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Preface

The Navier-Stokes equations have been studied in a variety of cases for their
importance in physics and engineering. Yet, it seems, especially non-Newtonian
fluids create a lot of problems for the sheer diversity of viscous properties a fluid
may have, though the Newtonian case, too, still holds a tight grasp on many in-
teresting questions. Not even well-posedness of strong solutions global in time is
known; in fact, this is a Millennium problem of the Clay Mathematics Institute
([5]). Furthermore, causality has never been addressed to my knowledge. In my
Dipl. Math. thesis I considered a unified approach for large classes of viscosities
in the case of C∞-manifolds without boundary. In these notes, we will expand
these findings to include many results interesting for applications, that is, we will
consider 3-dimensional C1,1-manifolds with or without boundary - the largest class
of conceivable Riemannian manifolds. If the manifold has a boundary, then we will
consider Dirichlet and Neumann boundary conditions. Fluids are assumed to be
incompressible and isotropic.

This approach is largely influenced by Rainer Picard who developed a unified
Hilbert space approach for well-posedness and causality of (linear) partial differen-
tial equations ([15]). It seems that this unified approach works perfectly for linear
partial differential equations encountered in mathematical physics and, hence, he
has studied many models as examples; the Stokes equation was one of them. In
fact, he observed that it is possible to generalize the viscosity term which I will use
as well. The other highly interesting question is, how little regularity of the mani-
fold can we ask for and still obtain local well-posedness of strong solutions. Aside
from a Rellich-Kondrachov type condition, C1,1-manifolds are as low in regularity
as we are able to reduce the problem without having to argue with very special
assumptions on the manifold. This is a rather interesting topic in itself and far
beyond the scope of these notes. However, it is interesting to keep in mind that
this is precisely the lower end of regularity most problems in mathematical physics
can support because most problems in mathematical physics contain an operator
(here, the Stokes operator) which is a relative of the “mother operator” (cf., [14])

A = (0 −∇∗∇ 0
)

with a suitable domain in the L2 space generated by of the set of Lipschitz con-
tinuous covariant tensors. Here, ∇ denotes the co-variant derivative d⊗. In other
words, the C1,1 condition is necessary for the domain of A to be sufficiently rich
and, hence, a minimal condition for the problem to be meaningful.

These notes are structured in two parts. In part 1 we will discuss the (func-
tional) analytic background and in part 2 we will use the physical textbook for-
mulation of Navier-Stokes for incompressible fluids “re-modeling” them to find an
abstract non-linear Cauchy problem which we are going to solve afterwards.

I will start with chapter 1 which seems rather random but this is a rather
intriguing interpretation of the projection theorem and yields many powerful ap-
plications. Ever since Rainer Picard has introduced this to me, I have used it quite
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extensively and often subtly hidden. Hence, I included this chapter for the reader to
see some subtle applications of the projection theorem in proving some important
theorems. These methods will be used everywhere.

The content of chapter 2 has also been taught to me by Rainer Picard and
it will be used throughout the notes as the spaces we are working on are tensor
products and the operators are mostly of the form 1⊗A or A⊗1 even though we will
only write A in both cases due to the theory explored in chapter 2. More extensive
representations of the topic can be found in chapter 1 of [15] and the appendix A
of [20].

The Lp-spaces used in these notes will be introduced in chapter 3. This is
properly standard Lebesgue theory and nothing special; however, for the sake of
notation and completeness and since it is not very common to see these Lp spaces,
I have added this chapter. Furthermore, as we are on a C1,1-manifold, it is not
at all obvious why Sobolev spaces of higher order should exist. This is subject of
the last section of chapter 3 though readers interested in a more detailed account
should refer to chapter 2 of [15].

Chapter 4 contains the analytic implicit function theorem. Since the usual
approach to the theorem is rather abstract, I chose to adapt a prove that was
shown to me by Jürgen Voigt. This proof first proves the implicit function theorem
and regularity up to C∞ in a constructive way (which is important since it makes a
major difference if we are able to construct solutions of the Navier-Stokes equations
or not) such that any second year mathematics student should be able to understand
it, if you explain them a few facts about Banach spaces and linear operators. Other
than that it is a direct generalization of the finite dimensional theorem. In order
to obtain analyticity, we then have to pull out the big guns. The proof shown here
is an adaptation of the one shown in [3].

Finally, chapter 5 concludes the analytical background part with some facts
about Fredholm operators. These will come in handy as the linearized Navier-
Stokes operator is a Fredholm operator and they will allow a major shortcut in
proving that the linearized Navier-Stokes operator is an isomorphism (needed for
the implicit function theorem).

Part 2 starts with chapter 6 on modeling Navier-Stokes. Here, we will start
from the physical equations of fluid dynamics and “re-model” them into the partial
differential equation we are going to solve after identifying the spaces to work in. At
this point, the Rellich-Kondrachov condition becomes vital as the equation would
be ill-stated otherwise. However, I will not go into detail of the physical implications
of the changed viscosity term and, thus, non-Newtonian fluids since this would fill
at least a book (cf., e.g., [1]).

Chapter 7 will is a rather short one though important as I think the content
should be part of anyone’s vocabulary working with non-linear partial differential
equations. Chapter 7 contains the framework of the proof, that is, how to construct
solutions assuming all theorems are applicable. This will leave us with two holes
to fill. First we will have to show that the linearized Navier-Stokes operator is an
isomorphism. This will be addressed in chapter 8 by showing that it is an injective
Fredholm operator of index zero. This approach is also a standard approach and
has previously been applied to Navier-Stokes successfully in multiple special cases
(cf., e.g., [2]).

As a corollary we will, furthermore, obtain injectivity of the Navier-Stokes
operator which will be used in the causality proof in chapter 9. This is the second
gap to fill in order to make the construction of chapter 7 work. Here, I had to
generalize the concept of causality (cf., [15]) to non-linear relations which is not as
straight forward as it appears. It turns out there are two slightly different notions
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of causality here - weak and strong causality - both having physical meaning. In
fact, strong causality is what you want in a classical deterministic theory (such as
the Navier-Stokes system) whereas weak causality is the most we can hope for in a
quantum system with non-vanishing vacuum fluctuations. For the proof to work,
weak causality would suffice but for physics to work strong causality is needed
and, as it turns out, physics is fine; we can prove strong causality of the Navier-
Stokes equations. Finally, we can state the well-posedness and causality theorem
for Navier-Stokes of non-Newtonian fluids for strong solutions local in time.

At last, I would like to thank Ralph Chill and Rainer Picard for uncountable
discussions while supervising my Dipl. Math. thesis, thus, making these notes
possible. Furthermore, I thank Ralph Chill, Rainer Picard, and Jürgen Voigt for
introducing me to most of theory used in these notes. Finally, I want to thank my
parents for their support and patience.
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Analytic Background





CHAPTER 1

Some remarks on the Projection Theorem

We will begin by having a closer look at the projection theorem and some
interesting applications as this is used throughout these notes without further men-
tioning. Let H0 and H1 be Hilbert spaces over K ∈ {R,C} and A ⊆H0⊕H1 a closed
linear relation. By −A we denote the operational minus

−A ∶= {(u,−v) ∈ H0 ⊕H1; (u, v) ∈ A}.
Then the adjoint relation A∗ is defined by

A∗ ∶= − (A−1)⊥
= − ({(u, v) ∈H0 ⊕H1; (u, v) ∈ A}−1)⊥
= − {(v, u) ∈H1 ⊕H0; (u, v) ∈ A}⊥
= − {(y, x) ∈ H1 ⊕H0; ∀(u, v) ∈ A ∶ ⟨(y, x), (v, u)⟩H1⊕H0

= 0}
= − {(y, x) ∈ H1 ⊕H0; ∀(u, v) ∈ A ∶ ⟨y, v⟩H1

+ ⟨x,u⟩H0
= 0}

= {(y,−x) ∈H1 ⊕H0; ∀(u, v) ∈ A ∶ ⟨y, v⟩H1
+ ⟨x,u⟩H0

= 0}
= {(y, x) ∈H1 ⊕H0; ∀(u, v) ∈ A ∶ ⟨y, v⟩H1

+ ⟨−x,u⟩H0
= 0}

= {(y, x) ∈H1 ⊕H0; ∀(u, v) ∈ A ∶ ⟨x,u⟩H0
= ⟨y, v⟩H1

} .
The last line shows that this is the definition we want, as well as,

A∗ = −(A−1)⊥ = (−A−1)⊥ = ((−A)−1)⊥ = −(A⊥)−1 = (−A⊥)−1 = ((−A)⊥)−1,
i.e., −, ⊥, and −1 commute. Note that (∗, ∗) is a Galois connection on the set of
linear relations in H0 ⊕H1 with the inclusion as partial ordering. For U ⊆ H0 and
V ⊆H1 we will use the notation

[V ]A ∶={(u, v) ∈ A; v ∈ V } the pre-set of V with respect to A

A[U] ∶={(u, v) ∈ A; u ∈ U} the post-set of U with respect to A.

Note that if A was a function one would call them pre-image and image.

Theorem 1.1 (Projection Theorem). Let H0 and H1 be Hilbert spaces and
A ⊆ H0 ⊕ H1 a closed linear relation. Then we obtain the following orthogonal
decompositions.

H0 =[{0}]A⊕A∗[H1]
H1 =[{0}]A∗ ⊕A[H0]

Proof.

y ∈ A[H0]⊥ ⇔ y ⊥ A[H0]
⇔ ∀(u, v) ∈ A ∶ ⟨y, v⟩H1

= 0
⇔ ∀(u, v) ∈ A ∶ ⟨y, v⟩H1

+ ⟨0, u⟩H0
= 0

⇔ ∀(u, v) ∈ A ∶ ⟨(0, y), (u, v)⟩H0⊕H1
= 0

⇔ (0, y) ∈ A⊥
11



12 1. SOME REMARKS ON THE PROJECTION THEOREM

⇔ (y,0) ∈ (A⊥)−1
⇔ (y,0) ∈ −(A⊥)−1
⇔ y ∈ [{0}]A∗.

The other identity follows from dualization.
�

Remark Note that the usual version of the projection theorem reduces to proving
that an orthoprojection exists and that it is self-adjoint.

∎
Corollary 1.2. Let A and A∗ be closed linear operators and A[H0] closed.

Then

Au = f
admits a solution u if and only if f ⊥ [{0}]A∗. Furthermore, if u0 is a solution
then the set of solutions is given by u0 + [{0}]A.

Corollary 1.3 (Fredholm Alternative). Let A be a compact operator in H0

and λ ∈ C. Considering

(λ −A)u = f(∗)
in H0 yields the following cases.

Either (∗) admits a unique solution u for every f ∈ H0

or (∗) admits a solution u if and only if f ⊥ [{0}](λ∗ − A∗). In this case,
every element of u + [{0}](λ − A) solves (∗) and solutions are unique in([{0}](λ −A))⊥.

Remark The corollary above trivializes the Fredholm alternative to “Either there
is a solution or not.” However, the Fredholm alternative stated in this form shows
that (for any compact operator A) a non-zero λ ∈ C is either in the resolvent set or
the point spectrum of A.

∎
Corollary 1.4. Let f ∶ H0 → C be a continuous linear functional. Then f = 0

or codim[{0}]f = 1.
Proof. Let f be non-zero. Then f∗ is non-zero, i.e., dim f∗[C] = 1, and

H0 = [{0}]f ⊕ f∗[C] proves the assertion.
�

Corollary 1.5 (Riesz’ Representation Theorem). Let f ∶ H0 → C be a con-
tinuous linear functional. Then, there exists x ∈ H0 such that

∀y ∈H0 ∶ f(y) = ⟨y, x⟩H0
.

Proof. If f = 0 then x = 0 ✓
If f ≠ 0 then choose x0 ∈ ([{0}]f)⊥ with ∥x∥H0

= 1 and define x ∶= f(x0)∗x0.
Then (x) is a basis of ([{0}]f)⊥, i.e.,

∀y ∈H0 ∶ ⟨y, x⟩H0
=⟨y, f(x0)∗x0⟩H0

=f(x0)⟨y, x0⟩H0

=f (⟨y, x0⟩H0
x0)

=f(⟨y, x0⟩H0
x0 + y − ⟨y, x0⟩H0

x0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈[{0}]f

)
=f(y).
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Let x̃ ∈H0 be such that ∀y ∈ H0 ∶ f(y) = ⟨y, x⟩H0
holds, as well. Then

∀y ∈ H0 ∶ 0 = ⟨y, x⟩H0
− ⟨y, x̃⟩H0

= ⟨y, x − x̃⟩H0

holds and we conclude x = x̃, that is, x is unique.
�

The following example shows that we may also use the projection theorem to
solve PDE.

Example Let Ω ⊆ Rn open and non-empty, C∞c (Ω,K) the set of C∞(Rn,K) func-
tions with compact support in Ω, gradc ∶ C∞c (Ω,K)→ C∞c (Ω,Kn) the usual gradi-
ent, and divc ∶ C∞c (Ω,Kn) → C∞c (Ω,K) the usual divergence. Then it is easy that
gradc and −divc are formally adjoint (partial integration) in L2(Ω,K)⊕L2(Ω,Kn),
that is, gradc ⊆ −div∗c . Note that A ⊆ B∗ implies

B̄ = B∗∗ ⊆ A∗
which shows that both operators are closable if A∗ and B∗ are operators (that is,
A and B are densely defined). Hence,

grad0 ∶= gradc, div0 ∶= divc, grad ∶= −div∗c , div ∶= −grad∗c
exist and they are all densely defined closed linear operators.

For A ∈ {grad0,grad,div0,div} we define H(A) to be the Hilbert space D(A)
endowed with the graph norm ∥x∥2H(A) = ∥x∥2L2

+ ∥Ax∥2L2
. The projection theorem

for inclusion H(grad0)↪H(grad) now shows

H(grad) =H(grad0)⊕H(grad0)⊥.
Let f ∈H(grad0)⊥ ∩D(div grad). Then

∀x ∈H(grad0) ∶ 0 =⟨f, x⟩H(grad)
=⟨f, x⟩L2(Ω,R) + ⟨gradf,gradx⟩L2(Ω,Rn)
=⟨f, x⟩L2(Ω,R) + ⟨gradf,grad0 x⟩L2(Ω,Rn)
=⟨f, x⟩L2(Ω,R) + ⟨−div gradf, x⟩L2(Ω,R)
=⟨(1 − div grad)f, x⟩L2(Ω,R)

implies H(grad0)⊥ = [{0}](1 − div grad) = [{0}](1 − div grad).
We may now use this to solve the inhomogeneous Dirichlet problem

ϕ − div gradϕ =0, ϕ − f ∈H(grad0), f ∈ H(grad).
Since H(grad) = H(grad0) ⊕ [{0}](1 − div grad), there are unique f0 ∈ H(grad0)
and f1 ∈ [{0}](1 − div grad) such that f = f0 + f1 and we obtain

(1 − div grad)f1 = 0, f1 − f = −f0 ∈H(grad0), f ∈H(grad),
i.e., ϕ = f1 solves the inhomogeneous Dirichlet problem by projection.

∎





CHAPTER 2

Tensor products of Hilbert spaces

Let n ∈ N and (Hk)k∈N≤n be a family of real1 Hilbert spaces. For x ∈ ×nk=1Hk

we define x1 ⊗ . . . ⊗ xn ∈ (×nk=1Hk)∗ to be the linear functional that suffices

∀u ∈ n

×
k=1

Hk ∶ (x1 ⊗ . . .⊗ xn)(u) = ⟨x1, u1⟩H1
⋅ . . . ⋅ ⟨xn, un⟩Hn

.

Let

W⊗ ∶= lin{x1 ⊗ . . .⊗ xn; x ∈ n

×
k=1

Hk}
be equipped with the bilinear continuation of

⟨x1 ⊗ . . . ⊗ xn, u1 ⊗ . . .⊗ un⟩H1⊗...⊗Hn
∶= ⟨x1, u1⟩H1

⋅ . . . ⋅ ⟨xn, un⟩Hn
.

(i) Symmetry

⟨∑
i

αixi,1 ⊗ . . .⊗ xi,n,∑
j

βjyj,1 ⊗ . . .⊗ yj,n⟩
H1⊗...⊗Hn=∑

i

∑
j

αiβj⟨xi,1, yj,1⟩H1
. . . ⟨xi,n, yj,n⟩Hn

=∑
i

∑
j

αiβj⟨yj,1, xi,1⟩H1
. . . ⟨yj,n, xi,n⟩Hn

= ⟨∑
j

βjyj,1 ⊗ . . .⊗ yj,n,∑
i

αixi,1 ⊗ . . .⊗ xi,n⟩
H1⊗...⊗Hn

(ii) Non-negativity
Since the Gramian matrices Gk ∶= (⟨xi,k, xj,k⟩Hk

)
i,j∈N≤m

are positive

semi-definite, the matrices (A(k)ij )i,j∈N≤m ∶=√Gk are positive semi-definite
as well. Thus,

⟨m∑
i=1
αixi,1 ⊗ . . . ⊗ xi,n,

m

∑
j=1

αjxj,1 ⊗ . . . ⊗ xj,n⟩
H1⊗...⊗Hn

= m∑
i=1

m

∑
j=1

αiαj⟨xi,1, xj,1⟩H1
⋅ . . . ⋅ ⟨xi,n, xj,n⟩Hn

= m∑
i=1

m

∑
j=1
∑
s1

. . .∑
sn

αiαjA
(1)
is1
A
(1)
s1j

. . . A
(n)
isn
A
(n)
snj

=∑
s1

. . .∑
sn

(m∑
i=1
A
(1)
is1
. . . A

(n)
isn
αi)⎛⎝

m

∑
j=1

A
(1)
s1j

. . . A
(n)
snj
αj
⎞
⎠

1It works complex, as well, using the obvious adaptations to obtain sesqui-linearity.

15



16 2. TENSOR PRODUCTS OF HILBERT SPACES

=⟨(m∑
i=1
A
(1)
is1
. . . A

(n)
isn
αi)

(s1,...,sn)
,(m∑
i=1
A
(1)
is1
. . . A

(n)
isn
αi)

(s1,...,sn)
⟩
ℓ2(Nn

≤m)
≥ 0

holds.

Hence, (W⊗, ⟨⋅, ⋅⟩H1⊗...⊗Hn
) is a semi-scalar product space and called the algebraic

tensor product of (Hk)k∈N≤n . We will also denote algebraic tensor products as

H1

a⊗ . . . a⊗Hn or
a⊗k∈N≤n Hk.

Definition 2.1. The completion

H1 ⊗ . . .⊗Hn ∶= n

⊗
k=1

Hk ∶=W⊗∥⋅∥H1⊗...⊗Hn

is called tensor product of (Hk)k∈N≤n where ∥⋅∥H1⊗...⊗Hk
denotes the semi-norm

induced by ⟨⋅, ⋅⟩H1⊗...⊗Hn
.

The empty tensor product ⊗∅ (sometimes denoted as ⊗∅H with some arbi-
trary Hilbert space H) is defined as ⊗∅ ∶= R.

Remark (i) Due to the completion process, elements x, y ∈ H1 ⊗ . . . ⊗ Hn

with ∥x − y∥H1⊗...⊗Hn
= 0 are identified. H1 ⊗ . . .⊗Hn is a Hilbert space,

thus.
(ii) The choice ⊗∅ ∶= R is senseful because both ⊗∅ and R act as neutral

elements

⊗
∅

⊗⊗
i∈I
Hi =⊗

i∈I
Hi ≅ R ⊗⊗

i∈I
Hi.

(iii) The tensor products introduced here are not tensor products in the alge-
braic sense as, in general, they fail to have the universal property2; cf.,
[6].

∎
Example Let H be a Hilbert space and Ω ⊆ R measurable. The space L2(Ω;H)
is the completion of

lin{t↦ 1I(t)x; x ∈H, I ⊆ Ω measurable and with finite measure}
with respect to the scalar product (f, g)↦ ∫Ω⟨f(t), g(t)⟩Hdt. For I ⊆ Ω measurable
and x ∈ H we define

1I ⊗ x ∶= (t↦ 1I(t)x).
Obviously

⟨1I ⊗ x,1J ⊗ y⟩L2(Ω)⊗H =∫
Ω
1I(t)1J(t)dt⟨x, y⟩H

=∫
Ω
⟨1I(t)x,1J(t)y⟩Hdt

=⟨1Ix,1Jy⟩L2(Ω;H)
holds. Thus, the closure of the linear continuation of (t↦ 1I(t)x)↦ 1I ⊗ x defines
a unitary map U ∶ L2(Ω;H)→ L2(Ω)⊗H .

∎
2For two infinite dimensional Hilbert spaces H1 and H2, there is no Hilbert space H and

bounded bi-linear map j ∶ H1×H2 → H such that for every Hilbert space H̃ and bounded bi-linear
map j̃ ∶ H1 ×H2 → H̃ there is a bounded linear operator L ∶ H → H̃ satisfying j̃ = L ○ j.
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Theorem 2.2 (Structure of Tensor Products). Let H1 and H2 be separable,
infinite dimensional Hilbert spaces. Then, there exists T ∈ L(H1 ⊗H2, L(H2,H1))
satisfying

∀h1 ∈H1 ∀h2, h′2 ∈H2 ∶ T (h1 ⊗ h2)h′2 = ⟨h2, h′2⟩H2
h1.

The operator T maps H1⊗H2 unitarily to HS(H2,H1), the set of Hilbert-Schmidt-
operators between H2 and H1.

Furthermore, let a ∈ H1 ⊗H2. Then, there exists λ ∈ ℓ2(N), an orthonormal
basis (ηi)i∈N of H1, and and orthonormal basis (χi)i∈N of H2 such that ∥a∥H1⊗H2

=∥λ∥ℓ2(N) and

a = ∑
n∈N

λnηn ⊗ χn
hold.

Proof. Let (ϕi)i∈N be an orthonormal basis of H1, (ψi)i∈N an orthonormal
basis of H2, and

ã ∶= m

∑
i=1

n

∑
j=1

ãijϕi ⊗ ϕj .

Then, (ãij)(i,j)∈N2 ∈ ℓ2(N2) with ãij ∶= 0 for i >m or j > n, and we obtain ∥ã∥H1⊗H2
=

∥(ãij)(i,j)∈N2∥
ℓ2(N2) by the Pythagorean theorem. Hence, we may decompose any

a ∈ H1 ⊗H2 as a = ∑i,j∈N aijϕi ⊗ ϕj with ∥a∥H1⊗H2
= ∥(aij)(i,j)∈N2∥

ℓ2(N2).
Let a ∈H1 ⊗H2 satisfy a = ∑i,j∈N aijϕi ⊗ ϕj and h2 ∈H2. Then, we define

T (a)h2 ∶= ∑
i,j∈N

aij⟨ψj , h2⟩H2
ϕi

and observe for h1 =∑i∈N αiϕi ∈H1, h2 =∑j∈N βjψj ∈ H2, and h′2 ∈H2

T (h1 ⊗ h2)h′2 = ∑
i,j∈N

αiβj⟨ψj , h′2⟩H2
ϕi = ⟨∑

j∈N
βjψj , h

′

2⟩∑
i∈N

αiϕi = ⟨h2, h′2⟩H2
h1,

as well as,

∥T (a)h2∥2H1
=∑
i∈N

RRRRRRRRRRR∑j∈N aij⟨ψj , h2⟩H2

RRRRRRRRRRR
2

=∑
i∈N

RRRRRRRRRRRR
⟨∑
j∈N

aijψj , h2⟩
H2

RRRRRRRRRRRR
2

≤∑
i∈N

XXXXXXXXXXX∑j∈N aijψj
XXXXXXXXXXX
2

H2

∥h2∥2H2

≤∑
i∈N

⎛
⎝∑j∈N ∣aij ∣

⎞
⎠
2

∥h2∥2H2

≤⎛⎝∑i∈N∑j∈N ∣aij ∣
⎞
⎠
2

∥h2∥2H2

= ∥(aij)(i,j)∈N2∥2
ℓ1(N2) ∥h2∥2H2

.

