Well-posedness and causality of the non-Newtonian
Navier-Stokes equations on 3-dimensional
Riemannian C'!'-manifolds with respect to strong,

local-in-time solutions

Tobias Hartung
Department of Mathematics, King’s College London,
Strand, London WC2R 2LS, United Kingdom

tobias.hartung@kcl.ac.uk






Preface

The Navier-Stokes equations have been studied in a variety of cases for their
importance in physics and engineering. Yet, it seems, especially non-Newtonian
fluids create a lot of problems for the sheer diversity of viscous properties a fluid
may have, though the Newtonian case, too, still holds a tight grasp on many in-
teresting questions. Not even well-posedness of strong solutions global in time is
known; in fact, this is a Millennium problem of the Clay Mathematics Institute
([5]). Furthermore, causality has never been addressed to my knowledge. In my
Dipl. Math. thesis I considered a unified approach for large classes of viscosities
in the case of C*°-manifolds without boundary. In these notes, we will expand
these findings to include many results interesting for applications, that is, we will
consider 3-dimensional C''''-manifolds with or without boundary - the largest class
of conceivable Riemannian manifolds. If the manifold has a boundary, then we will
consider Dirichlet and Neumann boundary conditions. Fluids are assumed to be
incompressible and isotropic.

This approach is largely influenced by Rainer Picard who developed a unified
Hilbert space approach for well-posedness and causality of (linear) partial differen-
tial equations ([15]). It seems that this unified approach works perfectly for linear
partial differential equations encountered in mathematical physics and, hence, he
has studied many models as examples; the Stokes equation was one of them. In
fact, he observed that it is possible to generalize the viscosity term which I will use
as well. The other highly interesting question is, how little regularity of the mani-
fold can we ask for and still obtain local well-posedness of strong solutions. Aside
from a Rellich-Kondrachov type condition, C'*!-manifolds are as low in regularity
as we are able to reduce the problem without having to argue with very special
assumptions on the manifold. This is a rather interesting topic in itself and far
beyond the scope of these notes. However, it is interesting to keep in mind that
this is precisely the lower end of regularity most problems in mathematical physics
can support because most problems in mathematical physics contain an operator
(here, the Stokes operator) which is a relative of the “mother operator” (cf., [14])

0o -v*
(o )
with a suitable domain in the Lo space generated by of the set of Lipschitz con-
tinuous covariant tensors. Here, V denotes the co-variant derivative d®. In other
words, the C!'! condition is necessary for the domain of A to be sufficiently rich
and, hence, a minimal condition for the problem to be meaningful.

These notes are structured in two parts. In part 1 we will discuss the (func-
tional) analytic background and in part 2 we will use the physical textbook for-
mulation of Navier-Stokes for incompressible fluids “re-modeling” them to find an
abstract non-linear Cauchy problem which we are going to solve afterwards.

I will start with chapter 1 which seems rather random but this is a rather
intriguing interpretation of the projection theorem and yields many powerful ap-
plications. Ever since Rainer Picard has introduced this to me, I have used it quite
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4 PREFACE

extensively and often subtly hidden. Hence, I included this chapter for the reader to
see some subtle applications of the projection theorem in proving some important
theorems. These methods will be used everywhere.

The content of chapter 2 has also been taught to me by Rainer Picard and
it will be used throughout the notes as the spaces we are working on are tensor
products and the operators are mostly of the form 1® A or A®1 even though we will
only write A in both cases due to the theory explored in chapter 2. More extensive
representations of the topic can be found in chapter 1 of [15] and the appendix A
of [20].

The L,-spaces used in these notes will be introduced in chapter 3. This is
properly standard Lebesgue theory and nothing special; however, for the sake of
notation and completeness and since it is not very common to see these L, spaces,
I have added this chapter. Furthermore, as we are on a Cl'-manifold, it is not
at all obvious why Sobolev spaces of higher order should exist. This is subject of
the last section of chapter 3 though readers interested in a more detailed account
should refer to chapter 2 of [15].

Chapter 4 contains the analytic implicit function theorem. Since the usual
approach to the theorem is rather abstract, I chose to adapt a prove that was
shown to me by Jiirgen Voigt. This proof first proves the implicit function theorem
and regularity up to C*° in a constructive way (which is important since it makes a
major difference if we are able to construct solutions of the Navier-Stokes equations
or not) such that any second year mathematics student should be able to understand
it, if you explain them a few facts about Banach spaces and linear operators. Other
than that it is a direct generalization of the finite dimensional theorem. In order
to obtain analyticity, we then have to pull out the big guns. The proof shown here
is an adaptation of the one shown in [3].

Finally, chapter 5 concludes the analytical background part with some facts
about Fredholm operators. These will come in handy as the linearized Navier-
Stokes operator is a Fredholm operator and they will allow a major shortcut in
proving that the linearized Navier-Stokes operator is an isomorphism (needed for
the implicit function theorem).

Part 2 starts with chapter 6 on modeling Navier-Stokes. Here, we will start
from the physical equations of fluid dynamics and “re-model” them into the partial
differential equation we are going to solve after identifying the spaces to work in. At
this point, the Rellich-Kondrachov condition becomes vital as the equation would
be ill-stated otherwise. However, I will not go into detail of the physical implications
of the changed viscosity term and, thus, non-Newtonian fluids since this would fill
at least a book (cf., e.g., [1]).

Chapter 7 will is a rather short one though important as I think the content
should be part of anyone’s vocabulary working with non-linear partial differential
equations. Chapter 7 contains the framework of the proof, that is, how to construct
solutions assuming all theorems are applicable. This will leave us with two holes
to fill. First we will have to show that the linearized Navier-Stokes operator is an
isomorphism. This will be addressed in chapter 8 by showing that it is an injective
Fredholm operator of index zero. This approach is also a standard approach and
has previously been applied to Navier-Stokes successfully in multiple special cases
(ct., e.g., [2])-

As a corollary we will, furthermore, obtain injectivity of the Navier-Stokes
operator which will be used in the causality proof in chapter 9. This is the second
gap to fill in order to make the construction of chapter 7 work. Here, I had to
generalize the concept of causality (cf., [15]) to non-linear relations which is not as
straight forward as it appears. It turns out there are two slightly different notions
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of causality here - weak and strong causality - both having physical meaning. In
fact, strong causality is what you want in a classical deterministic theory (such as
the Navier-Stokes system) whereas weak causality is the most we can hope for in a
quantum system with non-vanishing vacuum fluctuations. For the proof to work,
weak causality would suffice but for physics to work strong causality is needed
and, as it turns out, physics is fine; we can prove strong causality of the Navier-
Stokes equations. Finally, we can state the well-posedness and causality theorem
for Navier-Stokes of non-Newtonian fluids for strong solutions local in time.

At last, I would like to thank Ralph Chill and Rainer Picard for uncountable
discussions while supervising my Dipl. Math. thesis, thus, making these notes
possible. Furthermore, I thank Ralph Chill, Rainer Picard, and Jiirgen Voigt for
introducing me to most of theory used in these notes. Finally, I want to thank my
parents for their support and patience.
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CHAPTER 1

Some remarks on the Projection Theorem

We will begin by having a closer look at the projection theorem and some
interesting applications as this is used throughout these notes without further men-
tioning. Let Hy and H; be Hilbert spaces over K € {R,C} and A ¢ Hy® H; a closed
linear relation. By —A we denote the operational minus

-A:={(u,-v) € Hy® Hy; (u,v) € A}.
Then the adjoint relation A* is defined by
A* = (A—l)i
= ({(wv) € Hy® Hys (uv) e A)7")
=—{(v,u) e H ® Hy; (u,v) e A}*
=—{(y,x) e Hy ® Ho; ¥(u,v) € A: ((y,2),(v,u))H,0H, =0}
=—{(y,z) e H1 ® Hy; Y(u,v) € A: (y,v)m, +{z,u)gy, =0}
={(y,-z) e Hy ® Hy; Y(u,v) € A: (y,v)p, +{z,u)g, =0}
={(y,z) € Hy ® Ho; Y(u,v) € A: (y,v)p, +{-z,u)g, =0}
={(y,x) e Hy ® Hp; V(u,v) € A: (z,u)m, = {y,v)m, }-
The last line shows that this is the definition we want, as well as,
At = (AT = (AT = (AT = (AT = (AT = ((FAY) T
ie., -, *, and ! commute. Note that (*,*) is a Galois connection on the set of

linear relations in Hy @ H; with the inclusion as partial ordering. For U ¢ Hy and
V ¢ H; we will use the notation

[V]A :={(u,v) € A; v eV} the pre-set of V with respect to A
A[U] ={(u,v) € A; ueU} the post-set of U with respect to A.
Note that if A was a function one would call them pre-image and image.

THEOREM 1.1 (Projection Theorem). Let Hy and Hy be Hilbert spaces and
A € Hy® Hy a closed linear relation. Then we obtain the following orthogonal
decompositions.

Hy =[{0}]A © A*[H]
H, =[{0}]4" © A[Ho]

PROOF.
yeA[Ho] < y L A[Hp]
< Y(u,v) e A: (y,v)g, =0
< Y(u,v) e A: (y,v) g, +{0,u)m, =0
< Y(u,v) e A: ((0,y), (u,v))Hoom, =0
< (0,y) e A"

11



12 1. SOME REMARKS ON THE PROJECTION THEOREM

= (y,0) e (AH)™
= (y,0) e (A4
< ye[{0}]A.

The other identity follows from dualization.
O

Remark Note that the usual version of the projection theorem reduces to proving
that an orthoprojection exists and that it is self-adjoint.

COROLLARY 1.2. Let A and A* be closed linear operators and A[Hy] closed.
Then

Au=f

admits a solution u if and only if f L [{0}]A*. Furthermore, if ug is a solution
then the set of solutions is given by ug + [{0}]A.

COROLLARY 1.3 (Fredholm Alternative). Let A be a compact operator in Hy
and A € C. Considering

(+) (A-A)u=f
in Hy yields the following cases.

Either (*) admits a unique solution u for every f € Hy
or (x) admits a solution u if and only if f L [{0}](A* — A*). In this case,
every element of u+ [{0}](A— A) solves (*) and solutions are unique in

([{031(A - 4))*

Remark The corollary above trivializes the Fredholm alternative to “Either there
is a solution or not.” However, the Fredholm alternative stated in this form shows
that (for any compact operator A) a non-zero \ € C is either in the resolvent set or
the point spectrum of A.

COROLLARY 1.4. Let f: Hy — C be a continuous linear functional. Then f =0
or codim[{0}]f = 1.

PROOF. Let f be non-zero. Then f* is non-zero, i.e., dim f*[C] = 1, and

Hy =[{0}]f ® f*[C] proves the assertion.
(]

COROLLARY 1.5 (Riesz’ Representation Theorem). Let f: Hy — C be a con-
tinuous linear functional. Then, there exists x € Hy such that

Vy e Hy: f(y) = <y7x>H0'

PRrOOF. If f=0 then x=0 v
If f # 0 then choose zq € ([{0}]f)* with |z];, =1 and define z := f(x0)*zo.
Then (z) is a basis of ([{0}]f)*, i.e.,
Vy e Ho: (y,2)m, =(y, f(20) o),
:f($0)<y,$O>H0
=f ({y,20) o 20)
=f({y,z0) oo +y = (Y, T0) o To)
| —
e[{0}1f
=f(y)-
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Let & € Hy be such that Yy e Hy: f(y) = (y,2)n, holds, as well. Then
vy € HO 1 0= (yu‘T)Ho - (yu‘%)Ho = <y7$ - i')Ho
holds and we conclude x = , that is, = is unique.
O

The following example shows that we may also use the projection theorem to
solve PDE.
Example Let 2 ¢ R” open and non-empty, C° (£, K) the set of C*~(R",K) func-
tions with compact support in Q, grad, : C°(Q,K) - C(Q,K") the usual gradi-
ent, and div.: CZ(Q,K") > CZ(Q,K) the usual divergence. Then it is easy that
grad, and —div, are formally adjoint (partial integration) in La(€2,K)® Lo(€2,K™),
that is, grad, ¢ —div,. Note that A ¢ B* implies

B=B*"cA*
which shows that both operators are closable if A* and B* are operators (that is,
A and B are densely defined). Hence,
grad, := grad,, divg :=div., grad:=—div}, div:= -grad}

exist and they are all densely defined closed linear operators.

For A e {grad,, grad, divo,div} we define H(A) to be the Hilbert space D(A)
endowed with the graph norm HxH?{(A) = chHi2 + HAZCH%2 The projection theorem
for inclusion H(grad,) = H(grad) now shows

H(grad) = H(grad,) ® H(grad,)".
Let f € H(grad,)* n D(divgrad). Then
Vo e H(grado) =0 <f7x>H(grad)
(f,2) L2 ) + (grad f, grad 2) 1, (o k)
(f,2) L2k + (grad f, grady @) 1, (o k)
(f,x
{

[ 2) o ry + (—divegrad f, ) 1, o)
(1 -div grad)fv‘T)Lg(Q,R)

implies H(grad,)* =[{0}](1 - divgrad) = [{0}](1 — div grad).
We may now use this to solve the inhomogeneous Dirichlet problem

p—divgradp =0, ¢ — f € H(grad,), f € H(grad).

Since H(grad) = H(grad,) ® [{0}](1 — divgrad), there are unique fy € H(grad,)
and fi € [{0}](1 - divgrad) such that f = fo+ fi and we obtain

(1-divgrad)fi =0, fi - f = —fo € H(grady), f e H(grad),

i.e., ¢ = f1 solves the inhomogeneous Dirichlet problem by projection.







CHAPTER 2

Tensor products of Hilbert spaces

Let n € N and (Hp)rav,, be a family of real' Hilbert spaces. For x € Xj_; Hy,
we define 71 ® ... ® x, € (X},

»_1 Hy)” to be the linear functional that suffices

Vuekz(lHk: (1 ®...0x,)(u) = {1, u1)m, - (T, Un ) H, -

Let

We = lin{:rl@ .®Ty; TE X Hk}

-1
be equipped with the bilinear continuation of

(t1®...0Tp,u1 ® ..

'®u">H1®"'®Hn = <‘T17u1>H1 ' "<$nuun>Hn'
(i) Symmetry
(Z QiTi1 ®...08 Tjn, Zﬁjyj,l ®...0 yj1n>
‘ J H®..9H,
= Z Z @iBi{Ti1,Yj 1) Hy - ATins Yjn) B,
i J
= Z Z aiBi(yj1, i) my - (Yo Tin ) H,
i g
= (Zﬁjyj,l ®...8Yjn, ZaixiJ ®...8 xi,n)
I i Hi®..9H,

(ii) Non-negativity

Since the Gramian matrices Gy, := ({(z; k,xj,k)Hk)i,jENgm are positive
semi-definite, the matrices (Az(?))ixjeNgm := /Gy, are positive semi-definite
as well. Thus,

3

S
I
—

0T 1 Q... @ Tjn, Z a;Ti1®...0 ,Tj)n)
J=1 H1®..0H

s
NIE

Oéiaj(ﬂfi,l,ilfj,l)Hl teelt (xi,naxj,n)Hn

~
Il
[u
<.
Il
[

MS
ANgE

1 4@ (n) 4()
> ZalaJA AL ALA

is1*7s1j " iSn SR ]
1 s1

(1) (n) €8] (n)
(Z;Azsl . 'Aisnai)(z Aslj Asnjaj)

<.
Il
—

J

= SZ

S1 n

7=1

11t works complex, as well, using the obvious adaptations to obtain sesqui-linearity.
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16 2. TENSOR PRODUCTS OF HILBERT SPACES

((Sawama)  (Saneaza) ) 0
(81504438n) (51504458n)

= t2(NZ,,)
holds.
Hence, (Wg, (*,")H,9..0H, ) 1S a semi-scalar product space and called the algebraic
tensor product of (Hk)kENsn' We will also denote algebraic tensor products as

a a a
H1 ®...Q Hn or ®kEN<n Hk

DEFINITION 2.1. The completion

Hio.. @ H =g lme o
k=1

is called tensor product of (Hy)yen_, where ||z o o, denotes the semi-norm
induced by ('Y, 0. oH, -

The empty tensor product Qg (sometimes denoted as Qg H with some arbi-
trary Hilbert space H) is defined as Qg =R

Remark (i) Due to the completion process, elements z,y € H1 ® ... ® H,
with |2 -yl 4, e em, =0 are identified. H; ®...® H, is a Hilbert space,
thus.

(ii) The choice ®4 := R is senseful because both ®4 and R act as neutral
elements

®®®H RH zRe®H,.

iel iel iel

(iii) The tensor products introduced here are not tensor products in the alge-
braic sense as, in general, they fail to have the universal property?; cf.,

[6].
u

Example Let H be a Hilbert space and Q € R measurable. The space Lo(Q); H)
is the completion of

lin{t — 1;(t)x; = € H, I < measurable and with finite measure}

with respect to the scalar product (f,g) = [ (f(t),g(t))mdt. For I ¢ Q measurable
and x € H we define

lr®@x:=(t~ 17(t)x).

Obviously

(17 & 2,15 ® Y. (e :fQ11(t)1J(t)dt<x,y>H

S K OERMOMIT
=(112,11Y) Lo (1)

holds. Thus, the closure of the linear continuation of (¢t — 1;(¢)z) — 1; ® = defines
a unitary map U : Lo(Q;H) — La(Q) ® H.

]

2For two infinite dimensional Hilbert spaces Hi and Ha, there is no Hilbert space H and

bounded bi-linear map j : Hix Hz — H such that for every Hilbert space H and bounded bi-linear
map j: Hy x Hy — H there is a bounded linear operator L: H — H satisfying j = Lo j.
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THEOREM 2.2 (Structure of Tensor Products). Let Hy and Hs be separable,
infinite dimensional Hilbert spaces. Then, there exists T € L(Hy ® Ho, L(H2, H1))
satisfying

Vhy € Hy th,hé € Hy: T(hl ® hg)h,, = <h2,h,2)H2h1.

The operator T maps Hy ® Hy unitarily to HS(Ha, Hy), the set of Hilbert-Schmidt-
operators between Hy and Hi.

Furthermore, let a € Hy ® Hy. Then, there exists \ € £o(N), an orthonormal
basis (n;)ien of Hy, and and orthonormal basis (x;)ien of Ha such that HaHH1®H2 =
[Aley vy and

a= Z/\nnn®Xn

neN

hold.

