7°
R>O

R>O

and

/ Tdeirﬁ(w7y7il)ad(x7y,:I:l)d'f'
R

>0

caaa(,y, +1) (9(z,y,+1) +i0) """ L d¢-N
~aa(e,y, £1) @B (sl (<i9(x,y,£1) +0)) , de-N

with some constants ¢q. Hence, for
k(z,y)~ 2 | €@ Oay j(a,y,€)de
jeNy /R
with d € Z and aq-; homogeneous of degree d - j, the coefficient of the logarithmic

terms are

(i0(z, y, +1) — 0)" 4
(j-d-1)!

Z ad—j(xv Y, il)
JEN, g1
In particular, in the critical case where J(x,y,+1) = 0 (in fact, we are only interested
in Y(x,x,+1)) we are reduced to the fact (cf. formulae (3) and (4) in [1]) that
the densities of the residue traces at z (that is, a_1(z,2,+1)) coincide with the
coefficients of the logarithmic terms (that is, In (—i}(x, 2, £1) + 0)) in the singularity
structure of k.

Furthermore, we can calculate the generalized Kontsevich-Vishik trace for a =
ap + Y,era, if VeeI: d, e Rx{-1} A [, =0. Then, the kernel k satisfies (note
I(x,z,r) =0 by assumption)

k(x,x) = / ao(z,z,r)dr + a,(z,z,r)dr.

el YR
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Since 1g_ a,(v,z,-) is homogeneous of degree d,, we obtain that fR a,(x,z,r)dr
> >0

vanishes for d, < —1 since the Fourier transform F(1g_ a,(x,,-)) over R is a ho-
mogeneous distribution of degree —1 —d,. For d, > -1, we obtain

[ e = o, (.1 91+ i0)
R

>0

which is precisely the other singular contribution (that is the f(z,y)(p+0)"" term
in equation (3) of [1]) to the kernel singularity. In other words, the difference of
k(x,y) and its singular part k*"8(x,y) satisfies

(k- ksmg) (z,) :/ ao(z,z,r)dr
R>O

In order to use Theorem 3.1, we will have to show that the regularized singular
terms vanish. This follows directly from the Laurent expansion with mollification.
For d, > -1, we have the two terms

@2 nq, (0)(z, x, £)dédvol .

nZN xloe (n!)( Jdgdvolx ()
no (=17 V@@ Dgng, (0)(z, x l)dvolX(:zr)
* 22 (1 +d, )i

neN, j=0

to evaluate at z =0, i.e.

hN\O

1
1irn/ / (h+r)*a,(x,x,1)drdvol x ()

1+h
/ (z,2,1) hm rddrdvolx (z)
h\0 h

1+h d,+1 _ hdL+1
/ (z,2,1 hn%( * )d 1 dvolx (z)

/ (.2, 1)dV01X(:1:)

and
- [ a.(z,z,1)dvolx (z)
1+d, '

Hence, the generalized Kontsevich-Vishik trace reduces to the pseudo-differential
form. Let a ~ ZJ—ENO aq-; and N be sufficiently large, then

N
trgy A :/ / a(z,z,1) = Y ag—j(z,x,7) dr dvolx ()
xJr,

Jj=0

which is independent of N.

In fact, we can generalize the case above.

Theorem 7.5. Let A be a Fourier Integral Operator with kernel

k(z,y) = / @Oy, €)d
RN

whose phase function ¥ satisfies Vo e X VE e RN © 9(x,z,£) =0 and whose ampli-
tude has an asymptotic expansion a ~ Y,y a, where each a, is log-homogeneous with
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degree of homogeneity d, and logarithmic order 1,, and R(d,) - —oo. Let Ng € N
such that Vi e N,y R(d,) <-N and let

. . No
By = [T S (o e
RN =1
denote the singular part of the kernel.