Thus, T extends to a bounded operator on H1⊗H2 and the Hilbert-Schmidt norm∥T (a)∥HS of T (a) satisfies

∥T (a)∥2HS = ∑
k∈N

∥T (a)ψk∥2H1
) = ∑

k∈N
∑
i∈N

RRRRRRRRRRR∑j∈N aij⟨ψj , ψk⟩H2

RRRRRRRRRRR
2

= ∑
i,k∈N

∣aik ∣2 = ∥a∥2H1⊗H2
,
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i.e., T ∶ H1 ⊗H2 →HS(H2,H1) is an isometry.
Let S ∈ HS(H2,H1). Then, S∗S ∈ L(H2) is compact3, self-adjoint, and non-

negative. Thus, the spectral theorem yields the existence of N ⊆ N, an orthonormal
basis (χn)n∈N of ([{0}]S∗S)⊥ ([{0}]S∗S is the kernel of S∗S), and λ ∈ RN>0 such
that for every h2 ∈H2

S∗Sh2 = ∑
n∈N

λ2n⟨h2, χn⟩H2
χn

holds. Let ηn ∶= λ−1n Sχn for n ∈ N . Then,

⟨ηn, ηm⟩H1
=λ−1n λ−1m ⟨χn, S∗Sχm⟩H2

= λ−1n λm⟨χn, χm⟩H2
= δmn

shows that (ηn)n∈N is an orthonormal set. Defining ak ∶= ∑n∈N<k λnηn ⊗ χn for
k ∈ N , we observe for n ∈ N

T (ak)χn = ∑
j∈N<k

λj⟨χj , χn⟩H2
ηj =
⎧⎪⎪⎨⎪⎪⎩
λnηn , n < k
0 , n ≥ k =

⎧⎪⎪⎨⎪⎪⎩
Sχn , n < k
0 , n ≥ k .

Hence, ∥T (ak)∣([{0}]S)⊥∥HS(H2,H1) ≤ ∥S∣([{0}]S)⊥∥HS(H2,H1). Since T is an isome-

try, this shows that a ∶= ∑n∈N λnηn ⊗ χn converges and T (a)∣([{0}]S)⊥ = S∣([{0}]S)⊥
holds. However, by definition, we have [{0}]T (a) = [{0}]S, i.e., T (a) = S, showing
surjectivity of T . Since isometries are injective, we directly obtain bijectivity, too.
Furthermore, setting λn ∶= 0 for n ∈ N ∖N , we obtain

∑
n∈N

∣λn∣2 = ⟨∑
n∈N

λnηn ⊗ χn, ∑
m∈N

λmηm ⊗ χm⟩
H1⊗H2

= ∥a∥2H1⊗H2

which shows λ ∈ ℓ2(N) and ∥λ∥ℓ2(N) = ∥a∥H1⊗H2
; thus, completing the proof.

�

Let (H0,k)k∈N≤n and (H1,k)k∈N≤n be families of real Hilbert spaces and for each

k ∈ N≤n let Ak ⊆H0,k ⊕H1,k be a linear operator4. We define

A1⊗̇ . . . ⊗̇An ∶ ⊗
k∈N≤n

H0,k → ⊗
k∈N≤n

H1,k

as linear continuation of x1 ⊗ . . .⊗ xn ↦ (A1x1)⊗ . . .⊗ (Anxn) with

D(A1⊗̇ . . . ⊗̇An) ∶= a

⊗
k∈N≤n

D(Ak).
We will also use the abbreviation ⊗̇k∈N≤nAk for A1⊗̇ . . . ⊗̇An.

3Every Hilbert-Schmidt operator is compact.
4We do not distinguish between an operator (or, more generally, a function) and its graph

as a function f ∶ X → Y is, by definition, a right-unique, that is, single-valued, relation which is
usually considered the graph of the function. Furthermore, we do not assume a function to be
left-total since closed unbounded operators in Banach spaces may at most be densely defined.

Also note that we induce a topology on X⊕Y if X and Y are Banach spaces. This topology
can be defined using the norm ∥(x, y)∥X⊕Y ∶= ∥x∥X + ∥y∥Y or ∥(x, y)∥X⊕Y = max{∥x∥X , ∥y∥Y }.
In the Hilbert space case, it is common to choose ∥(x, y)∥X⊕Y ∶=

√
∥x∥2X + ∥y∥

2

Y since then X ⊕Y

is a Hilbert space assuming X and Y are.
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Since A1⊗̇ . . . ⊗̇An is a linear continuation, it is a linear subspace of

⊗
k∈N≤n

H0,k ⊕ ⊗
k∈N≤n

H1,k,

thus, we only need to make sure that for all (0,w) ∈ A1⊗̇ . . . ⊗̇An

w = 0
holds for A1⊗̇ . . . ⊗̇An to be an operator. We may express w by

w =∑
i

αi(A1xi,1)⊗ . . .⊗ (Anxi,n)
with

0 =∑
i

αixi,1 ⊗ . . .⊗ xi,n

and, thus, we observe

∀k ∈ N≤n ∀uk ∈H0,k ∶ 0 =∑
i

αi⟨xi,1, u1⟩H0,1
⋅ . . . ⋅ ⟨xi,n, un⟩H0,n

=⟨∑
i

αi⟨xi,2, u2⟩H0,2
⋅ . . . ⋅ ⟨xi,n, un⟩H0,n

xi,1, u1⟩
H0,1

.

Without loss of generality we may assume that the xi,k are linearly independent in
H0,k yielding

0 = αi⟨xi,2, u2⟩H0,2
⋅ . . . ⋅ ⟨xi,n, un⟩H0,n

for every i. Since none of the xi,k is zero

∀i ∶ αi = 0
needs to hold. Hence, w = 0. A1⊗̇ . . . ⊗̇An is an operator, thus. If it is closable, we
will denote the closure by

A1 ⊗ . . .⊗An.

Remark In fact, if all Ak are closed operators, then they are Hilbert spaces with
respect to the graph norm and the tensor product of the operators is isometrically
isomorphic to the tensor product of Hilbert spaces. In particular, A1⊗̇ . . . ⊗̇An ≅
A1

a⊗ . . . a⊗ An
∎

Lemma 2.3. Let H0 and H1 be Hilbert spaces, S0 ⊆ H0 be total, i.e., linS0 is

dense in H0, and S1 ⊆H1 total. Then, S0

a⊗ S1 is dense in H0 ⊗H1.

Proof. Let x ∈ H0 and y ∈ H1. Then, there are sequences (xn)n∈N ∈ (linS0)N
and (yn)n∈N ∈ (linS1)N with xn → x in H0 and yn → y in H1.
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Let n ∈ N. Then, there are k,m ∈ N, s01, . . . , s
0
k ∈ S0, s

1
1, . . . , s

1
m ∈ S1, and

α1, . . . , αk, β1, . . . , βm ∈ R such that xn = ∑kj=1 αjs0j and yn = ∑mj=1 βjs1j . Hence,

xn ⊗ yn = ( k∑
i=1
αis

0
i)⊗ ⎛⎝

m

∑
j=1

βjs
1
j

⎞
⎠ =

k

∑
i=1

m

∑
j=1

αiβjs
0
i ⊗ s1j ∈ S0

a⊗S1.

Furthermore, we obtain

∥xn ⊗ yn − x⊗ y∥H0⊗H1
≤ ∥xn ⊗ yn − x⊗ yn∥H0⊗H1

+ ∥x⊗ yn − x⊗ y∥H0⊗H1= ∥(xn − x)⊗ yn∥H0⊗H1
+ ∥x⊗ (yn − y)∥H0⊗H1= ∥xn − x∥H0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

∥yn∥H1´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
bounded

+ ∥x∥H0
∥yn − y∥H1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

→0.

Hence, all simple tensors can be approximated by elements of S0

a⊗S1.
Let n ∈ N, x1, . . . , xn ∈ H0, y1, . . . , yn ∈ H1, α1, . . . , αn ∈ R, and ε ∈ R>0.

Since simple tensors can be approximated by elements of S0

a⊗S1, there are elements

ui ∈ S0

a⊗S1 such that

∥xi ⊗ yi − ui∥H0⊗H1
< ⎛⎝

n

∑
j=1
∣αj ∣⎞⎠

−1

ε

holds for every i ∈ N≤n. Hence,

∥ n∑
i=1
αixi ⊗ yi −

n

∑
i=1
αiui∥

H0⊗H1

≤ n

∑
i=1
∣αi∣ ∥xi ⊗ yi − ui∥H0⊗H1

< ε

shows density of S0

a⊗S1 in H0

a⊗H1 and, thus, the assertion as well.
�

Corollary 2.4. Let H0 and H1 be Hilbert spaces, and O0 ⊆ H0 and O1 ⊆ H1

two complete orthonormal sets. Then,

[O0]⊗ [O1] ∶= {u⊗ v; u ∈ O0 ∧ v ∈ O1}
is a complete orthonormal set in H0 ⊗H1.

Proof. We already know that O0

a⊗O1 is dense in H0 ⊗H1, i.e., [O0]⊗ [O1] is
total. Hence, it suffices to show that [O0]⊗ [O1] is orthonormal. Let u⊗ v, x⊗ y ∈[O0]⊗ [O1]. Then,

⟨u⊗ v, x⊗ y⟩H0⊗H1
= ⟨u,x⟩H0

⟨v, y⟩H1
= ⎧⎪⎪⎨⎪⎪⎩

1 , u = x ∧ v = y
0 , u ≠ x ∨ v ≠ y

shows the assertion.
�

Proposition 2.5. Let H00, H01, H10, and H11 be Hilbert spaces, and A ⊆
H00⊕H01 and B ⊆H10⊕H11 densely defined closable linear operators. Then, A⊗̇B
is closable and

A⊗B = A⊗̇B ⊆ (A∗⊗̇B∗)∗
holds.
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Proof. Let ξ = ∑ni=1 αixi ⊗ yi ∈ D(A∗) a⊗D(B∗) and η = ∑mj=1 βjuj ⊗ vj ∈
D(A) a⊗D(B). Then, we observe

⟨A⊗̇Bη, ξ⟩H01⊗H11
= n

∑
i=1

m

∑
j=1

αiβj⟨Aui, xj⟩H01
⟨Bvi, yj⟩H11

= n

∑
i=1

m

∑
j=1

αiβj⟨ui,A∗xj⟩H00
⟨vi,B∗yj⟩H10

=⟨η,A∗⊗̇B∗ξ⟩H00⊗H10
,

that is, A∗⊗̇B∗ ⊆ (A⊗̇B)∗, which implies

A⊗̇B ⊆ Ā⊗̇B̄ = A∗∗⊗̇B∗∗ ⊆ (A∗⊗̇B∗)∗.
Since A and B are closable, A∗ and B∗ are densely defined, and Lemma 2.3 yields
that A∗⊗̇B∗ is densely defined, i.e., (A∗⊗̇B∗)∗ is a closed linear operator.

�

Example Let H1,H2 be Hilbert spaces, A ⊆ H2 ⊕ H2 be a closed and densely
defined linear operator. The operator A defined by the H1 ⊗H2-closure of x⊗ y ↦
x⊗Ay can be expressed by

A = 1⊗A
∎

Proposition 2.6. Let H00, H01, H10, and H11 be Hilbert spaces, and A ⊆
H00 ⊕H01 and B ⊆H10 ⊕H11 densely defined closable linear operators. Then,

A⊗B = Ā⊗ B̄.
Proof. Clearly,

A⊗̇B ⊆ Ā⊗̇B̄ ⊆ Ā⊗ B̄
holds and, hence, A⊗B ⊆ Ā⊗ B̄. Let x = ∑ni=1 αiξi ⊗ ηi ∈D(Ā) a⊗D(B̄) =D(Ā⊗̇B̄),
x ≠ 0, and ε ∈ R>0. Then, we can find xi ∈ D(A) and yi ∈D(B) such that for every
i ∈ N≤n

∥xi − ξi∥H00
< ε

2∑nj=1 ∣αj ∣ ∥ηj∥H10

,

∥Axi − Āξi∥H01

< ε

2∑nj=1 ∣αj ∣ ∥B̄ηj∥H11

,

∥yi − ηi∥H10
< ε

2∑nj=1 ∣αj ∣ ∥xj∥H00

,

and

∥Byi − B̄ηi∥H11

< ε

2∑nj=1 ∣αj ∣ ∥Axj∥H01

hold. Setting y ∶= ∑nj=1 αjxj ⊗ yj ∈D(A⊗̇B) yields

∥y − x∥H00⊗H10
=∥ n∑

i=1
αi(xi ⊗ yi − ξi ⊗ ηi)∥

H00⊗H10

=∥ n∑
i=1
αi(xi ⊗ (yi − ηi) + (xi − ξi)⊗ ηi)∥

H00⊗H10

≤ n

∑
i=1
∣αi∣ ∥xi∥H00

∥yi − ηi∥H10
+

n

∑
i=1
∣αi∣ ∥xi − ξi∥H00

∥etai∥H10
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<ε
and

∥(A⊗̇B)y − (Ā⊗̇B̄)x∥
H01⊗H11

=∥ n∑
i=1
αi(Axi ⊗Byi − Āξi ⊗ B̄ηi)∥

H00⊗H10

≤ n

∑
i=1
∣αi∣ ∥Axi∥H01

∥Byi − B̄ηi∥H11

+
n

∑
i=1
∣αi∣ ∥Axi − Āξi∥H00

∥B̄ηi∥H10

<ε
Thus, x ∈ D(A⊗B) and A⊗Bx = Ā⊗̇B̄x, i.e., Ā⊗̇B̄ ⊆ A⊗B; thus,

Ā⊗ B̄ ⊆ A⊗B.
�

Proposition 2.7. Let H0, H1, and H2 be Hilbert spaces. Then,

(H0 ⊗H1)⊗H2 =H0 ⊗ (H1 ⊗H2) =H0 ⊗H1 ⊗H2

in the sense of unitary equivalence.

Proof. For ϕ ∈ H0, ψ ∈H1, and χ ∈H2, we set

U((ϕ⊗ψ)⊗ χ) ∶= ϕ⊗ (ψ ⊗ χ)
and extend this mapping to (H0

a⊗H1) a⊗H2 by

U ∶ (H0

a⊗H1) a⊗H2 →H0 ⊗ (H1 ⊗H2)
m

∑
j=1

βj (nj

∑
i=1
α
j
ix
j
i ⊗ yji)⊗ zj ↦ m

∑
j=1

βj

nj

∑
i=1
α
j
ix
j
i ⊗ (yji ⊗ zj).

First, we will prove that this extension is still right-unique. Let ϕ ∈ (H0

a⊗H1) a⊗H2

with

ϕ = m

∑
j=1

βj (nj

∑
i=1
α
j
ix
j
i ⊗ yji )⊗ zj =

p

∑
j=1

δj
⎛
⎝
kj

∑
i=1
γ
j
i u

j
i ⊗ vji

⎞
⎠⊗wj .

Then, we observe for all a ∈ H0, b ∈H1, and c ∈H2,

U
⎛
⎝
m

∑
j=1

βj (nj

∑
i=1
α
j
ix
j
i ⊗ yji)⊗ zj⎞⎠(a, b⊗ c) =

⎛
⎝
m

∑
j=1

βj

nj

∑
i=1
α
j
ix
j
i ⊗ (yji ⊗ zj)⎞⎠(a, b⊗ c)

= m

∑
j=1

βj

nj

∑
i=1
α
j
i ⟨xji , a⟩H0

⟨yji ⊗ zj , b⊗ c⟩H1⊗H2

= m

∑
j=1

βj

nj

∑
i=1
α
j
i ⟨xji , a⟩H0

⟨yji , b⟩H1
⟨zj , c⟩H2

= m

∑
j=1

βj

nj

∑
i=1
α
j
i ⟨xji ⊗ yji , a⊗ b⟩H0⊗H1

⟨zj , c⟩H2

= m

∑
j=1

βj ⟨nj

∑
i=1
α
j
ix
j
i ⊗ yji , a⊗ b⟩

H0⊗H1

⟨zj , c⟩H2

=ϕ(a⊗ b, c).
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The same calculation also shows

U
⎛
⎝
p

∑
j=1

δj
⎛
⎝
kj

∑
i=1
γ
j
i u

j
i ⊗ vji

⎞
⎠⊗wj

⎞
⎠(a, b⊗ c) = ϕ(a⊗ b, c).

Since these are continuous bi-linear functionals and H0

a⊗ (H1

a⊗H2) is dense in H0⊗(H1 ⊗H2), we conclude right-uniqueness of U .

Furthermore, U is linear since, for κ ∈ R and ϕ,ψ ∈H0

a⊗ (H1

a⊗H2) with

ϕ = m

∑
j=1

βj (nj

∑
i=1
α
j
ix
j
i ⊗ yji)⊗ zj

and

ψ = p

∑
j=1

δj
⎛
⎝
kj

∑
i=1
γ
j
i u
j
i ⊗ vji

⎞
⎠⊗wj ,

we obtain

κϕ +ψ = m+p∑
j=1

ζj
⎛
⎝
lj

∑
i=1
η
j
iϑ
j
i ⊗ λji

⎞
⎠⊗ νj

with

ζj =
⎧⎪⎪⎨⎪⎪⎩
κβj , j ∈ N≤m
δj−m , j ∈ [m + 1,m + p] ∩N ,

lj =
⎧⎪⎪⎨⎪⎪⎩
nj , j ∈ N≤m
kj−m , j ∈ [m + 1,m + p] ∩N ,

η
j
i =
⎧⎪⎪⎨⎪⎪⎩
α
j
i , j ∈ N≤m
γ
j−m
i , j ∈ [m + 1,m + p] ∩N ,

ϑ
j
i =
⎧⎪⎪⎨⎪⎪⎩
x
j
i , j ∈ N≤m
u
j−m
i , j ∈ [m + 1,m + p] ∩N ,

λ
j
i =
⎧⎪⎪⎨⎪⎪⎩
y
j
i , j ∈ N≤m
v
j−m
i , j ∈ [m + 1,m + p] ∩N ,

and

νj =
⎧⎪⎪⎨⎪⎪⎩
zj , j ∈ N≤m
wj−m , j ∈ [m + 1,m + p] ∩N .

Hence,

U(κϕ + ψ) =m+p∑
j=1

ζj

lj

∑
i=1
η
j
iϑ
j
i ⊗ (λji ⊗ νj)

= m

∑
j=1

ζj

lj

∑
i=1
η
j
iϑ
j
i ⊗ (λji ⊗ νj) +

m+p

∑
j=m+1

ζj

lj

∑
i=1
η
j
iϑ
j
i ⊗ (λji ⊗ νj)

=κ m

∑
j=1

βj

nj

∑
i=1
α
j
ix
j
i ⊗ (yji ⊗ zj) +

p

∑
j=1

δj

kj

∑
i=1
γ
j
i u
j
i ⊗ (vji ⊗wj)

=κU(ϕ) +U(ψ).
Now, we can show that U is an isometry. This follows from

∥Uϕ∥2H0⊗(H1⊗H2) =
m

∑
j,k=1

βjβk

nj

∑
i=1

nk

∑
l=1

α
j
iα

k
l ⟨xji ⊗ (yji ⊗ zj), xkl ⊗ (ykl ⊗ zk)⟩H0⊗(H1⊗H2)
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= m

∑
j,k=1

βjβk

nj

∑
i=1

nk

∑
l=1

α
j
iα

k
l ⟨xji , xkl ⟩H0

⟨yji , ykl ⟩H1
⟨zj , zk⟩H2

= m

∑
j,k=1

βjβk ⟨(nj

∑
i=1
α
j
ix
j
i ⊗ yji)⊗ zj,(nk

∑
l=1

αkl x
k
l ⊗ ykl )⊗ zk⟩

(H0⊗H1)⊗H2

= ∥ϕ∥2(H0⊗H1)⊗H2
.

Finally, if we show that U has dense range, then we can extend U to a unitary

operator. Since H0

a⊗(H1

a⊗H2) is dense, it suffices to show that every

ψ =∶ m∑
j=1

βjxj ⊗ (nj

∑
i=1
α
j
iy
j
i ⊗ zji ) ∈ H0

a⊗(H1

a⊗H2)
is an image of U . Let

ϕ ∶= m

∑
j=1

βj

nj

∑
i=1
α
j
i (xi ⊗ yji )⊗ zji ∈ (H0

a⊗H1) a⊗H2.

Then, linearity of U implies

Uϕ = m

∑
j=1

βj

nj

∑
i=1
α
j
iU ((xi ⊗ yji )⊗ zji )

= m

∑
j=1

βj

nj

∑
i=1
α
j
ixi ⊗ (yji ⊗ zji )

=ψ.
The other assertion, H0 ⊗ (H1 ⊗H2) =H0 ⊗H1 ⊗H2, follows similarly.

�

Corollary 2.8. For i ∈ {0,1,2} and j ∈ {0,1}, let Hij be a Hilbert space and
A0 ⊆H00⊕H01, A1 ⊆H10⊕H11, and A2 ⊆H20⊕H21 densely defined closable linear
operators. Then,

(A0 ⊗A1)⊗A2 = A0 ⊗ (A1 ⊗A2) = A0 ⊗A1 ⊗A2.

Proposition 2.9. For i, j ∈ {0,1}, let Hij be a Hilbert space, A0 ∈ L(H00,H01),
and A1 ∈ L(H10,H11). Then, A0 ⊗A1 ∈ L(H00 ⊗H10,H01 ⊗H11) with

∥A0 ⊗A1∥L(H00⊗H10,H01⊗H11) = ∥A0∥L(H00,H01) ∥A1∥L(H10,H11) .

Proof. Let Sij be a complete orthonormal set in Hij andx = ∑lj=1 κjϕj ⊗ψj ∈
H00

a⊗H10. Then, we can find sequences αj , βj ∈ RN , ζ ∈ SN

00, and ξ ∈ SN

10 such that
for every j ∈ N

κjϕj =∑
n∈N

αjnζn,

ψj =∑
n∈N

βjnξn,

and, hence,

x = l

∑
j=1
(κjϕj)⊗ψj = ∑

m,n∈N

l

∑
j=1

αjnβ
j
m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶γnm

ζn ⊗ ξm

hold. Since A0 and A1 are continuous, we observe

A0 ⊗A1x = l

∑
j=1

A0κjϕj ⊗A1ψj
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= ∑
m,n∈N

n

∑
j=1

αjnβ
j
mA0ζn ⊗A1ξm

= ∑
m,n∈N

γnmA0ζn ⊗A1ξm.