PROOF. Let (¢;)ien be an orthonormal basis of Hy, (¢;)in an orthonormal
basis of Hy, and

aijpi ® ;-
-1

m
a:= Z
i=1

Then, (@) i, jyen € L2(N?) with @5 := 0 for i > m or j > n, and we obtain [a] 4, g, =

J

H(dij)(i,j)el\P Héz(w) by the Pythagorean theorem. Hence, we may decompose any

ae HH® Hy as a = Zi,jEN AijP; ® Y; with ”aHH1®H2 = ||(aij)(i,j)eN2 ”Zg(Nz)'
Let a € Hy ® H, satisfy a = i jeN Qij i ® P and ho € Ho. Then, we define

T(a)ha = Y aij(V;, ho)m, i
i,7eN

and observe for h,l = Zi&N Q;p; € Hl, hQ = ZjEN ﬂjl/)j € HQ, and h,2 € H2

T(h1 ®ho)hy = Y if3i{g, hs) i = (Z ﬂj‘/’jah,2> > aipi = (ha, b))y ha,

1,j€N jeN ieN
as well as,
2
2
|T(a)haliy, =D | D aij(¥y, ha)m,
ieN | jeN
2
= (Z aijj, hz)
ieN | 1jeN H,
2
2
<212 aid|  h2l,
ieN || jeN Hs
2
2
NP |%'|) |27,
ieN \ jeN

2
2
< (Z > |%'|) |2,
ieN jeN

2 2
= @i .pew |, oy 12, -
Thus, T extends to a bounded operator on H; ® Hs and the Hilbert-Schmidt norm
IT(a)| g of T(a) satisfies
2

2 2
= 2 lawl” = lali, e m, -
i,keN

1T (a)l%s = kZN IT(a)gnlz,) = 3 2

keN ieN

> aij (s, V) H,

jeN
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ie.,, T: Hy ® Hy > HS(H>, Hy) is an isometry.

Let S € HS(Hy,Hy). Then, S*S € L(H>) is compact?, self-adjoint, and non-
negative. Thus, the spectral theorem yields the existence of N ¢ N, an orthonormal
basis (xn)nen of ([{0}]S*S)* ([{0}]S*S is the kernel of S*S), and A € RY such
that for every ho € Hy

S*Shz = Z )\721<h27Xn>H2X"
neN

holds. Let 7, = A\;1Sx,, for n € N. Then,

(77m77m>H1 :/\7_11/\7_711<Xna S*SXm>H2 = /\;LlAm(Xnathfz = Omn

shows that (7, )nen is an orthonormal set. Defining ax = ¥ ,cn_, Anfin ® X»n for
k € N, we observe for n € N

T(ar)xn= Y, N{Xj>Xn)H1j =

{/\nnn , n<k_{an , n<k
j€N<k

0 . n>k |0 ,n>k’

Hence, Since T is an isome-

T (ar)|(t10318): HS(Hz, Hy) S [Slctions): HS(Ha, Hy)"

try, this shows that a := ¥,,cx An?n ® Xn converges and T'(a)|(r(o315): = Sl([{0}]9)-
holds. However, by definition, we have [{0}]T(a) = [{0}]S, i.e., T'(a) = S, showing
surjectivity of T'. Since isometries are injective, we directly obtain bijectivity, too.
Furthermore, setting A, := 0 for n €e N\ N, we obtain

Z |)\n|2 = Z )\nnn ® Xn, Z )‘mnm ® Xm = HaHzl@Hg
neN neN meN Hi®H>

which shows A € £5(N) and [A|,, ) = [l 7, g, thus, completing the proof.
O

Let (Hox) ke, and (Hik) ken_, be families of real Hilbert spaces and for each
keN_, let Ay € Ho @ Hyj be a linear operator®. We define

A1®®An ® HO,k_> ® Hl,k
keN keN_,,

=n

as linear continuation of 1 ® ... ® x,, » (4A171) ® ... ® (A,x,) with

D(A1®...0A4,) = R D(Ap).
keN_,,

We will also use the abbreviation ®7€€Ngn Ay for 41®...QA,.

3Every Hilbert-Schmidt operator is compact.

4We do not distinguish between an operator (or, more generally, a function) and its graph
as a function f: X — Y is, by definition, a right-unique, that is, single-valued, relation which is
usually considered the graph of the function. Furthermore, we do not assume a function to be
left-total since closed unbounded operators in Banach spaces may at most be densely defined.

Also note that we induce a topology on X @Y if X and Y are Banach spaces. This topology
can be defined using the norm |(2,9) | xqy = lzlx + Iyly or 1(@,9)lxay = max{lely , lyly -

In the Hilbert space case, it is common to choose [(z, ) xgy = \/ H:(:H%c + Hy”%; since then X @Y
is a Hilbert space assuming X and Y are.
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Since 41®...®A,, is a linear continuation, it is a linear subspace of

QR Horo Q Hiy,

keN_,, keN_,,

thus, we only need to make sure that for all (0,w) € A1®...®A4,

w =0

holds for A;®...®A, to be an operator. We may express w by

w = Zai(Alxi,l) ®...® (Andfl’n)

with

O:Zaixm ®...0Tin
[

and, thus, we observe

VkeN_, VupeHop: 0= Z%(iﬂi,l,ul)Ho,l oo T, Un) Ho
i

= Zoéi(ﬂfiz, Uz)Hm e (Iz‘,mun)Ho,nxi,l, Uy
i Ho 1

Without loss of generality we may assume that the x; j are linearly independent in
Hy i, yielding

0=ai{®i2, u2)Hy o -+ (Tipn, Un) Ho.,

for every i. Since none of the z; , is zero

Vi: o;=0

needs to hold. Hence, w =0. A;®...®A, is an operator, thus. If it is closable, we
will denote the closure by

A1®...® A,.

Remark In fact, if all A are closed operators, then they are Hilbert spaces with
respect to the graph norm and the tensor product of the operators is isometrically
isomorphic to the tensor product of Hilbert spaces. In particular, A1®...®A,, =

a a
Ai®...® A,
[

LEMMA 2.3. Let Hy and H, be Hilbert spaces, Sy € Hy be total, i.e., lin Sy is
dense in Hy, and S1 € Hy total. Then, Sy ® Sy is dense in Hy ® Hy.

PROOF. Let x € Hy and y € Hy. Then, there are sequences (2, )nen € (lin So)N
and (yn )ney € (lin S1)Y with z,, - = in Hy and ,, -y in H;.
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Let n € N. Then, there are k,m € N, s?,...,sg € So, s1,...,8L €Sy, and
k 0 m 1
at, ..., 0k, B1,..., Bm € R such that z, = 354 a;s; and y, = X757, 5;s;. Hence,

k m k m
a
Ty ®Yn = (Z ais?) ® (Z Bjsjl) = Z Z aiﬁjs? ® s; € 5)®5].
i=1 j i=1j=1

J=1
Furthermore, we obtain

|77 ® Yy —z ® yHH0®H1 <zn®yn-—z® y"”HocaHl tlz®y,-z® yHHO@)Hl
=[(zn - ) ®ynHH0®H1 +[z® (yn - y)HH(@Hl
=z - xHHO HynHHl + Hx”HO lyn - y”Hl

| S —— R — ——— e
-0 bounded -0

0.

Hence, all simple tensors can be approximated by elements of S’oésl.
Let n € N, x1,...,2, € Ho, y1,...,Yn € H1, 0q,...,0, € R, and € € R,,.

Since simple tensors can be approximated by elements of S’oésl, there are elements
u; € 50%81 such that

-1
n

|z ® y; — ui”H0®H1 < (Z |O‘j|) €
j=1

holds for every i € N_,. Hence,

n n
Z QT @ Yi — Z QU
i=1 i=1

n
<Y lail 2 ® yi — will gy om, <€
Ho®H, i=1

shows density of Soésl in HoéHl and, thus, the assertion as well.
O

COROLLARY 2.4. Let Hy and Hq be Hilbert spaces, and Og € Hy and O1 € Hy
two complete orthonormal sets. Then,

[Oo]®[O1] ={u®v; ueOy A veO1}
s a complete orthonormal set in Hy ® Hy.

PROOF. We already know that Oy®0; is dense in Hy ® Hy, i.e., [Op]®[01] is
total. Hence, it suffices to show that [Op] ® [O;] is orthonormal. Let u® v,z ® y €
[Op] ® [O1]. Then,

1
0 ,u+tx vV v+y

,U=T A V=Y

<U®’U,x®y>HO®H1 = <U,x>H0<U,y>H1 = {

shows the assertion.
O

ProrosiTION 2.5. Let Hyy, Hor, Hio, and Hyi1 be Hilbert spaces, and A <
Hyo® Ho1 and B ¢ Hyo® Hy1 densely defined closable linear operators. Then, A®B
1s closable and

A® B=A®Bc (A*®B*)*
holds.



2. TENSOR PRODUCTS OF HILBERT SPACES 21

PROOF. Let € = Y ayz; ® yi € D(A*)®@D(B*) and 7 = X7 fju; ® v €
D(A)(%D(B). Then, we observe

(A&B, ) rgvemy =, D iBi{Aui, ) 1o, (Bui, ys) i,
i=1g=1

Z Zalﬁj ’U,“A IJ>Hoo<vsz yJ>H10
i=1]

=(n, A" ®@B"&) ooy
that is, A*®B* ¢ (A®B)*, which implies
A®B c A®B = A**®B** c (A*®B*)".
Since A and B are closable, A* and B* are densely defined, and Lemma 2.3 yields

that A*®B* is densely defined, i.e., (A*®B*)* is a closed linear operator.
O

Example Let Hi, H> be Hilbert spaces, A ¢ Hy @ Hs be a closed and densely
defined linear operator. The operator A defined by the H; ® Ha-closure of z @ y —
x ® Ay can be expressed by

A=10 A
n

PROPOSITION 2.6. Let Hog, Ho1, Hio, and Hy1 be Hilbert spaces, and A <
Hoyo ® Hyy and B € Hyg ® Hy1 densely defined closable linear operators. Then,

A®B=A®B.
Proor. Clearly,
A®Bc A9Bc A® B
holds and, hence, A BC A® B. Let z =Y a;£; ®m; € D(A)(%D(B) = D(A®B),

x#0, and € € R,. Then, we can find z; € D(A) and y; € D(B) such that for every
1eN_,

@i = &l a1, < :
Sk <3 T Tl
g
| Az; - Ag|
Hoy 22J1|a3|HB773||H11
I a1, < -
Yi =i
C e e ol Ty,
and
B e
|By: -

BT]Z < n
i <SS T T
hold. Setting y = ¥7_; ajz; ® y; € D(A®B) yields

Hy—QUHHO()@Hw = ; ®yi =& ®1;)

Hoo®H10

- _flei@(yi—m>+(xz-—gi>®m>

Hoo®H10
n

n
<Y laal @il gy, 1y = mill g, + 20 el |2 = &l g, letail g,
= =



22 2. TENSOR PRODUCTS OF HILBERT SPACES

<€

and

a;(Az; ® By; — A¢; ® B;)
=1

||(A®B)y - (A@B)w||H01®HH -

Hoo®H10

n _
< ; il | Azi| g, | By = B,

Sl Al [5ul,,
<e
Thus, 2 € D(A® B) and A® Bx = A®Bz, i.e., A® B ¢ A® B; thus,
A®Bc A®B.

ProrosiTION 2.7. Let Hy, Hy, and Hy be Hilbert spaces. Then,
(H0®H1)®H2 :H0®(H1 ®H2) =Hy® H ® Hy
in the sense of unitary equivalence.

PRrROOF. For pe Hy, ¥ € Hy, and x € Hs, we set
Ullpev)ex)=¢e(vex)

and extend this mapping to (HoéHl) éHg by

U: (HO(%Hl) éHQ —-Hy® (H1 ®H2)

m J o . m ngo .
> B; (Zazxz ®yf) ®zi~ Y. By alzl @ (y! ®z;).
j=1 1 J=1 =1

First, we will prove that this extension is still right-unique. Let ¢ € (HO(%Hl) %HQ
with

m T L . p kj L. .
PO DEELY EPESEA LY e
j=1 i=1 j=1 i=1
Then, we observe for all a € Hy, b€ Hy, and c € Ho,
m nj ) m ny , )
U Zﬁj (Zagx] ®yf) ®zi|(a,b®c) = ZBJ Zafxg ® (y! ®z;) | (a,b®c)
j=1 i=1 J=1 =1
m n .
:Zﬁj af(%v@HO(yf ®Zjvb®c>H1®H2
=1  4=1
m J . . .
= Z ﬂj Z O‘g (x‘vaL)Ho (yiv b>H1 <Zj7 C>H2
g=1 =1
m J . . .
=B Y allz] ®y],a®b)myemn (2, ¢)m
=1  4=1
m n; . .
=) Bi(Xajr]®y.a®b (2, ),
=1 i=1 Ho®H,

=p(a®b,c).
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The same calculation also shows
p
U(Zéj (Z”y ul ® v )®wj)(a,b®c) =p(a®b,c).
j=1

Since these are continuous bi-linear functionals and Hoé (H 1 <§>H 2) is dense in Hy ®
(Hy ® H2), we conclude right-uniqueness of U.
Furthermore, U is linear since, for k € R and ¢, € H0<§> (H1<§>H2) with

nj . .
(Za .®yf)®zj

S Mg

and
P ki )
w:Z(Sj Zﬂuf@vf ® wj,
=1 \i=
we obtain
m+p
Kp+ = ZCJ ZnJW@)\J ® v
=1 =1
with
C__ KJBJ 7j€N§m
" Nbjm , jelm+1l,m+p]nN’
L= nj 7jENSm
" Nkjicwm , jelm+1,m+p]nN’
’[’I‘.j: az 7j€NSm
o™ je[m+1,m+p]nN’
g =1%o J€Nan
g m L jelm+1l,m+p]nN’
Ny deNg,
o™ je[m+1l,m+p]nN’
and
Vi = Zj 7j€N£m .
/ Wjem  , je[m+1,m+p|nN
Hence,
m+p

Ul(rp+ ) = Z G ZW & (XN ®v))

m+p

z s(fon)s 3 G Suvie(on)

j=m+1 =1

||'F”43
\PﬂN

:ﬁi olal @ (v @ z) + Z ZJ: yiul ® (v @ w;)
j=1 s |

J
=HU(<p) + U(w)-
Now, we can show that U is an isometry. This follows from
nj ng

9 . .
Ul et oms) = Z BiBr Y.y adaf(z] @ (y] ® 2), 2 ® (y)' ® 2k)) moe(Hr0H>)
1=110=1
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ik k
:‘Z ﬁjﬁkz azal <$z7xl )H0<yzvyl )H1<Zjvzk)H2
< N I N "
= Z B; B ((Z ol ®yf) ® 2, (Zal xy ®y; ) ®zk>
=1 (Ho®H1)®H>

2

= H‘PH(HO®H1)®H2 :
Finally, if we show that U has dense range, then we can extend U to a unitary
operator. Since Hoé (H1 éHg) is dense, it suffices to show that every

1/}::Zﬂjxj (ZO[ yl®Z )éHOé(Hl%HQ)
j=1
is an image of U. Let

Z Z xl®y )®Z €(H0®H1)®H2

j=1 =1

Then, linearity of U implies
o=2p

:1/)_
The other assertion, Hy ® (H; ® Hy) = Hy ® Hy ® Ho, follows similarly.

DLICEILE)
5 el

JJZ@(yZ ®zj)

O

COROLLARY 2.8. Forie{0,1,2} and j € {0,1}, let H;; be a Hilbert space and
Ao S Hyo®Hpy, A1 € Hygo® H11, and Ay € Hog® Hoy densely defined closable linear
operators. Then,

(A0®A1)®A2=A0®(A1®A2):A0®A1 ®A2.

PROPOSITION 2.9. Fori,j € {0,1}, let H;; be a Hilbert space, Ao € L(Hoo, Ho1),
and Aq € L(HloaHll)- Then, Ag® Aq € L(HQO ® Hi9,Hp1 ® Hll) with

Ao ® A HL(H00®H10,H01®H11) HAOHL(HOO,H(H) | Ax HL(HIO,HH)

PROOF. Let S;; be a complete orthonormal set in H;; andz = 22:1 Kjp; ®; €
HOO(%HH). Then, we can find sequences o, 37 e RN, ¢ € S(IJ\IO, and £ € Sllwo such that
for every j e N

Kipj = 3. ahln,

neN
Yy = Z ﬁgﬁna
neN
and, hence,
l

l . .
=2 (kjp)) @Y= D D anfBhu®&n
j=1 m,neN j=1
—_—

=Ynm

hold. Since Ay and A; are continuous, we observe

l
AO (%9 Alx = Z Aolijgaj ® Aﬂ/}j
j=1
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S S0l B, AgCn ® A

m,neN j=1

Z FYnmAOCn ® Alfm

m,neN

Let y = Zf;l NiO; ®T; € H01§>H11. Then, we can find sequences 17, ¢’ € RN, ne S&,
and 9 € S} such that for every j e N

Ajoj =Y V)i,

neN

Tj = Z Q"Zz’ﬂn;
neN

and, hence,
l .
y=>(\o))®Ti= Y > V0h I ®Um
j=1 m,neN j=1
——

=:0nm

hold. We, thus, observe
<A0 ®A1117,y)H01®H11 = Z ’Yﬂm(sst(AOCnvnS)Hm (A1§m719t>H11

m,n,s,teN

= Z ’Ynmést(AOCnans)Hm (gm,AI§t>H11

m,n,s,teN

> (Ao Z”ynmén,ns> <§m,AI Z5stz9t>
Ho1 Hi

m,seN neN teN

and, by Cauchy-Schwarz,

2
|<A0 ® A1$7y>H01®H11|

s( % (4 z%mcn,ns)Hm)Z( 5 (sm,A;Zasmt)Hn)Q

m,seN neN m,seN teN

which yields (using Bessel’s inequality and orthonormality of ¢ and 9)
|<A0 ® Az, y>H01®H11 |2
| )
Hi1

2 lozomel, )z |
E

meN
2 2
< HAOHL(HOO,HM) HA1HL(H10,H11) Z
2 2 2 2
< AoNT oy, oy 141N L (oo 2ry | 20 1] )( > 16al )

AO Z '-Ynan

neN

ALY S0,

teN

Z Tnm Cn

neN

Z 5st19t

teN

| )
Hi

meN
m,neN s,teN
2 2 2 2
= HAOHL(HOO,HUI) HA1HL(H10,H11) ‘|$HHOU®H10 HyHHm@Hu .
For y = Ag ® Ajx, this implies
|40 ® Alx“Hol@Hll < HAOHL(HOO,H(H) |41 HL(Hlo,Hu) HCUHHO()@HIO )
ie.
”AO ® Ay HL(H00®H107H01®H11) < HAOHL(HomHol) HAl HL(Hm,Hu) :
On the other hand, let z € By = and y € By = with |Aoznl g, = A0l (a0 101
and HAlynHH11 - \|A1HL(H107H11) for n — co. Then, (Zn ® Yn )nen € BII\_IIOO@Hlo and

|40 ® Avzn ® ynl o o,y = 1A0Tnl 1oy A1yl b,y = 140l L g0, 1101 ) 1A L (a0, 1110



26 2. TENSOR PRODUCTS OF HILBERT SPACES

completes the proof.
O

OBSERVATION 2.10. For 4,5 € {0,1}, let H;; be a Hilbert space and A; €
L(H;0,H;1). Then, Ag®1 and 1 ® Ay commute. Furthermore, (Ao ®1)(1® A;)
and (1® A1)(Ap ® 1) are bounded operators.

