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ABSTRACT

Based on Guillemin’s work on gauged Lagrangian distributions, we will intro-
duce the notion of a gauged poly-log-homogeneous distribution as an approach to
(-functions for a class of Fourier Integral Operators which includes cases of am-
plitudes with asymptotic expansion ).y @m, Where each a,,, is log-homogeneous
with degree of homogeneity mj, but violating R(my) - —oo. We will calculate the
Laurent expansion for the {-function and give formulae for the coefficients in terms
of the phase function and amplitude, as well as investigate generalizations to the
Kontsevich-Vishik trace. Using stationary phase approximation, series representa-
tions for the Laurent coefficients and values of {-functions will be stated explicitly,
and the kernel singularity structure will be studied. This will yield algebras of
Fourier Integral Operators which purely consist of Hilbert-Schmidt operators and
whose (-functions are entire, as well as algebras in which the generalized Kontsevich-
Vishik trace is form-equivalent to the pseudo-differential operator case. Addition-
ally, we will introduce an approximation method (mollification) for ¢-functions of
Fourier Integral Operators whose amplitudes are poly-log-homogeneous at zero by

(-functions of Fourier Integral Operators with “regular” amplitudes.

In part II, we will study Bochner-, Lebesgue-, and Pettis integration in alge-
bras of Fourier Integral Operators. The integration theory will extend the notion
of parameter dependent Fourier Integral Operators and is compatible with the
Atiyah-Jéanich index bundle as well as the (-function calculus developed in part
I. Furthermore, it allows one to emulate calculations using holomorphic functional
calculus in algebras without functional calculus, and to consider measurable families
of Fourier Integral Operators as they appear, for instance, in heat- and wave-traces

of manifolds whose metrics are subject to random (possibly singular) perturbations.
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Notations

(a,b) open interval {x € X; a <z A x < b} for any partially ordered set X;
similarly, [a,b] is the closed interval {x € X; a<x A x <b}, and [a,b) and
(a,b]are {xr e X; a<z A z<b}and {xe X; a<x A x<b} respectively

(a,).er € X! family notation of a map I 31~ a, € X

* Hodge-*-operator
* convolution
0 zero-section, as in T* X \ 0

definition as in f(z) := 5 or a,, —: a (defining the limit of a sequence (@, )nen
to be called a)

[A,B] commutator AB—- BA

[A]f pre-set/pre-image of the set A under the relation f, i.e. for f ¢ X xY,
[Alf ={zeX; JyeA: (z,y) e[}

#S cardinality of the set S

|| absolute value or modulus in R or C, resp.

Neer A, prefix notation of intersections ranging all ¢ € I

U,er A, prefix notation of unions ranging all ¢ € T

B(2) Borel o-algebra of a topological space

n infix notation for intersections of sets
place holder for the argument, as in f(z,-)

o composition of relations

C set of complex numbers



Notations

= isomorphic

0 Fréchet derivative

0 boundary operators as in A =closure of A minus the interior of A
o multi-index notation

0 partial Fréchet derivative with respect to the j** argument

O radial derivative, that is 9, f(x) = (gradf(x), ﬁ)
OJsp  spherical derivative, that is, on 0By

G disjoint union

A(X) see diag(X)

ddiag  O-distribution along the diagonal

O Dirac d-distribution centered at x

App  spherical Laplacian

det determinant

det;, regularized generalized determinant

det;  generalized (-determinant

diag(X x X) diagonal in X2, i.e. {(x,y) € X?; z =1y}
dim  dimension operator

div divergence

£,(I) set of absolutely p-summable families in C! or Rf
£,(I,X) set of absolutely p-summable families in X/

%] empty set

equality modulo some equivalence relation
3 “there exists”

exp exponential function with base e

v “for all”

. N .
F Fourier transform - (2m)~2 [, convention
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finite part at a point z
I-function
canonical relation

twisted relation, for a relation I"

In N)"*! N (Ink)"
_(nN) +Zk=1( ))

Stieltjes constants limn_, 0 ( il &

_On(Neh) SN (m(m))n)

generalized Stieltjes constants limpy o ( 1

upper incomplete I'-function

biconditional

initial Laurent coefficient at a point z

imaginary part of a complex number

“is element of” as in a € A

function that maps singletons to their element, that is, € ({z}) =«

infimum

/  dvolx integration with respect to volx

A

(5)
()
()x

Lebesgue measure
algebra generated by elements of S
dual pairing in X & X’

scalar product in X

(,")xeox’ dual pairing in X & X’

In

max

min

MT

logarithm with base e
“maps to” as in x — f(x)
maximum

minimum

Mellin transform

upper Mellin transform

lower Mellin transform
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Notations 11
convergence from below
set of positive integers (without zero)
set of non-negative integers (with zero)
norm in a normed space X
(canonical) operator norm, i.e. the norm in L(X,Y") for an operator in
L(X,Y)
order of the initial Laurent coefficient at a point z
closure/completion of A in the topology T or with respect to the topology
induced by T'
topological direct sum with product topology, i.e. for topological vector
spaces X @Y is X xY and the semi-norms are generated by p;;(z,y) =
H(p;x(x),pgf(y))H with some norm |-| on R?
order of an operator
tensor product
power set
projection to the j'" argument

orthoprojection to the space V'

[1,cr @, prefix notation for products ranging over all ¢ in an ordered set I

¥»DO(X) ring of pseudo-differential operators on X

R
resa

res, f

trres

real part of a complex number

residue of a log-homogeneous distribution «a
residue of the meromorphic function f at z
residue trace

residue form

resolvent set of an operator A

set of real numbers



sgn
o(A)
o(A)
oa(A)

op(A)

spt

g}

ZLEI a,
sup

sym

vol 5'¢

Notations 12
convergence from above
“set minus”, asin AN B={a€A; a¢ B}
sign function
spectrum of an operator A
symbol of an operator A
discrete spectrum of an operator A
point spectrum of an operator A
asymptotic expansion
support of a function
subset, as in A< B - A is a subset of B
proper subset, asin A¢ B < AcB A A+ B
strong convergence
prefix notation for sums ranging over all ¢ in an ordered set

supremuin

A+A*

symmetrization operator, symA = <5

implication

spectral ©-function

convergence in standard topology

trace

logical disjunction

Riemannian volume measure on an orientable Riemannian manifold X
logical conjunction

wedge-product on the exterior algebra

weak-*-convergence

weak convergence

generic (-function
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¢,(A) spectral (-function of an operator A

Cr Riemann-Hurwitz-(-function
(R Riemann-(-function
Z set of integers

musical isomorphism

A/p  quotient space of A being factorized by B

A* adjoint relation of a relation A ¢ X @Y, i.e. A* = (-A')™! (functional
minus, i.e. (z,y) € A < (z,-y) e-A)

At orthogonal complement or annihilator of A

A7l inverse of A

aq-;  log-homogeous amplitude with degree of homogeneity d — j

BA set of all left-total functions f: A - B

By By[0,1]