Let y = ∑ki=1 λiσi ⊗ τi ∈H01

a⊗H11. Then, we can find sequences νj , ̺j ∈ RN , η ∈ SN

01,
and ϑ ∈ SN

11 such that for every j ∈ N
λjσj =∑

n∈N

νjnηn,

τj =∑
n∈N

̺jnϑn,

and, hence,

y = l

∑
j=1
(λjσj)⊗ τj = ∑

m,n∈N

l

∑
j=1

νjn̺
j
m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶δnm

ηn ⊗ ϑm

hold. We, thus, observe

⟨A0 ⊗A1x, y⟩H01⊗H11
= ∑
m,n,s,t∈N

γnmδst⟨A0ζn, ηs⟩H01
⟨A1ξm, ϑt⟩H11

= ∑
m,n,s,t∈N

γnmδst⟨A0ζn, ηs⟩H01
⟨ξm,A∗1ϑt⟩H11

= ∑
m,s∈N

⟨A0 ∑
n∈N

γnmζn, ηs⟩
H01

⟨ξm,A∗1∑
t∈N

δstϑt⟩
H11

and, by Cauchy-Schwarz,

∣⟨A0 ⊗A1x, y⟩H01⊗H11
∣2

≤⎛⎝ ∑m,s∈N ⟨A0 ∑
n∈N

γnmζn, ηs⟩
H01

⎞
⎠
2 ⎛
⎝ ∑m,s∈N ⟨ξm,A

∗

1∑
t∈N

δstϑt⟩
H11

⎞
⎠
2

which yields (using Bessel’s inequality and orthonormality of ζ and ϑ)

∣⟨A0 ⊗A1x, y⟩H01⊗H11
∣2

≤⎛⎝∑m∈N ∥A0 ∑
n∈N

γnmζn∥
2

H01

⎞
⎠
⎛
⎝∑s∈N ∥A

∗

1∑
t∈N

δstϑt∥
2

H11

⎞
⎠

≤ ∥A0∥2L(H00,H01) ∥A1∥2L(H10,H11)
⎛
⎝∑m∈N ∥∑n∈N γnmζn∥

2

H01

⎞
⎠
⎛
⎝∑s∈N ∥∑t∈N δstϑt∥

2

H11

⎞
⎠

≤ ∥A0∥2L(H00,H01) ∥A1∥2L(H10,H11)
⎛
⎝ ∑m,n∈N ∣γnm∣

2⎞⎠
⎛
⎝ ∑s,t∈N ∣δst∣

2⎞⎠
= ∥A0∥2L(H00,H01) ∥A1∥2L(H10,H11) ∥x∥2H00⊗H10

∥y∥2H01⊗H11
.

For y = A0 ⊗A1x, this implies

∥A0 ⊗A1x∥H01⊗H11
≤ ∥A0∥L(H00,H01) ∥A1∥L(H10,H11) ∥x∥H00⊗H10

,

i.e.,

∥A0 ⊗A1∥L(H00⊗H10,H01⊗H11) ≤ ∥A0∥L(H00,H01) ∥A1∥L(H10,H11) .

On the other hand, let x ∈ BN

H00
and y ∈ BN

H10
with ∥A0xn∥H01

→ ∥A0∥L(H00,H01)
and ∥A1yn∥H11

→ ∥A1∥L(H10,H11) for n →∞. Then, (xn ⊗ yn)n∈N ∈ BN

H00⊗H10
and

∥A0 ⊗A1xn ⊗ yn∥H01⊗H11
= ∥A0xn∥H01

∥A1yn∥H11
→ ∥A0∥L(H00,H01) ∥A1∥L(H10,H11)
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completes the proof.
�

Observation 2.10. For i, j ∈ {0,1}, let Hij be a Hilbert space and Ai ∈
L(Hi0,Hi1). Then, A0 ⊗ 1 and 1 ⊗ A1 commute. Furthermore, (A0 ⊗ 1)(1 ⊗ A1)
and (1⊗A1)(A0 ⊗ 1) are bounded operators.

Proof. Boundedness of (A0⊗1)(1⊗A1) and (1⊗A1)(A0⊗1) follows directly
from boundedness of A0 ⊗ 1 and 1⊗A1.

Let x ∈H00 and y ∈H01. Then,

(A0 ⊗ 1)(1⊗A1)x⊗ y =(A0 ⊗ 1)x⊗A1y

=A0x⊗A1y

=(1⊗A1)A0x⊗ y
=(1⊗A1)(A0 ⊗ 1)x⊗ y

shows that the commutator [A0 ⊗ 1,1 ⊗A1] vanishes on all algebraic tensors, i.e.,[A0 ⊗ 1,1⊗A1] = 0 by boundedness.
�

Observation 2.11. Let H0, H1, and H2 be Hilbert spaces, and A ⊆H1 ⊕H2 a
densely defined closable linear operator. Then,

(1⊗A)∗ = 1⊗A∗
and

(A⊗ 1)∗ = A∗ ⊗ 1.

Proof. So far, we know

1⊗A∗ ⊆ (1⊗ Ā)∗ = (1⊗A)∗.
To show the missing inclusion let x ∈ D((1 ⊗ A)∗) ⊆ H0 ⊗ H2 and Si ⊆ Hi an
orthonormal basis for i ∈ {0,1,2}. Then, [S0] ⊗ [Sj] is an orthonormal basis of

H0 ⊗Hj for j ∈ {1,2}. Hence, there are sequences ξ ∈ SN

0 , ζ ∈ SN

1 , and η ∈ SN

2 such
that

x = ∑
n∈N
⟨ξn ⊗ ηn, x⟩H0⊗H2

ξn ⊗ ηn
and

(1⊗A)∗x = ∑
n∈N

⟨ξn ⊗ ζn, (1 ⊗A)∗x⟩H0⊗H1
ξn ⊗ ζn.

For s ∈ S0 and u ∈D(A), we obtain

⟨(1⊗A)(s⊗ u), x⟩H0⊗H2
=∑
n∈N
⟨ξn ⊗ ζn, (1⊗A)∗x⟩H0⊗H1

⟨s⊗ u, ξn ⊗ ζn⟩H0⊗H1

which is equivalent to

∑
n∈N

⟨ξn ⊗ ηn, x⟩H0⊗H2
⟨s⊗Au, ξn ⊗ ηn⟩H0⊗H2

=∑
n∈N

⟨ξn ⊗ ζn, (1⊗A)∗x⟩H0⊗H1
⟨s⊗ u, ξn ⊗ ζn⟩H0⊗H1

.

With s = ξi, this implies

⟨Au, ⟨ξi ⊗ ηi, x⟩H0⊗H2
ηi⟩H2

=⟨ξi ⊗ ηi, x⟩H0⊗H2
⟨Au,ηi⟩H2

=⟨ξi ⊗ ζi, (1⊗A)∗x⟩H0⊗H1
⟨u, ξi ⊗ ζi⟩H1

=⟨u, ⟨ξi ⊗ ζi, (1⊗A)∗x⟩H0⊗H1
ξi ⊗ ζi⟩H1
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for all u ∈ D(A), that is, ⟨ξi ⊗ ηi, x⟩H0⊗H2
ηi ∈D(A∗) and

A∗⟨ξi ⊗ ηi, x⟩H0⊗H2
ηi = ⟨ξi ⊗ ζi, (1⊗A)∗x⟩H0⊗H1

ζi

for every i ∈ N. Thus,
m

∑
i=1
⟨ξi ⊗ ηi, x⟩H0⊗H2

ξi ⊗ ηi ∈H0

a⊗D(A∗) ⊆D(1⊗A∗)
and

(1⊗A∗) m∑
i=1
⟨ξi ⊗ ηi, x⟩H0⊗H2

ξi ⊗ ηi = ⟨ξi ⊗ ζi, (1⊗A)∗x⟩H0⊗H1
ξi ⊗ ζi

holds for all m ∈ N. Since 1 ⊗ A∗ is closed, we conclude that x ∈ D(1 ⊗ A∗) and(1⊗A∗)x = (1⊗A)∗x.
The other identity follows similarly.

�

Observation 2.12. Let H0 ≠ {0}, H1, and H2 be Hilbert spaces, and A ⊆
H1 ⊕H2 a densely defined closable operator. Then, 1⊗A is continuously invertible
if and only if A is continuously invertible. In that case,

(1⊗A)−1 = 1⊗A−1
holds.

Proof. Let A be continuously invertible. Then, 1⊗A−1 is a bounded operator.
Let x ∈H0 and y ∈ H1. Then,

(1⊗A−1)(1⊗A)x⊗ y = (1⊗A−1)x⊗Ay = x⊗A−1Ay = x⊗ y
shows

(1⊗A−1)(1⊗A)∣D(1⊗̇A) = 1∣D(1⊗̇A).
Let x ∈ D(1 ⊗ A) and (xn)n∈N ∈ D(1⊗̇A) such that xn → x in H0 ⊗H1 and (1 ⊗
A)xn → (1⊗A)x in H0 ⊗H2. Then, continuity of 1⊗A−1 implies

xn = (1⊗A−1)(1⊗A)xn → (1⊗A−1)(1⊗A)x,
i.e.,

(1⊗A−1)(1⊗A)∣D(1⊗A) = 1∣D(1⊗A).
Furthermore, for y ∈H2,

(1⊗A)(1⊗A−1)x⊗ y = (1⊗A)x⊗A−1y = x⊗AA−1y = x⊗ y
shows

(1⊗A)(1⊗A−1)∣
H0

a
⊗H2

= 1∣
H0

a
⊗H2

.

Let y ∈ H0 ⊗ H2 and (yn)n∈N ∈ (H0

a⊗H2) with yn → y in H0 ⊗ H2. Then, (1 ⊗
A−1)yn → (1⊗A−1)y in H0 ⊗H1 by continuity, and

(1⊗A−1)yn ∈D(1⊗A)
and

(1⊗A)(1⊗A−1)yn = yn
hold. Since 1⊗A is closed, it follows

(1⊗A−1)y ∈ D(1⊗A)
and

(1⊗A)(1⊗A−1)y = y.
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Hence, (1⊗A−1) is bounded left- and right-inverse of 1⊗A, i.e.,

1⊗A−1 = (1⊗A)−1 ∈ L(H0 ⊗H2,H0 ⊗H1).
Let us now assume that 1⊗A is continuously invertible. Let x ∈ H0 ∖ {0} and

y ∈ [{0}]A. Then, 1 ⊗ Ax ⊗ y = x ⊗ Ay = x ⊗ 0 = 0. Since 1 ⊗ A is injective, this
implies x⊗ y = 0, i.e.,

∀(ϕ,ψ) ∈H0 ×H1 ∶ ⟨x,ϕ⟩H0
⟨y,ψ⟩H1

= x⊗ y(ϕ,ψ) = 0.
In particular, ϕ = x and ψ = y implies

∥x∥2H0
∥y∥2H1

= 0
and, hence, y = 0 since we assumed x ≠ 0. In other words, A is injective.

Let y ∈ A[H1]⊥. Then, for all z ∈D(A), we obtain ⟨Az, y⟩H2
= 0 and, therefore,

∀x̃ ∈ H0 ∀z ∈ D(A) ∶ ⟨(1⊗A)x̃⊗ z, x⊗ y⟩ = 0
which implies

∀ξ ∈ H0

a⊗D(A) ∶ ⟨(1⊗A)ξ, x⊗ y⟩ = 0
and, by continuity of the inner product,

∀ξ ∈D(1⊗A) ∶ ⟨(1 ⊗A)ξ, x ⊗ y⟩ = 0.
Hence, x⊗y ∈ (1⊗A)[H0⊗H1]⊥ = {0}. Since x was assumed non-zero, this implies
y = 0, i.e., A has dense range. Thus, it suffices to show continuity of A−1 to prove
the assertion. Since

(1⊗A)−1∣[H0]⊗[A[H1]] = (1⊗A−1)∣[H0]⊗[A[H1]],
we obtain, for y ∈ A[H1],

∥A−1y∥
H1

=∥x∥H0
∥A−1y∥

H1∥x∥H0

= 1

∥x∥H0

∥x⊗A−1y∥
H0⊗H1

= 1

∥x∥H0

∥(1⊗A)−1x⊗ y∥
H0⊗H1

≤∥(1⊗A)
−1∥

L(H0⊗H2,H0⊗H1)∥x∥H0

∥x⊗ y∥H0⊗H2

≤ ∥(1⊗A)−1∥
L(H0⊗H2,H0⊗H1) ∥y∥H2

.

�

Remark We will use the notation of tensor products in cases where the spaces
involved are not Hilbert spaces themselves; e.g., Ck(M ;H1) ⊗ Ck(M ;H2) with
H1,H2 Hilbert spaces. By writing this we mean to consider Ck(M ;H1 ⊗H2).

∎



CHAPTER 3

Lp spaces on C1,1-manifolds

Throughout these notes, unless explicitly stated otherwise, let (M,g) be an
orientable real 3-dimensional Riemannian C1,1-manifold1 endowed with a connec-
tion ∇. Then, the tangent bundle TM is a Riemannian (2dimM)-manifold and a
Hausdorff space itself. Furthermore, (gi(x))i∈N

≤dimM
will always be a local basis of

TxM and (gi(x))i∈N
≤dimM

the corresponding dual basis in TxM
∗. dvolM will denote

the volume form on M , G the Gramian matrix and γ ∶=√detG.
Let k ∈ N0 ∪ {∞, ω}, j,N ∈ N and α,β ∈ NN0 . Then, using f ∈ Cω(A;B) ∶⇔

f ∶ A→ B analytic wherever this makes any kind of sense, we define the following
spaces

Xk(M) ∶= {f ∈ Ck,1(M ;TM); ∀x ∈ M ∶ f(x) ∈ TxM} locally Lipschitz
vector fields
Xk,c(M) ∶= {f ∈Xk(M); spt f compact in intM}
Tx(α,β) ∶=⊗Ni=1 ((⊗αi

j=1 TxM)⊗ (⊗βi

l=1 TxM
∗))

T(α,β) ∶= ⋅⋃x∈M Tx(α,β) ≅ ⋃x∈M{x} × Tx(α,β)
T
∗(α,β) ∶= ⋅⋃x∈M Tx(α,β)∗ ≅ ⋃x∈M{x} ×Tx(α,β)∗

M
(α,β)
k
(M) ∶= {f ∈ Ck,1(M ;T∗(α,β)); ∀x ∈ M ∶ f(x) ∈ Tx(α,β)∗}(α,β)-tensor fields

M
(α,β)
k,c
(M) ∶= {f ∈M (α,β)

k
(M); sptf compact in intM}

Sj ∶= {σ; σ ∶ N≤j → N≤j injective} permutations

A
j(x) ∶= {f ∈ (TxM j)∗; ∀X ∈ TxM j ∀σ ∈ Sj ∶ f(X) = sgnσf(X ○ σ)}

alternating linear forms
A
j(M) ∶= ⋅⋃x∈M A

j(x)
Λ
j
k
(M) ∶= {f ∈ Ck,1(M ;Aj(M)); ∀x ∈M ∶ f(x) ∈ Aj(x)} Ck-j-forms

Remark The tensor bundles T(α,β) and T
∗(α,β) are topological spaces. Unfor-

tunately, the topologies are far from adorable. But it is possible to show that if
U ⊆M is open and contractible2, then there is a diffeomorphism from ⋅⋃x∈U Tx(α,β)
(or ⋅⋃x∈U Tx(α,β)∗, respectively) to U × Rm with m = (dimM)∑N

i=1αi+βi . This is
strongly liked to local trivializations of T(α,β) and T

∗(α,β). For notational sim-
plicity we will only consider the case T(m,0) as all other cases can be constructed
using Riesz identifications. Then, the bundle projection π ∶ T(m,0)→M is defined
by

∀(x, v) ∈ {x} ×Tx(m,0) ∶ π(x, v) = x
and, given an atlas (Ui, ψi)i∈I , we define

∀i ∈ I ∶ ϕi ∶ [Ui]π → Ui ×Rm; (x, vigi)↦ (x, (v1, . . . , vm)).
1f ∈ C1,1 means f is Fréchet-differentiable and its derivative f ′ is Hölder continuous with

Hölder exponent one, i.e., f ′ is locally Lipschitz.
2A topological space is called contractible if and only if the identity map is null-holomorphic.

29
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These ϕi are vector space isomorphisms and the (Ui, ϕi) locally trivialize T(m,0).
In fact, this property is very important as for a vector bundle to be locally trivi-
alizable ensures the existence of global cross sections with maximal regularity, i.e.,

M
(α,β)
k
(M) is non-trivial if M is a Ck-manifold.

∎
Lemma 3.1. M

(0,0)
k
(M) ≅ Ck,1(M ;R), M

(1,0)
k
(M) ≅ Λ1

k(M), M
(0,1)
k
(M) ≅

Xk(M) and M
(α,β)
k
(M)⊗M

(α′,β′)
k

(M) =M(α⊕α′,β⊕β′)
k

(M)
Proof. (i)

M
(0,0)
k
(M) ={f ∈ Ck,1(M ;T(0,0)∗); ∀x ∈M ∶ f(x) ∈ Tx(0,0)∗}

={f ∈ Ck,1(M ;T(0,0)∗); ∀x ∈M ∶ f(x) ∈ (⊗
∅

TxM ⊗⊗
∅

TxM
∗)∗}

≅{f ∈ Ck,1(M ;T(0,0)∗); ∀x ∈M ∶ f(x) ∈ (R ⊗R)∗}
≅Ck,1(M ;R)

(ii)

M
(1,0)
k
(M) ={f ∈ Ck,1(M ;T(1,0)∗); ∀x ∈M ∶ f(x) ∈ Tx(1,0)∗}

≅{f ∈ Ck,1(M ;T(1,0)∗); ∀x ∈M ∶ f(x) ∈ TxM∗}
={f ∈ Ck,1(M ;A1(M)); ∀x ∈M ∶ f(x) ∈ A1(x)}
=Λ1

k(M)
(iii)

M
(0,1)
k (M) ={f ∈ Ck,1(M ;T(0,1)∗); ∀x ∈M ∶ f(x) ∈ Tx(0,1)∗}

≅{f ∈ Ck,1(M ;T(0,1)∗); ∀x ∈M ∶ f(x) ∈ TxM∗∗}
≅{f ∈ Ck,1(M ;TM); ∀x ∈M ∶ f(x) ∈ TxM}
=Xk(M)

(iv)

M
(α,β)
k
(M)⊗M

(α′,β′)
k

(M) ={f ∈ Ck,1(M ;T(α,β)∗ ⊗T(α′, β′)∗);
∀x ∈M ∶ f(x) ∈ Tx(α,β)∗ ⊗Tx(α′, β′)∗}
={f ∈ Ck,1(M ;T(α,β)∗ ⊗T(α′, β′)∗);
∀x ∈M ∶ f(x) ∈ Tx(α⊕ α′, β ⊕ β′)∗}
={f ∈ Ck,1(M ;T(α⊕ α′, β ⊕ β′)∗);
∀x ∈M ∶ f(x) ∈ Tx(α⊕ α′, β ⊕ β′)∗}
=M(α⊕α′,β⊕β′)

k
(M)

�

Recall that the volume form dvolM defines a measure on the Borel sets B(M)
by

∀B ∈ B(M) ∶ µ(B) ∶= ∫
B
dvolM .

Using this interpretation we are in the realm of Lebesgue-integrals.
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Definition 3.2. Let p ∈ R≥1, n ∈ N, α,β ∈ Nn0 and ⟨⋅, ⋅⟩(α,β) be the canonical

scalar form on M
(α,β)
0 (M), i.e. for x, y ∈M(α,β)

0 (M)
∀p ∈M ∶ ⟨x, y⟩(α,β)(p) = ⟨x(p), y(p)⟩Tp(α,β)∗

holds. We define

∥⋅∥p,α,β ∶ M(α,β)
0 (M)→ R; x↦ (∫

M
∣⟨x,x⟩(α,β)∣ p2 dvolM)

1

p

and

L(α,β)p (M) ∶=M(α,β)
0 (M)∥⋅∥p,α,β

.

We will denote measurable and p-integrable functions, i.e. those functions being∥⋅∥p,α,β-limits of continuous functions, by L(α,β)p (M).
Remark Fischer-Riesz’s theorem (theorem 3.3 below) allows us identify elements

of L
(α,β)
p (M) with a functions.

∎
Obviously all L

(α,β)
p (M) are Banach spaces and L

(α,β)
2 (M) are Hilbert spaces,

since, ⟨x,x⟩(α,β) is non-negative and ⟨x, y⟩
L
(α,β)
2

(M) = ∫M ⟨x, y⟩(α,β)dvolM is a scalar

product.

Theorem 3.3 (Fischer-Riesz). Let p ∈ R≥1 and (fn)n∈N ∈ L(α,β)p (M)N converg-

ing to f ∈ L(α,β)p (M) in L(α,β)p (M). Then there is g ∈ Lp(volM) and a subsequence(fnj
)j∈N of (fn)n∈N , such that

(i) fnj
→ f µ-almost everywhere

and

(ii) ∀j ∈ N ∶ ∣⟨fnj
, fnj
⟩(α,β)∣ 12 ≤ g

hold.

Proof. Choose any subsequence (fnj
)j∈N of (fn)n∈N satisfying

∀j ∈ N ∶ ∥fnj+1 − fnj
∥
L(α,β)

p (M) ≤ 2−j .
For j ∈ N let f̃j ∶= fnj+1 − fnj

. Then, for k ∈ N,

⎛
⎝∫
⎛
⎝
k

∑
j=1
∣⟨f̃j , f̃j⟩(α,β)∣ 12⎞⎠

p

dvolM
⎞
⎠

1

p

=XXXXXXXXXXX
k

∑
j=1
∣⟨f̃j , f̃j⟩(α,β)∣ 12

XXXXXXXXXXXLp(volM )

≤ k

∑
j=1
∥∣⟨f̃j, f̃j⟩(α,β)∣ 12 ∥

Lp(volM )

= k

∑
j=1
∥fnj+1 − fnj

∥
L(α,β)

p (M)

≤∑
j∈N

2−j

=1
and
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⎛
⎝
k

∑
j=1
∣⟨f̃j , f̃j⟩(α,β)∣ 12⎞⎠

p

↗

⎛
⎝∑j∈N ∣⟨f̃j , f̃j⟩(α,β)∣

1

2
⎞
⎠
p

hold. Thus, using dominated convergence, we find

∫
⎛
⎝∑j∈N ∣⟨f̃j , f̃j⟩(α,β)∣

1

2
⎞
⎠
p

dvolM <∞.
Hence, g̃ ∶= limk→∞∑kj=1 ∣⟨f̃j , f̃j⟩(α,β)∣ 12 ∈ Lp(volM) exists with g̃ < ∞ volM -almost

everywhere. Since L(α,β)p (M) is a Banach space, ∑j∈N f̃j converges volM -almost

everywhere absolutely; ∑j∈N f̃j =∶ f̃ . By definition of (f̃j)j∈N we find

f̃ ←
k

∑
j=1

f̃j = k

∑
j=1
(fnj+1 − fnj

) = fnk+1
− fn1

→ f − fn1

and, hence, fnk+1
= fn1

+ ∑kj=1 f̃j → f volM -almost everywhere. Furthermore, for
j ∈ N

g̃2 ≥ ⟨f̃j , f̃j⟩(α,β) = ⟨fnj+1 , fnj+1⟩(α,β) − 2⟨fnj+1 , fnj
⟩(α,β) + ⟨fnj

, fnj
⟩(α,β)

holds. Hence,

0 ≤ ⟨fnj
, fnj
⟩(α,β) ≤ g̃2®

∈L p
2

(volM )
− ⟨fnj+1 , fnj+1⟩(α,β)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈L p
2

(volM )

+2⟨fnj+1 , fnj
⟩(α,β)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈L p
2

(volM )

∈ L p

2

(volM)

yields (ii) with g ∶= (g̃2 − ⟨fnj+1 , fnj+1⟩(α,β) + 2⟨fnj+1 , fnj
⟩(α,β)) 1

2 ∈ Lp(volM).
�

Remark Let f ∈ L(α,β)p (M). Then, there is a representative g such that g(x) ∈
Tx(α,β)∗ holds for every x ∈ M since it holds where a subsequence converges.
Since the complement of this set is a null-set, we may choose g to be zero there.

Furthermore, L
(α,β)
2 (M) may be isometrically embedded in L2(M)⊗ T(α,β)∗.

∎
Remark Note that we may restrict all considerations to β = 0, for all spaces with
β ≠ 0 can be generated using Riesz identifications.