PRrROOF. Boundedness of (4p®1)(1® A1) and (1® A;)(Ag®1) follows directly
from boundedness of Ag®1 and 1® A;.
Let x € HOO and UAS H01. Then,
(Ape1)(1®A1)zey=(Ao®1)r® A1y
=Apr ® Aly
2(1 ® Al)AQJJ QY
=(1®A1)(Ag®1)z®Yy
shows that the commutator [Ap ® 1,1 ® A;] vanishes on all algebraic tensors, i.e.,

[Ag®1,1® A;1] =0 by boundedness.
O

OBSERVATION 2.11. Let Hy, Hy, and Ho be Hilbert spaces, and A€ Hy ® Hy a
densely defined closable linear operator. Then,
(1eA) =10 A"
and
(Al)"=A"®1.
PRrROOF. So far, we know
1A c(1eA) =(1® A)".

To show the missing inclusion let € D((1® A)*) ¢ Hy ® Hy and S; € H; an
orthonormal basis for ¢ € {0,1,2}. Then, [So] ® [S;] is an orthonormal basis of
Hy® H; for j € {1,2}. Hence, there are sequences ¢ € Sy, ¢ € S, and 7 € S§ such
that
T = Z (6n ® M, ) Ho@HLEn ® T

neN

and
(1 ® A)*I = Z <§n ® Cns (1 ® A)*$>H0®H1€n ® Cn-

neN

For s € Sy and u € D(A), we obtain
((1 ® A)(S ® u)7 x>Ho®H2 = Z <§n ® Cn, (1 ® A)*‘T>H0®H1 <S ®u,&n ® <n>H0®H1

neN

which is equivalent to

Z (En ® Ny ) HooH, (S ® AU, En ® M) HooH,
neN

= Z (é.n ® Cna (1 ® A)*:E>H0®H1<S ®ua€n ® CH>H0®H1'
neN

With s = ¢;, this implies

<Au7 (51 ® 1, I>H0®H277i>H2 :<§1 ® i, I>H0®H2 <Au777i>H2
(§i® G, (1® A) w)Hyom, (u,&i ® (i) m,
(uv <§l ® Civ (1 ® A)*x>H0®H1§i ® Ci>H1
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for all ue D(A), that is, (& ® 0, ) H,em,M:i € D(A™) and

A (& @i, ) HooH, i = (6 ® G, (1@ A) ) oo m, G
for every i € N. Thus,

m

SN& @M, 2 oo, & ®1; € Ho®D(A*) € D(1® A*)

i=1
and

(1e®A") i(éi ® N, T) HooH, & ®Mi = (6 ® G, (1® A) x) oo, & ® G
=1

holds for all m € N. Since 1 ® A* is closed, we conclude that z € D(1® A*) and
(1oAY )r=(10 A) .
The other identity follows similarly.
O

OBSERVATION 2.12. Let Hy + {0}, Hi, and Hy be Hilbert spaces, and A ¢
H, ® Hy a densely defined closable operator. Then, 1® A is continuously invertible
if and only if A is continuously invertible. In that case,

(leAd)t=10A™"
holds.

PROOF. Let A be continuously invertible. Then, 1® A~! is a bounded operator.
Let x € Hy and y € H1. Then,

(1eAH(1eAzrey=(19A NreAy=c0 A ' Ay=z0y
shows
(1® A (1@ Alpasa) = Upaea)-

Let z € D(1® A) and (2, )nen € D(1®A) such that z,, > z in Hy ® H; and (1 ®
Az, - (1® A)x in Hy® Hy. Then, continuity of 1 ® A~ implies

t,=(10A (1o Az, » (18 A7) (1 A)r,
i.e.,
(1® A™) (1@ A)|paea) = Up(ea)-
Furthermore, for y € Ho,
(1eA)(1eANzey=(10A)z0 A ly=00 AA\y=x0y
shows

-1 _
(loA)(1oA™), o 1], o .

Let y € Ho ® Ho and (yn)ney € (HoéHQ) with y, - y in Hy ® Ha. Then, (1 ®
A Yy, - (1® A1)y in Hy ® Hy by continuity, and
(18 A Yy, eD(1®A)
and
(1eA)(1® A )y, =yn
hold. Since 1 ® A is closed, it follows
(1e A HyeD(1®A)
and

(1eA)(1e A y=y.
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Hence, (1® A™') is bounded left- and right-inverse of 1 ® A, i.e.,
1A' =(1®A) ' e L(Hy® Ho, Hy® Hy).

Let us now assume that 1® A is continuously invertible. Let 2 € Hy ~ {0} and
y € [{0}]A. Then, l1® Az@y=20® Ay =2 ®0=0. Since 1 ® A is injective, this
implies x ® y = 0, i.e.,
V(%W €HoxHy: <‘T7 @)Ho (yu¢>H1 =z ®y(907¢) =0.

In particular, ¢ = x and ¥ =y implies
2 2
|z, 1917, =0

and, hence, y = 0 since we assumed x # 0. In other words, A is injective.
Let y € A[H1]*. Then, for all z € D(A), we obtain (Az,y)y, = 0 and, therefore,

VieHyVzeD(A): (18 A)i®@z,20y)=0
which implies
Ve e Ho®D(A): (1@ A)E,z®y)=0
and, by continuity of the inner product,
VEeD(1®A): ((1®A),2®y)=0.

Hence, x®@y € (1® A)[Hy® H1]* = {0}. Since x was assumed non-zero, this implies
y =0, i.e., A has dense range. Thus, it suffices to show continuity of A™! to prove
the assertion. Since

(1® A)Mimylerarm)) = (18 A D|imgjeiapm )
we obtain, for y € A[Hy],

HA_ly“ :HIHHO ||A71yHH1
h |zl g,

1 _
- Jeo ]

Ho®H:

1

g,
[1e )™

||(1 eA)z® yHH0®H1

L(Ho®H2,Ho®H1) H‘T

® y”Hg@Hz

2],

< H(l ® A)_lHL(HOQQHg,Ho@Hl) HyHHg .

O

Remark We will use the notation of tensor products in cases where the spaces
involved are not Hilbert spaces themselves; e.g., C*(M;H;) ® C*(M; Hy) with
H,, H, Hilbert spaces. By writing this we mean to consider C*(M; H; ® Hy).



CHAPTER 3

L, spaces on Cl!'-manifolds

Throughout these notes, unless explicitly stated otherwise, let (M,g) be an
orientable real 3-dimensional Riemannian C''!'-manifold! endowed with a connec-
tion V. Then, the tangent bundle TM is a Riemannian (2dim M )-manifold and a
Hausdorff space itself. Furthermore, (g;(z))ien will always be a local basis of
TpM and (g'(z))ien_,, .,
the volume form on M, G the Gramian matrix and v := /det G.

Let k € Nyu {oo,w}, j,N €N and «,3 € N)Y. Then, using f € C¥(4;B) =
f: A— B analytic wherever this makes any kind of sense, we define the following
spaces

<dim M
the corresponding dual basis in T, M*. dvoly; will denote

Xp(M) = {f e OPY(M;TM); Yz e M : f(x) € T,M} locally Lipschitz

vector fields

X, oe(M) :={f € Xp,(M); spt f compact in int M}

To(,8) = @Y, ((®2 TuM) & (®), T.M* ) )

{3:(04, ﬂ) = Uace]W {Sac(o‘a ﬂ) = UmEM{I} X (Iz(o‘a ﬂ)

T (o, B) = Ugens Ta (v, B)* = Ugenr{z} x Ta(a, B)*

M (M) = {f € CHIALT (0, B): Vo e M f(z) € Tu(a,8)*)

(a, B)-tensor fields

SJI](CaCﬁ)(M) ={fe M,go"ﬁ)(M); spt f compact in int M}

57 :={o; o: N_; > N_; injective} permutations

W (x):={fe(TuM)*; YX e T,MI Vo eS7: f(X)=sgnof(Xoo)}

alternating linear forms

W (M) 1= Upers A ()

Afc(M) = {fe CHL(M; A (M)); Yo e M: f(x) e (x)} Ck-j-forms
Remark The tensor bundles (o, 8) and T*(«, §) are topological spaces. Unfor-
tunately, the topologies are far from adorable. But it is possible to show that if
U c M is open and contractible?, then there is a diffeomorphism from ey T (v, 3)
(or Uper T(av, B)7, respectively) to U x R™ with m = (dimM)zﬁlo‘”ﬁi. This is
strongly liked to local trivializations of T(a, 3) and T*(«, ). For notational sim-
plicity we will only consider the case T(m,0) as all other cases can be constructed
using Riesz identifications. Then, the bundle projection 7: T (m,0) — M is defined
by

V(z,v) e {x} xTp(m,0): w(x,v) =x
and, given an atlas (U;,1; )ier, we define

Viel: o [Ulm - Ui xR™; (z,v9") = (z, (v1,...,0m)).

1f e CV1 means f is Fréchet-differentiable and its derivative f’ is Holder continuous with
Holder exponent one, i.e., f’ is locally Lipschitz.
2A topological space is called contractible if and only if the identity map is null-holomorphic.

29
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These ; are vector space isomorphisms and the (U;, ¢;) locally trivialize €(m, 0).
In fact, this property is very important as for a vector bundle to be locally trivi-
alizable ensures the existence of global cross sections with maximal regularity, i.e.,

SJI](Ca’ﬁ)(M) is non-trivial if M is a C*-manifold.

Levva 3.1, MO0 (M) = CRUGR), MO (M) = AL(M), MOV (M) =
xk(M) and m;(ca”@)(M) ® mia B )(M) _ m}(ga@a 808 )(M)

PROOF. (i)

M (M) ={f € CHN(M:T(0,0)"); Vare M+ f(2) € To(0,0)7)

:{feCk’l(M;T(0,0)*); VeeM: f(z)e (®SxM®®TzM*)*}
%] %]
={feC*(M;%(0,0)*); Yz e M: f(z)e (R®R)*}
=C*' (M;R)
(i)
O (M) ={f e CF(M;T(1,0)7); Vo e M: f(z) e T,p(1,0)"}
{feCPY(M;%(1,0)*); Yz e M: f(z)eT,M*}
={f e CHY (M AN (M)); Vo e M« f(z) e Al (z)}

=Ai(M)
(iii)
MOV (M) ={f e P (M;T(0,1)*); Vo e M f(z) € T,(0,1)*}
2 feCPY(M;%(0,1)"); Vo e M: f(x)eT, M}
2 feCPY(M;TM); Ve e M: f(z)eT, M}
=X, (M)
(iv)

(2 () @ M (M) ={f € CFH(M55(0, ) @ T(o!, B

VeeM: f(z)e%.(a,8)" ®%,(a,5)"}
={feCP (M;%(a, ) @ T(a', B')");

VeeM: f(z)eT(add,f08)"}
={feCM (M T(aod S0 5)");

VeeM: f(z)eT (add,f08)"}
:mtl(caeaa’,ﬁeaﬁ')(M)

(I

Recall that the volume form dvoly, defines a measure on the Borel sets B(M)
by

VBeB(M): u(B):= devolM.

Using this interpretation we are in the realm of Lebesgue-integrals.
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DEFINITION 3.2. Let p e Ry, n €N, o, 3 € N§ and (-,-)(a,p) be the canonical
scalar form on SJI(SQ’B)(M), i.e. for x,ye€ Em(()a’ﬂ)(M)

Vpe M : (z,y)(a,5)(P) = (z(p), y(P))z,(ap)*
holds. We define

1
I : fméa’ﬁ)(]\/[) -R; z+— (/ |(:v,:v)(a ﬂ)|% dvolM)p
P, f3 M )

and

‘”p,a,ﬁ

—
i (1) =g () "
We will denote measurable and p-integrable functions, i.e. those functions being
Il g -limits of continuous functions, by E,(ga’ﬁ)(M).

Remark Fischer-Riesz’s theorem (theorem 3.3 below) allows us identify elements
of L,(,a’ﬁ)(M) with a functions.
]

Obviously all Lz()a’ﬁ )(M ) are Banach spaces and Lga’ﬁ )(M ) are Hilbert spaces,

since, (z, )(qa,p) is non-negative and <I,y)L(a,B)(M) = [1{%,Y) (a,3)dvolys is a scalar
2

product.

THEOREM 3.3 (Fischer-Riesz). Let p e R,y and (fn)nen € L:Z(,Q’B)(M)N converg-
ing to f € E,()a’ﬁ)(M) n EI(DO"B)(M). Then there is g € L,(volar) and a subsequence
(fn;)jen of (fn)nen, such that

(i) fn; = f p-almost everywhere
and )

(i) VieN: [(fu;s fo; dam|” <9
hold.

PROOF. Choose any subsequence (fp;)jen of (fn)nen satisfying

v.? € N: anj+1 _f’ﬂj ||£;a’5)(M) S 2_J

For j €N let fj:= fu,., = fn,. Then, for k €N,

(/(;ng‘vfj)(a,ﬁ)ﬁ) dVOlM) =

(Fs Fid |

-

<
I
—

LP(VOIZ\/[)

(Fj i) |

Lp (VO]]W)

<
Il

IN
L=

E

= anj+1 = fn, ”55)‘1’3)(1\/1)

277

IN
m
Z

Il
—_ s

and
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(Z; |<fjaﬁ><aﬁ>|%) 4 (Z |<ﬁaf~j>(a.ﬂ)|%)

jeN

hold. Thus, using dominated convergence, we find

P
/ (Z |<f~j7fj>(a75)|§) dvoly < oo.
jeN

o L
Hence, § = limg_ o Z§=1 (fi: fi) | € £,(volar) exists with § < oo volpr-almost
everywhere. Since LZ,()O"[} )(M ) is a Banach space, ¥y fj converges volyr-almost
everywhere absolutely; ¥ ;cy fj =: f. By definition of ( fj) jen we find

k k
f(_Z j= Z(fnj+1 _fnj) :fnk+1 _fnl _)f_ffn

j=1 j=1
and, hence, fy,,, = fn, + Zé?zl f; — f volps-almost everywhere. Furthermore, for
jeN

§2 2 <f~j7fj>(a,5) = <fnj+17fnj+1>(a,ﬁ) - 2<fnj+17fnj )(a,ﬁ) + <fnj7fnj>(a,ﬁ)
holds. Hence,

0< (fnjafnj)(a.ﬂ) < .(72 _<fnj+1ufnj+1>(a,ﬁ)+2<fnj+17fnj>(a-ﬂ) e‘Cg(VOlM)

Gﬁ% (volar) €L, (volnr) L, (volnr)
2 2

1

yields (ll) with g := (gQ - <f7lj+1 ) f’ﬂj+1 >(o¢,ﬂ) + 2<fnj+17fnj>(a,6))§ € ‘Cp(VOIJW)'
0

Remark Let f ¢ L](Do"ﬁ)(M). Then, there is a representative g such that g(z) €
T.(a, 8)* holds for every x € M since it holds where a subsequence converges.
Since the complement of this set is a null-set, we may choose g to be zero there.

Furthermore, Lga’ﬁ)(M) may be isometrically embedded in La(M) ® T(a, 8)*.
[

Remark Note that we may restrict all considerations to 8 = 0, for all spaces with
B #0 can be generated using Riesz identifications.

DEFINITION 3.4. Let pe Ry, meN, and o € Ny. Then, we define

ya
D. (H'”ng)(M)) = {:c € méﬁgo)(M); fM |(x,x)(a70)|2 dvolys < oo},

D( )::{xes)ftg“=°)(M)nD(

H~HW;,(Q,0)(M) H.HL;Q’O)(Al)) ;

\/1\4 |(V{E, Vx)(a+170)|% dvolys < C>O}7
De (I 0 ap) = {o e M OD A D (H pgemary )

\/]\4 |<V{E, vx)(a+l,0)|§ dvolys < C>O}7

P
oo P (oo pn) =R @ (nxnf;(paw) + |\wn§<pa+w(M)) :
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as well as,

00
LY (M) =D ( ) e,

H'HL(pQ’U)(M)

. 1ce00)
1,(e,0 — Wp (M)
WhEO (M) =D ( ) ,

H'HWT}KO"O)(M)

Il 1, o000
Wl,(a,o)(M) =D, ( wy (1&1).

0 )

Remark A priori, we cannot define Sobolev spaces in the same manner as we would
define Wf(ﬂ) for 2 Copen R™. However, using Sobolev chains, it is still possible to
show that they exists and are dense in L,(M). It is important to keep in mind
that this does not imply non-triviality of C*(M) because the Sobolev embedding
theorems do not hold, in general.

u
DEFINITION 3.5. Let o € N. Then we define gradient and divergence to be
grad, , : MED (M) > MO (M); 2 - v,
dive,q s MO (1) » MEEO(M); @ tr Ve
where tr denotes the trace acting on the first two components.

Before we can show that the gradient and divergence are formally adjoint, let
us recall the Gauss divergence theorem.

DEFINITION 3.6. Let V' be a closed subset of M. V has smooth boundary if
and only if for each a € V there is an open neighborhood U €V of a and a function
g€ CY(U;R) such that

VaU={zeU; g(x) <0}
and Vg(xz) £0 for all x € U hold. Then we define

OVnU:={xeU; g(x) =0}

and OV the union of every such OV nU.
Let a be in OV. Then we call

v(a): vg(a)

!
~vg(a)]

the outward-pointing normal at a.