Then, the reqularized kernel k — k*"8 is continuous along the diagonal and in-
dependent of the particular choice of Ny (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density’ is given by

No

(k—ksmg) (z,x)dvolx (x) :/ (z,2,8) Z (x,x,&)dEdvol x ().
RN

Proof. Note that k — k"8 is regular because it has an amplitude in the Hérmander
class S™(X x X x RY) for some m € R__y. Hence, it suffices to show that the
(-regularized singular contributions of a, vanish for d, # —-N. Let ¢ € N such that
d, #+ —=N. Then, we need to show that

//N(071)GL(0)(;E,$,5) d dvolx (z)

(—1)l['+1lb!fanBRN a,(0)(z,z,€) dVOlanBRN (x,€)

" (N +d,)l+1

vanishes. Mollifying

/ a,(0)(z,x,&)dE = / / (0)(z, z,rv)dvolap, \ (v)dr
BRN(O,I) aB]RN
:/ / rNer”l(lnr)lde(O)(a:,:zr,u)dvolaBRN (v)dr
0 JoByn

yields (note that f, — f compactly implies f; — f’ compactly for holomorphic
functions

)

1 1+h
lim/ (h+r)N+d"1(ln(h+r))lLdr:lim/ pNrL (I )l g
hNO g hx0 Jp

e l N+d
_ 1 . s +d,—1+z d
lim : (2 ) (0)dr
1+ h)N+dL+z _ hNerﬁZ
=1i L = (
ymd (Z N+d,+z ©

=" (2 (N +d, +2)7")(0)

- (-1)k1,!
- (2 T (N +d, + )l ) 0,

/ / a,(0)(z,z,£) d§ dvolx(x)
X JByn (0,1)

(—1)1L+11L!fXx8BRN a,(0)(z,xz,) dvolxxam, v (z,8)
(N +d, )+t

ie.

+

9Mind that this density is only locally defined. It only patches together (modulo pathologies)
if we assume the kernel patched together in the first place and the derivatives of terms of critical
dimension d, = —N regularize to zero, i.e. if ((fpyA)(0) is tracial and independent of gauge.
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(_1)lLlL! fanBRN ELL(O)(x, xz, 5) dVOlXX@BRN ('rv 5)

(N +d,)b+1
(—1)l['+llL!fanB]RN a,(0)(z,z,) dVOlanBRN (x,€)
! (N +d,)l L
=0.

O

REMARK Instead of using mollification directly, we could have used the generalized
Mellin transform which yields

/ rdr=M(rwr*)(1)=0
R

>0
where fR . r®dr is understood in the regularized sense. However, this does not
apply to the critical case d, = =N because the coefficients in the Laurent expansion
are integrals over @,(0) on Bg~ and over 9"*1,(0) outside Bg~. Hence, we cannot
re-write those integrals such that the generalized Mellin transform appears as a
factor and the critical terms will not vanish, in general.

u
At this point, we can return to Proposition 3.4 where we had the formula

fpoC(z — BQ?) = /X try (fpoB) — éres (BInQ), dvolx (x) —tr (Bl{o}(Q))

with B and @ poly-homogeneous, @@ admitting holomorphic functional calculus and
the logarithm, and with finite dimensional kernel (e.g. an elliptic classical pseudo-
differential operator on a closed manifold with spectral cut), and ¢ is the order of
Q. In [16] (equation (2.14)) it was shown that

i90C(z = BQ?) = 3 res (BIn Q) — tr (Bly) (Q))

holds if (z~ try (fpoB)) = 0 (e.g. if B is a differential operator) and Sylvie
Paycha conjectured that this formula should hold more generally. (Note that
we are using a different notation as we might want to assume a global point
of view rather than just considering everything a sum of local patches without
patching properties. Under these stronger conditions, we cannot simply write
Jx tra (fpoB) - %res (BInQ), dvolx (z) = trgy (B) - %res (BInQ) since they are
not separately globally defined densities.) The following corollary shows an equiv-
alent characterization of Paycha’s conjecture for Fourier Integral Operators as in
Theorem 7.5 (in particular for pseudo-differential operators) in terms of the regular
part of B.

Corollary 7.6. Let @ be as above and B be a Fourier Integral Operator whose
phase function ¥ satisfies Yo e X YE e RN : ¥(x,x,€) =0 and whose amplitude has
an asymptotic expansion b ~ ¥,y b, where each b, is homogeneous (on RY < {0})
with degree of homogeneity d, and R(d,) - —oo. Furthermore, let I € N be such
that the amplitude b decomposes into the form by + Y ,.; b, where by is integrable in
RN (i.e. of Hormander class S™(X x X x RN) with m < =N ), and let By the part
of B corresponding to by. Then,

fpoC(z = BQ?) :/X try (fpoB) — éres (Bln@), dvolx(z) — tr (Bl{o}(Q))

:/Xtrx (BO)—%res(Ban)xdvolX(:zr)—tr(Bl{O}(Q)).

In particular, the following are equivalent.