∎
Definition 3.4. Let p ∈ R≥1, m ∈ N, and α ∈ N0. Then, we define

Dc (∥⋅∥L(α,0)
p (M)) ∶={x ∈M(α,0)

0,c (M); ∫
M
∣⟨x,x⟩(α,0)∣ p2 dvolM <∞} ,

D (∥⋅∥
W

1,(α,0)
p (M)) ∶={x ∈M(α,0)

1 (M)∩D (∥⋅∥
L
(α,0)
p (M)) ;

∫
M
∣⟨∇x,∇x⟩(α+1,0) ∣ p2 dvolM <∞} ,

Dc (∥⋅∥W 1,(α,0)
p (M)) ∶={x ∈M(α,0)

1,c (M)∩D (∥⋅∥L(α,0)
p (M)) ;

∫
M
∣⟨∇x,∇x⟩(α+1,0) ∣ p2 dvolM <∞} ,

∥⋅∥
W

1,(α,0)
p (M) ∶ D (∥⋅∥W 1,(α,0)

p (M)) → R; x↦ (∥x∥p
L
(α,0)
p (M) + ∥∇x∥pL(α+1,0)p (M))

1

p

,
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as well as,

L
(α,0)
p,0 (M) ∶=Dc (∥⋅∥L(α,0)

p (M))
∥⋅∥

L
(α,0)
p (M)

,

W 1,(α,0)
p (M) ∶=D (∥⋅∥

W
1,(α,0)
p (M))

∥⋅∥
W

1,(α,0)
p (M)

,

W
1,(α,0)
p,0 (M) ∶=Dc (∥⋅∥W 1,(α,0)

p (M))
∥⋅∥

W
1,(α,0)
p (M)

.

Remark A priori, we cannot define Sobolev spaces in the same manner as we would
define W k

p (Ω) for Ω ⊆open R
n. However, using Sobolev chains, it is still possible to

show that they exists and are dense in Lp(M). It is important to keep in mind

that this does not imply non-triviality of Ck(M) because the Sobolev embedding
theorems do not hold, in general.

∎
Definition 3.5. Let α ∈ N0. Then we define gradient and divergence to be

gradc,α ∶ M(α,0)
1,c (M)→M

(α+1,0)
0,c (M); x↦ ∇x,

divc,α ∶ M(α+1,0)
1,c (M)→M

(α,0)
0,c (M); x↦ tr∇x

where tr denotes the trace acting on the first two components.3

Before we can show that the gradient and divergence are formally adjoint, let
us recall the Gauss divergence theorem.

Definition 3.6. Let V be a closed subset of M . V has smooth boundary if
and only if for each a ∈ V there is an open neighborhood U ⊆ V of a and a function
g ∈ C1(U ;R) such that

V ∩U = {x ∈ U ; g(x) ≤ 0}
and ∇g(x) ≠ 0 for all x ∈ U hold. Then we define

∂V ∩U ∶= {x ∈ U ; g(x) = 0}
and ∂V the union of every such ∂V ∩U .

Let a be in ∂V . Then we call

ν(a) ∶= 1

∥∇g(a)∥∇g(a)
the outward-pointing normal at a.

Remark Having smooth boundary as defined above means having C1 boundary,
i.e., the boundary is locally a C1 manifold.

Sketch of proof Let V ⊆ M be a closed subset of M with smooth boundary.
Let p ∈ ∂V and ϕ a chart with p ∈ ϕ [RdimM ]. Let r ∈ R>0 such that U0 ∶=
BRdimM (ϕ−1(p), r) ⊆ [M]ϕ and such that there exists g according to the definition
with respect to U ∶= ϕ[U0]. Note that g ∈ C1(U) means, per definitionem, g̃ ∶=
g ○ϕ ∈ C1(U0) and ∇g(x) ≠ 0 is equivalent to (g ○ϕ)′(x) ≠ 0 since ∇gif = ∂i(g ○ϕ).

3that is, for instance, tr(aijkgi ⊗ gj ⊗ gk) = aijkgijgk
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Theorem 3.7 (Level Set Criterion). A set S ⊆ R
n is an m-dimensional Cl-

manifold if and only if for ever p ∈ S there is an open neighborhood Up of p and a

function gp ∈ Cl(Up,Rk) with m + k = n such that S ∩Up = [{0}]gp and rankg′p = l
in Up.

Since U0 is an open neighborhood of ϕ−1(p) and g̃ ∈ C1(U0,R) with [∂V ]ϕ ∩
U0 = [{0}]g̃ and rank g̃′ = 1, we obtain that ϕ [[∂V ]ϕ ∩U0] is a (dimM − 1)-
dimensional C1-manifold. Since p ∈ ∂V was arbitrarily chosen, we conclude that
∂V is a (dimM − 1)-dimensional C1-manifold.

∎
Theorem 3.8 (Gauss divergence Theorem). Let V be a compact subset of M

with smooth boundary and ν ∈ M(1,0)
0 (M) such that ν∣∂V is the outward-pointing

normal vector field on ∂V . Let dvol∂V be the surface form on ∂V . Let F be a
continuous vector field on V and continuously differentiable in the interior, i.e.,

F ∈M(1,0)
0 (V ) ∩M(1,0)

1 (V ∖ ∂V ). Then

∫
V
tr∇FdvolM = ∫

∂V
⟨F, ν⟩dvol∂V

holds.

Observation 3.9. −divc,α ⊆ (gradc,α)∗ holds in L
(α+1,0)
2 (M)⊕L(α,0)2 (M).

Proof. Let ϕ ∈D(gradc,α) and τ ∈D(divc,α). Then

⟨− tr∇τ,ϕ⟩(α,0) = ⟨− tr (∇giτj1...jα+1gi ⊗ gj1 ⊗ . . .⊗ gjα+1) , ϕ⟩(1,0)
= − ⟨∇giτj1...jα+1gij1gj2 ⊗ . . .⊗ gjα+1 , ϕk1...kαgk1 ⊗ . . . ⊗ gkα⟩(1,0)
= −∇giτj1...jα+1gij1gj2k1 . . . gjα+1kαϕk1...kα
= −∇gi (τj1...jα+1gij1gj2k1 . . . gjα+1kαϕk1...kα)
+ τj1...jα+1gij1gj2k1 . . . gjα+1kα∇giϕk1...kα
= −∇gi (τj1...jα+1gij1gj2k1 . . . gjα+1kαϕk1...kα) + ⟨τ,∇ϕ⟩(α+1,0)

and, hence, using a M̃ ⊆compact M such that ϕ and τ are compactly supported in

M̃ ,

∫
M̃
⟨− tr∇τ,ϕ⟩(α,0)dvolM =∫

M̃
⟨τ,∇ϕ⟩(α+1,0)dvolM

− ∫
M̃
∇gi (τj1...jα+1gij1gj2k1 . . . gjα+1kαϕk1...kα)dvolM

=∫
M̃
⟨τ,∇ϕ⟩(α+1,0)dvolM

− ∫
M̃

tr∇(τj1...jα+1gj2k1 . . . gjα+1kαϕk1...kαgj1)dvolM
=∫

M̃
⟨τ,∇ϕ⟩(α+1,0)dvolM

− ∫
∂M̃
⟨τj1...jα+1gj2k1 . . . gjα+1kαϕk1...kαgj1 , ν⟩ dvol∂M̃

holds according to the Gauss divergence theorem. However, we have assumed that
τ and ϕ are compactly supported in M̃ ∖ ∂M̃ , i.e., the integral over ∂M̃ vanishes
which, thence, reduces to

∫
M
⟨− tr∇τ,ϕ⟩(α,0)dvolM =∫

M
⟨τ,∇ϕ⟩(α+1,0)dvolM ,
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i.e., the assertion.
�

Lemma 3.10. Let X, Y be reflexive Banach spaces, and A ⊆X⊕Y , B ⊆ Y ′⊕X ′
densely defined, linear operators where X ′ and Y ′ denote the dual spaces of X and
Y , respectively. If A and B are formally adjoint, i.e., A ⊆ B∗, then B ⊆ A∗ holds
and both operators are closable, where A∗ and B∗ denote the respective dual or
adjoint operators depending on whether or not X and Y are Hilbert spaces.

Proof. A∗ and B∗ are closed operators since A and B are densely defined
which directly implies that A is closable. Thus,

B ⊆ B̄ = B∗∗ ⊆ A∗
shows B ⊆ A∗ and, therefore, closability of B, too.

�

The lemma above enables us to define

grad0,α ∶=gradc,α , div0,α ∶= divc,α
as well as,

gradα ∶= − (divc,α)∗ , divα ∶= − (gradc,α)∗ .
From this point on, we will drop the index α as it is uniquely determined by the
context.

Remarks on Sobolev Spaces

Since we are on a C1,1-manifold M , we only know that the space C1(M) is
non-trivial and dense in C(M). For k ≥ 2 the spaces Ck(M) may very well be
trivial. Hence, the usual approach to defining Sobolev spaces fails. However, we
may use the notion of a Sobolev chain; for further detail, please, refer to [15].

Lemma 3.11 ([15]; Lemma 2.1.3). Let H be a Hilbert space and A ⊆ H ⊕H a
closed, densely defined, linear operator with zero in the resolvent set ̺(A). Then,
An is a closed, densely defined operator for every n ∈ N with 0 ∈ ̺(An) and

∀x ∈D(An) ∶ ∥Anx∥H ≥ ∥A−1∥−nL(H) ∥x∥H .
Let Hn(A) be the Hilbert space D(An) equipped with the norm x↦ ∥Anx∥H . Then,

An+1,n ∶ Hn+1(A)→Hn(A); x↦ Ax

is unitary for every n ∈ N0.

If A is a closed, densely defined, linear operator with 0 ∈ ̺(A), then A∗ =(−A−1)⊥ is closed linear operator. Furthermore, closedness of A implies that A∗

is densely defined, and 0 ∈ ̺(A∗) follows from ̺(A∗) = ̺(A)∗. Hence, Hn(A∗) is
well-defined, as well, and we can extend the family (Hn(A))n∈N

0
.

Definition 3.12. Let H be a Hilbert space, A ⊆H⊕H a closed, densely defined,
linear operator with 0 ∈ ̺(A), and n ∈ Z. Then, we define

Hn(A) ∶=
⎧⎪⎪⎨⎪⎪⎩
(D(An), ∥An⋅∥H) ; n ∈ N0

H−n(A∗)∗; n ∈ −N
where H−n(A∗)∗ denotes the topological dual of H−n(A∗). Then, we call

(i) (Hn(A))n∈N
0

the positive Sobolev chain associated with A,
(ii) (Hn(A))n∈−N

0
the negative Sobolev chain associated with A, and

(iii) (Hn(A))n∈Z the (long) Sobolev chain associated with A.
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Lemma 3.13 ([15]; Lemma 2.1.6). Let (Hn(A))n∈Z the Sobolev chain associated
with the operator A. Then, we obtain that the embedding

Hn+k(A)↪Hn(A)
is dense and continuous (in the sense of canonical embeddings) for every n ∈ Z and
k ∈ N0. Furthermore, the operators

D (A∣n∣+1) ⊆Hn+1(A) →Hn(A); x↦ Ax

have unitary closures An+1,n ⊆Hn+1(A)⊕Hn(A) for every n ∈ Z.

It is often convenient to define the “closures” of the Sobolev chain

H∞(A) ∶= ⋂
n∈Z

Hn(A)
which is a Fréchet space if equipped with the family of semi-norms (∥⋅∥Hn(A))n∈Z
and dense in all Hn(A) (in fact, H∞(A) is a core of A(k) ∶ Hk+1(A) ⊆ Hk(A) →
Hk(A); x↦ Ax; cf., Lemma 2.1.15 in [15]) and

H−∞(A) ∶= ⋃
n∈Z

Hn(A)
which is complete if equipped with the topology induced by saying that x is a
Cauchy-sequence/convergent in H−∞(A) if and only if there exists an n ∈ Z such
that x is a Cauchy-sequence/convergent in Hn(A) (cf., Lemma 2.1.11 in [15]).

As for the definition of Sobolev spaces on the C1,1-manifold M , we know that
the gradient grad is a well-defined, closed, densely defined, linear operator on the
Hilbert space L2(M). Furthermore, we have the following theorem which can be
obtained from the first representation theorem (Theorem VI.2.1 in [11]) applied
to the closed, positive, symmetric form τ with D(τ) ∶= D(A) and ∀x, y ∈ D(τ) ∶
τ(x, y) ∶= ⟨Ax,Ay⟩H2

.

Theorem 3.14 (von Neumann). Let H1 and H2 be Hilbert spaces and A ⊆
H1⊕H2 a closed and densely defined operator. Then A∗A is self-adjoint in H1 and
its domain is a core of A.

Hence, grad∗ grad is a well-defined, closed, densely defined, linear operator and,

additionally, self-adjoint, i.e., so is ∣grad∣ ∶= √grad
∗
grad which allows us to define

the Sobolev spaces

∀k ∈ Z ∶ W k
2 (M) ∶=Hk(1 + ∣grad∣).

We may also define W s
2 (M) for s ∈ R to be the closure of H∞(1 + ∣grad∣) with

respect to the scalar product

∀x, y ∈H∞(1 + ∣grad∣) ∶ ⟨x, y⟩W s
2
(M) ∶= ⟨(1 + ∣grad∣)sx, (1 + ∣grad∣)sy⟩L2(M).

Alternatively, we may consider the spaces W̃ s
2 (M) defined by the closure of H∞(1+∣grad∣) with respect to the scalar product

∀x, y ∈H∞(1 + ∣grad∣) ∶ ⟨x, y⟩W̃ s
2
(M) ∶= ⟨(1 + grad∗ grad)sx, y⟩L2(M)

for s ∈ R which are equivalent but sometimes more suitable. None the less, both
families, (W s

2 (M))s∈R and (W̃ s
2 (M))s∈R , satisfy the interpolation property, that is,

for every s, t ∈ R and ϑ ∈ [0,1]
W
(1−ϑ)s+ϑt
2 (M) = [W s

2 (M),W t
2(M)]ϑ

W̃
(1−ϑ)s+ϑt
2 (M) = [W̃ s

2 (M), W̃ t
2(M)]ϑ
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in the sense of complex interpolation; cf., e.g., section 4.2 in [18]. In fact, if A is
strictly positive, then we can extend the Sobolev chain (Hn(A))n∈Z to (Hs(A))s∈R
by setting

Hs(A) ∶= (D(As), ∥As⋅∥H)
for s ≥ 0 and by duality for s < 0. Similarly, we might simply use the interpolation
property directly to define the Hs(A) for s ∈ R ∖ Z via

∀s, t ∈ R≥0 ∀ϑ ∈ [0,1] ∶ H(1−ϑ)s+ϑt(A) = [Hs(A),Ht(A)]ϑ .
Finally, we’d like to note that not all Sobolev embeddings fail to hold. For

instance, we still obtain the following theorem.

Theorem 3.15 (Sobolev Embedding). Let X be a Banach space, S,T ∈ R and
S < T . Then

id ∶ W 1
2 ([S,T ];X)→ C([S,T ];X); f ↦ f

is continuous and injective.

Proof. Let s, t ∈ [S,T ] and f ∈ C∞([S,T ];X) (mind that C∞([S,T ];X) is a
dense subset of W 1

2 ([S,T ];X)). Then

∥f(t)∥X ≤ ∥f(s)∥X + ∣∫ t

s
∥f ′(τ)∥X dτ ∣ ≤ ∥f(s)∥X +√∣t − s∣ ∣∫ t

s
∥f ′(τ)∥2X dτ ∣

1

2

holds. Integrating s yields

(T − S) ∥f(t)∥X ≤∫ T

S
∥f(s)∥X ds + ∫ T

S

√∣t − s∣´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≤
√
T−S

∣∫ t

s
∥f ′(τ)∥2X dτ ∣

1

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∣∫ T

S
∥f ′(τ)∥2Xdτ ∣

1
2

ds

≤√T − S ∣∫ T

S
∥f(s)∥2X ds∣

1

2

+ (T − S) 3

2 ∣∫ T

S
∥f ′(s)∥2X ds∣

1

2

.

Hence,

∥f∥C([S,T ];X) ≤max{(T − S) 1

2 , (T − S)− 1

2 }√2 ∥f∥W 1

2
([S,T ];X)

holds, too, where we used

√
a +√b = ∥(

√
a√
b
)∥

1

≤ ∥(1
1
)∥

2

∥(
√
a√
b
)∥

2

=√2√a + b.
Thus, any W 1

2 ([S,T ];X)-Cauchy sequence in C∞([S,T ];X) is also a C([S,T ];X)-
Cauchy sequence and, therefore, W 1

2 ([S,T ];X) ⊆ C([S,T ];X).
Furthermore the identities

id1 ∶ W 1
2 ([S,T ];X)→ L2([S,T ];X); f ↦ f

id2 ∶ C([S,T ];X)→ L2([S,T ];X); f ↦ f

are injective. Thus, id = id−12 ○ id1 is injective.
�





CHAPTER 4

The Analytic Implicit Function Theorem

Before we prove the analytic implicit function theorem, we will recall a few
facts about analytic operators. A more extensive account can be found in [3].

Definition 4.1. Let X and Y be Banach spaces and k ∈ N0. A k-linear map-
ping mk ∶ Xk

→ Y is called symmetric if and only if for every permutation σ ∈ Sk
and x1, . . . , xk ∈ X

mkx1⋯xk ∶=mk(xσ(1), . . . , xσ(k)) =mk(x1, . . . , xk)
holds.

Definition 4.2. Let X and Y be Banach spaces, U ⊆ X open, and x0 ∈ U .
A mapping F ∶ U → Y is called analytic at x0 if and only if there exist r ∈ R>0
and k-linear and symmetric operators mk ∶ Xk

→ Y (k ∈ N0) such that for every
x ∈ BX(x0, r) ⊆ U

F (x) = ∑
k∈N

0

mk(x − x0)k(1)

and

sup
k∈N

0

rk ∥mk∥Lip =∶M <∞(2)

hold. The series ∑k∈N
0

mk(x − x0)k in (1) is called power series and F is said to

be analytic in U if and only if it is analytic at every point of U .

Due to (2) we observe for x ∈ BX(x0, r)

∑
k∈N

0

∥mk(x − x0)k∥Y ≤M ∑
k∈N

0

∥x − x0∥kX
rk

=M 1

1 − ∥x−x0∥X
r

= Mr

r − ∥x − x0∥X <∞.
Hence, the power series converges absolutely.

Observation 4.3. Let X, Y1, and Y2 be Banach spaces, U ⊆ X open, and(F1, F2) ∶ U → Y1 × Y2 analytic. Then, F1 and F2 are analytic.

Proof. Since (F1, F2) is analytic, there is a representation

(F1, F2)(x) = ∑
k∈N

0

mk(x − x0)k
with supk∈N

0

rk ∥mk∥Lip =∶M <∞ for some r ∈ R>0 and every x0 ∈ U . Let i ∈ {1,2}.
The projection pri ∶ Y1 × Y2 → Yi; (y1, y2) ↦ yi is continuous with norm 1. Hence,
we observe

39
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Fi(x) =pri(F1, F2)(x) = ∑
k∈N

0

primk(x − x0)k
and

sup
k∈N

0

rk ∥primk∥Lip ≤ sup
k∈N

0

rk ∥pri∥Lip ∥mk∥Lip =M <∞.
�

Proposition 4.4. Let F be defined by (1) such that (2) holds. Then, F is
analytic at every point x ∈ BX(x0, r) =∶ U0, F ∈ C∞(U0;Y ) and for every k ∈ N0

mk = ∂kF (x0)
k!

holds. For every k ∈ N0 and x ∈ BX(x0, r) the kth derivative of F , ∂kF , is analytic
at x. Furthermore for every x1, . . . , xk ∈X

∂kF (x)(x1, . . . , xk) = ∑
j∈N

0

(j + k)!
j!

mj+k(x − x0)jx1x2⋯xk
holds and there are C ∈ R>1 and R ∈ (0,1) such that for every x ∈ BX (x0, r2) and
k ∈ N

∥∂kF (x)∥
Lip
≤ C k!

Rk
(3)

holds, too. In particular, if K ⊆ U is compact then C and R exist such that (3)
holds for every x ∈K.

Proof. see [3] �

Definition 4.5. Let X, Y , and Z be Banach spaces, U ⊆ X × Y open, and(x0, y0) ∈ U . A mapping F ∶ U → Z is called analytic at (x0, y0) if and only if there
exist r ∈ R>0 and k-linear and symmetric operators mk ∶ (X × Y )k → Z (k ∈ N0)
such that for every (x, y) ∈ BX((x0, y0), r) ⊆ U

F (x, y) = ∑
k∈N

0

mk(x − x0, y − y0)k(4)

and

sup
k∈N

0

rk ∥mk∥Lip =∶M <∞(5)

hold.
F is said to be analytic in U if and only if it is analytic at every point of U .

Definition 4.6. mp,q ∶ Xp × Y q → Z is p-q-linear and symmetric if and only

if there is a k-linear and symmetric mk ∶ (X ×Y )k → Z with k = p+ q such that for
all x1, . . . , xp ∈X and y1, . . . , yq ∈ Y

mp,q(x1, . . . , xp, y1, . . . , yq) =mk((x1,0), . . . , (xp,0), (0, y1), . . . , (0, yq))
holds.
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It is possible to express (cf., e.g., §4.4 in [3]) F in (4) as

F (x, y) = ∑
(p,q)∈N2

0

(p + q)!
p!q!

mp,q(x − x0)p(y − y0)q
with

mp,q = ∂
p
1∂

q
2F (x0, y0)(p + q)!

and

sup
p,q∈N

0

rp+q ∥mp,q∥ <∞.
In particular, the power series converges absolutely again.

Now we will prove the analytic implicit function theorem. We will start by
proving the implicit function theorem for up to C∞ functions with an adaptation of
the standard approach in finite dimensional spaces. This has the advantage that it is
constructive, i.e., the solutions of Navier-Stokes will be constructable. The prove of
analyticity, however, is not “constructable” and, even though it is possible to prove
the theorem directly with analyticity, we chose this approach since constructibility
of the solution is quite a nice feature.

Proposition 4.7 (Chain Rule). Let X, Y , and Z be Banach spaces, U ⊆ X
open, V ⊆ Y open, a ∈ U , f ∶ U → V Fréchet-differentiable in a, and g ∶ V → Z

Fréchet-differentiable in f(a). Then, g ○ f ∶ U → Z is Fréchet-differentiable in a

and satisfies

(g ○ f)′(a) = g′(f(a))f ′(a)) ∈ L(X,Z).
Proof. Let A ∶= f ′(a) and B ∶= g′(f(a)). Then, we observe for x ∈ U and

y ∈ V
f(x) = f(a) +A(x − a) + ∥x − a∥X ϕ(x)

and

g(y) = g(f(a))+B(y − f(a))+ ∥y − f(a)∥Y ψ(y)
for some ϕ ∈ C(U,Y ) and ψ ∈ C(V,Z) with ϕ(x) → 0 (x → a) and ψ(y) → 0 (y →
f(a)). Therefore,

(g ○ f)(x) =g (f(a)+A(x − a) + ∥x − a∥X ϕ(x))=g(f(a))+B (A(x − a) + ∥x − a∥X ϕ(x))
+ ∥A(x − a) + ∥x − a∥X ϕ(x)∥Y ψ ((f(a)+A(x − a) + ∥x − a∥X ϕ(x)))=g(f(a))+BA(x − a) + ∥x − a∥X ω(x)

with

ω(x) ∶=Bϕ(x) + ∥A(x − a) + ∥x − a∥X ϕ(x)∥Y ψ (f(x))∥x − a∥X
which satisfies

∥ω(x)∥Z ≤ ∥B∥L(Y,Z) ∥ϕ(x)∥Y´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

+(∥A∥L(X,Y ) + ∥ϕ(x)∥Y ) ψ(f(x))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ψ(f(a))=0

→ 0 (x→ a),
thus, showing the assertion.