Remark Having smooth boundary as defined above means having C* boundary,
i.e., the boundary is locally a C' manifold.

Sketch of proof Let V ¢ M be a closed subset of M with smooth boundary.
Let p € OV and ¢ a chart with p € cp[RdimM]. Let 7 € R,y such that U =
Bgaimn (071 (p),7) € [M]p and such that there exists g according to the definition
with respect to U := ¢[Uy]. Note that g € C'(U) means, per definitionem, § :=
gopeCH(Up) and Vg(z) # 0 is equivalent to (go )’ (x) # 0 since V, f = 9;(g o p).

3that is, for instance, tr(aijkgi ®gl ®gF) = aijkgijgk
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THEOREM 3.7 (Level Set Criterion). A set S ¢ R™ is an m-dimensional C'-
manifold if and only if for ever p € S there is an open neighborhood U, of p and a
function g, € C*(Up, R¥) with m + k = n such that Sn U, = [{0}]g, and rankg], =1
in Up.

Since Uy is an open neighborhood of ¢ 1(p) and § € C*(Uy,R) with [0V ]p n

= [{0}]g and rankg’ = 1, we obtain that ¢ [[0V]pnUp] is a (dim M - 1)-
dimensional C'-manifold. Since p € OV was arbitrarily chosen, we conclude that
OV is a (dim M — 1)-dimensional C'-manifold.

THEOREM 3.8 (Gauss divergence Theorem). Let V' be a compact subset of M

with smooth boundary and v € ng’o)(M) such that v|py is the outward-pointing
normal vector field on OV. Let dvolgy be the surface form on OV. Let F be a
continuous vector field on V and continuously differentiable in the interior, i.e.,
FemM W) nm (v av). Then

/ tr VFdvolys = / (F,v)dvolay

v ov

holds.
OBSERVATION 3.9. —div,q € (grad, )" holds in LMy @ L0 (M),
Proor. Let ¢ € D(grad, ,) and 7 € D(div. ). Then

(~tr V7, 0)(a0) = (-t (Va1 o' @97 @ @97 ) 0) |
] j o+ k ko
== (V!]iTj1~~~ja+ng]19J2 ®... ®gj laSDkl...kag '®... ®g >(170)
== Vg T ]a+lgljlgj2kl .- -gjaﬂka Pky.. ko

3 k ja+1ka
== Vg (TJI Ja+19 Bgik gl Sﬁkl...ka)

ij1 . jok 7 k.
T Tj1.jarr 9 tgPtt L gl Vg, Phi...ka

== Vi (Tj1 o dunr 97 g7 g R o 3 ) T V) (art0)

an, hence, using a M Ccompact M such that ¢ and 7 are compactly supported in
M,
/M( tr VT, ) (a,0)dvolps = ( V@) (a+1,0)dvolas
/ (Th Ja+lgwlg]2k1 . -gja“ka Phy...ka ) dvolys
f ©) (a+1,0ydvolns
[ trv Tal Ja+lgj2k1 .. glesthe Sﬁkl...kagjl)dvolM
/ T, Vo) (a+1,0)dvolps

k ] k ]
‘/(,)M (le Ja+1 g]2 L. 'g]a+1 “Pky.. kg gjl ) V) dVOlaM

holds according to the Gauss divergence theorem. However, we have assumed that
7 and ¢ are compactly supported in M \ OM, i.e., the integral over M vanishes
which, thence, reduces to

Al<_ tr VTv <P>(a,0)dV01M = L(Tv V‘P)(aﬂ,o) dV01M7
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i.e., the assertion.
|

LEMMA 3.10. Let X, Y be reflevive Banach spaces, and Ac XY, BcY' oX'’
densely defined, linear operators where X' and Y’ denote the dual spaces of X and
Y, respectively. If A and B are formally adjoint, i.e., A € B*, then B ¢ A* holds
and both operators are closable, where A* and B* denote the respective dual or
adjoint operators depending on whether or not X and Y are Hilbert spaces.

PROOF. A* and B* are closed operators since A and B are densely defined
which directly implies that A is closable. Thus,

BcB=B"cA*
shows B ¢ A* and, therefore, closability of B, too.

O
The lemma above enables us to define
gradg , ::@ , divgg =dive o
as well as,
grad, :=— (divee)” , dive:=- (gradcﬂ)* .

From this point on, we will drop the index « as it is uniquely determined by the
context.

Remarks on Sobolev Spaces

Since we are on a C'*!'-manifold M, we only know that the space C1(M) is
non-trivial and dense in C(M). For k > 2 the spaces C*(M) may very well be
trivial. Hence, the usual approach to defining Sobolev spaces fails. However, we
may use the notion of a Sobolev chain; for further detail, please, refer to [15].

LEMMA 3.11 ([15]; Lemma 2.1.3). Let H be a Hilbert space and A< H® H a
closed, densely defined, linear operator with zero in the resolvent set o(A). Then,
A™ is a closed, densely defined operator for every n e N with 0 € o(A™) and

Vo e D(A"): [ A%y > |A7 0 Ll
Let H,(A) be the Hilbert space D(A™) equipped with the norm x — | A™z| ;. Then,
Ansin: Huit(A) > Ho(A); @0 A
s unitary for every n e N.

If A is a closed, densely defined, linear operator with 0 € p(A), then A* =
(-A™1)* is closed linear operator. Furthermore, closedness of A implies that A*
is densely defined, and 0 € go(A*) follows from o(A*) = o(A)*. Hence, H,(A*) is
well-defined, as well, and we can extend the family (H,,(A))nen, -

DEFINITION 3.12. Let H be a Hilbert space, A< H®H a closed, densely defined,
linear operator with 0 € o(A), and n € Z. Then, we define

oy o [(PEAD A e,
H_,(A*); ne-N
where H_,(A*)* denotes the topological dual of H_,,(A*). Then, we call

(1) (Hn(A))nen, the positive Sobolev chain associated with A,
(ii) (Hn(A))ne-n, the negative Sobolev chain associated with A, and
(i) (Hn(A))nez the (long) Sobolev chain associated with A.
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LEMMA 3.13 ([15]; Lemma 2.1.6). Let (H,, (A))nez the Sobolev chain associated
with the operator A. Then, we obtain that the embedding

Hpwk(A) > Hy(A)

is dense and continuous (in the sense of canonical embeddings) for every n € Z and
k € Ny. Furthermore, the operators

D (A" € Hyi(A) - Hyu(A); o0 Az
have unitary closures Ap+1n S Hpv1(A) ® Hy(A) for every n e Z.

It is often convenient to define the “closures” of the Sobolev chain

Ho(A) =) Hn(A)

nez
which is a Fréchet space if equipped with the family of semi-norms (HH Ho( A)) ,
" ne
and dense in all H,(A) (in fact, Ho(A) is a core of Ay : Hpy1(A) € Hi(A) —
Hi(A); o~ Ax; cf., Lemma 2.1.15 in [15]) and
H_o(A) = U Hn(A)

nez

which is complete if equipped with the topology induced by saying that z is a
Cauchy-sequence/convergent in H_o,(A) if and only if there exists an n € Z such
that = is a Cauchy-sequence/convergent in Hy(A) (cf., Lemma 2.1.11 in [15]).

As for the definition of Sobolev spaces on the C*''-manifold M, we know that
the gradient grad is a well-defined, closed, densely defined, linear operator on the
Hilbert space Lo(M). Furthermore, we have the following theorem which can be
obtained from the first representation theorem (Theorem VI.2.1 in [11]) applied
to the closed, positive, symmetric form 7 with D(7) := D(A) and Vz,y € D(7) :
m(x,y) = (Az, AY) m,

THEOREM 3.14 (von Neumann). Let Hy; and Hs be Hilbert spaces and A ¢
H, @ Hs a closed and densely defined operator. Then A* A is self-adjoint in Hy and
its domain is a core of A.

Hence, grad” grad is a well-defined, closed, densely defined, linear operator and,
additionally, self-adjoint, i.e., so is |grad| := y/grad” grad which allows us to define
the Sobolev spaces

VkeZ: WF(M):= Hi(1+|grad)).

We may also define W3 (M) for s € R to be the closure of Ho (1 + |grad|) with
respect to the scalar product

Yo,y € Hoo(1 +|grad|) : (z,yhw; ary = (1 +[grad|)®z, (1 +|grad|)*y) 1, -

Alternatively, we may consider the spaces Wi (M) defined by the closure of Ho,(1+
lgrad|) with respect to the scalar product

V%y € HOO(l + |grad|) : ('rvy)WQS(M) = ((1 + grad* grad)sxay>L2(M)

for s € R which are equivalent but sometimes more suitable. None the less, both
families, (W3 (M)), and (W;(M))SER, satisfy the interpolation property, that is,
for every s,t € R and ¢ € [0,1]

WSy = [ W (M), Wi(M)]
WS My = [ W (M), Wi (M)]

[

[
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in the sense of complex interpolation; cf., e.g., section 4.2 in [18]. In fact, if A is
strictly positive, then we can extend the Sobolev chain (H,,(A)),,o; to (Hs(A)) .
by setting

nez

Hy(A) = (D(A%), A% )

for s > 0 and by duality for s < 0. Similarly, we might simply use the interpolation
property directly to define the Hy(A) for s e R\ Z via

Vs, t eRyg VO € [0,1]: Hi_y)yssve(A) = [Hs(A), Hi(A)],.

Finally, we’d like to note that not all Sobolev embeddings fail to hold. For
instance, we still obtain the following theorem.

THEOREM 3.15 (Sobolev Embedding). Let X be a Banach space, S,T € R and
S<T. Then

id: Wy ([S.T):X) > C([S.T:X); fo f
is continuous and injective.

PROOF. Let s,t € [S,T] and fe C*®([S,T]; X) (mind that C=([S,T]; X) is a
dense subset of W, ([S,T]; X)). Then

t
1O <1 Glx+| [ 15Dl
holds. Integrating s yields

[read

<[l x +VIE-s|

(-l < [ 1 xds+ [ VI [ 17| as

VT-S

1
1) dr]?

T % 3 T %
s\/T-sUS I f(8)|5%ds| +(T-8)2 1/ (s)Ix ds

Hence,

1 _1
1 Floes o) < max{ (T = 8)2,(T =) V2| Flus gsmx)

holds, too, where we used
=z <l

Thus, any W3 ([S,T]; X)- Cauchy sequence in C’ ] X)isalsoa C([S,T]; X)-
Cauchy sequence and, therefore, W, ([S,T]; X) ¢ ([ T]; X).
Furthermore the identities

idy : W ([S,T]; X) = Lo([S, T X); f e f
idy: O([S,T]; X) = Lo([S,T; X); [ f

.. . . -1 . .. .
are injective. Thus, id =id;" oid; is injective.






CHAPTER 4

The Analytic Implicit Function Theorem

Before we prove the analytic implicit function theorem, we will recall a few
facts about analytic operators. A more extensive account can be found in [3].

DEFINITION 4.1. Let X and Y be Banach spaces and k € Ny. A k-linear map-
ping my : X* =Y is called symmetric if and only if for every permutation o € Sy
and x1,...,x € X

MET1Tk = Me(To(1)s - To(ky) = Me(T1, .-, k)
holds.
DEFINITION 4.2. Let X and Y be Banach spaces, U € X open, and xo € U.
A mapping F': U - Y is called analytic at xo if and only if there exist r € R

and k-linear and symmetric operators my, : X* -Y (ke Ny) such that for every
x € Bx(wo,7) €U

(1) F(z) = Y my(z-m)"

keN,

(2) sup r* |my, HLip =M < o0

No

hold. The series ¥yen, mr(x - x0)¥ in (1) is called power series and F is said to
be analytic in U if and only if it is analytic at every point of U.

Due to (2) we observe for x € Bx (xo,T)

1 _ Mr
e

k
k |z - ol x
> Hmk(a:—:zro) ||Y§M > - =M < 00
keNg keNg
Hence, the power series converges absolutely.
OBSERVATION 4.3. Let X, Y1, and Yy be Banach spaces, U € X open, and
(F1,F2): U - Yy xYs analytic. Then, F1 and Fs are analytic.

PROOF. Since (F1, Fy) is analytic, there is a representation
(F1, Fo)(x) = 3 my(a = xo)"
keNg

with supey r* |y, lpip = M < oo for some r € R, and every zo € U. Let i € {1,2}.
The projection pr; : Y1 x Yy > Y;; (y1,92) = v; is continuous with norm 1. Hence,
we observe

39
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Fi(z) =pr,(F1, F)(x) = kZ pr; my (2 — 20)"
eNy

and

k k
sup r° ||pr; my ||, < sup 7 [pry| i, [me s, = M < oo.
eN, keNg

O

PROPOSITION 4.4. Let F be defined by (1) such that (2) holds. Then, F is
analytic at every point x € Bx (xo,r) = Uy, F € C*(Up;Y) and for every k e N,

akF(,To)
Mk =
holds. For every k € Ny and x € Bx (xo,r) the k™ derivative of F, OFF, is analytic
at ©. Furthermore for every x1,...,xp € X

i+ k)! ;
OFF(x)(x1,... a1) = Z G n )mj+k($—$0)J$1$2--'$k
JeNg :

holds and there are C € R,y and R € (0,1) such that for every x € Bx (:170, g) and
keN

k!
(3) HBkF(x)HLip < Cﬁ

holds, too. In particular, if K ¢ U is compact then C and R exist such that (3)
holds for every x € K.

PROOF. see [3] O

DEFINITION 4.5. Let X, Y, and Z be Banach spaces, U € X xY open, and
(0,90) €U. A mapping F: U — Z is called analytic at (xo,y0) if and only if there
exist v € Ry and k-linear and symmetric operators my : (X xY)* — Z (k e Ny)
such that for every (x,y) € Bx((xo,y0),7) €U

(4) F(z,y) =Y, mu(x-z0,y - y0)"
keNO
and
(5) sup 7 [[mg i, = M < o0
€Ny
hold.

F is said to be analytic in U if and only if it is analytic at every point of U.

DEFINITION 4.6. my, 4: XP xY? » Z is p-q-linear and symmetric if and only
if there is a k-linear and symmetric my : (X xY)* - Z with k = p+q such that for
all z1,...,2p € X and y1,...,yq €Y

Mg (15 Ty Y15+ Yq) = Mi((21,0),. .., (25,0),(0,91),- -+, (0,94))
holds.
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It is possible to express (cf., e.g., §4.4 in [3]) F in (4) as

p+q)
Fag)- ¥ 2D a0y go)t
(p,q)eN3 :
with
_ 3f6§F(:vo,yo)
mp#l - 7'
(p+q)!

and

sup 7% [my, 4| < oo.
p,qeN,

In particular, the power series converges absolutely again.

Now we will prove the analytic implicit function theorem. We will start by
proving the implicit function theorem for up to C*° functions with an adaptation of
the standard approach in finite dimensional spaces. This has the advantage that it is
constructive, i.e., the solutions of Navier-Stokes will be constructable. The prove of
analyticity, however, is not “constructable” and, even though it is possible to prove
the theorem directly with analyticity, we chose this approach since constructibility
of the solution is quite a nice feature.

PROPOSITION 4.7 (Chain Rule). Let X, Y, and Z be Banach spaces, U ¢ X
open, V.CY open, a € U, f: U — V Fréchet-differentiable in a, and g: V - Z
Fréchet-differentiable in f(a). Then, go f: U — Z is Fréchet-differentiable in a
and satisfies

(9o f)(a) =9 (f(a))f'(a)) € L(X, 2).

PRrROOF. Let A := f'(a) and B := ¢’(f(a)). Then, we observe for x € U and

yeV
f(@) = f(a) + A(z —a) + |z - af x ¢(x)
and
9(y) =9(f(a))+ B(y - f(a)) + |y - f(a)[y ¢(y)
for some ¢ € C(U,Y) and ¢ € C(V, Z) with p(z) - 0 (x - a) and ¥(y) -0 (y —>
f(a)). Therefore,
(go f)(@) =g (f(a) + A(z —a) + |z - a] y p(x))
=9(f(a)) + B(A(z -a) + |z - al y ¢(2))
+A(z —a) + |z —al y o(2) ], ¥ ((f(a) + Az - a) + |z - af x ¢(x)))

=9(f(a)) + BA(z - a) + |z - a| y w(z)
with
|A(z —a) + |2 —a| x p(2)] ¢ (f(2))

|z —alx

w(z) =Bp(z) +

which satisfies

|lw(z)| 5 < ”BHL(Y,Z) le(x) [y + (HAHL(X,Y) + H‘P@)Hy) Y(f(z)) =0 (x> a),
-0 -¢(f(a))=0

thus, showing the assertion.
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PROPOSITION 4.8 (Mean Value Inequality). Let X be a Banach space, a,b e R,
a<b, and f € C([a,b],X) differentiable from the right on (a,b). Then, there is a
t e (a,b) such that

[£@) = f(a)lx < 1£7 ()] x (b-a)
holds where f/(t) denotes the right-hand side derivative of f at t.