A GENERALIZED KV TRACE FOR FIOS 67

(i) Paycha’s conjecture: fpoC(z » BQ?) = —% res(BInQ) - tr (Bl{o}(Q)).
(i) @+ [pn bo(z, z,&)dédvolx (x) is a globally defined density on X and

tr(Bo):/X/RN bo (., €)ddvol x () = 0.

REMARK If we remove the question of global patching and simply consider sums
of local representations, then we obtain

0ol (z = BQ?) =tricy (B) - 3 (BInQ) - tr (Bl (Q))

—tr (Bo) - % res (BIn Q) - tr (Bl()(Q))

by default. In particular,
(i) Paycha’s conjecture: fp,((z — BQ?) = —% res(BIn@Q) - tr (Bl{o}(Q)).
and
(ii") tr(Bo) = [y [~ bo(x, z,&)dEdvolx (x) = 0.
are equivalent.
u

Finally, we will consider an example of linear phase functions which will be
generalized to find algebras of Fourier Integral Operators which are Hilbert-Schmidt
with continuous kernels.

EXAMPLE Let 9(z,y,€) = (0(x,y),&)gy and O(zo,y0) # 0. Then,

o) = [ AOED DN oy, €)= F (ae.90)) (-6(a.0)

is continuous in a sufficiently small neighborhood of (zg,y) for homogeneous a
because F (a(z,y,-)) is homogeneous and O(x,y) non-zero. Hence, if © does not
vanish on the diagonal, then X 3 z — k(x,x) € C is continuous and, by compactness
of X, [y k(z,z)dvolx (x) well-defined.

The stationary phase approximation above generalizes this observation (é (x,y) =
O(z, s Qs S :
ﬂ:m ie. 0°(2,y) = (-1)° [0(2.9) ] 1,y With s € {0,1}).

Theorem 7.7. Let A be a Fourier Integral Operator with phase function ¥ satisfy-
ing 03 (19|X><XXBBRN ) (x,y,€) e GL (RN_l) whenever 039(x,y,£) =0 (in a neighbor-
hood of the diagonal) and {és; Se€ Ngn} the set of stationary points. Furthermore,
let

VeeX VseN_,: ﬁ(x,x,és(:r,:zr)) #0.
Then,
(Xs2zvk(z,2)eC )eC(X)

and
trA:/ k(x,x)dvolx (x)
X

is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, -functions of
such operators have no poles (since the trace integral always exists).
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An example for such operators occurs on quotient manifolds. Let I' be a co-compact
discrete group on M acting continuously'” and freely* on M /r, k a I'xT-invariant'?
Schwartz kernel on M, and k its projection to M /r. Then, k(x,y) = ¥ r k(z,7y).

Suppose k is pseudo-differential, i.c. l;:(x,y) = fRN eXe=Y8eN g (2,1, €)dE. Then,

k(z,y) =), TN (1, vy, £)dE.
~el' /RN

Hence, for v = id we have a pseudo-differential part and for v # id the phase

) o . . -y .
function 9, (z,y,§) = (x — vy,{)r~y has stationary points iiHI—Vszz(N)’ that is,

Dy (az,y,és(z,y)) = (-1)* [z =yl (n) does not vanish in a neighborhood of the
diagonal.

u
REMARK Note that we may use the stationary phase approximation results to get
insights into the Laurent coefficients of the (-function without having to consider
all these Laplace transforms because those coeflicients are of the form ¢- I(z,y,1)
with some constant ¢ € C, i.e. we do not need the radial integration and obtain an
asymptotic expansion

/ em(m,y,é)a(x, y,§)dvolap,  (§)
0By~
. 3 . A
:/ elﬂ(m,y,é)a0($7y,g)dvolaBRN ©+> > ew(z,y,a(z,w)hj(x,y)
0By~ T

:/ em(m,yyé)ao(‘r’y,g)dvolaBRN ©)
0By~

S M s -3 % sen ©°(z,y)
0 (a, (27) 77 |det ©%(x,y)| % T 58 _ . N
+ Z_;e (w,y) Z j!(2i)j AJaB,(—)sa (w,y,§ (w,y))

JeNg

with lgs(xvy) = ﬁ(xvyaés(xvy))a es(xvy) = 8§Bﬁ(xayvés(xay))v A(?B,@S(aa,y) =
(Gs(x,y)_laag,aaB) = —divap,y 0% (z,y)™! gradyp , and £5(x,y) is the unique
stationary point of ¥(x,y,-) in dBg~y Nspta®(z,y,-) while a® has no such point in
its support.

]
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