�
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Proposition 4.8 (Mean Value Inequality). Let X be a Banach space, a, b ∈ R,
a < b, and f ∈ C([a, b],X) differentiable from the right on (a, b). Then, there is a
t ∈ (a, b) such that

∥f(b)− f(a)∥X ≤ ∥f ′r(t)∥X (b − a)
holds where f ′r(t) denotes the right-hand side derivative of f at t.

Proof. (i) Let ϕ ∈ C([a, b],R) with ϕ(a) = ϕ(b) = 0. Then, the interme-
diate value theorem yields the existence of a1 and b1 with a < a1 < b1 < b
satisfying ϕ(a1) = ϕ(b1). By the extreme value theorem, there exists
t ∈ [a1, b1) such that

∀r ∈ [a1, b1) ∶ ϕ(t) ≤ ϕ(r)
holds. Hence, there is h ∈ R>0 such that

∀s ∈ [t, t + h] ∶ ϕ(t) ≤ ϕ(s)
holds.

(ii) Without loss of generality, let a = 0 and f(0) = 0. For s ∈ [0, b], we define

ϕ(s) ∶= ∥f(s)∥X − s∥1b f(b)∥X
and observe that ϕ is continuous with ϕ(0) = ϕ(b) = 0. According to (i),
there exists a t ∈ (0, b) and h ∈ (0, b − t) such that

∀s ∈ [t, t + h] ∶ ϕ(s) ≥ ϕ(t)
holds. Hence,

0 ≤ϕ(s) − ϕ(t)
s − t

=∥f(s)∥X − ∥f(t)∥X
s − t − ∥1

b
f(b)∥

X

≤∥f(s)− f(t)∥X
s − t − ∥1

b
f(b)∥

X

=∥f(s) − f(t)
s − t ∥

X

− ∥1
b
f(b)∥

X

→ ∥f ′r(t)∥X − ∥1b f(b)∥X
holds for s↘ t. In other words,

∥f(b)− f(a)∥X = ∥f(b)∥X ≤ ∥f ′r(t)∥X b = ∥f ′r(t)∥X (b − a)
shows the assertion.

�

Corollary 4.9. Let X and Y be Banach spaces, U ⊆ X open, f ∶ U → Y

Fréchet-differentiable, and a, b ∈ U such that their convex hull conv{a, b} is a subset
of U . Then, there is a t ∈ (0, a) such that

∥f(b) − f(a)∥Y ≤ ∥f ′((1 − t)a + tb)∥L(X,Y ) ∥b − a∥X
holds.

Proof. Let

g ∶ [0,1]→ Y ; t ↦ f((1 − t)a + tb).
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Then, g is differentiable and the chain rule yields

g′(t) = f ′((1 − t)a + tb)(b − a).
Furthermore, there is t ∈ (0,1) such that

∥f(b)− f(a)∥Y = ∥g(1)− g(0)∥Y ≤ ∥g′(t)∥Y ≤ ∥f ′((1 − t)a + tb)∥L(X,Y ) ∥b − a∥X .
�

Proposition 4.10 (Modified Newton’s Method). Let X and Y be Banach
spaces, U ⊆X open, G ⊆ U convex and closed in X, f ∈ C1(U,Y ), and B ∈ L(Y,X).
Let Φ ∶ U →X ; x↦ x −Bf(x) be such that G is Φ-invariant, i.e., Φ[G] ⊆ G, and

k ∶= sup
x∈G
∥1 −Bf ′(x)∥L(X) < 1.

Then, Φ is a strict contraction on G and its unique fixed point x∗ ∈ G satisfies
Bf(x∗) = 0.

Proof. Clearly, Φ′(x) = 1 −Bf ′(x). Hence, for a, b ∈ G, we obtain

∥Φ(x) −Φ(a)∥X ≤ sup
t∈[0,1]

∥Φ′((1 − t)a + tb)∥L(X) ∥b − a∥X ≤ k ∥b − a∥X .
Hence, Φ is a strict contraction and Banach’s fixed point theorem implies the other
assertions.

�

Theorem 4.11 (Implicit Function Theorem). Let M be a topological space,
Y and Z Banach spaces, U ⊆ Y open, F ∶ M × U → Z continuous and Fréchet-
differentiable with respect to the second variable, as well as, (a, b) ∈M ×U such that
f(a, b) = 0, ∂2F is continuous at (a, b), and ∂2F (a, b) is an isomorphism.

Then, there are open neighborhoods V1 ⊆M of a and V2 ⊆ U of b such that there
exists a unique function g ∶ V1 → V2 with ∀x ∈ V1 ∶ F (x, g(x)) = 0. Furthermore, g
is continuous.

Proof. Let B ∶= ∂2F (a, b)−1 ∈ L(Z,Y ) and

Φ ∶ M ×U → Y ; (x, y)↦ y −BF (x, y).
Then, clearly, 1−B∂2F (a, b) = 0 holds and, since ∂2F is continuous at (a, b), there
are W1 ⊆open M and W2 ⊆open U with a ∈W1 and b ∈W2 such that

∀(x, y) ∈W1 ×W2 ∶ ∥1 −B∂2F (x, y)∥L(Y ) < 1

2

holds. Let r ∈ R>0 such that BY [b, r] ⊆W2. Since F (a, b) = 0 and F is continuous,
there is an open neighborhood V1 ⊆W1 of a such that

sup
x∈V1

∥BF (x, b)∥Y < r2 .
For x ∈ V1 and y ∈ BY [b, r] we, thus, observe

∥Φ(x, y) − b∥Y ≤ ∥Φ(x, y) −Φ(x, b)∥Y + ∥Φ(x, b) − b∥Y≤ sup
t∈[0,1]

∥1 −B∂2F (x, (1 − t)y + tb)∥L(Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< 1

2

∥y − b∥Y´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤r

+ ∥BF (x, b)∥Y´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< r

2

<r,
i.e., Φ(x, ⋅) [BY [b, r]] ⊆ BY (b, r) =∶ V2. Hence, Φ(x, ⋅) has a unique fixed point
g(x) ∈ V2 for every x ∈ V1.
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Concerning continuity of g, we observe for x,x′ ∈ V1 sufficiently close

∥g(x) − g(x′)∥Y = ∥Φ(x, g(x)) −Φ(x′, g(x′))∥Y
≤ ∥Φ(x, g(x)) −Φ(x′, g(x))∥Y + ∥Φ(x′, g(x)) −Φ(x′, g(x′))∥Y
≤ ∥Φ(x, g(x)) −Φ(x′, g(x))∥Y
+ sup
t∈[0,1]

∥1 −B∂2F (x′, (1 − t)g(x) + tg(x′))∥L(Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< 1

2

∥g(x) − g(x′)∥Y

< ∥Φ(x, g(x)) −Φ(x′, g(x))∥Y + 1

2
∥g(x) − g(x′)∥Y

and, therefore,

∥g(x) − g(x′)∥Y <2 ∥Φ(x, g(x)) −Φ(x′, g(x))∥Y = 2 ∥B (F (x′, g(x)) −F (x, g(x)))∥Y
which converges to zero as x′ → x because F and B are continuous.

�

Corollary 4.12. Using the notation of Theorem 4.11, let g0 ∶= b and

∀n ∈ N ∀x ∈ V1 ∶ gn(x) ∶= gn−1(x) − ∂2F (a, b)−1F (x, gn−1(x)).
Then, gn converges to the implicit function g pointwise in Y .

Proof. In the proof of Theorem 4.11 we constructed g to be the unique fixed
point of

g(x) = Φ(x, g(x)) = g(x) − ∂2F (a, b)−1F (x, g(x))
using Banach’s fixed point theorem. Now defined gn+1(x) = Φ(x, gn(x)). Thus,
b = g0(x) ∈ V2 = BY (b, r) for every x ∈ V1 implies pointwise convergence of (gn)n∈N
to g.

�

Now, that we can construct implicit functions, the remainder of the chapter
will show that the solutions are sufficiently smooth if the function F is and we will
state the inverse function theorem since this is the theorem we will end up using.

Proposition 4.13. Let X, Y , and Z be Banach spaces, U1 ⊆ X open, U2 ⊆ Y
open, F ∶ U1 × U2 → Z, (a, b) ∈ U1,×U2, F (a, b) = 0, F Fréchet-differentiable at(a, b), and ∂2F (a, b) an isomorphism. Let g ∶ U1 → U2 be continuous at a, g(a) = b
and ∀x ∈ U1 ∶ F (x, g(x)) = 0.

Then, g is Fréchet-differentiable at a satisfying

g′(a) = −∂2F (a, b)−1∂1F (a, b).
Proof. Without loss of generality, let a = 0 and b = 0. Let A ∶= ∂1F (0,0) ∈

L(X,Z) and B ∶= ∂2F (0,0) ∈ L(Y,Z). Then, B is an isomorphism and there exists
a function ϕ ∶ U1 ×U2 → Z with ϕ(x, y) → 0 ((x, y) → 0) and

F (x, y) = F (0,0)´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0

+Ax +By + (∥x∥X + ∥y∥Y )ϕ(x, y).
Thus,

0 = F (x, g(x)) = Ax +Bg(x) + (∥x∥X + ∥g(x)∥Y )ϕ(x, g(x))
implies

g(x) = −B−1Ax − (∥x∥X + ∥g(x)∥Y )B−1ϕ(x, g(x)) = −B−1Ax + ∥x∥X ψ(x)
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with

ψ(x) ∶= −(1 + ∥g(x)∥Y∥x∥X )B−1ϕ(x, g(x))
for x ≠ 0. Hence, we will have to show ψ(x) → 0 (x→ 0). Let δ ∈ R>0 be such that
BX(0, δ) ⊆ U1 and

∀x ∈ BY (0, δ) ∶ ∥B−1ϕ(x, g(x))∥Y ≤ 1

2
.

Then,

∥g(x)∥Y ≤ ∥B−1A∥L(X,Y ) ∥x∥X + ∥x∥X + ∥g(x)∥Y2

implies

∥g(x)∥Y ≤ (2 ∥B−1A∥L(X,Y ) + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶K

∥x∥X ,
i.e.,

∥ψ(x)∥Y ≤ (1 +K)∥B−1ϕ(x, g(x))∥Y → 0 (x→ 0).
�

Remark on the Neumann series
Let X be a Banach space, T ∈ L(X), and ∥T ∥L(X) < 1. Then, ∑k∈N

0

T k

converges absolutely since

∑
k∈N

0

∥T k∥
L(X) ≤ ∑

k∈N
0

∥T ∥kL(X) = 1

1 − ∥T ∥L(X) .
Furthermore, we obtain

(1 − T ) ∑
k∈N

0

T k = ⎛⎝∑k∈N
0

T k
⎞
⎠(1 − T ) = 1

holds, i.e., 1 − T is a homeomorphism with (1 − T )−1 =∑k∈N
0

T k.

∎
Lemma 4.14. Let X and Y be Banach spaces, S,T ∈ L(X,Y ), 0 ∈ ̺(T ), and

∥S − T ∥L(X,Y ) < ∥T −1∥−1L(Y,X) .
Then, 0 ∈ ̺(S) and

BL(X,Y ) (T, ∥T −1∥−1L(Y,X)) ∋ S ↦ S−1 ∈ L(Y,X)
is continuous. In particular, the set of isomorphism in L(X,Y ) is open.

Proof. Since ∥T −1(S − T )∥
L(X) ≤ ∥T −1∥L(Y,X) ∥S − T ∥L(X,Y ) < 1, the Neu-

mann series yields that 1 + T −1(S − T ) ∶ X →X is boundedly invertible. Using

S = T (1 + T −1(S − T ))
we obtain the assertion from

S−1 = (1 + T −1(S − T ))−1T −1 ∈ L(Y,X).
�

Corollary 4.15. With the assumptions of Theorem 4.11, M being an open
subset of a Banach space X, and F ∈ Cm(M ×U,Z) for some m ∈ N ∪ {∞}, the set
V1 in Theorem 4.11 can be chosen such that g ∶ V1 → V2 is in Cm(V1, V2).
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Proof. It is possible to choose V1 such that ∀x ∈ V1 ∶ ∂2F (x, g(x)) is an
isomorphism. Thus, Proposition 4.13 yields continuity of g′ with

g′(x) = −∂2F (x, g(x))−1∂1F (x, g(x)).
For m ≥ 2 the right-hand side is Fréchet-differentiable and g ∈ C2(V1, V2), therefore.
Inductively, we obtain g ∈ Cm(V1, V2).

�

Theorem 4.16 (Inverse Function Theorem). Let X and Y be Banach spaces,
U ⊆X open, m ∈ N ∪ {∞}, f ∈ Cm(U,Y ), a ∈ U , and f ′(a) an isomorphism. Then,
there are open neighborhoods U1 of a and U2 of b ∶= f(a) such that f ∶ U1 → U2 is
a Cm-diffeomorphism. Furthermore, (f−1)′(b) = f ′(a)−1.

Proof. Let

F ∶ Y ×U → Y ; (y, x) ↦ f(x) − y.
Then, F ∈ Cm(Y × U,Y ), F (b, a) = 0, and ∂2F (b, a) = f ′(a) is an isomorphism.
Hence, there are open neighborhoods U2 ⊆ Y of b and V ⊆ U of a such that g ∶
U2 → V is uniquely determined by F (y, g(y)) = 0 and g ∈ Cm(U2, V ). Since for
x ∈ C and y ∈ U2

x = g(y) ⇔ F (y, x) = 0 ⇔ y = f(x)
holds, U1 ∶= g[U2] = [U2]f∩V is open and f ∶ U1 → U2 is bijective with g = (f ∣U1

)−1.
Hence, g ○ f ∣U1

= id ∣U1
implies (g′ ○ f)f ′ = 1, i.e.,

g′(b) = f ′(a)−1.
�

At this point we have shown the implicit function theorem and inverse function
theorem for Cm-function with m ∈ N ∪ {∞}. Now we will show that they are also
true for analytic functions (Cω).

Let X be a Banach space and r ∈ (0,1). We define Br ∶= BX(0, r2)×BX(0, r) ⊆
X2, as well as, Er to be the set of all u = ((x, y) ↦∑m,n∈N

0

um,nx
myn) ∈ Cω(Br,X)

satisfying

∥u∥Er
∶= ∑
m,n∈N

0

∥um,n∥Lip r2m+n <∞
which itself defines a norm on Er.

Lemma 4.17. (Er, ∥⋅∥Er
) is a Banach space.

Proof. Let (u(n))n∈N ∈ EN

r be a Cauchy sequence. Then, all (u(n)i,j )n∈N ∈
L(X i+j,X)N are Cauchy and, sinceX is complete, so is L(X i+j,X), i.e., u

(n)
i,j →∶ ui,j

in L(X i+j,X) for every i, j ∈ N0.
Let x1, . . . , xi+j ∈ Br, α ∈ R, and y ∈ Br sufficiently small such that uk+αy ∈ Br

for every k ∈ N≤i+j . Then,

ui,j(x1, . . . , xk−1, xk + αy,xk+1, . . . , xi+j)←u(n)i,j (x1, . . . , xk−1, xk + αy,xk+1, . . . , xi+j)
=u(n)i,j (x1, . . . , xk−1, xk, xk+1, . . . , xi+j)
+ αu(n)i,j (x1, . . . , xk−1, y, xk+1, . . . , xi+j)

→ui,j(x1, . . . , xk−1, xk, xk+1, . . . , xi+j)
+ αu(n)i,j (x1, . . . , xk−1, y, xk+1, . . . , xi+j)

shows multi-linearity of ui,j.
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Let

ũn ∶ Br →X ; (x, y) ↦ n

∑
i,j=0

ui,jx
iyj

and m ∈ N sufficiently large such that ∀i, j ∈ N0,≤n ∶ ∥ui,j − u(m)i,j ∥Lip ≤ ε
n2r2i+j

.

Then,

n

∑
i,j=0
∥ui,j∥Lip r2i+j ≤

n

∑
i,j=0
∥ui,j − u(m)i,j ∥

Lip
r2i+j +

n

∑
i,j=0
∥u(m)i,j ∥

Lip
r2i+j

≤ε + sup
k∈N
∥u(k)∥

Er´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<∞

.

Hence, the pointwise limit ũn →∶ u (n →∞) exists and is an element of Er.

In order to show that ∥u − ũn∥Er
= ∑i,j∈N>n ∥ui,j − u(n)i,j ∥

Lip
r2i+j converges to

zero, let ε ∈ R>0.
(i) Choose m1 ∈ N such that ∀m ∈ N≥m1

∶ ∥u − ũm∥Er
< ε

4
.

(ii) Choose n1 ∈ N such that ∀n′, n′′ ∈ N≥n1
∶ ∥u(n′) − u(n′′)∥

Er

< ε
4
.

(iii) Choose m2 ∈ N≥m1
such that ∑i,j∈N>m2

∥u(n1)
i,j ∥Lip r2i+j < ε

4
.

(iv) Since all ∥u(n)i,j ∥
Lip

r2i+j converge to zero, let n2 ∈ N≥n1
be such that ∀n ∈

N≥n2
∀i, j ∈ N0,≤m2

∶ ∥u(n)i,j ∥Lip r2i+j < ε
4(m2+1)2 .

Then, we observe for n ∈ N≥n2

∥u − u(n)∥
Er
≤ ∥u − ũm2

∥Er´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< ε

4

+
m2

∑
i,j=0
∥ui,j − u(n)i,j ∥Lip r2i+j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< ε
4

+ ∑
i,j∈N>m2

∥u(n)i,j ∥Lip r2i+j

<ε
2
+ ∑
i,j∈N>m2

∥u(n)i,j − u(n1)
i,j ∥Lip r2i+j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∥u(n)−u(n1)∥

Er
< ε

4

+ ∑
i,j∈N>m2

∥u(n1)
i,j ∥Lip r2i+j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< ε

4

<ε
which completes the proof.

�

Let us also consider the subspace

Fr ∶= {u ∈ Er; ∀m ∈ N0 ∶ um,0 = 0} .
Clearly, Fr is a closed subspace, i.e., a Banach space itself. Furthermore, let us

define L ∈ L(Fr) by

∀(x, y) ∈ Br ∶ Lu(x, y) ∶= ∑
(m,n)∈N

0
×N

1

n
um,nx

myn

and for w ∈ Er
∀(x, y) ∈ Br ∶ Lwu(x, y) ∶= ∂2u(x, y)w(x, y) − ∂2u(x,0)w(x,0).

Obviously, we obtain ∥L∥L(Fr) = 1 and, for w0 ∶ Br →X ; (x, y) ↦ y, Lw0
○L = idFr

.

Lemma 4.18. Lw ○L is in L(Fr) and satisfies ∥Lw ○L∥L(Fr) ≤ ∥w∥Er

r
.
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Proof. Let w be decomposed as

w(x, y) = ∑
m,n∈N

0

wm,nx
myn.

Then, for u = ((x, y) ↦ ∑(m,n)∈N
0
×N um,nx

myn) ∈ Fr,
LwLu(z,0) =⎛⎝(x, y)↦ Lw ∑

(m,n)∈N
0
×N

1

n
um,nx

myn
⎞
⎠(z,0)

= ⎛⎝ ∑m,n∈N
0

um,n+1x
myn
⎞
⎠
⎛
⎝ ∑m,n∈N

0

wm,nx
myn
⎞
⎠
RRRRRRRRRRRR(x,y)=(z,0)

− ⎛⎝ ∑m∈N
0

um,1x
m
⎞
⎠
⎛
⎝ ∑m∈N

0

wm,0x
m
⎞
⎠
RRRRRRRRRRRR(x,y)=(z,0)

=⎛⎝ ∑m∈N
0

um,1z
m⎞⎠
⎛
⎝ ∑m∈N

0

wm,0x
m⎞⎠ −

⎛
⎝ ∑m∈N

0

um,1z
m⎞⎠
⎛
⎝ ∑m∈N

0

wm,0z
m⎞⎠

=0
shows LwLu ∈ Fr . Furthermore,

LwLu(x, y)
=Lw ∑

(m,n)∈N
0
×N

1

n
um,nx

myn

=⎛⎝ ∑m,n∈N
0

um,n+1x
myn
⎞
⎠
⎛
⎝ ∑m,n∈N

0

wm,nx
myn
⎞
⎠ −
⎛
⎝ ∑m∈N

0

um,1x
m⎞⎠
⎛
⎝ ∑m∈N

0

wm,0x
m⎞⎠

= ∑
(M,N)∈N

0
×N

∑
(m,n)∈N2

0,≤(M,N)

(um,n+1xmyn) (wM−m,N−nxM−myN−n)
implies

∥LwLu∥Er

≤ ∑
(M,N)∈N

0
×N

⎛⎜⎝ ∑
(m,n)∈N2

0,≤(M,N)

∥um,n+1∥Lip ∥wM−m,N−n∥Lip⎞⎟⎠ r
2M+N

=1
r

∑
(M,N)∈N

0
×N

⎛⎜⎝ ∑
(m,n)∈N2

0,≤(M,N)

∥um,n+1∥Lip r2m+n+1 ∥wM−m,N−n∥Lip r2(M−m)+(N−n)⎞⎟⎠
=1
r

⎛
⎝ ∑m,n∈N

0

∥um,n+1∥Lip r2m+n+1⎞⎠
⎛
⎝ ∑m,n∈N

0

∥wm,n∥Lip r2m+n)⎞⎠
=∥w∥Er

r
∥u∥Er

.

�

Lemma 4.19. Let X be a Banach space, U ⊆ X an open neighborhood of zero,
F ∈ Cω(U,X), F (0) = 0, and F ′(0) = 1. Let V ⊆ X be an open neighborhood of
zero and G ∶ V → X a local inverse of F at zero. Then, G is analytic in an open
neighborhood of zero.

Proof. For r ∈ R>0 sufficiently small, let v,w ∈ Er be defined by

∀(x, y) ∈ Br ∶ v(x, y) ∶= F (y) − x
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and

∀(x, y) ∈ Br ∶ w(x, y) ∶= v(x, y) −w0(x, y) = F (y) − x − y.
Then,

∀(x, y) ∈ Br ∶ w(x, y) = −x + ∑
n∈N≥2

1

n!
∂nF (0)yn

and

∥w∥Er
≤ r2 + ∑

n∈N≥2

∥∂nF (0)∥Lip
n!

rn ≤ r2CF
holds where CF ∈ R>0 is a constant solely dependent on F . From the definitions of
v and w, we obtain

Lv ○L − 1 = (Lv −Lw0
) ○L = Lw ○L

and, hence, for r < 1
CF

,

∥Lv ○L − 1∥L(Fr) ≤ rCF < 1
and, according to Lemma 4.14, Lv ○ L is an isomorphism on Fr. Let u0 ∶= (Lv ○
L)−1w0. Then, we obtain for all (x, y) ∈ Br

y = w0(x, y) = (Lv ○L)u0(x, y) = ∂2(Lu0)(x, y)v(x, y) − ∂2(Lu0)(x,0)v(x,0).(∗)
In particular, we observe for y ∈ BX(0, r) and t ∈ (0,1)

ty =∂2(Lu0)(0, ty)v(0, ty)− ∂2(Lu0)(0,0)v(0,0)
=∂2(Lu0)(0, ty)v(0, ty)− ∂2(Lu0)(0, ty)v(0,0)
+ ∂2(Lu0)(0, ty)v(0,0)− ∂2(Lu0)(0,0)v(0,0)
=∂2(Lu0)(0, ty)(F (ty)−F (0)) + (∂2(Lu0)(0, ty) − ∂2(Lu0)(0,0))F (0)
=∂2(Lu0)(0, ty)(F (ty)−F (0))

which (dividing by t and t↘ 0) shows

∀y ∈ BX(0, r) ∶ y =∂2(Lu0)(0,0)F ′(0)y = ∂2(Lu0)(0,0)y,
i.e., ∂2(Lu0)(0,0) = 1 = idX . Hence, there exists ε ∈ (0, r) such that ∂2(Lu0)(x, y)
is a bijection on X for every (x, y) ∈ BX(0, ε2) ×BX(0, ε).