By (a,r) open ball in V centered at a with radius r

By [a,r] closed ball in V' centerd at a with radius r

C(A) C(A,R) or C(A,C) depending on the context

C(A, B) set of continuous functions f € B4

C* (A, B) set of functions in C(A, B) which can be differentiated arbitrarily often

C¥(A, B) set of analytic functions in C'(A, B)

C*(A, B) set of k-times differentiable functions in C'(A, B)

Co(A, B) closure of C.(A,B) in C(A, B)

C.(A, B) set of compactly supported elements of C'(A, B)

d exterior derivative

dvolx Riemannian volume form on an orientable Riemannian manifold X

d* co-derivative on exterior algebra

I Fréchet derivative of the function f



Notations 14

f: D(f)cA— B; x+~ f(z) afunction f defined on D(f) interpreted as a subset

f14]

k
HdR

of A mapping each x € D(f) to f(z) € B
post-set/image of the set A under the relation f, i.e. for f ¢ X xY, f[A] =
{yeY; JxecA: (x,y)ef}

k*" de Rham cohomology group

I(X,A) set of Lagrangian distributions on X with respect to A

I™(X,A) set of Lagrangian distributions of order m on X with respect to A

Tcompact (X, A) set of compactly supported Lagrangian distributions on X with re-

T X

TX

spect to A

Kontsevich-Vishik regularized kernel

set of bounded linear functionals on a topological vector space V'
Lebesgue space L, on some measure space X

multiplication operator with the argument

transpose of a pseudo-differential operator P

Hormander class

the set {s€S; p(s)} if S is a set and p a predicate

co-tangent bundle of a manifold X

tangent bundle of a manifold X

topological dual space of a topological vector space V'

Sobolev space of "s-times" weakly differentiable functions in L,

complex conjugate of z

k-1 r—j

binomial coefficient ]'[j=0 s )



Introduction

An important class of functionals on an algebra are traces, i.e. functionals
that vanish on commutators. Traces not only give insight into the structure of a
given algebra but also allow invariants of the algebra to be calculated and, hence,
the objects the algebra is associated with. In particular, exotic traces (non-trivial
traces which are not a multiple of the classical trace on trace-class operators) have
many applications in the theory of ideals in L(H) and non-commutative geometry.
In geometric analysis, on the other hand, algebras often are modules of semi-group
representations of some geometric or topological structure, e.g. a manifold, foli-
ation, a fractal, or quantum field theory. As such, traces give rise to geometric,
topological, spectral, or physical invariants which, in turn, can be used to classify

and characterize those structures. A generic application would look like

terms depending on an operator A = terms depending on a manifold M.

The Atiyah-Singer Index Theorem, for instance, is of this form and states that the
analytical index of an elliptic differential operator between smooth vector bundles

on an finite-dimensional compact manifold coincides with its topological index.

A very interesting class of traces and trace-like functionals arise from the
notion of (operator) ¢-functions which were introduced by Ray and Singer [59,60]
using Seeley’s work on complex powers of elliptic pseudo-differential operators [68].
In mathematical physics, Hawking [37] first used these (-functions as a tool of

regularization for path integrals, very much in the light of regularizing divergent

15
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series

D1 Gp0)= g and Ym 4P Ca(-1)=

neN 2 neN 12

where (g denotes Riemann’s (-function. Considering Lidskii’s theorem

trA= Z LA
Xeo (A)N{0}

for a trace-class operator A (where o(A) denotes the spectrum of A and py the

algebraic multiplicity of the eigenvalue \), we obtain the spectral {-function on C

GA)(2) = > mAF=trdA
Aeo(A)N{0}

by meromorphic extension provided that A has purely discrete spectrum (in Hawk-
ing’s case A is a differential operator), the series Yxear(A)n{0} MAA™Z converges un-
conditionally in some open set Q € C (usually a half-space for JR(z) sufficiently

large), and the resulting function extends meromorphically to C.

Very closely related are regularizations of infinite products

[Tan=]]exp(lna,) =exp| >, 1nan) =exp (trln A)

neN neN (nEN
if (an)nen is the sequence of eigenvalues of an operator A such that In A is well-
defined and of trace-class. This is why this product is also called the determinant

det A of A. Using the spectral (-function, we observe

det A =exp (trln A)
=exp ( tr (A_Z lnA)|z=0)
=exp (-0 (2~ trA77)(0))

=exp (- (4)'(0)).

In other words, not just {-functions are important but also their derivatives. Such

¢-determinants were introduced by Ray and Singer in [59, 60].
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However, considering families z — A? is very restrictive (especially since for
many algebras the term A* is not well-defined and even if it is possible to define
complex powers, it may not be possible for every A). It is common, therefore, to
study more general families like z — G(z)A with G(0) = 1; in particular, G(z) = ¢*
for some suitable operator g is a viable choice in algebras that allow complex power
for some elements. These have important applications in the theory of pseudo-
differential operators and such (-functions have been widely studied (cf. e.g. [67]);
in fact, the entire Laurent expansion is known for {-functions of families of the type

z+— Ag® (cf. [56]).

For pseudo-differential operators with polyhomogeneous amplitudes, the (-
function is a meromorphic function with isolated simple poles only and its Laurent
coeflicients can be used to define traces. Of particular importance are the non-
commutative residue (cf. [33,77,78]), which corresponds to the pole, and the
Kontsevich-Vishik trace (cf. [47,48]) which corresponds to the constant Laurent
coefficient. In order to obtain the Laurent expansion, it is necessary to take deriva-
tives which produce logarithmic terms in the amplitude. {-functions for such oper-
ators are still meromorphic but may fail to have only simple poles. Generalizations
to the non-commutative residue and the Kontsevich-Vishik trace for such operators

with log-terms have also been studied (cf. e.g. [51]).

While the theory for pseudo-differential operators can solve many problems,
there is still a need to replace them by Fourier Integral Operators. A prime example
would be the case of wave trace invariants. Similarly, in the realm of mathematical
physics, Radzikowski [57,58] realized the importance of the wave front set in quan-
tum field theories on curved space-time which inherently means that Fourier Inte-
gral Operators take the role pseudo-differential operators played in more “classical”

settings. Even though the theory for pseudo-differential operators is well-developed,
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for Fourier Integral Operators very little is known. Guillemin [34] showed that (-
functions and the residue trace exist for gauged Lagrangian distributions with poly-
homogeneous amplitudes and, thus, certain algebras of Fourier Integral Operators,
Boutet de Monvel and Guillemin have considered the class of Toeplitz operators
and generalized Szeg6 projectors (cf. [7,8]), and especially wave traces and related
examples have been studied (cf. e.g. [36,79]). Whether or not there exists a

suitable extension of the Kontsevich-Vishik trace, for instance, has been unknown.

Thus, one of the aims of this thesis is to study possible extensions of the
Kontsevich-Vishik trace to Fourier Integral Operators. Since calculating the con-
stant Laurent coefficient of a meromorphic function with simple poles requires us
to calculate at least one derivative, it is necessary to consider log-terms in the am-
plitude. As to be expected, being able to handle one derivative will be sufficient to

compute all derivatives and, thus, the entire Laurent expansion.