PROOF. (i) Let ¢ € C([a,b],R) with p(a) = ¢(b) = 0. Then, the interme-
diate value theorem yields the existence of a; and b; with a <ay <b; <b
satisfying ¢(a1) = ¢(b1). By the extreme value theorem, there exists
t € [a1,b1) such that

Vrelar,b1): o(t) <o(r)
holds. Hence, there is h € R, such that
Vse[t,t+h]: o(t) <o(s)
holds.
(ii) Without loss of generality, let a =0 and f(0) = 0. For s € [0,b], we define

o) = 1@ - 1)

and observe that ¢ is continuous with ¢(0) = ¢(b) = 0. According to (i),
there exists a ¢ € (0,b) and h € (0,b—t) such that

Vse[t,t+h]: p(s)2>e(t)

holds. Hence,

28) —o(t)

s—t
:I\f(S)\I);:!f(t)l\x - H%f(b)H
MEORI(OIR ).

|75 ol

S 150 - Hgf(b)H
X
holds for s \ t. In other words,

1£®) = f(@)]x = IF®)x <1f;Blx b= 1B x (b-a)

shows the assertion.
O

COROLLARY 4.9. Let X and Y be Banach spaces, U ¢ X open, f: U —->Y
Fréchet-differentiable, and a,b e U such that their convex hull conv{a,b} is a subset
of U. Then, there is a t € (0,a) such that

1£) = f(@)]y < [f' (A=t)a+td)| (x,yv) Ib-alx
holds.
PROOF. Let
g: [0,1]=Y; t— f((1-t)a+td).
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Then, g is differentiable and the chain rule yields
g'(t) = f'(1-t)a+1b)(b-a).
Furthermore, there is ¢ € (0,1) such that

1£®) = f(@)ly = l9(1) = g(O)ly < g’ D)y <[ (L -t)a+t)] L x,vylb-alx-
O

PROPOSITION 4.10 (Modified Newton’s Method). Let X and Y be Banach
spaces, U € X open, G ¢ U convex and closed in X, f € CY(U,Y), and B € L(Y, X).
Let ®: U - X; x> x— Bf(x) be such that G is ®-invariant, i.e., ®[G] € G, and

k= sug I1- Bf,(‘r)HL(X) <l
xTE

Then, ® s a strict contraction on G and its unique fived point z* € G satisfies

Bf(z*)=0.
ProoOF. Clearly, ®'(x) =1- Bf'(x). Hence, for a,b € G, we obtain
[@(z) - ®(a)|x < s [9°((1=t)a+tb) | L(x) Ib-alx <E[b-aly.
€ )

Hence, ® is a strict contraction and Banach'’s fixed point theorem implies the other

assertions.
O

THEOREM 4.11 (Implicit Function Theorem). Let M be a topological space,
Y and Z Banach spaces, U €'Y open, F': M xU — Z continuous and Fréchet-
differentiable with respect to the second variable, as well as, (a,b) € M xU such that
f(a,b) =0, 0o F is continuous at (a,b), and 02F(a,b) is an isomorphism.
Then, there are open neighborhoods Vi € M of a and Vo € U of b such that there
exists a unique function g: V4 — Vo with Yx e Vi : F(x,g(x)) =0. Furthermore, g
s continuous.

PROOF. Let B :=0yF (a,b)™ € L(Z,Y) and
B: MxU~Y; (v.y) =y - BF(z,y).

Then, clearly, 1 — BO>F(a,b) = 0 holds and, since d>F is continuous at (a,b), there
are Wi Sopen M and Wa Copen U with a € Wy and b € W such that
1
V(z,y) e Wi xWa: |1-BhF(2,y)| 1y < 3
holds. Let r € R, such that By [b,r] € Wa. Since F(a,b) =0 and F is continuous,
there is an open neighborhood V; € W of a such that
r
sup |BF(z,b)|y < 7
xeVq

For x € V] and y € By [b,r] we, thus, observe
|®(z,y) - blly <[®(z,y) - 2(x,0)[y + [P(x,b) - bl

< sup |[1-BOF(z, (1-t)y +tb)| vy |y - bly + [ BF(z,0) ]y
te[0,1] —_— ——
<r <

(M

A
(S

<r

3

ie, ®(x,-)[By[b,r]] € By(b,r) == V5. Hence, ®(z,-) has a unique fixed point
g(x) € Va for every x € V.
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Concerning continuity of g, we observe for z,z’ € V4 sufficiently close
lg(x) = g(@") ]y = |2 (z, g(x)) - (2, g(2")) ]y
<|@(@,9(2)) - (2, g(2)) |y + [2(a', g(2)) - (2", 9(")) |y
<|e(z,9(2)) - (2, 9(x))y

+ S |1-BoF(2', (1-t)g(x) + tg(z") L vy 9(x) = 9(z)]y

<

<12z, 9(2)) - (" gDl + 5 o) - 92"}y

M

and, therefore,

lg(z) - g2y <2|®(z,9(2)) - (2", g(x)) ]y =2|B(F(2',9(x)) - Fx,9(x)))ly

which converges to zero as ' - x because F' and B are continuous.

O

COROLLARY 4.12. Using the notation of Theorem 4.11, let go :=b and
VneNVzeVi: go(x) = gn1(z) - 2F(a,b) ' F(z,gn1(z)).
Then, g, converges to the implicit function g pointwise in'Y .

PROOF. In the proof of Theorem 4.11 we constructed g to be the unique fixed
point of

9(z) = @(z,g(2)) = g(x) - 02 F (a,b) " F(z,9(x))

using Banach’s fixed point theorem. Now defined g,.1(x) = ®(x,gn(x)). Thus,
b=go(x) € Vo = By(b,r) for every z € V7 implies pointwise convergence of (gn)nen
to g.

[l

Now, that we can construct implicit functions, the remainder of the chapter
will show that the solutions are sufficiently smooth if the function F' is and we will
state the inverse function theorem since this is the theorem we will end up using.

PrOPOSITION 4.13. Let X, Y, and Z be Banach spaces, Uy € X open, Uy CY
open, F: Uy xUs - Z, (a,b) € Uy,xUs, F(a,b) =0, F Fréchet-differentiable at
(a,b), and 02 F (a,b) an isomorphism. Let g: Uy — Uy be continuous at a, g(a) =b
and Vx e Uy : F(z,g(x)) =0.

Then, g is Fréchet-differentiable at a satisfying

g'(a) = -02F(a,b) 0, F(a,b).
Proor. Without loss of generality, let a = 0 and b = 0. Let A := 9;F(0,0) ¢

L(X,Z) and B :=0:F(0,0) € L(Y,Z). Then, B is an isomorphism and there exists
a function ¢ : Uy x Uz > Z with p(x,y) - 0 ((x,y) - 0) and

F(z,y) = F(0,0) +Az + By + (|z] x + [y]y) ¢(2,y).

—
Thus,

0=F(z,g9(x)) = Az + Bg(z) + (|| x + l9(=)[y) (x, 9(x))
implies

g(a) = =B Az~ (|z]x + [g(x)]y) B~ ¢(z, g(x)) = =B Az + |lz] v (x)
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with
9@y \ .
ba) = - (1 9D g o)

Izl x

for « # 0. Hence, we will have to show ¢ (x) - 0 (x — 0). Let § € R, be such that
Bx(0,5) c U; and

_ 1
Ve By(0,6): |B 1<p(a:,g(:1:))||y < 5

Then,
lg(@)ly <B4 Iz + Izlx + lg()ly
&y = Lx,y) 1®llx 5
implies
lg(2)ly < (2 |BAf, yy + 1) Iz 5
=K
ie.

lo(@)lly <1+ K) | B o(2,9(2))],, ~ 0 (x-0).
(]

Remark on the Neumann series
Let X be a Banach space, T' ¢ L(X), and |T|,(xy < 1. Then, ¥jey, "
converges absolutely since

1
T <V Tl =
keZN:U ” HL(X) keZN:U PO T - HTHL(X)
Furthermore, we obtain
1-17) Y 1= Y TF)(1-T)=1
keN, keNy
holds, i.e., 1 - T is a homeomorphism with (1 -7)7! = Then, Tk,
]

LEMMA 4.14. Let X and Y be Banach spaces, S,T € L(X,Y), 0¢€ o(T), and
-1

IS - THL(X,Y) < HT_1||L(Y,X) :

Then, 0 € o(S) and
_1y-1 _
Brix.v) (T, |7 1HL(Y1X)) 55w S e L(Y, X)
is continuous. In particular, the set of isomorphism in L(X,Y") is open.
ProoF. Since |[T71(S=T)|,y, < |77 Lyxy IS = Tlrx.yy < 1, the Neu-
mann series yields that 1+ 771(S-T): X - X is boundedly invertible. Using
S=T(A+T*(S-T))
we obtain the assertion from
St=(1+T Y S-T)'T7' e L(Y, X).
O

COROLLARY 4.15. With the assumptions of Theorem 4.11, M being an open
subset of a Banach space X, and F e C™(M xU, Z) for some m e Nu{oo}, the set
Vi in Theorem 4.11 can be chosen such that g: Vi — Vo is in C™(V1,V3).
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PROOF. It is possible to choose Vi such that Vo € Vi : 02F(x,9(x)) is an
isomorphism. Thus, Proposition 4.13 yields continuity of g’ with

g'(x) = =0uF (z,g(x)) " 01 F (x,9(x)).

For m > 2 the right-hand side is Fréchet-differentiable and g € C?(V3, V»), therefore.
Inductively, we obtain g € C"™(V1,V3).
O

THEOREM 4.16 (Inverse Function Theorem). Let X and Y be Banach spaces,
UcX open, me Nu{oo}, feC™(U,Y), acU, and f'(a) an isomorphism. Then,
there are open neighborhoods Uy of a and Uy of b:= f(a) such that f: Uy - Us is
a C™-diffeomorphism. Furthermore, (f71)(b) = f'(a)™!.

PROOF. Let

F: Y xU-=Y; (y,x) » f(z) -y

Then, F ¢ C™(Y x U,Y), F(b,a) =0, and &-F(b,a) = f'(a) is an isomorphism.
Hence, there are open neighborhoods Uy € Y of b and V ¢ U of a such that g :
Us — V is uniquely determined by F(y,g(y)) = 0 and g € C™ (U, V). Since for
xeC and yeUs

z=9(y) < Fly,2)=0 < y=f(z)
holds, Uy := g[Us] = [Uz]fnV is open and f : Uy — Uy is bijective with g = (f]u, )"
Hence, go f|y, =id |y, implies (¢’ o f)f' =1, i.e,,
g'(b) = f'(a)™.
]

At this point we have shown the implicit function theorem and inverse function
theorem for C™-function with m € Nu {oo}. Now we will show that they are also
true for analytic functions (C*).

Let X be a Banach space and r € (0,1). We define B, := Bx(0,7%)xBx (0,7) ¢
X2, as well as, E, to be the set of all u = ((x, Y) = Lo nen, ummxmy") eC¥(B,,X)
satisfying
lulg, = 30 lumnlp, ™" <00
m,neN,

which itself defines a norm on E,.

LEMMA 4.17. (B, ||, ) is a Banach space.

PROOF. Let (u(™),ev € EN be a Cauchy sequence. Then, all (ul(’;))neN €
L(X*7, X)N are Cauchy and, since X is complete, so is L(X 7, X), i.e., uy;) =i
in L(X™, X) for every i,j € N.

Let z1,...,2:; € By, a € R, and y € B, sufficiently small such that u+ay € B,

for every k € N;, ;. Then,
e + i) <ul™( n i)
2,7 1,...,1'19_1,1']9 ay7xk+lu'-'7xl+] ui,j .Tl,-.-,xk_l,ff]g ayu‘rk+17-'-7xl+]
- (")( i)
_ui,j xl?"'Jxk—17xk7xk+l7"'7xl+]
+auf’)( )
QU STy ey The=15 Y5 Thaly « - -5 Tinj
_>U7;7j(f£1,.-.,xk_l,l'k,xk+1,-.-,$i+j)
+auf’)( )
Oy (T ey The=15 Y5 Thtly « - -5 Tigj

shows multi-linearity of w; ;.
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Let
n . .
~ . . X2
Un: By = X; (2,y) = Y, uija'y’
4,J=0
: - . (m) e
and m € N sufficiently large such that Vi,j € Ny, : ‘u” - U, Lip S mErE
Then,
S 2ivj ¢ X 205, S [ 2
7+ m 1+ m 7+
> il ]SZ‘uiJ—uij o J+Z‘uij Wl
L p L ’ Lip P ’ Lip
1,j=0 1,j=0 ,§=0

(k)
<e+ ilele Hu ”ET .

<oo

Hence, the pointwise limit @, —: u (n — o) exists and is an element of E,..
(n)

In order to show that |u—tn|g = X; e, i

r2J converges to
Lip

Ui 5 — U
zero, let € e R .

(i) Choose m; €N such that VmeN,,, : |u—tn|z <5

.. ’ ”
(ii) Choose n; € N such that Vn',n" eN,,, : Hu(" ) — (") 5 < T
(n1) 2i+j _ €
(iii) Choose my €Ny, such that Zi7JEN>m2 u; ; Lipr <z
(iv) Since all |u§7;) . %7 converge to zero, let ng € Ny, be such that Vn e
J lLip 2
. . (n) 2i+j e
Nan, Vi, € No g, : ‘“w Lip A(mar1)2”
Then, we observe for n e N,
mo
n ~ (n) 2i+j (n) 2i+j
”u—u( )”E S‘|u_um2HE+Z|uiJ—uij ot 4 Z ‘uij ot
r v e ) Lip - » ILip
—_— ————— %,7=0 z,JEN>m2
<s -
<1
€ (n) _, (n1) 2i+j | (n1) 2i+j
<zt |u—u T + U, . 7
2 Z 2,9 9 Lip Z v Lip

i.jeN, ., §56 N

<Jutm -] <

ST

£
4

<&

which completes the proof.

Let us also consider the subspace
F.:={ueE,; VmeNy: tpo=0}.

Clearly, F, is a closed subspace, i.e., a Banach space itself. Furthermore, let us
define L € L(F,) by

1
V(z,y) € By : Lu(z,y):= Z — U " Y"
(m,n)eNyxN n
and for w € E,
V(xz,y) € By : Lyu(z,y) = Ou(x,y)w(x,y) — Ooul(z,0)w(x,0).

Obviously, we obtain L],z y=1and, for wy: B, - X; (z,y) » y, Luy, oL =idp,.

LEMMA 4.18. L, 0 L is in L(F,) and satisfies | L., OL”L(FT) < H’UJ“ET'

T
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PRrROOF. Let w be decomposed as

w(x,y) = Z W nx"y".
m,neN,

Then, for u = ((w,y) e Z(m,n)eNoxN um,nxmyn) ek,

1
Ly Lu(z,0) = ((x,y) — Ly, Z —umynxmyn) (2,0)
(m,n)eNyxN

=l > umaaz™y" | DL wmaz™y"
m,neN, m,neN,
) ( Z umem)( Z wm)oxm)
meN, meN, (2,y)=(2,0)

m m m m
= > umaz Y wmor™ | = DD umaz > Wm0z
mENO mGNO mGNO mENO

=0

(z,9)=(2,0)

shows L,,Lu € F,.. Furthermore,
Ly Lu(z,y)

1
=L, Z U " Y"
(m,n)eNyxN n

m, n m, n m m
= Z Umn+1T Y E WmnT Y - Z Um, 1T Z Wm,,0T
m,neN, m,neN, meN, meNg

) 2 2 (U1 2™ Y"™) (g, N—n 2™ YN )
(M, N)eNoxN (m.n)eNg _ o v
implies
HLwLUHET
< ) > Jummetlpgy loarm x-nllg, [N
(M,N)eNgxN \ (m,n)eNg _ /vy
: — —
:;( %: ( ) 22: Hum’n"'lHLip r2m+n+l HwM_m’N_nHLip ’I"2(]w m)+(N n)
M,N)eNyxN m,n ENU,S(M,N)
1
‘( 2, Jemntl, WM)( 5 lmaly TWR))
m,neN, m,neN,
|wl g,
= Julg, -

O

LEMMA 4.19. Let X be a Banach space, U € X an open neighborhood of zero,
FeC¥(U,X), F(0) =0, and F'(0) =1. Let V ¢ X be an open neighborhood of
zero and G : 'V - X a local inverse of F at zero. Then, G is analytic in an open
neighborhood of zero.

ProoF. For r e R, sufficiently small, let v, w € E;, be defined by
V(z,y) € B i v(z,y):=F(y)-=
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and
V(z,y) € By s w(z,y) =v(z,y) —wo(z,y) = F(y) -z -y.
Then,
1
V(z,y) € By: w(x,y)=-x+ Z —|8"F(O)y"
nENZ2 n.
and

10" F(0)vip
.

n!

ST2CF

lwlg, <+ 2

neN,,

holds where CFr € R, is a constant solely dependent on F'. From the definitions of
v and w, we obtain

LyoL-1=(Ly-Ly,)oL="LyoL
and, hence, for r < Ci,
F
HL'UOL_]‘HL(FT) STCF <1

and, according to Lemma 4.14, L, o L is an isomorphism on F,. Let ug := (L, o
L) 'wg. Then, we obtain for all (z,y) € B,

(+) y=wo(z,y) = (Ly o L)uo(z,y) = 02(Luo)(x,y)v(x,y) - 92(Luo)(z,0)v(z,0).
In particular, we observe for y € Bx (0,7) and ¢ € (0,1)
ty =05(Luo) (0, t9)v(0, ty) - Ba(Lu) (0,0)v(0,0)
~05(Luo) (0, ty)0(0, ty) - 02 Luo ) (0, ty)v (0, 0)
+ 02(Lug)(0,ty)v(0,0) — 02 (Lug)(0,0)v(0,0)

=02(Luo) (0, ty) (F(ty) - F(0)) + (02(Luo) (0, ty) — 02(Luo)(0,0)) F(0)

=02(Luo)(0,ty)(F(ty) - F(0))
which (dividing by ¢ and ¢  0) shows

Vy e Bx(0,7): y=02(Lug)(0,0)F'(0)y = 02(Lup)(0,0)y,

i.e., 02(Lug)(0,0) = 1 =idx. Hence, there exists € € (0,7) such that 92(Lug)(x,y)
is a bijection on X for every (z,) € Bx(0,£2) x Bx(0,¢).
Defining

G: Bx(0,e%) - X; > 05(Lug)(x,0)x
we observe G € C¥ (Bx(0,¢%),X) and
G(z) =92 (Luo)(z,0)z

== 85 (Luo)(x,0)(F(0) - x)
=~ 02(Lug)(x,0)v(x,0)

(;)y — 0o (Lug) (z,y)v(z,1y)
=y — 02 (Luo)(x,y)(F(y) - z),

ie., for y = G(x),
G(x) = G(z) - 8x(Luo)(z,G(2)) (F(G(x)) - z) = G(2).

linear =0

Hence, G is analytic on V n Bx (0,e?) which is an open neighborhood of zero.
O
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THEOREM 4.20 (Analytic Inverse Function Theorem). Let X and Y be Banach
spaces, U € X open, m e Nu{oo,w}, f e C"™(U,Y), acU, and f'(a) an isomor-
phism. Then, there are open neighborhoods Uy of a and Uz of b := f(a) such that
f: Uy = Uy is a C™-diffeomorphism. Furthermore, (f~1)'(b) = f'(a)™".