Defining

G̃ ∶ BX(0, ε2)→X ; x↦ ∂2(Lu0)(x,0)x
we observe G̃ ∈ Cω (BX(0, ε2),X) and

G̃(x) =∂2(Lu0)(x,0)x
= − ∂2(Lu0)(x,0)(F (0) − x)
= − ∂2(Lu0)(x,0)v(x,0)
(∗)= y − ∂2(Lu0)(x, y)v(x, y)
=y − ∂2(Lu0)(x, y)(F (y) − x),

i.e., for y = G(x),
G̃(x) = G(x) − ∂2(Lu0)(x,G(x))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

linear

(F (G(x)) − x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= G(x).
Hence, G is analytic on V ∩BX(0, ε2) which is an open neighborhood of zero.

�
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Theorem 4.20 (Analytic Inverse Function Theorem). Let X and Y be Banach
spaces, U ⊆ X open, m ∈ N ∪ {∞, ω}, f ∈ Cm(U,Y ), a ∈ U , and f ′(a) an isomor-
phism. Then, there are open neighborhoods U1 of a and U2 of b ∶= f(a) such that
f ∶ U1 → U2 is a Cm-diffeomorphism. Furthermore, (f−1)′(b) = f ′(a)−1.

Proof. The inverse function theorem (Theorem 4.16) yields the assertion for
m ∈ N∪{∞}, i.e., it suffices to show the assertion form = ω knowing that f ∶ V1 → V2
is a C∞-diffeomorphism for some open neighborhoods V1 of a and V2 of b. Let
Ũ ∶= U − a and

f̃ ∶ Ũ →X ; x↦ f ′(a)−1(f(x + a) − f(a)).
Then, f̃(0) = 0 and f̃ ′(0) = 1. Thus, Lemma 4.19 yields that f̃ is a Cω (Ũ1, Ũ2)-
diffeomorphism for some neighborhoods Ũ1 and Ũ2 of zero. Finally,

∀x ∈ (a + Ũ1) ∩ V1 ∶ f(x) = f(a) + f ′(a)f̃(x − a)
implies the assertion for U1 ∶= (a + Ũ1) ∩ V1 and U2 ∶= f[U1].

�

Theorem 4.21 (Analytic Implicit Function Theorem). Let X, Y , and Z be
Banach spaces, U1 ⊆ X open, U2 ⊆ Y open, m ∈ N ∪ {∞, ω}, F ∈ Cm(U1 × U2, Z),(a, b) ∈ U1 × U2, F (a, b) = 0, and ∂2F (a, b) an isomorphism. Then, there are open
neighborhoods V1 ⊆ X of a and V2 ⊆ Y of b such that there is a unique function
g ∶ V1 → V2 with ∀x ∈ V1 ∶ F (x, g(x)) = 0. Furthermore, g ∈ Cm(V1, V2).

Proof. We already know the assertion for m ∈ N ∪{∞}. Hence, let m = ω and
g ∈ C∞(W1,W2) the implicit function with open neighborhoods W1 ⊆ X of a and
W2 ⊆ Y of b. Let

G ∶ U1 ×U2 → Z ×X ; (x, y) ↦ (F (x, y), x).
Then,

G′(a, b)(x, y) = (∂1F (a, b)x + ∂2F (a, b)y, x)
holds for every (x, y) ∈X × Y . Thus, G′(a, b) has the bounded inverse

G′(a, b)−1 ∶ Z ×X ↦X × Y ; (z, x) ↦ (x, ∂2F (a, b)−1 (z − ∂1F (a, b)x))
and the analytic inverse function theorem (Theorem 4.20) yields open sets Ũ1 ⊆ U1,

Ũ2 ⊆ U2, and V0 ⊆ Z ×X such that (a, b) ∈ Ũ1 × Ũ2 and G is a Cω (Ũ1 × Ũ2, V0)-
diffeomorphism. Furthermore, we observe

g(x) = pr2(x, g(x)) = (pr2 ○G−1) (F (x, g(x)), x) = (pr2 ○G−1) (0, x)
for every x ∈W1 ∩ Ũ1 =∶ V1. Observation 4.3, thus, yields that

V1 ∋ x↦ (pr2 ○G−1) (0, x) ∈ Y
is analytic, i.e., g is a Cω (V1, V2)-diffeomorphism where V2 ∶= g[V1].

�

To conclude this chapter we will prove the incredibly handy fact that compo-
sition of analytic functions yields an analytic function.

Proposition 4.22. Let X, Y , and Z be Banach spaces, U ⊆ X open, V ⊆ Y
open, F ∈ Cω(U,V ), and G ∈ Cω(V,Z). Then, G ○ F ∈ Cω(U,Z).
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Proof. Let W ∶= U × (V × Z) and H ∶ W → Y × Z; (x, (y, z)) ↦ (F (x) −
y,G(y) − z). Let x0 ∈ U , y0 ∶= F (x0), and z0 ∶= G(y0). Then, we observe

H(x0, (y0, z0)) = 0
and the equation

(ŷ, ẑ) = ∂2H(x0, (y0, z0))(y, z) = (y, z)(−1 G′(y0)
0 −1 ) = (−y,G′(y0)y − z)

is equivalent to y = −ŷ and z = −ẑ −G′(y0)ŷ. Thus, ∂2H(x0, (y0, z0)) is an isomor-
phism, and, by the analytic implicit function theorem, there is an analytic implicit
function (Ŷ , Ẑ) solving

H (x, (Ŷ (x), Ẑ(x))) = 0
in an open neighborhood of x0. But H(x, (y, z)) = 0 implies G(F (x)) = z and,

thus, G○F = Ẑ. Observation 4.3 yields analyticity of G○F at x0 and, since x0 was
arbitrarily chosen in U , G ○ F is analytic.

�





CHAPTER 5

Fredholm Operators

At last, we will state a few facts about Fredholm operators as we will use them
quite extensively in the proof of well-posedness of the Navier-Stokes equations.

Definition 5.1. Let X and Y be Banach spaces. T ∈ L(X,Y ) is called a
Fredholm operator if and only if dim[{0}]T and codimT [X] are finite.

The number ind(T ) ∶= dim[{0}]T − codimT [X] is called the index of T .

Definition 5.2. Let X and Y be Banach spaces. A linear operator T ⊆X ⊕Y
has finite rank if and only if dimT [X] is finite.

Corollary 5.3. Every bounded finite rank operator is compact. In particular,
if X and Y are Banach spaces, one of which is finite dimensional, then every
T ∈ L(X,Y ) has finite rank, i.e., is compact.

Lemma 5.4. Let H be a Hilbert space, M ⊆H a closed subspace, and V ⊆H a
finite dimensional subspace. Then, M + V is closed.

In particular, if codimM ∈ N0 and W ⊆H is a subspace with M ⊆W , then W
is closed and codimW ∈ N0.

Proof. Let P ∶ H → M be the orthogonal projection and V⊥ ∶= (1 − P )V .
Then, M + V = M ⊕ V⊥ where M ⊕ V⊥ is an orthogonal direct sum, i.e., M + V is
closed since a sequence ((xn, yn))n∈N ∈ (M ⊕ V⊥)N converges if and only if (xn)n∈N
converges in M and (yn)n∈N converges in V⊥ and both spaces are closed (M by
assumption and V⊥ since it is finite dimensional).

Let codimM ∈ N0. Then, there is a finite dimensional subspace Ṽ such that

W = M + Ṽ , i.e., W is closed by the previous part of the proof, and codimW ≤
codimM ∈ N0 is trivial.

�

Proposition 5.5. Let X and Y be Banach spaces, and T ∈ L(X,Y ) a Fredholm
operator.

(i) If ind(T ) = 0 and T is injective, then T is continuously invertible, i.e.,
0 ∈ ̺(T ).

(ii) The range T [X] of T is closed. Furthermore, the equation Tx = y has a
solution x ∈ X for given y ∈ Y if and only if ∀x∗ ∈ [{0}]T ∗ ∶ ⟨x∗, y⟩ = 0
where T ∗ denotes the dual operator.

(iii) Let S ∈ L(X,Y ) be compact. Then, T + S is a Fredholm operator with
ind(T + S) = ind(T ).

(iv) The dual operator T ∗ is a Fredholm operator with

dim[{0}]T ∗ = codimT [X] and codimT ∗[Y ′] = dim[{0}]T.
In particular, ind(T ) = − ind(T ∗) and the equation T ∗y∗ = x∗ has a solu-
tion y∗ ∈ Y ′ for given x∗ ∈X ′ if and only if ∀x ∈ [{0}]T ∶ ⟨x∗, x⟩ = 0.

Proof. [21] Proposition 8.14 �

53
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Remark The range of a Fredholm operator being closed is non-trivial. Let X be
a Banach space and X0 ⊊ X a dense subspace. Let x0 ∈ X ∖ X0 and V ∶= {x ∈
X ; (x,x0) linearly independent} ∪ {0}. Then, codimV = 1 and X0 ⊆ V ⊊X . Since
X0 is dense, so is V . However, V cannot be closed since V ≠X .

∎
Proposition 5.6. Let H1 and H2 be Hilbert spaces and F ∈ L(H1,H2). Then,

the following are equivalent.

(i) F is a Fredholm operator.
(ii) There exists A ∈ L(H2,H1) such that AF −1 and FA−1 are both compact.
(iii) There exists A ∈ L(H2,H1) such that AF −1 and FA−1 are both of finite

rank.

Proof. “(i)⇒(ii)” Let F be a Fredholm operator, x, y ∈ [{0}]F ⊥, and Fx = Fy.
Then, F (x−y) = 0, i.e., x−y ∈ [{0}]F ∩[{0}]F ⊥ = {0}. Thus, F ∶ [{0}]F ⊥ → F [H1]
is bijective. Let G ∶ F [H1] → [{0}]F ⊥ be the inverse of F on F [H1], P ∶ H1 →[{0}]F ⊥ and Q ∶ H2 → F [H1] the orthoprojections, and A ∶= GQ. Then,

AF − 1 = GQF − 1 = GF − 1 = P − 1
and

FA − 1 = FGQ − 1 =Q − 1
hold. Since P − 1 and Q − 1 are of finite rank (they are the orthoprojections on[{0}]F and F [H1]⊥), they are, in particular, compact.

“(ii)⇒(iii)” Since AF − 1 is compact, there are G1 ∈ L(H1) of finite rank and
∆1 ∈ BL(H1)(0,1) such that AF −1 = G1 +∆1 because compact operators are limits

of finite rank operators. Let A1 ∶= (1 −∆1)−1A. Then, we observe

A1F = (1 −∆1)−1AF = (1 −∆1)−1 (1 +G1 +∆1) = 1 + (1 −∆1)−1G1

where (1 −∆1)−1G1 =∶ B1 is another operator of finite rank. Similarly, we can
choose A2, G2, ∆2, and B2 (with the same properties as the operators with index

1) such that FA2 = 1 +B2. Since

A1 +A1B2 = A1FA2 = A2 +B1A2

holds, we may define the finite rank operator

J ∶= A1 −A2 = B1A2 −A1B2

and observe

FA1 − 1 = FA1 − (FA2 −B2) = FJ +B2

which is of finite rank, as well as,

A1F − 1 = 1 +B1 − 1 = B1.

Hence, the operator A can be modified to A1 such that A1F − 1 and FA1 − 1 are
both of finite rank.

“(iii)⇒(i)” Let AF − 1 =∶ G1 and FA − 1 =∶ G2. Since G1 and G2 have finite
rank, AF = 1 +G1 and FA = 1 +G2 are Fredholm operators. Thus,

[{0}]F ⊆ [{0}]AF,
i.e.,

dim[{0}]F ≤ dim[{0}]AF ∈ N0,

and

F [H1] ⊇ FA[H2],
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i.e.,

codimF [H1] ≤ codimFA[H2] ∈ N0,

yield the assertion.
�

Observation 5.7. Let H1 and H2 be Hilbert spaces and F ∈ L(H1,H2) be a
Fredholm operator. Then, F ∗ is a Fredholm operator with ind(F ∗) = − ind(F ).

Proof. The observation follows directly from

[{0}]F ∗ = F [H1]⊥ and F ∗[H2]⊥ = [{0}]F.
�

Proposition 5.8. Let H1 and H2 be Hilbert spaces and F ∈ L(H1,H2). Then,
F is a Fredholm operator if and only if there are orthogonal decompositions H1 =
H11 ⊕H12 and H2 =H21 ⊕H22 such that

● H11 and H21 are closed,
● H12 and H22 are finite dimensional, and
● F has the block decomposition

(F11 F12

F21 F22
) ∶ H11 ⊕H12 →H21 ⊕H22

with F11 ∈ L(H11,H21) boundedly invertible.

Furthermore, given this decomposition, ind(F ) = dimH12 − dimH22.

Proof. [4] Lemma 16.34 �

Proposition 5.9. Let H1 and H2 be Hilbert spaces, F1,C,∆ ∈ L(H1,H2), F2 ∈
L(H2,H1), F1 and F2 Fredholm operators, C compact, and ∥∆∥L(H1,H2) sufficiently

small. Then, F1 +∆, F1 +C. and F1F2 are Fredholm operators with ind(F1 +∆) =
ind(F1 +C) = ind(F1) and ind(F1F2) = ind(F1) + ind(F2).

In particular, the set of Fredholm operators in L(H1,H2) is open.

Proof. [4] Proposition 16.35 �

Proposition 5.10. Let H1 and H2 be Hilbert spaces. The index of a Fredholm
operator is constant on connected components of the set of Fredholm operators in
L(H1,H2) and is a bijection between Z and the connected components.

Proof. [7] Theorem 1.4 (b) �

Remark In fact, it can be shown that the set of Fredholm operators in L(H)
of a given index is path connected where H is a Hilbert space. To prove this,
recall that if A1 and A2 have index k, then A∗1A2 has index zero. If A∗1A2 can
be connected to the identity by γ1, then A1γ1 connects A1 with A1A

∗

1A2. On the
other hand, if the operator A1A

∗

1 , which is also of index zero, can be connected
to the identity using γ2, then γ2A2 connects A2 with A1A

∗

1A2. Hence, it suffices
to show that the set of operators of index zero are path connected. In that case,[{0}]A and A[H]⊥ are isomorphic since they are finite dimensional spaces of the
same dimension. Thus, for such an isomorphism I, which we extend by zero on[{0}]A⊥, the path [0,1] ∋ t ↦ A + tI ∈ L(H) connects A with an isomorphism (cf.,
Observation 5.11 below) and GL(H) is known to be path connected (even more so,
Kuiper’s Theorem states that GL(H) is contractible).

∎
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Observation 5.11. Let H1 and H2 be Hilbert spaces, GL(H1,H2) the set of
isomorphisms mapping H1 to H2, and Fk(H1,H2) the set of Fredholm operators of
index k ∈ Z mapping H1 to H2. Then, GL(H1,H2) is dense in F0(H1,H2).

Proof. Obviously GL(H1,H2) ⊆ F0(H1,H2) holds since every isomorphism
is bijective. Let A ∈ F0(H1,H2). Then, dim[{0}]A = dimA[H1]⊥ ∈ N0 holds, i.e.,[{0}]A and A[H1]⊥ are isomorphic. Let I be such an isomorphism, decompose
H1 = [{0}]A⊥ ⊕ [{0}]A, and define for t ∈ [0,1]

At ∶ [{0}]A⊥ ⊕ [{0}]A→ A[H1]⊕A[H1]⊥; x + y ↦ Ax + tIy
which, by definition, is bijective for t > 0 (note that A∣[{0}]A⊥ is injective and
surjective on to A[H1]). Thus, observing At → A (t↘ 0) completes the proof.

�

Observation 5.12. Let X and Y be Banach spaces, S,T ∈ L(X,Y ), S bijective,
and T compact. Then, S + T is a Fredholm operator of index zero.

In particular, the following are equivalent.

(i) S + T is injective.
(ii) S + T is surjective.
(iii) S + T is bijective.

Proof. Since S is bounded and bijective, S is Fredholm of index zero. Hence,
Proposition 5.9 implies that S + T is a Fredholm operator of index zero, as well.

In particular, we have dim[{0}](S+T ) = codim(S+T )[X], i.e., (i)⇔(ii), which
implies (i)⇒(ii)⇒(i)∧(ii)⇒(iii)⇒(i).

�



Part 2

The Navier-Stokes Equations





CHAPTER 6

Modeling Navier-Stokes

From now on, we will require M to satisfy the Rellich-Kondrachov condition
and .

Definition 6.1 (Rellich-Kondrachov condition). Let (M̃, g̃) be a finite di-

mensional Riemannian C1,1-manifold. Then, we say (M̃, g̃) satisfies the Rellich-

Kondrachov condition if and only if ∀q ∈ [1,dim M̃) ∀α ∈ N0 ∀p ∈ [1, q dimM̃

dimM̃−q
) ∶

W 1,(α,0)
q (M̃)↪compact L

(α,0)
p (M̃).

We will start modeling the Navier-Stokes equations on [0, τ]×M with the mass
flow ̺u where ̺ is the density of the fluid and u the velocity field. Until we identify
the Hilbert spaces, we will assume that all functions are sufficiently smooth. For
V ⊆M open with smooth boundary, we obtain by the Gauss divergence theorem

∀t ∈ [0, τ] ∶ ∫
V
tr∇(̺u(t))dvolM = ∫

∂V
⟨̺u(t), ν⟩dvol∂V .

But, since the right-hand side is nothing else than the mass transported out of V ,
we observe

∀t ∈ [0, τ] ∶ ∫
V
tr∇(̺(t)u(t))dvolM = ∫

∂V
⟨̺u(t), ν⟩dvol∂V = −∂t ∫

V
̺(t)dvolM

and, since this holds for ever V ⊆M with smooth boundary,

∀t ∈ [0, τ] ∶ tr∇(̺(t)u(t)) = −∂t̺(t).
We want to consider fluids only, that is, an incompressible medium, i.e., ∂t̺ = 0.
Hence, this last equation yields the continuity equation

tr∇u = 0.(continuity)

Next, we will have a look at the stress term. Let ∇sym ∶= sym∇ be the symmetrized1

co-variant derivative on (1,0)-tensors and η, ζ positive, bounded, and bounded from
below (these are the two scalar dynamic viscosities in hydrodynamics). A fluid is
called isotropic if and only if the viscous stress tensor

σ ∶= 2η∇symu + ζ tr∗ tr∇u
satisfies

trσ = 0.
In this case, we call η the shear viscosity and ζ + 2η

dimM
the bulk viscosity. Using

the continuity equation, we obtain

σ = 2η∇symu

which we generalize to the non-Newtonian case

σ = C∇symu

where C is a viscosity operator.

1Let τ be a (2,0)-tensor. Then, symT (x, y) ∶= 1

2
(T (x, y) + T (y, x)) = Tij+Tji

2
gi ⊗ gj .

59
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Definition 6.2 (Viscosity Operator). Let C ∈ L (L2 ([0, τ];L(2,0)2 (M))) be a

positive operator that furthermore satisfies

(i) C is an isomorphism on the symmetric tensor fields, i.e.,

0 ∈ ̺(C ∣L2([0,τ];sym[L(2,0)2
(M)])

L2([0,τ];sym[L(2,0)2
(M)])) .

To simplify notation, let C−1 denote (C ∣L2([0,τ];sym[L(2,0)2
(M)])

L2([0,τ];sym[L(2,0)2
(M)]))

−1

.

(ii) C vanishes on anti-symmetric tensor fields, i.e.,

N(C) = [{0}]C = L2 ([0, τ]; asym [L(2,0)2 (M)]) .
(iii) C and C−1 preserve differentiability classes, i.e.,

x ∈W k
2 ([0, τ]; sym [W k′,(2,0)

2 (M)])
implies

Cx,C−1x ∈W k
2 ([0, τ]; sym [W k′,(2,0)

2 (M)]) .
(iv) C is a (timely) causal operator, i.e.,

∀x ∈ L2 ([0, τ]; sym [L(2,0)2 (M)]) ∶ inf spt0 x ≤ inf spt0Cx
where spt0 denotes the support in L2([0, τ]).2 In other words, if x is zero
on some interval [0, τ ′] then so is Cx; viz., the viscosity of the fluid does
not depend on the future.

(v) trC−1 tr∗ is boundedly invertible.

Remark The “classical” Navier-Stokes problem, cf. [5],

∂tu + ⟨u,∇⟩u =ν∆u − ∇p + f, div u = 0, u(0) = u0
can be retrieved choosing the viscosity operator C = 2νsym.

∎
In order to obtain the entire stress tensor, we will have to take the pressure p into
account. The stress tensor T is, then, defined as

T ∶= σ − tr∗ p.
Observation 6.3. Let t ∈ L(2,0)2 (M) be anti-symmetric. Then, tr t = 0.
Proof. Let t ∈ L(2,0)2 (M) be anti-symmetric, i.e., t = tij−tji

2
gi ⊗ gj. Then,

tr t = tr(1
2
(tijgi ⊗ gj − tjigi ⊗ gj))

=1
2
(tijgij − tjigij)

=1
2
(tijgij − tijgji)

=1
2
(tijgij − tijgij)

=0
holds.

�

2Mind that L2([0, τ];H) = L2([0, τ]) ⊗H holds for every Hilbert space H.
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Thus, we also obtain the stress equation

tr∇symu =0(continuity)

C−1T −∇symu +C−1 tr∗ p =0(stress)

Finally, we add the initial condition u(0) = u0 and Cauchy’s momentum equation
(which is Newton’s law of motion written down for fluids)

̺ (∂tu + ⟨u,∇⟩u) = tr∇T + f
using ⟨u,∇⟩u ∶= uigij∇gju = ∇uu where f is an external force. Without loss of

generality, we may assume ̺ = 1 since we can replace C, p, and f by 1
̺
C, 1

̺
p, and

1
̺
f , respectively.

Now, the classical Navier-Stokes system is

tr∇symu =0 in (0, τ) ×M,(continuity)

C−1T − ∇symu +C−1 tr∗ p =0 in (0, τ) ×M,(stress)

∂tu + ⟨u,∇⟩u − tr∇T =f in (0, τ) ×M,(Cauchy)

u(0) =u0 in M(initial condition)

where u is the velocity field, T the stress tensor (symmetric), p the pressure, C
a viscosity operator, and f an external force. The objective is to find reasonable
conditions for all these symbols to be physically senseful and interpretable in an
L2-sense.

First, let us observe for ϕ ∈M(0,0)
1 (M)

tr∇ tr∗ ϕ = tr∇(ϕgjkgj ⊗ gk)
= tr (∇giϕgjkgi ⊗ gj ⊗ gk)
=∇giϕgjkgijgk
=∇gkϕgk=∇ϕ

and, therefrom, for u ∈M(1,0)
1 (M)

⟨u,∇⟩u =uigij∇gjukgk
=uigij (∇gjukgk +∇gkujgk) − uigij∇gkujgk
=2 tr (u⊗ sym∇u) − 1

2
(uigij∇gkujgk + ∇gkuigijujgk)

=2 tr (u⊗ sym∇u) − 1

2
∇⟨u,u⟩(1,0)

=2 tr (u⊗ sym∇u) − 1

2
tr∇ tr∗⟨u,u⟩(1,0).

Defining

p̃ ∶=p − 1

2
⟨u,u⟩(1,0)

and

T̃ ∶=T + tr∗ 1
2
⟨u,u⟩(1,0) = C∇symu − tr∗ p + tr∗ 1

2
⟨u,u⟩(1,0) = C∇symu − tr∗ p̃,

we observe

⟨u,∇⟩u − tr∇T =2 tr (u⊗∇symu) − 1

2
tr∇ tr∗⟨u,u⟩(1,0) − tr∇T̃ − tr∇ tr∗

1

2
⟨u,u⟩(1,0)

=2 tr (u⊗∇symu) − tr∇T̃
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=2 tr (u⊗ (C−1T +C−1 tr∗ p)) − tr∇T̃
=2 tr (u⊗ (C−1T̃ +C−1 tr∗ p̃)) − tr∇T̃ .