The thesis is structured in two parts. In part I, we will calculate the Laurent
expansion and study generalizations of the Kontsevich-Vishik trace while part II

will mostly focus on integration techniques in algebras of Fourier Integral Operators.

Chapter 1 contains a short overview of the most important definitions and
theorems about Fourier Integral Operators and their algebras. In chapters 2 and
3 we will not see any Fourier Integral Operators directly, but define the notion
of gauged poly-log-homogeneous distributions, their (-functions, and calculate the
Laurent expansion. The definition in chapter 2 will seem rather restrictive since we
will only allow affine-linear functions as degrees of homogeneity. However, we will

see in chapter 3 that any meromorphic family of poly-log-homogeneous distributions
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has a (-function which is germ-equivalent to a (-function of a gauged poly-log-
homogeneous distribution provided none of the degrees of homogeneity is germ-

equivalent to a critical constant.

In chapter 4, we will return to Fourier Integral Operators. In fact, we will see
that gauged poly-log-homogeneous distributions are a generalization of Guillemin’s
approach in [34]. Hence, Lagrangian distributions as considered in [34] and, in
particular, pseudo-differential operators are covered. Furthermore, it includes the
operators considered by Paycha and Scott [56], that is, those cases where the entire
Laurent expansion for pseudo-differential (-functions is known, as well as general-
ized Toeplitz operators and Szegd projectors as studied by Boutet de Monvel and
Guillemin [7,8]. In particular, we will obtain the Laurent expansion for {-functions
of gauged Fourier Integral Operators which can be extended to the case of mero-

morphic germs of Fourier Integral Operators using the results of chapter 3.

Chapter 5 will be all about examples. Here, we will consider the heat trace

2
NN volgn /. (RN/F) Z exp (_ |’Y|z2(N))
el

(47#)% 4t
on the flat torus RY /p where A is the Dirichlet Laplacian, as well as calculate all

the Laurent coefficients of (-functions of gauged fractional Laplacians
S+
(s VIAT) (2) = 2n(-2 - o),
and gauged shifted fractional Laplacians
St
(s (ne VIB) ™) ) =20 (-2 - i) - e

on R/5,7 where (g denotes the Riemann-(-function and (g the Riemann-Hurwitz-
(-function. In particular, the case of gauged fractional Laplacians is highly interest-

ing since it violates the assumptions of our Laurent expansion quite strongly in the
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following sense. As of that point, we can only consider families of Fourier Integral
Operators whose amplitudes a(z)(z,y,¢) satisfy a(z)(z,y,-) € C=(RY) for every
z,y € X and z € C where X is the underlying manifold. This is true for the gauged

shifted fractional Laplacians but not in the non-shifted case.

However, it turns out that the “non-shifted” (-function is the compact limit
of the “shifted” (-functions sending the shift to zero. This observation not only
validates the example but is largely generalizable.! The generalization, which we
will call mollification, will be discussed in chapter 6 and is essentially a proce-
dure showing that any gauged poly-log-homogeneous distribution which is poly-
log-homogeneous everywhere on RY \ {0} can be written as a limit of gauged poly-
log-homogeneous distribution with regular amplitudes such that the corresponding
(-functions are compactly convergent. In other words, the Laurent expansion holds
in that case, as well, and we have obtained a complete extension of the pseudo-
differential case. In particular, we will now turn our focus to the Kontsevich-Vishik

trace and other formulae related to the Laurent coefficients.

In chapter 7, we will study conditions to decide whether or not the {-function
is holomorphic in a neighborhood of zero. In particular, this will yield a generalized
Kontsevich-Vishik trace which is unique in the sense that any other extension of
the Kontsevich-Vishik trace must coincide with this generalization modulo terms
that vanish under (-regularization or cannot be given by a globally defined den-
sity (provided the kernel of the operator is defined as a globally defined density).

11t is also possible to use well-known facts about extensions of log-homogeneous distributions
on RN < {0} to RY if validating the Laurent expansion in this specific case were the only reason for
these considerations. However, generalizing that approach would only yield the Laurent expansion
for Fourier Integral Operators with log-homogeneous amplitudes up to a holomorphic function

which has to be added. Furthermore, it is not directly applicable to gauged poly-log-homogeneous

distributions in general.
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Other than giving a positive answer to the question of a generalized Kontsevich-
Vishik trace, the main consequence is that we can obtain Guillemin’s results on the

commutator structure [34,35] from this generalized approach.

In order to actually be able to calculate the Laurent coefficients (and, thus, the
generalized Kontsevich-Vishik trace) for a given gauged Fourier Integral Operator,
chapter 8 focuses on the stationary phase approximation of the Laurent coeffi-
cients and the kernel singularity structure of Fourier Integral Operators. Here,
we will calculate the kernel singularity structure explicitly and find two “polar op-
posites” in the set of Fourier Integral Operator algebras. One class of algebras,
that also contains the Toeplitz operators and generalized Szegs projectors [7], is
closest to the pseudo-differential operator case, in the sense that the generalized
Kontsevich-Vishik trace is form-equivalent to the Kontsevich-Vishik trace in the
pseudo-differential case. In fact, we will obtain (3) and (4) in [7] and extend the
results of [7] by calculating the Kontsevich-Vishik trace. For the other class of
algebras, every term that appears in the generalized Kontsevich-Vishik trace but
not in the pseudo-differential Kontsevich-Vishik trace is non-trivial. In particular,
splitting off finitely many terms in the expansion is not possible since every single
one of them will have a contribution, in general. This is closely related to the
interesting fact that every operator in such an algebra is Hilbert-Schmidt and has
continuous kernel; a property that is independent of the Héormander class of the
amplitude. In particular, {-functions of families of Fourier Integral Operators in

such algebras have no poles.

At this point, we will have extended a number of pseudo-differential results?

to Fourier Integral Operators. However, there are many others that cannot be

2e.g. (2.21) in [47], (4.11), (5.19), Lemma 5.4, Proposition 5.5, and Theorem 5.6 (ii-v) in

[51], (9) in [55], and (0.12), (0.14), (0.17), (0.18), and (2.20) in [56]
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tackled. The major obstacle here is the fact that the algebra of pseudo-differential
operators is closed with respect to holomorphic functional calculus whereas most
algebras of Fourier Integral Operators are not. Hence, any result that requires the
holomorphic functional calculus cannot be extended directly unless one finds an
independent proof that does not make use of the functional calculus. Similarly,
the mere question of replacing the phase function in an integral using holomorphic
functional calculus for pseudo-differential operators means that we do not even know
whether the new integral is well-defined in a suitable algebra of Fourier Integral
Operators. Furthermore, if we consider variational formulae (e.g. the variational
formula for the multiplicative anomaly of (-determinants), then we would like to be
able to integrate a family f of gauged operators and their {-functions (o f and have
the result be independent of the order of calculation, i.e. [(o f=¢ (f f) In other
words, we need to make sense of [ f for operators, kernels, and (-functions such
that all these notions can be used interchangeably. Hence, developing a suitable
integration theory in algebras of Fourier Integral Operators would be highly useful

and is the focus of part II of this thesis.