PROOF. The inverse function theorem (Theorem 4.16) yields the assertion for
m e Nu{oo}, i.e., it suffices to show the assertion for m = w knowing that f: V3 - V;
is a C'*°-diffeomorphism for some open neighborhoods V; of a and V5 of b. Let
U:=U -a and

FrU=X;am f(a) (flz+a) - f(a).
Then, f(0) =0 and f'(0) = 1. Thus, Lemma 4.19 yields that f is a C* (U1,Us)-
diffeomorphism for some neighborhoods U, and U, of zero. Finally,
Vo e (a+ Ul) NnVi: f(z) = f(a)+ f’(a)f(:z: —-a)

implies the assertion for U; := (a + Ul) NnV1 and Uy = f[U1].
O

THEOREM 4.21 (Analytic Implicit Function Theorem). Let X, Y, and Z be
Banach spaces, Uy € X open, Us €Y open, m e Nu{oo,w}, F e C™(Uy xUs, Z),
(a,b) € Uy x U, F(a,b) =0, and O2F(a,b) an isomorphism. Then, there are open
neighborhoods Vi ¢ X of a and Vo €Y of b such that there is a unique function
g: Vi > Vo withVeeVy: F(xz,g9(x)) =0. Furthermore, g€ C™(V1,Va).

ProOOF. We already know the assertion for m € Nu{oo}. Hence, let m = w and
g € C= (W1, Ws) the implicit function with open neighborhoods W7 ¢ X of a and
WscY of b. Let

G: U xUy > ZxX; (z,y) = (F(x,y),x).
Then,
G'(a,b)(x,y) = (01 F(a,b)x + 02 F (a,b)y, )
holds for every (z,y) € X x Y. Thus, G’'(a,b) has the bounded inverse
G'(a,b)™': ZxX > X xY; (z,2) - (2,00F (a,b) " (2 - 81F(a,b):17))

and the analytic inverse function theorem (Theorem 4.20) yields open sets U, c Uy,
Uy € Uz, and Vp € Z x X such that (a,b) € Uy x Uz and G is a C (U x Uz, Vp)-

diffeomorphism. Furthermore, we observe
g(@) = pra(z, g(2)) = (prp0G™") (F(2, 9()),2) = (pr20G™") (0,2)
for every z € Wi nU; =: V. Observation 4.3, thus, yields that
Viszr (pryoG ') (0,2) eY

is analytic, i.e., g is a C¥ (4, Va)-diffeomorphism where V5 := g[V1].
O

To conclude this chapter we will prove the incredibly handy fact that compo-
sition of analytic functions yields an analytic function.

PrOPOSITION 4.22. Let X, Y, and Z be Banach spaces, U € X open, V Y
open, F e C¥(U, V), and Ge C¥(V,Z). Then, Go F e C*(U, Z).
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PROOF. Let W :=Ux (VxZ)and H: W - Y x Z; (z,(y,2)) = (F(z) -
y,G(y) — 2). Let mg € U, yo := F(xp), and 2o := G(yo). Then, we observe

H (o, (y0,20)) =0

and the equation

(5.5) = 2aH o, (o) 2= 02 ([ CY) = a2

is equivalent to y = -¢ and z = =2 — G'(yo)y. Thus, 92 H (x¢, (y0,20)) is an isomor-

phism, and, by the analytic implicit function theorem, there is an analytic implicit
function (Y, Z ) solving

H(z,(Y(2),Z(z))) =0
in an open neighborhood of zy. But H(zx,(y,z)) = 0 implies G(F(z)) = z and,
thus, Go F' = Z. Observation 4.3 yields analyticity of Go F' at o and, since xo was

arbitrarily chosen in U, G o F' is analytic.
O






CHAPTER 5

Fredholm Operators

At last, we will state a few facts about Fredholm operators as we will use them
quite extensively in the proof of well-posedness of the Navier-Stokes equations.

DEFINITION 5.1. Let X and Y be Banach spaces. T € L(X,Y) is called a
Fredholm operator if and only if dim[{0}]T and codimT[X ] are finite.
The number ind(T) := dim[{0}]T — codim T'[X] is called the index of T

DEFINITION 5.2. Let X and Y be Banach spaces. A linear operator Tc X oY
has finite rank if and only if dimT[X] is finite.

COROLLARY 5.3. Every bounded finite rank operator is compact. In particular,
if X and Y are Banach spaces, one of which is finite dimensional, then every
T e L(X,Y) has finite rank, i.e., is compact.

LEMMA 5.4. Let H be a Hilbert space, M € H a closed subspace, and V € H a
finite dimensional subspace. Then, M +V 1is closed.

In particular, if codim M € Ny and W € H is a subspace with M c W, then W
is closed and codim W e Nj,.

PROOF. Let P: H — M be the orthogonal projection and V, := (1 - P)V.
Then, M +V = M &V, where M @&V, is an orthogonal direct sum, i.e., M +V is
closed since a sequence ((5,%n))nen € (M @ V)N converges if and only if (2, )nen
converges in M and (yn)ney converges in V), and both spaces are closed (M by
assumption and V| since it is finite dimensional).

Let codim M € N;. Then, there is a finite dimensional subspace V such that
W =M+V,ie., W is closed by the previous part of the proof, and codim W <
codim M € N is trivial.

O

PROPOSITION 5.5. Let X andY be Banach spaces, and T € L(X,Y) a Fredholm
operator.

(i) If ind(T') = 0 and T is injective, then T is continuously invertible, i.e.,
0€eo(T).

(ii) The range T[X] of T is closed. Furthermore, the equation Txz =y has a
solution x € X for given y € Y if and only if Va* € [{0}]T* : (z*,y) =0
where T™ denotes the dual operator.

(iii) Let S € L(X,Y) be compact. Then, T + S is a Fredholm operator with
ind(7T +S) =ind(T).

(iv) The dual operator T* is a Fredholm operator with

dim[{0}]T* = codim T[X] and codimT*[Y'] = dim[{0}]T.

In particular, ind(T) = —ind(T*) and the equation T*y* = x* has a solu-
tion y* €Y' for given x* € X' if and only if Vo € [{0}]T: («*,z)=0.

PROOF. [21] Proposition 8.14 O
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Remark The range of a Fredholm operator being closed is non-trivial. Let X be
a Banach space and Xy ¢ X a dense subspace. Let zp € X \ Xg and V := {x ¢
X; (x,x0) linearly independent} u {0}. Then, codimV =1 and Xy €V ¢ X. Since
X is dense, so is V. However, V' cannot be closed since V' # X.
u
PROPOSITION 5.6. Let Hy and Hy be Hilbert spaces and F € L(Hy, Hs). Then,
the following are equivalent.

(i) F is a Fredholm operator.
(ii) There exists A € L(Hz, Hy) such that AF -1 and FA-1 are both compact.
(iii) There exists A€ L(Ha, Hy) such that AF -1 and FA-1 are both of finite

rank.

PROOF. “(i)=(ii)” Let F' be a Fredholm operator, x,y € [{0}]F*, and Fz = Fy.
Then, F(z-y) =0,ie., x-y e [{0}|Fn[{0}]F* ={0}. Thus, F': [{0}|F* - F[H]
is bijective. Let G : F[H;] — [{0}]F* be the inverse of F on F[H;], P: H; —
[{0}]F* and Q: Hs — F[H;] the orthoprojections, and A := GQ. Then,

AF-1=GQF-1=GF-1=P-1
and
FA-1=FGQR-1=Q-1

hold. Since P -1 and @ — 1 are of finite rank (they are the orthoprojections on
[{0}]F and F[Hy]"), they are, in particular, compact.

“(ii)=-(iii)” Since AF -1 is compact, there are G1 € L(Hy) of finite rank and
Ay € Brp,y(0,1) such that AF ~1 =Gy + A because compact operators are limits

of finite rank operators. Let A; := (1 - A1)™' A. Then, we observe
AF=(1-A)"AF=(1-A)" " (1+G1+A))=1+(1-A) "Gy

where (1 —Al)_l Gy = By is another operator of finite rank. Similarly, we can
choose Ay, Ga, Ag, and By (with the same properties as the operators with index
1) such that F'A; =1+ Bs. Since

A1+ A1 By = A1FAy = As + B1Ag
holds, we may define the finite rank operator
J=A1-Ay=B1As - A1 By
and observe
FA -1=FA,-(FAs-By)=FJ+ By
which is of finite rank, as well as,
A1F-1=1+B;-1=B;.

Hence, the operator A can be modified to A; such that A1 F -1 and FA; — 1 are
both of finite rank.

“(iii)=-(i)” Let AF -1 =1 Gy and FA -1 = G3. Since G; and G5 have finite
rank, AF =1+ G1 and FA =1+ G5 are Fredholm operators. Thus,

[({0}]F < [{0}]AF,
dim[{0}]F < dim[{0}]AF € N,
and

F[Hl] 2 FA[HQ],
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ie.,
codim F'[H;] < codim FFA[Hz] € Ny,
yield the assertion.

O

OBSERVATION 5.7. Let Hy and Hy be Hilbert spaces and F € L(Hy, Hs) be a
Fredholm operator. Then, F* is a Fredholm operator with ind(F*) = —ind(F).

PROOF. The observation follows directly from
[{0}]F* = F[H,]* and F*[Hx]" = [{0}]F.
O

PROPOSITION 5.8. Let Hy and Hy be Hilbert spaces and F € L(Hy, H2). Then,
F is a Fredholm operator if and only if there are orthogonal decompositions Hy =
Hi, ® His and Hy = Hy1 & Hoyo such that

e Hy1 and Hyi are closed,
e His and Hys are finite dimensional, and
o F' has the block decomposition

Fi1 Fip
Fyy Iy

with F11 € L(Hy1,Ha1) boundedly invertible.

Furthermore, given this decomposition, ind(F') = dim Hqo — dim Hos.

)1 Hy1 © Hio — Ha1 © Hoo

PROOF. [4] Lemma 16.34 O

PROPOSITION 5.9. Let Hy and Ho be Hilbert spaces, F1,C,A € L(Hy,Hs), Fs €
L(Hy, Hy), Fy and Fy Fredholm operators, C compact, and HAHL(HMHQ) sufficiently
small. Then, F1 + A, F1 +C. and FyFy are Fredholm operators with ind(Fy + A) =
ind(Fy + C) =ind(F1) and ind(F1Fy) = ind(Fy) +ind(F3).

In particular, the set of Fredholm operators in L(H1, Hs) is open.

PROOF. [4] Proposition 16.35 O

PRrOPOSITION 5.10. Let Hy and Hy be Hilbert spaces. The index of a Fredholm
operator is constant on connected components of the set of Fredholm operators in
L(H,,Hy) and is a bijection between Z and the connected components.

PROOF. [7] Theorem 1.4 (b) O

Remark In fact, it can be shown that the set of Fredholm operators in L(H)
of a given index is path connected where H is a Hilbert space. To prove this,
recall that if A; and Ay have index k, then A]As has index zero. If A7Ay can
be connected to the identity by ~y1, then A;7; connects A; with A; A7 As. On the
other hand, if the operator A; A}, which is also of index zero, can be connected
to the identity using 72, then 7242 connects Ay with A; A7 As. Hence, it suffices
to show that the set of operators of index zero are path connected. In that case,
[{0}]A and A[H]* are isomorphic since they are finite dimensional spaces of the
same dimension. Thus, for such an isomorphism I, which we extend by zero on
[{0}]A*, the path [0,1] 5t~ A+l € L(H) connects A with an isomorphism (cf.,
Observation 5.11 below) and GL(H) is known to be path connected (even more so,
Kuiper’s Theorem states that GL(H) is contractible).
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OBSERVATION 5.11. Let Hy and Hsy be Hilbert spaces, GL(Hy, Hs) the set of
isomorphisms mapping Hy to Hs, and Fy,(Hy, Hy) the set of Fredholm operators of
index k € Z mapping Hy to Ha. Then, GL(H1, Hs) is dense in Fo(Hy, Hs).

Proor. Obviously GL(Hy, Hs) € Fy(H;, Hy) holds since every isomorphism
is bijective. Let A € Fy(H1,Hz). Then, dim[{0}]A = dim A[H;]* € N, holds, i.e.,
[{0}]A and A[H;]* are isomorphic. Let I be such an isomorphism, decompose
H, =[{0}]A* @ [{0}]A, and define for t € [0,1]

A [{0}]A @ [{0}]A > A[H ] ® A[H1]"; z+y > Az +tly

which, by definition, is bijective for ¢ > 0 (note that Alfjgyja. is injective and
surjective on to A[H;]). Thus, observing A; - A (¢ \ 0) completes the proof.
(I

OBSERVATION 5.12. Let X andY be Banach spaces, S,T € L(X,Y'), S bijective,
and T compact. Then, S +T is a Fredholm operator of index zero.
In particular, the following are equivalent.
(i) S+T is injective.
(ii) S+ T is surjective.
(iii) S+ T is bijective.
PROOF. Since S is bounded and bijective, S is Fredholm of index zero. Hence,
Proposition 5.9 implies that S + T is a Fredholm operator of index zero, as well.
In particular, we have dim[{0}](S+T) = codim(S+T)[X ], i.e., (i)<>(ii), which
implies (1)=(ii)=(i)A(ii)=(iii)=(1).
O



Part 2

The Navier-Stokes Equations






CHAPTER 6

Modeling Navier-Stokes

From now on, we will require M to satisfy the Rellich-Kondrachov condition
and .

DEFINITION 6.1 (Rellich-Kondrachov condition). Let (M,§) be a finite di-
mensional Riemannian Ct-manifold. Then, we say (M,§) satisfies the Rellich-

Kondrachov condition if and only if Vq € [1,dim M) Va € N, Vpe [1, (fiiir;’;[]i) :

WO M) compact L™ ().

We will start modeling the Navier-Stokes equations on [0, 7] x M with the mass
flow ou where g is the density of the fluid and u the velocity field. Until we identify
the Hilbert spaces, we will assume that all functions are sufficiently smooth. For
V ¢ M open with smooth boundary, we obtain by the Gauss divergence theorem

vt e[0,7]: fv tr v (ou(t))dvolas = fa eu(t),v)dvolov.

But, since the right-hand side is nothing else than the mass transported out of V,
we observe

vt e[0,7]: f tr v (o(t)u(t))dvolas = fa (ou(t), v)dvolpy = 8, f o(t)dvolys
1% v 1%
and, since this holds for ever V ¢ M with smooth boundary,
Vte[0,7]: trV(o(t)u(t)) = -0ro(t).
We want to consider fluids only, that is, an incompressible medium, i.e., 9y = 0.
Hence, this last equation yields the continuity equation
(continuity) tr Vu = 0.
Next, we will have a look at the stress term. Let V¥™ := symV be the symmetrized!
co-variant derivative on (1,0)-tensors and 7, ¢ positive, bounded, and bounded from

below (these are the two scalar dynamic viscosities in hydrodynamics). A fluid is
called isotropic if and only if the viscous stress tensor

o =2V u + (trf tr Vu
satisfies
tro =0.

2n
dim M

In this case, we call 1 the shear viscosity and ¢ + the bulk viscosity. Using

the continuity equation, we obtain
o =2nV¥ My
which we generalize to the non-Newtonian case
o=0V¥"y
where C' is a viscosity operator.

et 7 be a (2,0)-tensor. Then, symT'(x,y) := %(T(x,y) +T(y,x)) = wtql ®g’.
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DEFINITION 6.2 (Viscosity Operator). Let C € L (L2 ([O,T];L§2’O)(M))) be a
positive operator that furthermore satisfies
(i) C is an isomorphism on the symmetric tensor fields, i.e.,
(10,7 Jsym[ LSO (M) ])
((0,7Ysym[LE? (an)]) )
([0, Yisym[LEO (D)) |
2([0rLsym[ 23O (]) )

(ii) C vanishes on anti-symmetric tensor fields, i.e.,

N(C) = [{0}]C = Ly ([0, 7Jsasym [ L (a1) ])..

Lo
Oep C|L2

L
To simplify notation, let C~' denote (C|L

(iii) C and C~' preserve differentiability classes, i.e.,
r e W ([0, 7):sym [0, A0 an)])
implies
Cx,Clz e ng ([O,T];sym [W;l’(z’o)(M)]) )
(iv) C is a (timely) causal operator, i.e.,
Vo e Loy ([O, T];sym [ng'o)(M)]) : infsptyx <infspt, Cx

where spt, denotes the support in Ly([0,7]).% In other words, if x is zero
on some interval [0,7'] then so is Cx; viz., the viscosity of the fluid does
not depend on the future.

(v) tr C~ttr* is boundedly invertible.

Remark The “classical” Navier-Stokes problem, cf. [5],
Opu + (u, V)u =vAu—-Vp+ f, divu =0, u(0) =ug
can be retrieved choosing the viscosity operator C = 2vsym.

In order to obtain the entire stress tensor, we will have to take the pressure p into
account. The stress tensor T is, then, defined as

T:=0-trp.
OBSERVATION 6.3. Let te LgQ’O)(M) be anti-symmetric. Then, trt =0.

PROOF. Let t € ng’o)(M) be anti-symmetric, i.e., t = @gz ® ¢’. Then,

1 , , , ,
trt :tr(§ (tijgl ®g’ —t5ig" ®gj))

tijg"” —tig")

tijg"” —tijg’")

—~~ o~

tijg"” —tijg")

CNIR N =N -

holds.

2Mind that La([0,7]; H) = L2([0,7]) ® H holds for every Hilbert space H.
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Thus, we also obtain the stress equation
(continuity) tr V¥ =0
(stress) CIT - vy + CHr* p =0
Finally, we add the initial condition «(0) = ug and Cauchy’s momentum equation
(which is Newton’s law of motion written down for fluids)
0(Owu+ (u,V)u) =tr VT + f

using (u, V)u := UigijVqu = V,u where f is an external force. Without loss of
generality, we may assume p = 1 since we can replace C, p, and f by %C, %p, and

é f, respectively.
Now, the classical Navier-Stokes system is

(continuity) tr vy =0 in (0,7) x M,
(stress) C'T - vy + C™ tr* p =0 in (0,7) x M,
(Cauchy) Opu+ (u, Vyu—tr VI =f in (0,7) x M,
(initial condition) u(0) =up in M

where u is the velocity field, T' the stress tensor (symmetric), p the pressure, C
a viscosity operator, and f an external force. The objective is to find reasonable
conditions for all these symbols to be physically senseful and interpretable in an
Ls-sense.