Hence, Cauchy’s momentum equation reduces to

∂tu − tr∇T̃ = f − 2 tr (u⊗ (C−1T̃ +C−1 tr∗ p̃))
and the model becomes

tr∇symu =0 in (0, τ) ×M,

C−1T −∇symu +C−1 tr∗ p =0 in (0, τ) ×M,

∂tu − tr∇T̃ =f − 2 tr (u⊗ (C−1T̃ +C−1 tr∗ p̃)) in (0, τ) ×M,

u(0) =u0 in M

which, omitting the initial condition for the moment, is equivalent to

⎛⎜⎝
0 tr symsym∇ 0

0 ∂t − tr∇
C−1 tr∗ −∇sym C−1

⎞⎟⎠
⎛⎜⎝
p̃

u

T̃

⎞⎟⎠ =
⎛⎜⎝

0

f − 2 tr (u⊗C−1 (T̃ + tr∗ p̃))
0

⎞⎟⎠
and, hence, equivalent to

⎛⎜⎝
trC−1 tr∗ 0 trC−1

0 ∂t − tr∇
C−1 tr∗ −∇sym C−1

⎞⎟⎠
⎛⎜⎝
p̃

u

T̃

⎞⎟⎠ =
⎛⎜⎝

0

f − 2 tr (u⊗C−1 (T̃ + tr∗ p̃))
0

⎞⎟⎠ ,
as well. Using the (non-unitary) transformation

U ∶= ⎛⎜⎝
1 0 0

0 1 0

−C−1 tr∗ (trC−1 tr∗)−1 0 1

⎞⎟⎠
with

U∗ = ⎛⎜⎝
1 0 − (trC−1 tr∗)−1 trC−1
0 1 0

0 0 1

⎞⎟⎠ ,

(U∗)−1 = ⎛⎜⎝
1 0 (trC−1 tr∗)−1 trC−1
0 1 0

0 0 1

⎞⎟⎠ ,

U
⎛⎜⎝
trC−1 tr∗ 0 trC−1

0 ∂t − tr∇
C−1 tr∗ −∇sym C−1

⎞⎟⎠U
∗

=⎛⎜⎝
trC−1 tr∗ 0 0

0 ∂t − tr∇
0 −∇sym C−1 −C−1 tr∗ (trC−1 tr∗)−1 trC−1

⎞⎟⎠ ,
and

(U∗)−1 ⎛⎜⎝
p̃

u

T̃

⎞⎟⎠ =
⎛⎜⎜⎝
p̃ + (trC−1 tr∗)−1 trC−1T̃

u

T̃

⎞⎟⎟⎠
yields

U
⎛⎜⎝
trC−1 tr∗ 0 trC−1

0 ∂t − tr∇
C−1 tr∗ −∇sym C−1

⎞⎟⎠U
∗(U∗)−1 ⎛⎜⎝

p̃

u

T̃

⎞⎟⎠ =U
⎛⎜⎝

0

f − 2 tr (u⊗C−1 (T̃ + tr∗ p̃))
0

⎞⎟⎠
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=⎛⎜⎝
0

f − 2 tr (u⊗C−1 (T̃ + tr∗ p̃))
0

⎞⎟⎠
allowing us to further reduce the system, since

p̃ = − (trC−1 tr∗)−1 trC−1T̃
decouples, yielding

( ∂t − tr∇
−∇sym C−1 −C−1 tr∗ (trC−1 tr∗)−1 trC−1)(uT̃)

=⎛⎝f − 2 tr(u⊗ (1 −C
−1 tr∗ (trC−1 tr∗)−1 tr)C−1T̃)

0

⎞
⎠ .

Let

E ∶=1 −C− 1

2 tr∗ (trC−1 tr∗)−1 trC− 1

2

and

Θ ∶=C− 1

2 T̃ .

Then, we observe

(1 − E)2 =C− 1

2 tr∗ (trC−1 tr∗)−1 trC−1 tr∗ (trC−1 tr∗)−1 trC− 1

2 = 1 − E
and

E
2 =1 − 2C− 1

2 tr∗ (trC−1 tr∗)−1 trC− 1

2 + (C− 1

2 tr∗ (trC−1 tr∗)−1 trC− 1

2 )2
=1 − 2(1 − E) + (1 − E)2
=E.

Hence, E is an orthogonal projection onto [{0}] trC− 1

2 and self-adjoint in L
(2,0)
2 (M).

Furthermore, the Navier-Stokes system becomes

( ∂t − tr∇
−∇sym C−

1

2EC−
1

2

)(u
T̃
) =⎛⎝f − 2 tr (u⊗C

−
1

2EC−
1

2 T̃)
0

⎞
⎠ ,

i.e.,

( ∂t − tr∇C 1

2

−C 1

2∇sym
E

)(u
Θ
) =⎛⎝f − 2 tr(u⊗C

−
1

2EΘ)
0

⎞
⎠ .

Since C
1

2 vanishes on anti-symmetric tensors, this last equation is equivalent to

( ∂t − tr∇C 1

2

−C 1

2∇ E
)(u

Θ
) =⎛⎝f − 2 tr(u⊗C

−
1

2EΘ)
0

⎞
⎠ .

However, this equation can be interpreted in an L
(α,β)
2 (M) setting using the (par-

tial) time derivative ∂0 in L2([0, τ]) which yields

( ∂0 −div(0)C 1

2

−C 1

2 grad(0) E
)(u

Θ
) =⎛⎝f − 2 tr (u⊗C

−
1

2EΘ)
0

⎞
⎠

where

grad(0) =
⎧⎪⎪⎨⎪⎪⎩
grad0 , Dirichlet case

grad , Neumann or no boundary case
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and

div(0) =
⎧⎪⎪⎨⎪⎪⎩
div0 , Neumann case

div , Dirichlet or no boundary case
.

Recall that for all t ∈ [0, τ]
u(t) ∈ N(tr∇) = [{0}] tr∇

shall hold and, hence, C
1

2∇u takes values in [{0}] trC− 1

2 which is nothing else than
the range of E. Let

Y ∶ [{0}] tr grad ⊆ [{0}] tr grad→ [{0}] trC− 1

2 ; x↦ −C 1

2 gradx

in case of no boundary or Neumann boundary conditions3. In case of Dirichlet
boundary conditions let

Y ∶ [{0}] tr grad0 ⊆ [{0}] tr grad0 → [{0}] trC− 1

2 ; x↦ −C 1

2 grad0 x.

Then

Y = −pr[{0}] trC− 1
2
C

1

2 grad(0) pr∗[{0}] tr grad(0)
embedded in L

(1,0)
2 (M)⊕L(2,0)2 (M) and

Y ∗ = pr[{0}] tr grad(0) div(0)C 1

2 pr∗[{0}] trC− 1
2

embedded in L
(2,0)
2 (M)⊕L(1,0)2 (M).

Remark Let Γ ⊆ ∂M be Borel measurable,

D(a) ∶= {u ∈W 1
2 (M); u∣Γ = 0} ,

and

a ∶ D(a) ×D(a)→ R; (u, v)↦ ⟨C gradu,gradv⟩
L
(1,0)
2

(M).

Then, a generates a positive operator Y ∗Y which can be considered as a realiza-
tion of the mixed boundary condition “Dirichlet on Γ and Neumann on ∂M ∖ Γ”.
Similarly, other boundary conditions can be introduced and the following would be
virtually the same up to a few subtle changes which we will not address any further.

∎
Hence, the system reduces to

(∂0 −Y ∗
Y E

)(u
Θ
) =⎛⎝f − 2 tr (u⊗C

−
1

2EΘ)
0

⎞
⎠

which yields

∂0u + Y ∗Y u − Y ∗(1 − E)Θ = f + 2 tr (u⊗C− 1

2Y u) .
From Y ∗ = pr[{0}] tr grad(0) div(0)C

1

2 pr∗[{0}] trC− 1
2

and, since ([{0}] trC− 1

2 )⊥ is the

range of (1 − E) (recall that E is an orthogonal projection), we directly deduce
Y ∗(1 − E) = 0 and, therefore,

∂0u + Y ∗Y u = f + 2 tr(u⊗C− 1

2Y u) .
3Note that these Neumann boundary conditions do not have vanishing normal derivative

but con-normal derivative ⟨C gradu, ν⟩ = 0 where ν is the exterior normal on the boundary.
Furthermore, this is a generalization of vanishing con-normal derivative which only makes sense
if the boundary is sufficiently smooth because for general boundary there is no reason why the
trace on ∂M of C gradu should even exist due to the partial derivatives occurring.
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Since the left-hand side takes values in [{0}] tr grad(0), so the right-hand side has
to. Thus, we may state the system as

∂0u + Y ∗Y u − 2pr[{0}] tr grad(0) tr (u⊗C− 1

2 Y u) = f
where f takes values in H ∶= pr[{0}] tr grad(0) [L(1,0)2 (M)].
Remark Note that the operator Y ∗Y is densely defined due to a theorem by von
Neumann.

Theorem 6.4 (von Neumann). Let H1 and H2 be Hilbert spaces and A ⊆
H1⊕H2 a closed and densely defined operator. Then A∗A is self-adjoint in H1 and
its domain is a core of A.

This theorem can be obtained from the first representation theorem (Theorem
VI.2.1 in [11]) applied to the closed, positive, symmetric form τ with D(τ) ∶=D(A)
and ∀x, y ∈ D(τ) ∶ τ(x, y) ∶= ⟨Ax,Ay⟩H2

.

∎
We define the space of maximal regularity

MRτ ∶=W 1
2 ([0, τ];H) ∩L2 ([0, τ];D (Y ∗Y ))

endowed with the norm

∥⋅∥
MRτ

∶ MRτ → R; x↦ (∥x∥2W 1

2
([0,τ];H) + ∥x∥2L2([0,τ];D(Y ∗Y )))

1

2

.

Then, the Sobolev Embedding Theorem (Theorem 3.15) yields

MRτ ↪continuous C([0, τ];H).
The embedding MRτ ↪continuous C([0, τ];H) is, in fact, compact as can be shown
using Arzelà-Ascoli’s theorem. We, on the other hand, only need continuity since
this ensures that

MRτ,0 ∶= {x ∈MRτ ; x(0) = 0}
and

TR ∶=MRτ /MRτ,0
≅ {x(0) ∈ H ; x ∈MRτ}

are well-defined Hilbert spaces.
As of now, we have identified the abstract Cauchy problem we would like to

consider and the spaces the equation should hold in. The only thing in question
is whether the non-linearity behaves nicely. This is where we need the Rellich-
Kondrachov condition. The Rellich-Kondrachov condition implies

∀α ∈ N0 ∶ W 1,(α,0)
2 (M) ⊆ L(α,0)4 (M)

which combined with Y [D (Y ∗Y )] ⊆W 1,(2,0)
2 (M) yields

∀u ∈MRτ ∶ tr (u⊗C− 1

2Y u) ∈ L2 ([0, τ];L(1,0)2 (M)) .
Now, we may actually state the Navier-Stokes problem we want to address.

Problem 6.5 (Navier-Stokes). Let τ ∈ R>0, f ∈ L2([0, τ];H) and u0 ∈ TR.
Find u ∈MRτ such that

∂0u + Y ∗Y u − 2pr[{0}] tr grad(0) tr (u⊗C− 1

2Y u) =f in (0, τ) ×M,

u(0) =u0 in M
(Navier-Stokes)

holds.





CHAPTER 7

Construction of Solutions and Analytic Dependence

In order to solve the Navier-Stokes problem, let us define

B ∶ MRτ → L2([0, τ];H); x↦ −2pr[{0}] tr grad(0) tr (x⊗C− 1

2Y x)
and

Fτ ∶ MRτ → L2([0, τ];H) ×TR; x↦ (∂0x + Y ∗Y x +B(x) , x(0)).
These yield the nice and short notation

Fτ (u) = (f, u0)
for the Navier-Stokes equations. Fτ will, thus, be called the Navier-Stokes operator
and our objective is to continuously invert Fτ locally in time and show that the
inverse is an analytic operator on the reduced time interval.

Note that Fτ is an analytic operator since it is a polynomial of degree two and
for u, v ∈MRτ we observe

F ′τ (v)u = (d0u + Y ∗Y u +B′(v)u , u(0)) .
Hence, if we can find a v ∈MRτ such that F ′τ(v) is an isomorphism and our data(f, u0) are sufficiently close to Fτ (v), then the analytic inverse function theorem
yields existence and constructibility of solutions and analytic dependence on the
data. We are going to achieve this by defining

gτ ′,v ∶= f1[0,τ ′] + (∂0v + Y ∗Y v +B(v))1(τ ′,τ]
for τ ′ ∈ (0, τ) and v ∈MRτ . Then we observe for v ∈MRτ with v(0) = u0

∥(gτ ′,v, u0) −Fτ (v)∥2L2([0,τ];H)×TR

=∫ τ ′

0
∥f(s)− ∂0v(s) − Y ∗Y v(s) −B(v)(s)∥2H ds↘ 0

as τ ′ ↘ 0, i.e., for τ ′ sufficiently small, we can solve a slightly Navier-Stokes system
and τ ′ is even locally constant. In order for us to know that this solution with
respect to (gτ ′,v, u0) also solves the Navier-Stokes system with respect to (f, u0)
on [0, τ ′], we need to make sure that the solution on [0, τ ′] does not depend on the
data on (τ ′, τ]. Hence, our to-do-list is:

● Find v ∈MRτ with v(0) = u0 and F ′τ (v) being an isomorphism; in fact, we
are going to show that F ′τ (v) is always an isomorphism and the existence
of a v with v(0) = u0 is trivial by definition of TR.
● Show injectivity of Fτ .
● Show causality of solutions.
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CHAPTER 8

Linearized Navier-Stokes

This chapter is devoted to showing that F ′τ (v) is an isomorphism but, lucky
us, will also yield injectivity of Fτ as a corollary. In order to show that F ′τ (v) is an
isomorphism, we will prove that the Stokes operator1

I ∶ MRτ → L2([0, τ];H) ×TR; x↦ (∂0x + Y ∗Y x , x(0))
is an isomorphism, first, and then we will consider the perturbation

Bv ∶ MRτ → L2([0, τ];H) ×TR; x↦ (B′(v)x , 0).

Lemma 8.1. Let λ ∈ R>0. Then

(∂0 + Y ∗Y + λ) ∶ MRτ,0 → L2([0, τ];H)
is an isomorphism.

Furthermore, if λ ≥ λ0 ∈ R>0 is uniformly bounded away from zero then

∥(∂0 + Y ∗Y + λ)−1∥
L(L2([0,τ];H),MRτ,0)

and ∥(∂0 + Y ∗Y + λ)−1∥
L(L2([0,τ];H))

are uniformly bounded (varying λ).

Proof. Since

Y ∗Y ∶ D(Y ∗Y ) ⊆ pr[{0}] tr grad(0) [W 1,(1,0)
2 (M)]→H

is self-adjoint and non-negative, the spectral theorem warrants the existence of a
measure space (Ω,A, µ) and a ∶ Ω → R≥0 measurable such that Y ∗Y is unitarily
equivalent to

a(m) ∶ D(a(m)) ⊆ L2(µ)→ L2(µ); f ↦ (Ω ∋ x↦ a(x)f(x) ∈ R≥0)
with

D(a(m)) ∶= {f ∈ L2(µ); (Ω ∋ x↦ a(x)f(x) ∈ R≥0) ∈ L2(µ)} .
Without loss of generality, we may, hence, assume that Y ∗Y = a(m).

Let f ∈ L2 ([0, τ]; L2(µ)) and f̃ be a representative. For (t, x) ∈ [0, τ]×Ω with

f̃(⋅, x) ∈ L1([0, τ]) define

Sλf(t, x) ∶= ∫ t

0
e(a(x)+λ)(s−t)f̃(s, x)ds.

Note that Sλ is unitarily equivalent to (∂0 + Y ∗Y + λ)−1. Let b ∶ Ω → R≥0 be
measurable and c ∈ R>0 such that for µ-almost every x ∈ Ω

0 ≤ b(x)
a(x) + λ ≤ c

1The name “Stokes operator” is ambiguous here. To be precise, the operator Y ∗Y should
be called Stokes operator whereas I is the operator associated with the Stokes system. However,
we will always refer to Y ∗Y as Y ∗Y and chose the name “Stokes operator” for I for reasons of
brevity.

69
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holds. Then we observe

∥b(m)Sλf∥2L2([0,τ];L2(µ))

= ∫ τ

0
∥b(m)Sλf(t)∥2L2(µ) dt

= ∫ τ

0
∫
Ω
∣b(x)Sλf(t, x)∣2 dµ(x) dt

= ∫
Ω
∫

τ

0
∣b(x)∣2 ∣∫ t

0
e(a(x)+λ)(s−t)f(s, x)ds∣2 dt dµ(x)

= ∫
Ω
∣b(x)∣2 ∥t↦ ∫ t

0
e−(a(x)+λ)(t−s)f(s, x)ds∥2

L2([0,τ])
dµ(x)

= ∫
Ω
∣b(x)∣2 ∥t↦ ∫ t

0
e−(a(x)+λ)(t−s)1[0,τ](t − s)f(s, x)1[0,τ](s)ds∥2

L2([0,τ])
dµ(x)

= ∫
Ω
∣b(x)∣2 ∥t↦ ∫

R

e−(a(x)+λ)(t−s)1[0,τ](t − s)f(s, x)1[0,τ](s)ds∥2
L2([0,τ])

dµ(x)
= ∫

Ω
∣b(x)∣2 ∥(e−(a(x)+λ)⋅1[0,τ]) ∗ (f(⋅, x)1[0,τ])∥2L2([0,τ]) dµ(x)

≤ ∫
Ω
∣b(x)∣2 ∥(e−(a(x)+λ)⋅1[0,τ]) ∗ (f(⋅, x)1[0,τ])∥2L2(R) dµ(x)

≤Young ∫
Ω
∣b(x)∣2 ∥e−(a(x)+λ)⋅1[0,τ]∥2L1(R) ∥f(⋅, x)1[0,τ]∥2L2(R) dµ(x)

= ∫
Ω
∣b(x)∣2 (∫ τ

0
e−(a(x)+λ)sds)2 ∥f(⋅, x)1[0,τ]∥2L2(R) dµ(x)

= ∫
Ω
∣b(x)∣2 (e−(a(x)+λ)τ − 1−(a(x) + λ) )

2 ∥f(⋅, x)1[0,τ]∥2L2(R) dµ(x)
≤ ∫

Ω

⎛
⎝
(e−(a(x)+λ)τ − 1) b(x)

a(x) + λ
⎞
⎠
2

∥f(⋅, x)1[0,τ]∥2L2(R) dµ(x)
≤ c2 ∥f∥2L2([0,τ];L2(µ)) .

For b = 1 we may choose c = 1
λ

and for b = a we may choose c = 1. Then we obtain

∥Sλf∥L2([0,τ];D(a(m))) ≤ ∥Sλf∥L2([0,τ];L2(µ)) + ∥a(m)Sλf∥L2([0,τ];L2(µ))

≤( 1
λ
+ 1)∥f∥L2([0,τ];L2(µ)) .

Furthermore, for f continuous, the fundamental theorem of calculus for Bochner
integrals implies Sλf ∈ C1 ([0, τ];L2(µ)) and, thus, Sλf ∈ W 1

2 ([0, τ];L2(µ)) for
f ∈ L2 ([0, τ];L2(µ)). Hence, ∂0Sλf = f − (a(m) + λ)Sλf implies

∥Sλf∥W 1

2
([0,τ];L2(µ))

≤ ∥Sλf∥L2([0,τ];L2(µ)) + ∥∂0Sλf∥L2([0,τ];L2(µ))≤ ∥Sλf∥L2([0,τ];L2(µ)) + ∥f − (a(m) + λ)Sλf∥L2([0,τ];L2(µ))

≤∥f∥L2([0,τ];L2(µ))
λ

+ ∥f∥L2([0,τ];L2(µ)) + ∥(a(m) + λ)Sλf∥L2([0,τ];L2(µ))

≤( 1
λ
+ 1 + 1)∥f∥L2([0,τ];L2(µ)) .

�
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Remark To show Sλ = (∂0 + Y ∗Y + λ)−1 in the sense of unitary equivalence, we

observe for f ∈ L2([0, τ], L2(µ)), g ∈MRτ,0, and f̃ and g̃ representatives

(∂0 + Y ∗Y + λ)Sλf(t, x) =∂0∫ t

0
e(a(x)+λ)(s−t)f̃(s, x)ds

+ ∫
t

0
(a(x) + λ)e(a(x)+λ)(s−t)f̃(s, x)ds

=∫ t

0
−(a(x) + λ)e(a(x)+λ)(s−t)f̃(s, x)ds + f̃(t, x)

+ ∫
t

0
(a(x) + λ)e(a(x)+λ)(s−t)f̃(s, x)ds

=f̃(t, x)
and (using Hille’s theorem2)

Sλ(∂0 + Y ∗Y + λ)g(t, x) =∫ t

0
e(a(x)+λ)(s−t)(∂0 + Y ∗Y + λ)g̃(s, x)ds

=∫ t

0
e(a(x)+λ)(s−t)∂0g̃(s, x)ds

+ ∫
t

0
e(a(x)+λ)(s−t)(Y ∗Y + λ)g̃(s, x)ds

=∫ t

0
∂0 (e(a(x)+λ)(s−t)g̃(s, x))ds

− ∫
t

0
∂0e

(a(x)+λ)(s−t)g̃(s, x)ds
+ (Y ∗Y + λ)∫ t

0
e(a(x)+λ)(s−t)g̃(s, x)ds

=∫ t

0
∂0 (e(a(x)+λ)(s−t)g̃(s, x))ds

− (Y ∗Y + λ)∫ t

0
e(a(x)+λ)(s−t)g̃(s, x)ds

+ (Y ∗Y + λ)∫ t

0
e(a(x)+λ)(s−t)g̃(s, x)ds

=g̃(t, x) − e−(a(x)+λ)t g̃(0, x)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=0=g̃(t, x)

almost everywhere. Hence, Sλ = (∂0+Y ∗Y +λ)−1 in the sense of unitary equivalence.

∎
Proposition 8.3. Let B0 ∈ L (MRτ , L2([0, τ];H)) with

∀λ ∈ R>0 ∶ B0e
λm0 = eλm0B0

(m0 is the multiplication operator with the “time” argument, i.e., in L2([0, τ]), with
maximal domain) and ∀α ∈ (0,1) ∃Cα ∈ R>0 ∀u ∈MRτ ∶

∥B0u∥L2([0,τ];H) ≤ Cα ∥u∥L2([0,τ];H) + α ∥u∥MRτ
.

2

Theorem 8.2 (Hille). Let I ⊆ R be an interval, X and Y Banach spaces, A ⊆ X ⊕ Y a

closed linear operator, f ∶ I → X Bochner-integrable, ∀t ∈ I ∶ f(t) ∈ D(A), and t ↦ Af(t)
Bochner-integrable. Then, ∫I f(t)dt ∈D(A) and A ∫I f(t)dt = ∫I Af(t)dt holds.

Proof. see [10] �
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Then

J ∶ MRτ → L2([0, τ];H) ×TR; x↦ (∂0x + Y ∗Y x +B0x , x(0))
is an isomorphism.

Proof. For f ∈ L2([0, τ];H) and u0 ∈ TR we want to find a solution u ∈MRτ

of

(∂0 + Y ∗Y +B0)u =f
u(0) =u0.