Another driving factor for considering integrals of measurable families of (gauged)
Fourier Integral Operators are stochastic Fourier Integral Operators, that is, mea-
surable functions of Fourier Integral Operators or, similarly, parameter dependent
Fourier Integral Operators as they appear in the treatment of linear partial dif-
ferential equations with discontinuous/stochastic coefficients [28]. Although the
approach considered in part II is still very technically involved, it does not require
Colombeau algebras [13,26,27] and is a natural extension of parameter dependent
Fourier Integral Operators in the sense of chapters 2.1.2 and 2.2 of [63] as well as

vertical Fourier Integral Operators associated with fibrations (cf. e.g. chapter 5
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in [67]). In other words, it is a direct connection between stochastic Fourier Inte-
gral Operators and “standard” Fourier Integral Operator techniques of geometric

analysis.

Part II starts with two chapters on various integrals in topological vector
spaces. In chapter 9, we will consider Bochner- and Lebesgue-integrals, i.e. integrals
in the strong topology of the algebra with respect to measurable functions (pre-
sets of measurable sets are measurable) and strongly measurable functions (almost
everywhere sequential limits of simple functions). Since the L,-theory in locally
convex topological vector spaces is notoriously filled with subtleties, an exhaustive
account of the main theorems tailored to our applications is contained in chapter 9.
However, these integrals have a major drawback: a priori, they take values in the
completion of the algebra but there are canonical topologies on algebras of Fourier
Integral Operators which are only quasi-complete and not complete. Luckily, with
the notion of Pettis-integral, which is a weaker notion and the subject of chapter 10,
quasi-completeness is sufficient and we can prove that the Bochner- and Lebesgue-

integrals take values in the algebra.

Chapter 11 addresses an important side effect of having an integration theory;
namely, we have a theory of measurable functions with values in an algebra of
Fourier Integral Operators which extends the theory of continuous functions with
values in an algebra of Fourier Integral Operators, i.e. parameter dependent Fourier
Integral Operators [63] as well as the idea of families of operators such as they
appear in the index theorem for families. There, we have a fibration M — B and
an operator D; on each fiber M; such that b — Dy is a continuous function. For
pseudo-differential operators this is deeply connected with the family index and
the Atiyah-Jénich index bundle. In chapter 11 we will, therefore, topologize the

set of index bundles and show that the Atiyah-Jénich index bundle construction
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is a continuous map with respect to the gap-topology on the operator side. In
other words, measurable families of Fourier Integral Operators in the sense of our
integration theory yield measurable “index bundles” such that the restriction to

continuous families is compatible with the Atiyah-Jénich case.

With this prelude, chapter 12 shows an example of how to emulate the holo-
morphic functional calculus in algebras in which holomorphic functional calculus is
not defined. More precisely, we consider an example calculation that makes heavy
use of the holomorphic functional calculus on the pseudo-differential operator side,
replace the phase function, show that these new integrals are well-defined within

the new algebra, and calculate them.

Finally, in chapter 13, we will return to {-functions of Fourier Integral Oper-
ators. In order for our integration theory to be applicable, we will need to show
that the (-function as an operator from the space of gauged Fourier Integral Op-
erators to the space of meromorphic functions, or a suitable other target space,
has a quasi-complete extension. Unfortunately, a suitable topology on the space of
meromorphic functions such that the (-function (as an operator from the space of
gauged Fourier Integral Operators with wave front set in a given cone to the space of
meromorphic functions) can be quasi-completed remains unknown. Instead, we can
consider many subspaces of ¢ and we will introduce the space of {-functions with
a suitable topology that almost allows ( to be quasi-completed. Though slightly
unsatisfactory, these results still allow us to effectively use the integration theory
in conjunction with the (-function calculus and prove results like “the integral of
a Laurent coefficient of a (-function of a family of gauged Fourier Integral Opera-

tors is equal to the Laurent coeflicient of the (-function of the integrated family of
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gauged Fourier Integral Operators”, i.e.

/kth—Laurent coefficient (C(f(z)))dz = k*™-Laurent coefficient (C (/f)) .

This will yield the possibility of considering random manifolds, e.g. a manifold
whose metric is subject to random perturbations (for instance, a stochastic process
in the space of metrics). As such we have a measurable map Q3 w » A(w) where
each A(w) is a Laplacian on a manifold. Then, we will obtain cases in which
the expected heat trace and wave trace coefficients of a random manifold can be
expressed as coefficients of the trace of ET(¢) where E denotes the expectation
value (integration in €2) and 7 the pointwise heat semi-group (7'(t)(w) = e‘tm(w)‘)
or wave group (T(t)(w) =W (t)(w) =e" ‘A(“’)‘), respectively. In other words, for

the heat semi-group we find

E vol(M) E total curvature(M)

dim M dim M  dim Z\/I_l
2

tr Ee Al = +
(4mt) 2 3(4m) "zt

+ higher order terms

under certain conditions on the random manifold. In particular, we can show that

Ee~“2! is a smoothing operator for ¢ € R,, and
trEe A = E tre 4l
holds, for instance, if w — e 12l is Pettis integrable. Similarly, we obtain

E (C(W(#)9)(0)) = ¢ (E(W(t))g) (0)

where g is a gauge (the result is independent of the particular choice of g), though
we will need stronger assumptions in this case.

ExXAMPLE Let I'(w) = Xj]\il fi(w)Z RN (that is, RN /1, has fundamental domain
ij\il[O, fj(w)]) where the f; are positive and bounded measurable functions on a

probability space (not necessarily independent). Let A(w) be the Laplacian on
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RY /r(wy and (T(t)(w))tdRZU the heat-semigroup. Then, it can be shown (cf. e.g.

chapter 5)

wT (@) - ZE o) 5 exp(_mgm)

(47Tt) 2 ~vel'(w)

which can also be written as

vol (RV /1 () S exp ( v (@) 17, v )

4rt)T G 4t

tr T(t) (w) =

with v, (w) = ij\il vjfj(w)e; where (e;)jen_, is the canonical basis of RY. In other

words, Evol (RN/F) is given by the v =0 term of the series on the right hand side.

Furthermore, the kernel kg of ET(t) parametrized over [0, v

’i]ET(t)(xuy) :E( Z z T=Y=Yv,&)gN (27‘1’) -N t”f“ez(N)dg Hf])

veZN
N
- / .0 [ o o~ TS | 2m) Ve e,
veZN JRN j=1

i.e.