First, let us observe for ¢ € SDT;O’O)(M)

trvitrp=trv (ngkgj ® gk)
=tr (Vg 09509’ ® ¢’ ® g*)
=Vg.09i59" g"
=V Spgk
=V

and, therefrom, for u € Smgl’o)(M)
(u, V)u =uig” V4, upg"
:uigij (ngukglC + ngujgk) - uigiijkUjgk
i} i ok i, ok
=2tr (u @ symVu) 5 (uig”? Vg ujg" + Vg uig”ujg )
1
=2tr (u ® symvVu) — §V(u, u)(1,0)

1
=2tr (u ® symvu) — 3 tr v tr* (u, u)1,0)-
Defining
- 1
p=p- 5(%“)(1,0)
and
'R * 1 sym * * 1 sym * o~
T:=T +tr E(u,u)(l)o) =CV¥y—tr*p+tr §(u,u)(1)0) = OV ™y —tr” p,
we observe
: 1 ~ 1
(u, V)u —tr VT =2tr (u ® V") - 3 tr v tr*(u, u) 1,0y —tr VI —tr vtr’ §(u,u)(170)

=2tr (u® VV™u) - tr vT'
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=2tr (u ® (C_lT +C 7 r* p)) —tr V7T
=2tr (u ® (C'_IT +C 7 r* [))) —trvT.
Hence, Cauchy’s momentum equation reduces to
Ou—trvT = f—2tr (u ® (C“lT +C! tr*ﬁ))
and the model becomes
tr V¥ u =0 in (0,7) x M,
CMT = v u+ C  tr* p=0in (0,7) x M,
Ou—tr VT =f - 2tr (u® (071T+ c tr*ﬁ)) in (0,7) x M,
u(0) =ug in M

which, omitting the initial condition for the moment, is equivalent to

0 trsym®y™y 0 P 0
( ) %)Z(f-%r(u@c-l@“f*ﬁ”)

0 (9t —trv
Cr —yvsm c! 0

and, hence, equivalent to

tr O~ r* 0 trCt\ (p 0
0 o  ~uv|lul=|f-2t(ueC " (T+u*p))|,

T

Cltrr —yvym ' J\T 0

as well. Using the (non-unitary) transformation

1 0 0
U := 0 1 0
-C 1l tr* (tr c1 tr’*)71 0 1

with
1 0 —(tr c! tr*)_l tr Ot
U'=10 1 0 ;
0 0 1
. 1 0 (trC’fltr*)_ltrC”l
U =10 1 0 5
0 0 1
tr O r* 0 tr Ot
U 0 (9t —trv U*
Cltrr  —yvym !
tr O~ r* 0 0
= 0 (9t —trv ,
0 —yym Ccl o gy (tr ! tr*)_l trC1
and
D p+(trc™ tr’*)71 trC-'T
(U*)—l 11‘ — u
T T
yields

Nig =

tr O~ tr* 0 trC~1
U
Cltrr  —yvym Ot

0 o —trv U*(U*)—l(

) =U(f—2tr(u®00‘1 (T+up))
0

|
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0

0
:(f—2tr(u®01 (T-ktr*f’)))

allowing us to further reduce the system, since
-1 ~
p=- (trC"l tr*) trC™T
decouples, yielding

(& sy we)|
—ym 07l Ot (e O ) Lre
(bl ety o)),
0
Let
E:=1-C"% tr* (tr ct tr*)_l tr O3
and

T.

NI»—A

0:=C"
Then, we observe
(1-E)* =C7% tr* (tr O tr*)_1 tr O tr* (trC7! tr*)_l trC"2=1-E
and
E2 =1-207% tr* (tr c! tr*)_l tr 72 + (C’f% tr* (tr ct tr")_1 tr C’f%)2
=1-2(1-E)+ (1-E)?
=E.

Hence, E is an orthogonal projection onto [{0}]tr C~% and self-adjoint in LgQ"O) (M).
Furthermore, the Navier-Stokes system becomes

0 ~twv ) (u)_(f-2t(ue CTECET)
—ym o CcERCTE\T) T 0 ’

i.e.

0 ~trvCH (u) _(f-2tr(ue CEO)
et Ava s E 0] 0 :

Since C'2 vanishes on anti-symmetric tensors, this last equation is equivalent to

o ~trvCH\(u)_(f-2tr(veCiEO)
-C2V E o) 0 '

However, this equation can be interpreted in an Lga”ﬁ )(M ) setting using the (par-
tial) time derivative dp in L2([0,7]) which yields

o ~diviy ¥\ (u) _(f-2tr(ue C7EO)
_C% grad(o) E (C] - 0

where

grad, , Dirichlet case

grad gy =
grad , Neumann or no boundary case
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and

di divp , Neumann case
ivigy = .
© div , Dirichlet or no boundary case

Recall that for all ¢ € [0, 7]
u(t) e N(trv) = [{0}]trv

shall hold and, hence, C'2 Vu takes values in [{0}] tr C~2 which is nothing else than
the range of E. Let
Y : [{0}]trgrad c [{0}]trgrad — [{0}]trC™%; 2+ —C* gradx
in case of no boundary or Neumann boundary conditions®. In case of Dirichlet
boundary conditions let
Y : [{0}]trgrad, c [{0}]trgrad, — [{0}] trC"7; x> —C'3 grad, .
Then

1 *
Y= P et O 820 P gma

embedded in L (M) @ L*? (M) and

*

Yo =pr [{0}]trC%

. 1
[{0}]trgrad o, div(g) C2 pr

embedded in L (M) @ LY (M).
Remark Let I' € 9M be Borel measurable,

D(a) ={ue Wy (M); ulr =0},
and

a: D(a)x D(a) > R; (u,v) (C’gradu,gradv)L(l,m(M).
2

Then, a generates a positive operator Y*Y which can be considered as a realiza-
tion of the mixed boundary condition “Dirichlet on I' and Neumann on OM \ I
Similarly, other boundary conditions can be introduced and the following would be
virtually the same up to a few subtle changes which we will not address any further.

Hence, the system reduces to
O -Y*\(u)_ f—2tr(u®C‘éE®)
Y E J\e] 0

Qu+Y*Yu-Y*(1-E)O = f+2tr(u®C_%Yu).

which yields

* . 1 * . _1\L .
From Y* = prmdlv(o)02 pr[{o}]trc_% and, since ([{O}]trC 2) is the

range of (1 - E) (recall that E is an orthogonal projection), we directly deduce
Y*(1-E) =0 and, therefore,

Oou+Y*Yu=f+2tr (u® C_%Yu).

3Note that these Neumann boundary conditions do not have vanishing normal derivative
but con-normal derivative (C'gradu,v) = 0 where v is the exterior normal on the boundary.
Furthermore, this is a generalization of vanishing con-normal derivative which only makes sense
if the boundary is sufficiently smooth because for general boundary there is no reason why the
trace on OM of C gradu should even exist due to the partial derivatives occurring.
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Since the left-hand side takes values in [{0}]trgrad g, so the right-hand side has
to. Thus, we may state the system as

Oou+Y Yu-2pr

[{0}]tr grad gy
where f takes values in H := PI(o i gradgy, [Lgl’o)(M)].

Remark Note that the operator Y*Y is densely defined due to a theorem by von
Neumann.

tr (u® C“%Yu) =f

THEOREM 6.4 (von Neumann). Let Hy and Hy be Hilbert spaces and A ¢
H, @ H; a closed and densely defined operator. Then A* A is self-adjoint in Hy and
its domain is a core of A.

This theorem can be obtained from the first representation theorem (Theorem
VI.2.1 in [11]) applied to the closed, positive, symmetric form 7 with D(7) := D(A)
and V,y € D(7): 7(x,y) = (Az, Ay)m,.

]

We define the space of maximal regularity

MR, = Wy ([0,7]; H) 0 L2 ([0,7]: D (YY)

endowed with the norm

=

2 2
H'Hzmm MR =R 20 (HfEHWZI([o,T];H) + H‘THLQ([O,T];D(Y*Y)))
Then, the Sobolev Embedding Theorem (Theorem 3.15) yields
mmT “>continuous O([Ov T]; H)

The embedding MR, >continuous C([0,7]; H) is, in fact, compact as can be shown
using Arzela-Ascoli’s theorem. We, on the other hand, only need continuity since
this ensures that

MR, = {a € MA,; 2(0) = 0)
and
TR = MR, fom, , 2 {2(0) € H; 2 ¢ MR}

are well-defined Hilbert spaces.

As of now, we have identified the abstract Cauchy problem we would like to
consider and the spaces the equation should hold in. The only thing in question
is whether the non-linearity behaves nicely. This is where we need the Rellich-
Kondrachov condition. The Rellich-Kondrachov condition implies

VaeNy: Wy @Oy c L{9 )
which combined with ¥ [D (Y*Y)] € Wy *? (M) yields
Vue MR, tr(ue CFYu) e Ly ([0,7]; L5 (1))
Now, we may actually state the Navier-Stokes problem we want to address.

PRrROBLEM 6.5 (Navier-Stokes). Let 7 € Ry, f € Lo([0,7]; H) and ug € TR.
Find u € MR, such that

Oou+Y*Yu-2pr

1 .
(Navier-Stokes) o) T gradey, tr (u ®(C™2 Yu) =f in (0,7) x M,

u(0) =ug in M
holds.






CHAPTER 7

Construction of Solutions and Analytic Dependence

In order to solve the Navier-Stokes problem, let us define
_1
B: MR, - Ly([0,7]; H); z —2prmtr (:17 ®C 2Yx)
and

F.: MR, - Lo([0,7); H) x TR; &~ (Qox+Y Yo+ B(z) , z(0)).
These yield the nice and short notation

Fr(u) = (f, uo)
for the Navier-Stokes equations. F:- will, thus, be called the Navier-Stokes operator
and our objective is to continuously invert F: locally in time and show that the
inverse is an analytic operator on the reduced time interval.
Note that F- is an analytic operator since it is a polynomial of degree two and
for u,v € MR, we observe

Fl(v)u=(dou+Y*Yu+ B (v)u, u(0)).

Hence, if we can find a v € MR, such that F/(v) is an isomorphism and our data
(f,uo) are sufficiently close to F;(v), then the analytic inverse function theorem
yields existence and constructibility of solutions and analytic dependence on the
data. We are going to achieve this by defining

Gr' v = fl[O,‘r’] + (801} + Y*Y’U + B(’U)) 1(7”,7’]
for 7 € (0,7) and v € MAR,. Then we observe for v € MR, with v(0) = ug

2
(977,05 u0) = FT(U)”Lg([O,T];H)x‘IER

:fOT 1£(s) = Bov(s) - Y*Yu(s) - B(v)(s)]% ds ~ 0

as 7' \ 0, L.e., for 7 sufficiently small, we can solve a slightly Navier-Stokes system
and 7’ is even locally constant. In order for us to know that this solution with
respect to (gr/,,u0) also solves the Navier-Stokes system with respect to (f,uo)
on [0,7'], we need to make sure that the solution on [0,7'] does not depend on the
data on (7/,7]. Hence, our to-do-list is:

e Find v e MR, with v(0) = ug and F(v) being an isomorphism; in fact, we
are going to show that F!(v) is always an isomorphism and the existence
of a v with v(0) = ug is trivial by definition of TR.

e Show injectivity of F;.

e Show causality of solutions.
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CHAPTER 8

Linearized Navier-Stokes

This chapter is devoted to showing that F!(v) is an isomorphism but, lucky
us, will also yield injectivity of Fi as a corollary. In order to show that F(v) is an
isomorphism, we will prove that the Stokes operator!

I: MR, > La([0,7]; H) x TR; o~ (G +Y Yz, 2(0))
is an isomorphism, first, and then we will consider the perturbation

B,: MR, - L2([0,7]; H) x TR; 2 (B'(v)x, 0).

LEMMA 8.1. Let AeR, . Then
(80 +Y*Y + )\) : gﬁfﬁﬂo g LQ([O,T];H)

is an isomorphism.
Furthermore, if A > Ao € R, is uniformly bounded away from zero then

H(ao+Y*Y+A)’1H and H(ao +Y*Y+A)’1H

L(L2([0,7];H), MR+ 0) L(L2([0,7];H))

are uniformly bounded (varying A).

PROOF. Since

- * 1,(1,0) N
Y'Y D(Y'Y) € Pty | Wa ()] > H

is self-adjoint and non-negative, the spectral theorem warrants the existence of a
measure space (2, A, ) and a: Q - R,, measurable such that Y*Y is unitarily
equivalent to

a(m): D(a(m)) € La(p) = La2(p); f = (232~ a(z)f(x) €Ryp)
with
D(a(m)) ={f € L2(p); (23 z > a(z)f(x) €Ryg) € La(p)}-
Without loss of generality, we may, hence, assume that Y*Y = a(m).

~ Let feLy([0,7]; L2(p)) and f be a representative. For (,z) € [0, 7]x € with
f(,x) € L1([0,7]) define

¢ -
Sxf(t,x):= fo e(a@+ N Fg 1) ds.

Note that Sy is unitarily equivalent to (9p+Y*Y +A)"". Let b: Q — R, be
measurable and ¢ € R, such that for p-almost every x € ()
L. _b)

<———<¢

Ta(x)+ A

1The name “Stokes operator” is ambiguous here. To be precise, the operator Y*Y should
be called Stokes operator whereas I is the operator associated with the Stokes system. However,
we will always refer to Y*Y as Y*Y and chose the name “Stokes operator” for I for reasons of
brevity.
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holds. Then we observe

Hb(m)SAf\|i2([0,r];L2(u>)

= [ 1SS 01, dt

:fT/|b(;v)S,\f(t,x)|2 dp(x) dt
0 Q

T t
= [ [ @P | [ e (s 2yas
du(z)

t
- f b(2)|? [t > / @@ (g 1Y ds
o 0 La([0.7])

t
= [ @)P e [ @D (k-8 f(s0)1 0,01 (5)ds

2
dt du(z)

2

2

du(z)
L>([0,7])

2
du(x)
L([0,7])

= [ @R e [N -8 f(s.0) 10,01 ()ds
= fﬂ bG) P (e 10 ) 5 (£ ) 0. 0.0y 1)
< [ B@)P (O 1)« (60 )
Souns. [ 10 [0 3 o 156N 0. i)
:fﬂ|b($)|2(/ore<a(m)+x)sd5)2 \\f('v‘”)l[t)ﬂ‘\i2<ua) ()

e—(a(m)+)\)7’ -1

—(a(@) +A)
ef(a(z)+)\)q- 1) bz 2
: fn (( )o )) [£C2) 10 ||i2(R) dp(x)

2
=, Ib(:c)|2( ) Hf('vx)l[oyr]H;(R)du(x)

a(x) + A

2 2
<N FIL, oy L)) -

1

For b =1 we may choose ¢ = 1 and for b=a we may choose ¢ = 1. Then we obtain

153 F e r0,71:00a(myy) IOl Lo 0,71: 2000y + 160 SNF I 2, 10,7201
1
< (X + 1) 1712 00.7: 2207 -

Furthermore, for f continuous, the fundamental theorem of calculus for Bochner
integrals implies Sy f € C* ([0,7]; L2(p)) and, thus, Sxf € W3 ([0,7]; La(u)) for
f € Lo ([0,7]; La(1)). Hence, 3pSxf = f - (a(m) + \)Sxf implies

1SxFlwz to,r )Ly
<INl (0,71 2200)) + 190SNF | Lo r0,71: 20000
<13 nao.rpnaen * 1 = (@m) = NS |10 i

1 £ 2 r0,77: 220y
s W oy + 1(am) + NS0,

1
< (X +1+ 1) 11 2o 0,73 226 -
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Remark To show Sy = (Jp + Y*Y + A)7! in the sense of unitary equivalence, we
observe for f e Ly([0,7], L2(p)), g € MR, o, and f and § representatives

t -
(B0 + Y'Y + NSy f (£, 2) =0 f (@@ N G0 Fg 1)

0

t ~
+ / (a(x) + /\)e(a(z)”‘)(sft)f(s, x)ds
0
t ~ ~
- f ~(a(z) + N)e@@NED F(s 1)ds + f(t, )
0

¢ -
+ / (a(z) + N)ee@NED £ 2y ds
0
=f(t,z)
and (using Hille’s theorem?)

t
Sy (Ao + VY + \)g(t,z) = f @G0 () 4+ YVHY + \)§(s, 2)ds
0

t
:fo @G0 506 1) ds

+ /Ote(“(w)“\)(s"t)(Y*Y+)\)g(s,x)ds
- fot 3o (L NCDG (s 1)) ds

—/Ot(906(“(1)+)‘)(S_t)§(s,x)ds

+ (Y'Y + ) fot @55 1) ds

t
:fo o (e(“(w)”\)(s_t)g(s,x))ds
t
- (Y'Y + ) f e(@@HNEN 55 2)ds
0

t
+(Y*Y + ) / @ NG=Dg(5 2)ds
0

=g(t,x) - e N 5(0,2)
N—_——
=0

=4(t, )
almost everywhere. Hence, Sy = (0p+Y *Y +A)~! in the sense of unitary equivalence.

[
PROPOSITION 8.3. Let By € L (MR, L2([0,7]; H)) with
VAeR,,: Boe™ =e*™0 B,

(mo 1s the multiplication operator with the “time” argument, i.e., in L2([0,7]), with
mazimal domain) and Yo € (0,1) 3C, e R,y YVu € MR, :

HBOUHL2([O,T];H) <Ca HUHL2([0,T];H) ta HUHzmmT .
2

TuEOREM 8.2 (Hille). Let I € R be an interval, X and Y Banach spaces, A c X ®Y a
closed linear operator, f : I — X Bochner-integrable, ¥t € I : f(t) € D(A), and t — Af(t)
Bochner-integrable. Then, [; f(t)dt e D(A) and A [; f(t)dt = [; Af(t)dt holds.

Proor. see [10] O
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Then
J: MR, > La([0,7]; H) x TR; - (Ooz+Y Y+ Boz , 2(0))
s an isomorphism.

PROOF. For f e Ly([0,7]; H) and ug € TR we want to find a solution u € MR,
of

(Qo+Y*Y +Bo)u=f
u(0) =up.
Case ug = 0: For A e R, consider
Oy Lo([0,7]; H) > La([0,7]; H); &> e >0 f = By (Jo + Y'Y +A) " a.
The lemma above ensures that ®, is well-defined and for x,y € Lo([0,7]; H) we
observe
@5 (@) = @AW 1, ([0,71.)