Case u0 = 0: For λ ∈ R>0 consider

Φλ ∶ L2([0, τ];H) → L2([0, τ];H); x↦ e−λm0f −B0 (∂0 + Y ∗Y + λ)−1 x.
The lemma above ensures that Φλ is well-defined and for x, y ∈ L2([0, τ];H) we
observe

∥Φλ(x) −Φλ(y)∥L2([0,τ];H)
= ∥B0 (∂0 + Y ∗Y + λ)−1 (x − y)∥

L2([0,τ];H)
≤Cα ∥(∂0 + Y ∗Y + λ)−1 (x − y)∥

L2([0,τ];H)
+ α ∥(∂0 + Y ∗Y + λ)−1 (x − y)∥

MRτ

≤(Cα
λ
+ α ∥(∂0 + Y ∗Y + λ)−1∥

L(L2([0,τ];H),MRτ)
) ∥x − y∥L2([0,τ];H) .

For α sufficiently small and subsequently λ large, the lemma above implies that

λ↦ ∥(∂0 + Y ∗Y + λ)−1∥
L(L2([0,τ];H),MRτ )

can be uniformly bounded and, hence, there are choices of α and λ such that

(Cα
λ
+ α ∥(∂0 + Y ∗Y + λ)−1∥

L(L2([0,τ];H),MRτ )
) < 1,

i.e., Φλ a contraction.
Let x∗ ∈ L2([0, τ];H) be the unique fixed point of Φλ, i.e.,

x∗ = e−λm0f −B0 (∂0 + Y ∗Y + λ)−1 x∗
holds. Considering u∗ ∶= eλm0(∂0 + Y ∗Y + λ)−1x∗ ∈MR0 we observe

(∂0 + Y ∗Y + λ)e−λm0u∗ = e−λm0f −B0e
−λm0u∗

and, therefore,

(∂0 + Y ∗Y +B0)u∗ = f.
Case u0 ≠ 0: Choose w ∈MRτ with w(0) = u0 and consider

(∂0 + Y ∗Y +B0)(u −w) = f − (∂0 + Y ∗Y +B0)w.(∗)
Then the first case yields a solution v of (∗) and u∗ ∶= v+w ∈MRτ solves the initial
problem.

The two cases above show that J ∶ MRτ → L2([0, τ];H) × TR is a bijection
and the bounded inverse theorem3 yields that J is, in fact, an isomorphism.

�

3

Theorem 8.4 (Bounded Inverse Theorem). Let X1 and X2 be Banach spaces and T ∈
L(X1,X2) bijective. Then T−1 ∈ L(X2,X1).
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Corollary 8.5. The Stokes operator

I ∶ MRτ → L2([0, τ];H) ×TR; x↦ (∂0x + Y ∗Y x , x(0))
is an isomorphism.

We are now going to prove that Bv is a compact operator. Therefore, we need
to have a look at some compact embedding theorems, first.

Lemma 8.6 (Aubin-Lions). Let X0, X1, X2 be Banach spaces, X0 and X1 be
reflexive, and

X0 ↪compact X ↪continuous X1.

Let p, q ∈ R≥1 and

W ∶= {f ∈ Lp([0, τ];X0); f ′ ∈ Lq([0, τ];X1)} .
Then

W ↪compact Lp([0, τ];X).
Proof. see [17]; Proposition III.1.3 �

We will start by proving two embedding theorems.

Lemma 8.7. MRτ ↪compact L2([0, τ];H)
Proof. Clearly, MRτ = W 1

2 ([0, τ],H) ∩ L2([0, τ],D(Y ∗Y )) is continuously
embedded into

W ∶= {u ∈ L2([0, τ],D(Y ∗Y )); u′ ∈ L2([0, τ],H)} .
Using Aubin-Lions’ Lemma (Lemma 8.6) with X0 ∶= D(Y ∗Y ), X ∶= X1 ∶= H , and
p ∶= q ∶= 2, the assertion reduces to showing

D(Y ∗Y ) ⊆ pr[{0}] tr grad(0) [W 1,(1,0)
2 (M)]↪compact H.

Let (fn)n∈N ∈ D(Y ∗Y )N be a bounded sequence. Then, (pr∗[{0}] tr grad(0) fn)n∈N is

a bounded sequence in W
1,(1,0)
2 (M) which is compactly embedded in L

(1,0)
2 (M)

by the Rellich-Kondrachov condition. In other words, there exists a subsequence

(pr∗[{0}] tr grad(0) fnk
)
k∈N

which converges in L
(1,0)
2 (M). Hence,

(fnk
)k∈N = (pr[{0}] tr grad(0) pr∗[{0}] tr grad(0) fnk

)
k∈N

converges in pr[{0}] tr grad(0) [L(1,0)2 (M)] =H .

�

Remark Using the theorem of Arzelà-Ascoli, it is possible to show that the em-
bedding MRτ ↪ C([0, τ],H) is compact, as well.

∎
Lemma 8.8. ∣Y ∣ [MRτ ]↪compact L2([0, τ];H)
Proof. Note that ∣Y ∣ ∶=√Y ∗Y is non-negative, i.e., −1 ∈ ̺(∣Y ∣). Let

∀x ∈H ∶ ∥x∥H−1 ∶= ∥(∣Y ∣ + 1)−1x∥H
and

H−1 ∶=H∥⋅∥H−1 .



74 8. LINEARIZED NAVIER-STOKES

Then, ∣Y ∣ + 1 maps H unitarily to X1. Furthermore, (∂0 ⊗ 1)(1 ⊗ ∣Y ∣) and (1 ⊗∣Y ∣)(∂0 ⊗ 1) coincide in L (MRτ , L2 ([0, τ],H−1)). Thus,

∀x ∈MRτ ∶ ∂0 ∣Y ∣x = ∣Y ∣∂0x ∈ L2 ([0, τ],H−1)
implies that ∣Y ∣ [MRτ ] is continuously embedded in

W ∶= {x ∈ L2([0, τ],D(∣Y ∣)); ∂0x ∈ L2 ([0, τ],H−1)} .
Furthermore, D(∣Y ∣) = pr[{0}]grad(0) [W 1,(1,0)

2 (M)] is compactly embedded in H by

the Rellich-Kondrachov condition and the calculation in the proof of Lemma 8.7.
Choosing p ∶= q ∶= 2, X0 ∶= D(∣Y ∣), X ∶= H , and X1 ∶= H−1 in Aubin-Lions’ Lemma
(Lemma 8.6), thus, yields that W is compactly embedded in L2([0, τ],H) and,
hence, the assertion.

�

Before proving compactness of Bv, we will need one last lemma.

Lemma 8.9. Let H1 and H2 be Hilbert spaces and T ∈ L(H1,H2). Then, the
following are equivalent.

(i) T is compact.
(ii) T maps weakly-convergent sequences to norm-convergent sequences.

Proof. “(i)⇒(ii)” Let (xn)n∈N ∈ HN

1 be weakly convergent to x ∈ H1. Then,(Txn)n∈N ∈ HN

2 converges weakly to Tx since

∀y ∈H2 ∶ ⟨Txn, y⟩H2
= ⟨xn, T ∗y⟩H1

→ ⟨x,T ∗y⟩H1
= ⟨Tx, y⟩H2

.

Suppose (Txn)n∈N does not converge in norm. Then, there exists δ ∈ R>0 and a
subsequence (Txnk

)k∈N such that

∀k ∈ N ∶ ∥Txnk
− Tx∥H2

> δ.
The uniform boundedness principle4 for F = {y ↦ ⟨xn, y⟩H1

; n ∈ N} yields that(xn)n∈N is a bounded sequence. Therefore, (Txnk
)k∈N is bounded and, since T is

compact, there is a norm-convergent subsequence (Txnkj
)j∈N with Txnkj

→∶ ŷ (j →
∞). Since norm-convergence implies weak convergence, we obtain that (Txnkj

)j∈N
converges weakly to ŷ, as well. But the weak limit was Tx, i.e., ŷ = Tx by the
Highlander principle5 which is a contradiction.

“(ii)⇒(i)” Since H1 is a Hilbert space, the unit ball BH1
is weakly compact

(Banach-Alaoglu). Let (xn)n∈N ∈ BN

H1
. Then, (xn)n∈N contains a weakly conver-

gent subsequence which, by (ii), is mapped to a norm-convergent subsequence of(Txn)n∈N ; hence, T is compact.
�

Proposition 8.11. Let v ∈MRτ . Then Bv is compact.

Proof. Note that it suffices to show that B′(v) maps weakly convergent se-
quences in MRτ to norm-convergent sequences in L2([0, τ];H). Let w ∈MR

N

τ be
weakly convergent to w0 ∈MRτ .

4

Theorem 8.10 (uniform boundedness principle). Let X be a Banach space and N a

normed vector space. Let F ⊆ L(X,N) be such that ∀x ∈ X ∶ supT∈F ∥Tx∥N < ∞. Then,

supT∈F ∥T ∥L(X,N) <∞.

5There can only be one [limit].
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(i) Using polar decomposition Y = V ∣Y ∣ and observing that

L
(1,0)
2 ∋ x↦ tr (v(t)⊗C− 1

2 V x) ∈ L(1,0)2 (M)
is continuous with

sup
t∈[0,τ]

∥L(1,0)2 (M) ∋ x↦ tr (v(t)⊗C− 1

2 V x) ∈ L(1,0)2 (M)∥
L(L(1,0)

2
(M)) <∞,

since MRτ ⊆ C([0, τ];H), it remains to show that (∣Y ∣wn)n∈N is norm-convergent
in L2([0, τ];H) which follows directly from ∣Y ∣ [MRτ ]↪compact L2([0, τ];H).

(ii) Note, MRτ ⊆ C([0, τ];H) ∩ L2([0, τ];D(Y ∗Y )) also implies that every
continuous representative of v takes values in D(Y ∗Y ) almost everywhere, i.e., for
almost every t we obtain

C−
1

2Y v(t) ∈W 1,(2,0)
2 (M) ⊆ L(2,0)2 (M) =∶H2.

Let D ∶= C− 1

2 Y v ∈ L∞([0, τ];H2). Introducing the abbreviations xn ∶= wn −w0 and
E ∶= DβγDεδg

γδgβ ⊗ gε ∈ L∞([0, τ];H2), we observe

∥tr(xn ⊗D)∥2L2([0,τ];H)

=∫ τ

0
∥xn(t)αgαβD(t)βγgγ∥2H dt

=∫ τ

0
xn(t)αgαβD(t)βγgγδD(t)εδgζεxn(t)ζdt

=∫ τ

0
∣⟨xn(t)αxn(t)ζgα ⊗ gζ,D(t)βγD(t)εδgγδgβ ⊗ gε⟩(2,0)∣dt

≤∫ τ

0
∥(xn ⊗ xn)(t)∥L(2,0)

2
(M) ∥E(t)∥L(2,0)

2
(M) dt

≤ ∥E∥L∞([0,τ];H2)∫
τ

0
∥xn(t)∥2H dt

= ∥E∥L∞([0,τ];H2) ∥wn −w0∥2L2([0,τ];H)
which converges to zero since MRτ ↪compact L2([0, τ];H).

�

Hence, F ′τ (v) is a Fredholm operator of index zero, i.e., injective if and only if
its range is dense. Since the range is also closed we obtain the following corollary.

Corollary 8.12. Let v ∈MRτ . Then, F ′τ (v) is an isomorphism if and only
if F ′τ(v) is injective.

For x, y, z ∈MRτ let

β(x, y, z) ∶= ⟨−2pr[{0}] tr grad(0) tr (x⊗C− 1

2 Y y) , z⟩
H

.

Note that

β(x, y, z) = − 2 ⟨tr(x⊗ symgrad(0) y), z⟩(1,0)
=∫

M
xi (∇gjyk + ∇gkyj) gijgkmzmdvolM .

Thus,

β(x, y, y) =∫
M
xi (∇gjyk +∇gkyj)gijgkmymdvolM

= − ∫
M
xig

ij (∇gjykgkmym +∇gkyjgkmym)dvolM
= − ∫

M
xig

ij
∇gj ⟨y, y⟩(1,0)

2
+ xigij ⟨grad(0) yj, y⟩(1,0) dvolM
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= − ∫
M

1

2
⟨div(0) x´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=0

, ⟨y, y⟩(1,0)⟩(0,0) + ⟨x, ⟨yj ,div(0) y´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=0

⟩(1,0)⟩(0,0)dvolM
=0,

as well as,

0 = β(x, y + z, y + z) = β(x, y, y) + β(x, y, z) + β(x, z, y) + β(x, z, z),
i.e.,

β(x, y, z) = −β(x, z, y).
The last ingredient we need to prove injectivity of F ′τ (v) is Gronwall’s lemma.

Lemma 8.13 (Gronwall’s Lemma). Let f, g, h ∶ R≥0 → R≥0 be measurable with

f(t) ≤ g(t)+ ∫ t

0
f(s)h(s)ds

for almost every t ∈ R≥0. Then

f(t) ≤ g(t) + ∫ t

0
g(s)h(s) exp(∫ t

s
h(r)dr) ds

holds for almost every t ∈ R≥0.
Proof. see [16]; Theorem A.43 �

Proposition 8.14. Let v ∈MRτ . Then, F ′τ(v) is injective. In particular, Fτ
is locally a diffeomorphism.

Proof. Let x ∈ MRτ and F ′τ (v)x = 0. To show: x = 0. First, note that
F ′τ (v)x = 0 is equivalent to

x(0) = 0 ∧ ∂0x + Y ∗Y x +B′(v)x = 0.
Multiplying the latter scalarly with x in H yields

0 =⟨∂0x,x⟩H + ⟨∣Y ∣x, ∣Y ∣x⟩H + β(x, v, x) + β(v, x, x)
=1
2
(∥x∥2H)′ + ∥∣Y ∣x∥2H + β(x, v, x).

With ṽ ∶= (∇gjvk +∇gkvj) gkn (∇gmvn +∇gnvm) gj ⊗ gm this last equation yields

(∥x∥2H)′ + ∥∣Y ∣x∥2H
≤2 ∣β(x, v, x)∣
=2 ∣⟨−2pr[{0}] tr grad(0) tr (x⊗C− 1

2 Y v) , x⟩
H

∣
≤4 ∥tr(x⊗ symgrad(0) v)∥H ∥x∥H
=4 ∥x∥H (∫

M
xig

ij 1

2
(∇gjvk +∇gkvj)gknxlglm 1

2
(∇gmvn +∇gnvm)dvolM)

1

2

=2 ∥x∥H ∣⟨x⊗ x, (∇gjvk +∇gkvj) gkn (∇gmvn + ∇gnvm) gj ⊗ gm⟩L(2,0)
2

(M)∣
1

2

≤2 ∥x∥H (∥x⊗ x∥L(2,0)
2

(M) ∥ṽ∥L(2,0)
2

(M))
1

2

=2 ∥ṽ∥ 1

2

L
(2,0)
2

(M) ∥x∥2H
≤2 ∥ṽ∥ 1

2

L
(2,0)
2

(M) ∥x∥2H + ∥∣Y ∣x∥2H
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and, hence,

(∥x∥2H)′ ≤ 2 ∥ṽ∥ 1

2

L
(2,0)
2

(M) ∥x∥2H .
Thus, integration yields

∥x(t)∥2H ≤ ∥x(0)∥2H + ∫ t

0
2 ∥ṽ(s)∥ 1

2

L
(2,0)
2

(M) ∥x(s)∥2H ds
for almost every t and, investing Gronwall’s lemma, gives

∥x(t)∥2H ≤ ∥x(0)∥2H´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∫
t

0
2 ∥x(0)∥2H´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

∥ṽ(s)∥ 1

2

L
(2,0)
2

(M) e
∫

t
s
2∥ṽ(r)∥ 12

L
(2,0)
2

(M)
dr

ds = 0.

�

The very same mechanism also yields the following proposition.

Proposition 8.15. Fτ is injective. In particular, Fτ is a diffeomorphism.

Proof. Let x, y ∈MRτ with Fτ(x) = Fτ (y). Then z ∶= x − y satisfies

∂0z + Y ∗Y z =B(y) −B(x) in (0, τ) ×M,

z(0) =0 in M.

Just as before, but now in z, we obtain

(∥z∥2H)′ + 2 ∥∣Y ∣z∥2H = − 2β(x,x, z) + 2β(y, y, z)
= − 2(z, x, z)− 2β(y, x, z) + 2β(y, y, z)
= − 2β(z, x, z) − 2β(y, z, z)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0≤2 ∣β(z, x, z)∣ .
Choosing x̃ ∶= (∇gjxk + ∇gkxj) gkn (∇gmxn + ∇gnxm) gj ⊗ gm yields

(∥z∥2H)′ + ∥∣Y ∣ z∥2H
≤2 ∣β(z, x, z)∣
=2 ∣⟨−2pr[{0}] tr grad(0) tr (z ⊗C− 1

2Y x) , z⟩
H

∣
≤4 ∥tr(z ⊗ symgrad(0) x)∥H ∥z∥H
=4 ∥z∥H (∫

M
zig

ij 1

2
(∇gjxk + ∇gkxj) gknzlglm 1

2
(∇gmxn +∇gnxm)dvolM)

1

2

=2 ∥z∥H ∣⟨z ⊗ z, (∇gjxk +∇gkxj) gkn (∇gmxn + ∇gnxm) gj ⊗ gm⟩L(2,0)
2

(M)∣
1

2

≤2 ∥z∥H (∥z ⊗ z∥L(2,0)
2

(M) ∥x̃∥L(2,0)
2

(M))
1

2

=2 ∥x̃∥ 12
L
(2,0)
2

(M) ∥z∥2H
≤2 ∥x̃∥ 12

L
(2,0)
2

(M) ∥z∥2H + ∥∣Y ∣z∥2H
and, hence,

(∥z∥2H)′ ≤ 2 ∥x̃∥ 1

2

L
(2,0)
2

(M) ∥z∥2H .
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Thus, integration yields

∥z(t)∥2H ≤ ∥z(0)∥2H + ∫ t

0
2 ∥x̃(s)∥ 1

2

L
(2,0)
2

(M) ∥z(s)∥2H ds
for almost every t and, investing Gronwall’s lemma, gives

∥z(t)∥2H ≤ ∥z(0)∥2H´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∫
t

0
2 ∥z(0)∥2H´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

∥x̃(s)∥ 1

2

L
(2,0)
2

(M) e
∫

t
s
2∥x̃(r)∥ 12

L
(2,0)
2

(M)
dr

ds = 0.
�



CHAPTER 9

Causality and Well-posedness

As of the end of chapter 8 we know that Fτ is injective and locally an analytic
diffeomorphism, i.e., if we have a solution u of the Navier-Stokes problem then it
is unique with respect to the data Fτ (u), changing Fτ (u) slightly does not destroy
unique solvability, and the corresponding solutions depend analytically on the data.
But for our construction of solutions with arbitrary data to work, the notion of
causality is needed.

Definition 9.1. Let R ⊆ L2([0, τ];X1)⊕L2([0, τ];X2) where X1 and X2 are
Banach spaces.

(i) The relation R is called weakly causal if and only if

∀(u, fu), (v, fv) ∈ R ∶ inf spt0(u − v) ≤ inf spt0(fu − fv)
where spt0 denotes the support with respect to time, i.e., in L2([0, τ]).

(ii) The relation R is called strongly causal if and only if R is weakly causal
and

∀(u, f) ∈ R ∶ inf spt0 u ≤ inf spt0 f.
(iii) R is said to have weakly causal solutions if and only if R−1 is weakly

causal.
(iv) R is said to have strongly causal solutions if and only if R−1 is strongly

causal.

Additionally, let R be linear.

(v) The linear relation R is called causal if and only if

∀(u, f) ∈ R ∶ inf spt0 u ≤ inf spt0 f.
(vi) The linear relation R is said to have causal solutions if and only if R−1 is

causal.

Corollary 9.2. Let X1 and X2 be Banach spaces and R ⊆ L2([0, τ];X1) ⊕
L2([0, τ];X2) with 0 ∈ R. Then, weak causality and strong causality are equivalent.

Proof. For R = ∅ the assertion is trivial and, since strong causality implies
weak causality, there is only one direction to show. Let (u, f) ∈ R. Then,

∀(v, fv) ∈ R ∶ inf spt0(u − v) ≤ inf spt0(f − fv)
implies

inf spt0 u = inf spt0(u − 0) ≤ inf spt0(f − 0) = inf spt0 f
because 0 ∈ R.

�

Corollary 9.3. Let X1 and X2 be Banach spaces and R ⊆ L2([0, τ];X1) ⊕
L2([0, τ];X2) linear. Then, weak causality, strong causality, and “linear” causality
are equivalent.

79
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Proof. For R = ∅ the assertion is trivial and, since linear relations contain
zero and strong causality trivially implies “linear” causality, it suffices to show that
“linear” causality implies weak causality. Let (u, fu), (v, fv) ∈ R. Then, (u − v, fu −
fv) ∈ R by linearity and, thus,

inf spt0(u − v) ≤ inf spt0(f − fv).
�

These are very neat properties as we only need to show weak causality of
solutions for our construction to work whereas strong causality of solutions implies
that the “vacuum solution” is zero, that is, a motionless fluid will remain at rest as
long as no external force acts on it. This property does not hold if we have proper
weak causality of solutions but is essential for the system to be physically senseful.

Lemma 9.4. Let X1 and X2 be Banach spaces, and (Rt)t∈R>0 a family of left-

unique1 relations Rt ⊆ L2([0, t];X1)⊕L2([0, t];X2) such that

∀t ∈ R>0 ∀s ∈ (0, t) ∀(u, f) ∈ Rt ∶ (u∣[0,s], f ∣[0,s]) ∈ Rs(6)

holds. Then, all Rt have weakly causal solutions.

Proof. Suppose Rt does not have weakly causal solutions for some t ∈ R>0.
Then there are (u, fu), (v, fv) ∈ Rt with

inf sup
0

(u − v) < inf spt0(fu − fv).
By left-uniqueness, this implies u ≠ v because fu and fv must be distinct. Choose
s ∈ (inf sup0(u − v), inf spt0(fu − fv)). Then

u∣[0,s] ≠ v[0,s]
and

fu∣[0,s] = fv ∣[0,s](∗)
hold. But from (∗) and left-uniqueness of Rs we deduce

u∣[0,s] = v[0,s]
which is a contradiction.

�

Since grad(0), div(0), ∂0, ⊗, tr, and sym obviously are causal operators and C

was defined to be causal, we conclude that all Fτ are weakly causal (which implies
(6)) and, therefore, they all have strongly causal solutions. Choosing C to be local,
as well, is not possible in our general setting because many non-Newtonian fluids
have viscous memory, that is, C contains delay terms. However, it would break
physics to assume the viscosity depended on the future. Hence, C ought to be
causal. This was the last missing piece of our jigsaw and we can, now, state our
main result.

Theorem 9.5 (Well-posedness and Causality). Let τ ∈ R>0, u0 ∈ TR, and
f ∈ L2([0, τ];H).

(i) There exist τ ′ ∈ (0, τ) and u ∈MRτ such that the Navier-Stokes equations

∂0u + Y ∗Y u +B(u) =f in (0, τ ′) ×M,

u(0) =u0 in M

are satisfied. Furthermore, solutions are strongly causal and unique in
MRτ ′ .

1left-uniqueness resembles injectivity
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(ii) There exists an open neighborhood U ⊆ L2([0, τ];H) × TR of (f, u0) and
τ ′ ∈ (0, τ) such that

G ∶ U →MRτ ′ ; (g, v0) ↦ F −1τ (g, v0)∣[0,τ ′]
is analytic and all G(g, v0) solve the Navier-Stokes system in (0, τ ′) ×M
with respect to the data (g, v0) ∈ U , i.e., the solutions depend analytically
on the data and τ ′ is locally constant.
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