N
trET(t):/ Z / E( QORI H )(271') -N t\|€|\z2<zv)d§dx
[0,1]N pezN /RN =

N
- Z E (H fje-iw&jfj) (27T)_Ne_t”5”§2<N>d§.
j=1

vezN JRN

Here, the v = 0 term yields

RN \jo1

(4mt) =

In other words,

Evol (RN /r) =E (ﬁ fj)

which is fully consistent with the trivial calculation

EVOI(RN/F):EVOI( ij) (fﬁ)
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The thesis also contains three appendices. Appendices B and C are mainly
background information. Since we will be using the gap-topology on multiple oc-
casions, appendix B contains an overview of the gap-topology and results on the
perturbation of the spectrum with respect to the gap-topology. In appendix C, we
introduce and prove the necessary theorem to prove that perturbed eigenvalues of

an operator with respect to the gap-topology can be written as a Puiseux series.

Appendix A, on the other hand, covers the basic theorems of classical probabil-
ity theory in algebras of Fourier Integral Operators. This is particularly interesting
since the integration theory developed in part II and its application to {-functions
give rise to the idea of treating more geometrical stochastic Fourier Integral Op-
erator questions in this formalism rather than introducing the entire machinery of
Colombeau algebras. Hence, we would like to make sure that such a probability the-
ory in algebras of Fourier Integral Operators is sufficiently rich. In fact, appendix
A contains most major theorems one would expect to encounter in an introduction
to stochastics, including versions of the strong and weak law of large numbers and

a Lindeberg type central limit theorem.
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Part 1

The Laurent expansion of Fourier
Integral Operator (-functions and a

generalized Kontsevich-Vishik trace



CHAPTER 1

Fourier Integral Operators of trace-class

We will begin this chapter with a short account on algebras of Fourier Integral
Operators associated with canonical relations. For details and proofs, please, refer

to chapter 25 in [38], chapters 2 and 4 in [20], as well as [39].

Unless explicitly stated otherwise, let X be an orientable, compact, connected,
finite dimensional Riemannian manifold without boundary and Tiy X := T* X \ 0 the

co-tangent bundle without the zero-section.

DEFINITION 1.1. Let I' ¢ Ty X x T7 X be a relation satisfying
(i) T is symmetric, i.e. ¥Y(p,q) €T : (q,p) €T,
(ii) T s transitive, i.e. V(p,q),(q,r) €T : (p,r) €T,

We will call any such T' a canonical relation. Furthermore, we will assume that all

canonical relations satisfy

(iii) the composition T o T is clean, i.e. T x T intersects T*X x diag(T*X x
T*X)xT*X in a manifold whose tangent plane is precisely the intersection
of the tangent planes of T xT' and T* X x diag(T* X x T* X ) x T* X where
diag(T*X xT*X) := {(z,y) e T" X xT*X; x =y},

(iv) the projection pry : T — T*X; (p,q) — p is proper, i.e. pre-sets of

compacta are compact.

We will call the set

T = {((2,€),(y,n)) e Ty X x Ty X5 ((2,€),(y,—-n)) €'}

30
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a twisted canonical relation.

REMARK The properties (iii) and (iv) will imply that the set of Fourier Integral
Operators we will associate with these canonical relations form an associative alge-

bra.

DEFINITION 1.2. Let N e N. A function
PeC (X x X xRY)nC™ (X x X x (RV ~{0}))

is called a phase function if and only if it is positively homogeneous of degree 1 in

the third argument, i.e.
Vr,ye X VEeRY YA eR o : I(x,y, \E) = MI(x, yE).

DEFINITION 1.3. Let U < R"™ be open, N € N, and m € R. The Héormander class
S™(U xU xRN) is defined as the set of all a € C*=(U x U xRN ) such that for every

K Scompact U? and all multi-indices o, B, there exists a constant c e R, such that
V(z,y) ¢ K ¥ e RN\ Ben (0,1) ¢ |070507a(w,y,&)| < e (1+ \|§|\€2(N))m7”7”“‘”>
holds.
DEFINITION 1.4. A Fourier Integral Operator on X is a linear operator

A: C2(X) - C2(X)

whose Schwartz kernel k € C° (X x X)) is a locally finite sum of local representations

of the form

k(z,y) = / V) o,y €)de,
]RN
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Yo O A=Y [ R nem@ivel ey,

where, for each localization U ¢ X, ¥ is a phase function and a is an element of

some Hormander class S™(U x U x RN). a is also called an amplitude or symbol.

DEFINITION 1.5. A Fourier Integral Operator A whose Schwartz kernel k €

Ce (X x X)) can be written in the form

k(w,y) = v ecinxrq(x, y, €)de

Rdim X

is called a pseudo-differential operator.

REMARK It is also possible to consider (truly) globally defined Fourier Integral Op-
erators (cf. e.g. [49,50,62]). However, we will not only want to work with Fourier
Integral Operators, but specifically gauged® Fourier Integral Operators. While
gauging locally is easy (by replacing the amplitude a with the family a(z)(z,y,§) =
H{HZ(N) a(z,y,£), for instance) and can be very advantageous (cf. M-gauges; Def-
inition 2.10 and Corollary 2.11), finding and working with global gauges is much
more difficult (though the rewards may be worth it). Hence, we will assume the
more general stance and allow gauged Fourier Integral Operators to have kernels

which are not given by globally defined densities.

Incidentally, this also implies that most of our calculations can be performed
locally. In other words, all integrals over the underlying manifold X are to be
understood as locally finite sums of integrals with respect to the respective charts.

IThe notion of gauged Fourier Integral Operators will be defined via the notion of gauged
poly-log-homogeneous distributions in chapter 2 and their application to gauged Lagrangian dis-
tributions in chapter 4. More precisely, a family of Fourier Integral Operators is gauged if and

only if it corresponds to a gauged poly-log-homogeneous distribution.
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In particular, since we will generally assume X to be compact, these locally finite

sums are, in fact, finite.

DEFINITION 1.6. Let ¥ € C(X x X xRV ) nC® (X x X x (RV ~{0})) be a phase

function. Then, we call

C(v) :z{(az,y,{) € X x X x (RN N {O}); d59(x,y,€) = 0}
the critical set of .

¥ is called non-degenerate if and only of the family of differentials

(da&jﬁ('rv Y, g))jENSN

is linearly independent for every (z,y,&) € C(U) where 03 ; denotes the derivative

with respect to the j* component of the third argument.

REMARK Note that the singular support, that is, the complement of the largest

open set on which a distribution is C'*°, of

cr()agr [ [ T Oa(ay e pta)deivola(ay) eC

is contained in the image of C(9) 3 (z,y,£) ~ (z,y) and the non-degeneracy con-

dition implies that C'(¢) is a manifold of dimension 2dim X (cf. (2.3.11) in [20]).
]

A closely related concept of “nice points” is the notion of regular directed points

(cf. page 92 in [61]) and the wave front set.

DEFINITION 1.7. (i) Letue CZ(R™). A point (z,£) e R"x (R™ ~ {0}) is

called a reqular directed point for u if and only if there exist neighborhoods
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U ofx andV of &, as well as g € CZ(R™) with gly =1, such that

VmeR.g IceRg ¥peV VAR, [F(qu) ()| <c(1+ Mgy n)

(i)

(iii)

w

(iv)

REMARK

(i)

where F denotes the Fourier transform.
Let ue C2(X)'. A point (z,€) e T¢ X is called a regular directed point for
u if and only if (x,€) is a regular directed point with respect to a chart.