- HBO (8o +Y*Y +0) " (2 -y) HM([O,T];H)

<Co @0+ YV +0) 7 (2 -p)] R (GRS e SV RCEN)]

L ([0,7];

Ca * -1
< (7 ta H(ao +YTY +A) HL(L2([O,T];H),DJTS)‘\‘T)) I =yl 0,730 -

For « sufficiently small and subsequently A large, the lemma above implies that

Ar H(ao Y+ /\)_1 HL(LQ([O,T];H),mmT)

can be uniformly bounded and, hence, there are choices of @ and A such that

(% va@+ vy 0T :

<
L(L2([0.,7-];H),9ﬁ9m))

i.e., & a contraction.
Let «* € Lo([0,7]; H) be the unique fixed point of ¥y, i.e.,

g = e NOf By Qo+ Y'Y +A) ot
holds. Considering u* = e’ (9y + Y*Y + \)"lz* € MR, we observe
(B + Y'Y + N)e Mmoy* = 720 f - Bye Moyt
and, therefore,
(Do +Y*Y + Bo)u* = f.
Case ug # 0: Choose w € MR, with w(0) = ug and consider
(%) (B0 +Y*Y +Bo)(u—w) =f—- (0 +Y*Y + By)w.

Then the first case yields a solution v of (x) and u* := v+w € MR, solves the initial
problem.
The two cases above show that J: DR, - Ly([0,7]; H) x TR is a bijection
and the bounded inverse theorem? yields that J is, in fact, an isomorphism.
O

3

THEOREM 8.4 (Bounded Inverse Theorem). Let X1 and X2 be Banach spaces and T e
L(X1,X2) bijective. Then T™! e L(X2,X1).
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COROLLARY 8.5. The Stokes operator
I: MR, - Lo([0,7]); H) x TR; - (Qox+Y* Yz, x(0))
s an isomorphism.

We are now going to prove that B, is a compact operator. Therefore, we need
to have a look at some compact embedding theorems, first.

LEMMA 8.6 (Aubin-Lions). Let Xy, X1, X2 be Banach spaces, Xo and X7 be
reflexive, and

X0 “compact X “>continuous X1-
Let p,q e Ry, and
W= {f e Ly([0,7]; X0); f" € La([0,7]; X1)}.
Then
W = compact Lp([0,7]; X).

PROOF. see [17]; Proposition II1.1.3 O

We will start by proving two embedding theorems.

LEMMA 8.7. MR, >compact L2([0,7]; H)

PrOOF. Clearly, MR, = W ([0,7],H) n L2([0,7],D(Y*Y)) is continuously
embedded into

W= {ue La([0,7], D(Y*Y)); u' € La([0,7], H)} .
Using Aubin-Lions’ Lemma (Lemma 8.6) with X := D(Y*Y), X := X; := H, and
p:= q:= 2, the assertion reduces to showing

* 1,(1,0
D(Y*'Y)c prm [W2 ( )(M)] >compact H.

Let (fn),ey € D(Y*Y)N be a bounded sequence. Then, (prmfn)neN is

a bounded sequence in W21 ’(1’0)(M ) which is compactly embedded in Lgl’o)(M )

by the Rellich-Kondrachov condition. In other words, there exists a subsequence
(1,0)

(prm Frn )kEN which converges in L, "’ (M). Hence,

(fmc )keN = (pr[{O}] trgrad g pr[{o}] trgrad gy fnk )keN

converges in P (o i gradgy, [LELO)(M)] =H.

O

Remark Using the theorem of Arzela-Ascoli, it is possible to show that the em-
bedding MR, - C([0,7], H) is compact, as well.

]
LEMMA 8.8. [Y|[MMR;] < compact L2([0,7]; H)
PROOF. Note that [Y]:=Y*Y is non-negative, i.e., -1 € o(|Y]). Let
VeeH: |z]|y = Iy |+ 1) |

H
and

Hoy e TV
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Then, |Y|+ 1 maps H unitarily to X;. Furthermore, (0o ® 1)(1® [Y]) and (1 ®
[Y])(0o ® 1) coincide in L (MR, Lo ([0,7], H-1)). Thus,

Yz e 93?9%7. : 80 |Y|{E = |Y|80$ € L2 ([O,T],Hfl)
implies that [Y][9MR,] is continuously embedded in
W :={x e L2([0,7], D(|Y])); Oox € L2 ([0,7], H_1)}.

Furthermore, D(|Y]) = prm[ 21’(1’0)(M)] is compactly embedded in H by
the Rellich-Kondrachov condition and the calculation in the proof of Lemma 8.7.
Choosing p := ¢ :=2, X := D([Y]), X := H, and X; := H_; in Aubin-Lions’ Lemma
(Lemma 8.6), thus, yields that W is compactly embedded in Lo([0,7],H) and,
hence, the assertion.

O

Before proving compactness of B,,, we will need one last lemma.

LEMMA 8.9. Let Hy and Hs be Hilbert spaces and T € L(Hy, Hs). Then, the
following are equivalent.
(i) T is compact.
(ii) T maps weakly-convergent sequences to norm-convergent sequences.

PROOF. “(i)=(ii)” Let (zn)nen € HY be weakly convergent to x € Hy. Then,
(Txp)nen € HY converges weakly to Tz since

VyeHy: (Txn,y)m, = (T, T Y, = (2, T y)m, = (T2, y)u,-

Suppose (T, )neny does not converge in norm. Then, there exists 6 € R, and a
subsequence (T, )keny such that

VkeN: [Ty, —Tx|y, >4

The uniform boundedness principle* for F' = {y = (xn,y)m,; n € N} yields that
(Zn)nen is a bounded sequence. Therefore, (Txy, )ken is bounded and, since T is
compact, there is a norm-convergent subsequence (T:anj ) jen With Tan,, > (-
o0). Since norm-convergence implies weak convergence, we obtain that (Txnkj ) jen
converges weakly to ¢, as well. But the weak limit was Tz, i.e., § = Tx by the
Highlander principle® which is a contradiction.

“(ii)=(i)” Since H; is a Hilbert space, the unit ball By, is weakly compact
(Banach-Alaoglu). Let (2,)nen € BII\_III. Then, (,)neny contains a weakly conver-
gent subsequence which, by (ii), is mapped to a norm-convergent subsequence of
(Tzp)nen; hence, T is compact.

O

PROPOSITION 8.11. Let v e MR,. Then B, is compact.

PRrROOF. Note that it suffices to show that B’(v) maps weakly convergent se-
quences in MR, to norm-convergent sequences in Lo([0,7]; H). Let w € MRY be
weakly convergent to wg € MAR,.

4

THEOREM 8.10 (uniform boundedness principle). Let X be a Banach space and N a
normed vector space. Let F ¢ L(X,N) be such that Vo € X : suppcp |[Tz|y < co. Then,

suPrer [T 1 ox,ny < -

5There can only be one [limit].
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(i) Using polar decomposition Y = V' |Y| and observing that
Lgl’o) >z tr (U(t) ® C_%Vx) € Lgl’o)(M)
is continuous with

sup HLél’O)(M) 5+ tr (U(t) ® C_%V:v) € Lgl"o)(M)H
te[0,7]

oo,

L(LS" (M) <

since MR, ¢ C([0,7]; H), it remains to show that (|Y|wy,), , is norm-convergent
in Ly([0,7]; H) which follows directly from |Y|[9MR;] <>compact L2([0,7]; H).

(ii) Note, MR, c C([0,7]; H) n L2([0,7]; D(Y*Y)) also implies that every
continuous representative of v takes values in D(Y*Y') almost everywhere, i.e., for
almost every t we obtain

C 2y u(t) W) @O (M) < LV (M) = H,.

Let D= C"2Yv € Loo([0,7]; Hy). Introducing the abbreviations x,, := w,, — wy and
E:=Dg,D:5g"°g° ® ¢° € Lo ([0,7]; H2), we observe

ltr(zn ® D)L, 0,15m)
=fOT |20 (D)ag™® D(t)s,97 [, dt
:[OTa:n(t)ago‘ﬁD(t)g.yg’yéD(t)ssgcsfn(t)Cdt
B foT (20 (Dazn(t)cg™ @ 9, D(1) 5y D(1)esg™ 9" @ 7)1y |
< fo "l(zn® 20) (D20 (ary IEO 2 o, dt

T 2
SIBly oy [, lon(®lrdt

2
= ”EHLOO([O,T];HQ) H’LUn - wOHLz([OvTLH)

which converges to zero since MR, >compact L2([0,7]; H).
O

Hence, F!(v) is a Fredholm operator of index zero, i.e., injective if and only if
its range is dense. Since the range is also closed we obtain the following corollary.

COROLLARY 8.12. Let v € MR,. Then, Fl(v) is an isomorphism if and only
if FL(v) is injective.

For x,y,z € MR, let

B(z,y,2) = <—2 P o e grad gy (x ® C’%Yy) , Z>H
Note that
Bz, y,z) =-2(tr(z ® symgrad gy y), Z>(1,0)
= /M T (ngyk + ngyj) g7 g*™ 2, dvol .
Thus,
B(z,y,y) = foz (ngyk + ngyj)gijgkmymdvolM
=- fM 29" (V g, 910" ™ Yim + V 959" Yum ) dvolas

- g1 YW Y0
M

= 5 + x99 <grad(0) Y, y>(170) dvolys
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1, .. .
=- f =(div(o)y z, (¥, ¥)(1,0)) 0,0y + (=, (¥, div(0y ¥) (1,0) ) (0,0)dVOlas
M 2 N~—— S~——
-0 =0

:(),

as well as,
0=3(z,y+z,y+2)=B(z,y,y) + B(z,y,2) + B(z,2,y) + B(w,2,2),
ie.,
[3(17,%2’) = —ﬂ(z,z,y).

The last ingredient we need to prove injectivity of F(v) is Gronwall’s lemma.

LEMMA 8.13 (Gronwall’s Lemma). Let f,g,h: R,y - Ry, be measurable with

@ <o)+ [ 5s)hs)ds

for almost every t e R,y. Then

t t
F0 <9+ [ g@ns)es( [ nar)ds
0 s
holds for almost every t € Ryq.
PROOF. see [16]; Theorem A.43 O

PROPOSITION 8.14. Let v € MR,.. Then, F.(v) is injective. In particular, F;
is locally a diffeomorphism.

PROOF. Let x € MR, and F.(v)z = 0. To show: z = 0. First, note that
F!(v)x =0 is equivalent to

2(0)=0 A Oox+Y Y+ B'(v)x=0.
Multiplying the latter scalarly with x in H yields
0=(00x, x)ur + (Y], [Y|2)m + B(z,v,2) + B(v,z,7)
1 2\ 2
=2 (I2l%) + 112l + B,v.).
With § := (Vg, 0% + Vg, vj) " (Vg Un + Vg, m) ¢ ® g™ this last equation yields
2\ 2
(lel%) + 11l
<2|B(z,v, )|
-1
=2 ‘(—2prmtr (.’IJ ®C 2Y’U) ,JJ)

<4 |tr(z ® sym grad gy v) ||H || g

H‘

1
11 n m1 2
Al ([, 2975 (Tay00 + Vrvs) 97019 5 (Vo 00+ Vg, ) ol |

1
2

=2 ] g {7z ® 2, (Vg, vk + Vg v7) 6" (Vg vn + Vg, 0m) g7 ® g™)

L& ()

. 3
<2zl (le ® 2l @0 py 18] 20 o)

e 2
2101201y, ol
2

_ 2 2
2[00} 0y, 121 + Y120

;2,0)(M
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and, hence,

2 ’<2 i E 2
(I=1) <2020y, Il

Thus, integration yields

2 2 b 2
o) < 1+ [ 215, I ds

for almost every t and, investing Gronwall’s lemma, gives

1
t 1 [ 219012 dr
2 2 2 )~ 35 s (2,0)
o)l <=1 + [ 2l@ 16 an, e 70

| — | —
=0 =0

The very same mechanism also yields the following proposition.

ProrosITION 8.15. F; is injective. In particular, F; is a diffeomorphism.

PROOF. Let z,y € MR, with F;(z) = F(y). Then z := z — y satisfies
0oz +Y*Y2z=B(y) - B(x) in (0,7) x M,
2(0) =0 in M.

Just as before, but now in z, we obtain

(121%) + 21|21 = - 26(z,2,2) +26(y.9,2)
== 2(27:572) - 26(:%515,2) + 2ﬁ(y7y72)
= —2ﬁ(27.’l/’72) _2ﬁ(y,Z,Z)

| —
=0

<21B(z,2,2)|.
Choosing @ := (Vg% + V,27) 9" (Vg,,n + Vg, 2m) ¢’ ® g™ yields
2\ 2
(1=1%) + 111215,
<2|8(z,z,2)|
=2|(-2 t CY
= H‘ PIT{0} Tt grad o) r(ee ‘T)Z>

<4 |tr(z ® sym grad g ) ||H |2

H‘

Nl=

=4 HZHH(/M Zigj§(vgj$k+vgk$j)gk zg' §(ngfl?n+vgn$m)dV01M)

Nl=

=2|z] g (2 ® 2, (Vg, 20 + Vg v5) 6" (Vg @n + Vg @m) ¢ ® g™)

L;Q’O)(M)
1

~ 2
<2lzlu (2@ 2l e ) 1200 n)
1
~15 2
<2022, 21
<2032 00 2l + Y121
L0 (M)

and, hence,

2\ _— 2
(I1) <2012, N2

ds =0.

7
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Thus, integration yields

2O < 1)+ [ 2156 2y () s

L9 (M)

for almost every ¢ and, investing Gronwall’s lemma, gives

1
¢ 1 [ 20212 dr
2 2 2 g~ 5 s (2,0)
@I < IO+ [ 21013 176, ¢ a0 g = ,
N—— 0 ——— 2 (M)
=0 =0



CHAPTER 9

Causality and Well-posedness

As of the end of chapter 8 we know that F is injective and locally an analytic
diffeomorphism, i.e., if we have a solution u of the Navier-Stokes problem then it
is unique with respect to the data F;(u), changing F;(u) slightly does not destroy
unique solvability, and the corresponding solutions depend analytically on the data.
But for our construction of solutions with arbitrary data to work, the notion of
causality is needed.

DEFINITION 9.1. Let R ¢ L2([0,7]; X1) ® L2([0,7]; X2) where X1 and X5 are
Banach spaces.

(i) The relation R is called weakly causal if and only if
V(u, fu), (v, fo) € R+ infspto(u—v) <infspty(fu - fo)

where spt, denotes the support with respect to time, i.e., in La([0,7]).
(ii) The relation R is called strongly causal if and only if R is weakly causal
and

V(u, f) € R: infsptyu < infspt f.

(iii) R is said to have weakly causal solutions if and only if R™' is weakly
causal.

(iv) R is said to have strongly causal solutions if and only if R™' is strongly
causal.

Additionally, let R be linear.
(v) The linear relation R is called causal if and only if

V(u, f) € R: infsptyu < infspt f.

(vi) The linear relation R is said to have causal solutions if and only if R™* is
causal.

COROLLARY 9.2. Let X; and X5 be Banach spaces and R ¢ Lo([0,7]; X1) ®
Lo([0,7]; X2) with 0 € R. Then, weak causality and strong causality are equivalent.

PRrROOF. For R = @& the assertion is trivial and, since strong causality implies
weak causality, there is only one direction to show. Let (u, f) € R. Then,

V(v, f,) € R: infspty(u—v) <infspty(f - fp)
implies
inf sptyu = inf spty(u - 0) < inf spty(f - 0) = inf spt, f

because 0 € R.
O

COROLLARY 9.3. Let X; and X5 be Banach spaces and R ¢ Lo([0,7]; X1) @
L2([0,7]; X2) linear. Then, weak causality, strong causality, and “linear” causality
are equivalent.

79
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Proor. For R = & the assertion is trivial and, since linear relations contain
zero and strong causality trivially implies “linear” causality, it suffices to show that
“linear” causality implies weak causality. Let (u, f..), (v, f») € R. Then, (u—wv, f, —
fv) € R by linearity and, thus,

inf spto(u—v) <infspty(f - o).
O

These are very neat properties as we only need to show weak causality of
solutions for our construction to work whereas strong causality of solutions implies
that the “vacuum solution” is zero, that is, a motionless fluid will remain at rest as

long as no external force acts on it. This property does not hold if we have proper
weak causality of solutions but is essential for the system to be physically senseful.

LEMMA 9.4. Let X1 and X2 be Banach spaces, and (Ry)ier_, a family of left-
unique® relations Ry € Lo([0,t]; X1) ® L2([0,t]; X2) such that
(6) Vit e R>O Vse (Oat) V(u,f) € Rt : (u|[0,s]7f|[0,s]) € RS
holds. Then, all R; have weakly causal solutions.

PROOF. Suppose R; does not have weakly causal solutions for some ¢ € R,.
Then there are (u, fu), (v, f») € Ry with

inf sup(u - v) <inf spty(fu = fo)-
0

By left-uniqueness, this implies u # v because f, and f, must be distinct. Choose
s € (inf supy(u — v),inf spt(fu — fo)). Then

ul[o,s] # V[0,s]
and

(*) fu|[0,s] = fv|[0,s]

hold. But from (*) and left-uniqueness of R, we deduce

ul[o,s] = V[0,s]

which is a contradiction.
O

Since grad gy, div(g), do, ®, tr, and sym obviously are causal operators and C
was defined to be causal, we conclude that all F). are weakly causal (which implies
(6)) and, therefore, they all have strongly causal solutions. Choosing C' to be local,
as well, is not possible in our general setting because many non-Newtonian fluids
have viscous memory, that is, C' contains delay terms. However, it would break
physics to assume the viscosity depended on the future. Hence, C' ought to be
causal. This was the last missing piece of our jigsaw and we can, now, state our
main result.

THEOREM 9.5 (Well-posedness and Causality). Let 7 € Ry, ug € TR, and
f e Lo([0,7]; H).
(i) There exist 7" € (0,7) and u € MR, such that the Navier-Stokes equations
Aou+Y *Yu+ B(u)=f in (0,7") x M,
u(0) =ug in M
are satisfied. Furthermore, solutions are strongly causal and unique in

MR, /.

1left—uniqueness resembles injectivity
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(ii) There exists an open neighborhood U € Lo([0,7]; H) x TR of (f,uo) and
7" € (0,7) such that

G: U—>MR; (g,00) = F(9,v0)0.71

is analytic and all G(g,vo) solve the Navier-Stokes system in (0,7") x M
with respect to the data (g,vo) € U, i.e., the solutions depend analytically
on the data and T’ is locally constant.
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