Let ue CF(X)'. Then, we define the wave front set WF(u) of u as

F(u):={(z,8) e T4 X; (,€) is not a regular directed point for u} .

Let T' c T*X xT*X be a closed cone. Then, we define the Hérmander

space

Dr={veC>(X)"; WF(v)cT}.

(i) In other words, a point (z,¢) is a regular directed point if the
localization of the distribution near x has a Fourier transform which ap-
proaches zero faster than any polynomial in an open cone containing &.
Hérmander defined the spaces D with a pseudo-topology, that is, he de-
fined what convergent sequences and their limits are in these spaces. In
general, this does not imply that there is an actual topology consistent
with a pseudo-topology. In this case, however, there are multiple “nat-
ural” topologies on the Hérmander spaces Dr, i.e. the pseudo-topology
is generated by multiple different topologies. These have been studied in

[15-17].

We will have a brief look at these topologies in chapter 12 and 13;
though it should be noted that the “natural” topologies are at least quasi-

complete (cf. Proposition 29 in [17]), i.e. they are sufficiently nice for us
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to talk about Pettis-integrability and we do not need to dive into their

topological properties too deeply.

DEFINITION 1.8. Let A € T*(X?)\0 be a Lagrangian manifold® and A a Fourier

Integral Operator of the form A=Y, A; where A; has the kernel

/N eiﬂj(mvyvg)aj(x,y7§)d§
RN

such that each phase function vU; is non-degenerate and defined in an open, conic

subset U; Copen X x X x (RN < {0}),

Uj 00(19) 3 (‘Tvyag) = (:E,y,8119(117,:1;,5),8219(17,3;,5))

dim X-N;
. . . J
is a diffeomorphism onto an open subset UjA Copen A2 and aj € S™TE (X x

X x RNi) with
spta; € {(2,,1€) € X x X xRV, (2,,€) e K A teR o}

for some K Ceompact Uj. Then, we say A is an element of I (X x X,A) (or more

precisely, A has a kernel in I™(X x X,A)).

Let I' ¢ Ty X x Ty X be a canonical relation such that I' is a Lagrangian mani-
fold. Let o be the canonical 2-form in 7% X, then, I’ being a Lagrangian manifold

in T*X x T X with respect to 0 ® o is equivalent to I' being a Lagrangian manifold

2that is, A is a symplectic sub-manifold of dimension dim X which is, furthermore, isotropic,
i.e. the symplectic form restricts to zero. A manifold is called symplectic if it is equipped with a
closed non-degenerate 2-form. A bi-linear form w on a finite dimensional vector space V is called

non-degenerate if and only if V 3y~ (z~ w(z,y)) € V' is an isomorphism.

3Note that the image of C(9) 3 (z,y,&) = (x,y,-019(z,y,£), -020(x,y,£)) contains the

wave front set of the kernel of A; cf. Theorem 24 in [9].
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in T*X x T*X with respect to 0 ® (-o). If T is (the graph of) a C*(T*X,T*X)-
function, T" being conic means that I' is homogeneous of degree one. (see also

chapter 4.2 in [20])

DEFINITION 1.9. Let I' ¢ Ty X x Ty X be a canonical relation. I' is called
a homogeneous canonical relation if and only if I' is a Lagrangian manifold with

respect to o ® (—0).

DEFINITION 1.10. Let I' ¢ T§ X x T§ X be a homogeneous canonical relation.

Then, we call

Ap:= |J I™(X x X,T)

meR

the algebra of Fourier Integral Operators associated with I".

REMARK Aside from the fact that one might relax the conditions from a; = 0
outside of {(z,y,t£) € X x X x RNi; (2,9,£) e K A teR_,} in Definition 1.8 to
aj € S7° =N S™, all the assumptions above are more or less necessary for Ap

to form an associative algebra; cf. Theorem 2.4.1 in [20] and Example 1 in [35].

It should also be noted that A € A implies k4 € Dr if ka is the Schwartz

kernel of A (cf. Theorem 2.4.1 in [20]).

DEFINITION 1.11. Let I' € T{ X x T X be a homogeneous canonical relation.
Then, we call T canonically idempotent if and only if pro : T = T*X; (p,q) = ¢
is proper (pre-sets of compacta are compact), pro[['] € T*X is an embedded sub-
manifold, and pry: T — T*X is a fibration* of T' over pry[I'].

4A fibration is a continuous map 7 : X — Y between topological spaces X and Y satisfying the
homotopy lifting property for every topological space Z, i.e. for any homotopy f: Z x[0,1] > Y
and fo: Z — X such that f(-,0) = wo fo there exists a homotopy f: Z x[0,1] - X such that

f=mofand fo=f(,0).
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REMARK Note that I' being canonically idempotent implies that Ay is a *-algebra;

cf. Definition 3.1 in [35] and Theorem 4.2.1 in [39].

LEMMA 1.12. Let A be a Fourier Integral Operator with kernel k e I™(Xx X, A).

If m < —dim X, then A is of trace-class.

PROOF. Theorem 1.1 in [19] states that A € L(L2(X)) is of trace-class if k is
in the Sobolev space W3 (X x X) for some s > dimTX. Furthermore, Theorem 4.4.7
in [20] implies 1™ (X x X, A) € W (X x X) provided m < -42X _ s (we assume that
X is compact). In other words, m < —dim X implies I"™(X x X,A) ¢ W5 (X x X)

and, hence, the assertion.

for some s > d‘%x

O

In terms of the amplitude a € S™ (X x X xR, the value m = —N is critical since
for m < —N the trace integral (cf. Lemma 1.15) is well-defined. This follows from
the fact that the kernel k is in C'(X x X) provided that m < —N —I; cf. equation
(2.6) in [34]. However, we will only need continuity here since k € C(X x X') implies
ke Ly(X x X) because X is compact. This is interesting in its own right because
integral operators in L(Lo(X)) are Hilbert-Schmidt if and only if their kernels are

in Ly(X x X); cf. e.g. Example 11.12 in [18].

LEMMA 1.13. Let

Ko = [ "0 ate.y,€)de

be a localization of the Schwartz kernel of an A € Ay with a € S™(U xRYN) for some

m<-N and U Sopen X2. Then, ke C(U).

PROOF. Let ((2,5,))jen € U, (27.9;) > (2,9) € U, and Vj e N : a =

em(””f’yf")a(:vj,yj,~). By compactness of X and definition of S™, there exists a
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measurable v: RY — R such that
V(z,y) €U VEERY : fa(z,y, €)| <v(€)
and
JeeR,g VE RN N Bpn (0,1): 0() <c(1+ 1€l hw)

In other words, v € L;(RY) and (aj) oy is bounded by v. Furthermore, (a;) .y

id(z,y,

converges pointwise to e ')a(x, y,-) and (by L,-dominated convergence; cf. e.g.

Theorem 12.9 in [65]) in L, as well. Hence,
e’aeC (U L (RY)).
Using the Fourier transform F and the Dirac distribution dy at zero, we obtain

Baag) = [ "o aa, e
RN
=(2m) ¥ (2m) % / e 00 Y g (3, y,£)de
RN
=(2m) % F (7 a(x.y.)) (0)
=(2m) % (80 F) (""" a(z,y. ).
Since (27)2 (8o o F) is a continuous linear functional on Ly (RN ) and ¢?’a depends

continuously on (x,y) € U, we obtain the assertion.

DEFINITION 1.14. Let A be an algebra of Fourier Integral Operators on X.

Then, we call the sub-algebra
Actassical . LA e As A is of trace-class and has continuous Schwartz kernely

the classical sub-algebra of A.
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LEMMA 1.15. Let A be an algebra of Fourier Integral Operators and A €

Aclassical' Then,
trA:/ ka(z,z)dvolx ().
X

PRrROOF. The integral [y ka(z,z)dvolx (z) is well-defined since k4 is continu-

ous and X compact. Let (e,),e; an orthonormal basis of Ly(X). Then,
Veiel: i X2 C, (z,y) = e (x)e;(y)* volxz-almost everywhere
defines an orthonormal basis (¢,.;),ser in L2(X?). In particular,

kA = Z aL,iwL,i

vyiel
converges in Lo(X?) and, using a Friedrichs’ mollifier® ¢, — ddiag (¢ N 0) on X?

where

Vi € C(X2) : Baing () = /X (i, 2)dvolx (),

we obtain

/kA(x,x)dvolx(x):lim/ kapedvol x2
X eNo X2

=lim Z amwi)j (pEdVolxz
ex0Jx2 i jer

- li . . ipedvol
lim > /X2 ¥ jpedvol e

igel

= > i [ ei(w)ej(z)*dvolx (x)

igel X

= Z ;i / ej(z)ej(z)*dvolx (z)
jel X

:Zaj;j
gel

5@5 = Xe * Odiag in local trivializations for some family (Xg)se(oyl) satisfying that there exists
ax € C(R?2Im XY with Jr2dimx x(@)dz =1, xc(2) = e x(e71z) and limg\ o Xe = 0 in the sense

of distributions.
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Yoo | edm)ej(x)dvolx x)/ ej(y)ei(y)*dvolx (x)
X

Lyi,5€l

5 / o e (@)es(y) e (e (x) dvolya (z,y)
vyi,5el J X2

=Z kA z,y)e;(y)ej(z) dvolxa (z,y)
jel

=2 (ep / e(y)avolx (v))

jgel

:§<€j7Aej)L2(X)

La(X)

=trA

since ¥ ez (€5, Aej)L2(X) is absolutely convergent.

O

Hence, decreasing the order of a Fourier Integral Operator sufficiently yields a
trace-class operator. Thus, the idea is to replace a Fourier Integral Operator by a
holomorphic family of Fourier Integral Operators such that the family maps into
the trace-class operators for some open subset of the domain of holomorphy (which
is assumed to be connected). In chapter 2, however, we will consider a different
class of families of distributions which will turn out to be suitable to treat certain

algebras Ar.



CHAPTER 2

Gauged poly-log-homogeneous distributions

In this chapter, we consider distributions of the form

/ (=) (€)dvoln_ i (€)
R, xM

>1

where M is an orientable,* compact, finite dimensional manifold without boundary

and « is a holomorphic family given by an expansion?

a:ao+ZaL
el

where I ¢ N, ag(z) € L1(R,; x M) in an open neighborhood of {z € C; 9i(z) < 0}
and each of the «,(2) is log-homogeneous with degree of homogeneity d, + z € C

and logarithmic order [, € N, that is,
3d, € C=(C,CM) VreRy, Yve M: a,(2)(r,v) =r“"*(Inr) a,(2)(v).

We will furthermore assume the following.

IReplacing (:\z(z)(r,f)dvoanxM(r7 &) by some family dw(z)(r,£) allows us to also treat non-
orientable manifolds but we will not need this in the following and choose orientability for the

sake of simplicity.

2This is not meant to be an asymptotic expansion but an actual identity. However, for a
classical symbol a with asymptotic expansion ¥ ey a; where a; is homogeneous of degree m —j
for some m € C, it is possible to choose a finite set I = {0,1,...,J} and ag will correspond to

J
a— Zj:() Am—j -

This is completely analogous to the Kontsevich-Vishik trace, i.e. splitting off finitely many
terms with large degrees of homogeneity while the rest is integrable. The only difference is that
those terms (that have been split off) might not regularize to zero anymore.

41
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e The family (PR(d,)).cr is bounded from above. (Note, we do not require

R(d,) > —o0. Yeel: PR(d,) =42 is entirely possible.)

The map I 53¢+ (d,,l,) is injective.

e There are only finitely many ¢ satisfying d, = d for any given d € C.

The family ((d, —6)™"),er is in £o(I) for any 6 € C \ {d,; v e I}.

3

Each ¥,.; @,(2) converges unconditionally in Lq(M).

Any such family « will be called a gauged poly-log-homogeneous distribution. Note
that the generic case (that is, applications to Fourier Integral Operators with am-
plitudes of the form a ~ ZjéNo am-;) implies that I is a finite set and all these

conditions are, therefore, satisfied.

ExAMPLE Let A(z) be a pseudo-differential operator on an N-dimensional man-
ifold X whose amplitude has an asymptotic expansion a(z) ~ ¥,y a;(z) where
each a;(z) is homogeneous of degree m — j + z. Then, we may want to evaluate the

meromorphic extension of
tr A(z) :/ / a(z)(z,z,&)dédvolx ()
X JRN

:/X/MaBRN a(2)(x, 7, €)dédvol x ()

+/X/BRN(O,I)a<z>(w7x7§)d§dV01X(x)

at zero. The poly-log-homogeneous distribution here is

(%) /X/R>1XBBRN a(z)(z,z,&)dédvol x ().

3Unconditional convergence of ¥,c; @, (z) in Li(M) may also be replaced by the slightly

weaker, though more artificial, condition ¥,cr Hdb(z)HQLI(M) < oo.

However, we need at least conditional convergence or ) ,.; o, would not make sense, and
having only conditional convergence (rather than unconditional convergence) would give rise to

complications later on, as we will split off critical terms and treat them separately.
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At this point, we have many possibilities to write it () in the form

/ a(2) (€)dvols_ i (€).
]RZIXM

The easiest choice is M = OBy~ and T := {j € N; R(m) —j > -N}. This ensures

that

LM@@%Q—Z%@@w@mdﬂ@

jel

is integrable in Ry, x 0Bg~. Furthermore, having a finite I ensures that all of the

conditions above are satisfied and « can be defined by

ao(2)(r,v) ::/X a(z)(z,z,mv) = > a;(2)(z,z, rv)dvol x (z)

jel

and

a;(z)(r,v) ::/Xaj(z)(a:,x,rl/)dvolx(:c):rmﬂ‘ﬁ/Xaj(z)(:zr,a:,u)dvolx(:c)

=:a;(2)(v)

for jel.
u

REMARK Note that these distributions are strongly connected to traces of Fourier
Integral Operators, as well. In fact, Guillemin’s argument in [34] relies heavily on

the fact that the inner products (u(z), f) at question are integrals of the form

/ a(2)(€)dvole_ o,y (€)
R,,x0Bgn

where « is a gauged polyhomogeneous distribution; cf. equation (2.15) in [34].
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If the conditions above are satisfied, we obtain formally

/ a(z)dv01R>1xA4 :/ ao(z)dvolR>lxM + Z aL(Z)dV01R>1><M
Ry, xM - R, xM N el JR, xM -
=19(2)eC
=70(2) + Z/ / aL(z)(Q,l/)gdidevolM(u)dg
el JR,, J M
=10(2) + ), pdimMrdivz (1 g)l" dg/ &, (z)dvolys
el JR, M
[ S —
=i, (%) =resa, (z)eC

:7'0(,2) + Z CL(Z) res aL(Z)

vel

which now needs to be justified.
LEMMA 2.1. ¢,(2) = (-1)%*, ! (dim M +d, + z + 1),(“1)

PRrOOF. Let I'y; be the upper incomplete I'-function given by the meromorphic

extension of
Tyi(s,z) = / t e tdt (R(s) >0, zeRy).

T, satisfies T',;(s,0) = I'(s) where I" denotes the (usual) I'-function, I'(s,00) = 0,

and 05T i (s,2) = —2*Le™®. Then, we obtain

Tui(l+1,-(d+1)Iny) ! _—62Fui(l +1,-(d+1) lnx)$
(Ko Sy (=(d+1))H1 ) (z) = I
(-(d+1)Inz)leld+)ne
(—(d+1))x

(ln(E)l(EdJrl

x

=z¢(Inz)".

Hence, for d < -1,

_(=nH
/]R (Ed(lnfﬂ)ld.’lf —W
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which yields

(_1)lL+1lL!
(dim M +d, +z+ 1)

e(2) = /R g (In g) do =
>1

in a neighborhood of R__ 4, 1/ 4 -1 (because any real analytic function can be
extended locally to a holomorphic function) and, thence, by meromorphic extension
everywhere in C \ {-dim M -d, - z - 1}.

O

Since the resca, are holomorphic functions, we now know that },.;c, resa,
is a meromorphic function with isolated poles only (if it converges), because the
assumption ((d, + 8)™1),er € £o(I) implies that there may be at most finitely many

d, in any compact subset of C.

LEMMA 2.2. For every z € Cx{-dimM -d, -1; v € I}, ¥, c.(2)resa,(2)

converges absolutely.

PROOF. By assumption, (¢,(2)).er € £2(I) and ¥,.; &, (2) converges uncondi-

tionally in L;(M). This allows us to utilize the following theorem.

2, pell,2]
THEOREM (THEOREM 4.2.1 IN [43]) LetpeR,q, ¢ = , and ¥ jen T

p , peER,,

converges unconditionally in Ly. Then, ¥y |2;]  converges.
P

Hence,

> led(z)resan(2)] < Y leu( a2 1, ar)

vel el

- H(|cb(z)| \|&L(z)HL1(M>)

el lley (1)

= [eu ety (18 sa0), o,

=1Cc(2))rerlnry 4 /zj & (2) 7, (ary < oo
LE

vel
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DEFINITION 2.3. Let o be a gauged poly-log-homogeneous distribution. Then,

we define the (-function of o to be the meromorphic extension of

C(a)(2) ::/]R a(z)dvolr_ <,

>1%

i.€e.

s (-1 I res o, (2)
@)(z) =mo(2) + ; (dim M +d, + z + 1)1L+1 '

Now, that we know ((«a) exists as a meromorphic function, we will calculate

its Laurent expansion.

DEFINITION 2.4. Let f be a meromorphic function defined by its Laurent ex-
pansion Y.,z an(z — 20)" at zo € C without essential singularity at zg, that is,
IN € Z Vn € Z_y + an = 0. Then, we define the order of the initial Laurent

coefficient oile,, (f) of f at zo to be
oile,, (f) :==min{n € Z; a, 0}
and the initial Laurent coefficient ilc,, (f) of [ at 2o

ilez, (f) = aoile., (f)-

LEMMA 2.5. Let a =ag+ Y,y and B = Po+ X, B, be two gauged poly-log-
homogeneous distributions with «(0) = 5(0) and resa;(0) = 0 if I; is the maxi-

mal logarithmic order with d; = —dim M - 1. Then, oilco({(a)) = oilco(¢(B)) and

ileo(¢(a)) =ileo(¢(B))-

In other words, oilcg({(a)) and ilco((()) depend on «(0) only and are, thus,

independent of the gauge.
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PRrOOF. Since a(0) = B(0), we obtain that z — ~(z) := A=) 5 o gauged

z

poly-log-homogeneous distribution again. Furthermore,

oileg(¢(7)) > min{oileg(¢(a)), oileg(C(8))} = -1 = ~I; - 1

holds because each pair (d,,!,) in the expansion of v appears in at least one of the
expansions of @ or f. This implies that z = 2/¢(7)(2) = 271 (¢(a)(2) - C(B)(2))
is holomorphic at zero (equality holds for fR(z) sufficiently small and, thence, in
general by meromorphic extension). Hence, the highest order poles of {(«) and

¢(B) at zero must cancel out which directly implies oilco({(a)) = oilco(¢(8)) and

ileo(¢(a)) =il (C(B)).

LEMMA 2.6. Let a =g+ 2 ,c;, and B = PBo+ X ,cp B, be two gauged poly-log-
homogeneous distributions with «(0) = (0) and Ve e Tul': d, + —dim M - 1.

Then, ¢(a)(0) = ¢(8)(0).

PROOF. Again, since a(0) = §(0), we obtain that z — v(z) = 22)=B2) g 4

z

gauged poly-log-homogeneous distribution and oilco(¢ (7)) > 0. Hence

¢(a)(0) = C(8)(0) =reso

z

(2 @) - <<ﬂ>(2>) = reso ((7) = 0

where resg denotes the residue of a meromorphic function at zero.

DEFINITION 2.7. Let oo = apg + 3 c; @, be a gauged poly-log-homogeneous distri-

bution and I, :={vel; d,=-dimM - 1-z2¢}. Then, we define

fpzo(a) o Z o, =0+ Z Q.

LeIZO LEI\IZO

COROLLARY 2.8. ((fpoa)(0) is independent of the chosen gauge.
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DEFINITION 2.9. Let o = g + ). ,c; v, be a gauged poly-log-homogeneous distri-
bution and resay, # 0 for some 1 € Iy. Then, we say {(a) has a structural singularity

at zero.

REMARK Note that the pole structure of («) does not only depend on the resa,
but also on derivatives of «. A structural singularity is a property of «(0) in the
sense that it cannot be removed under change of gauge. More precisely, choosing
B such that «(0) = B(0) does not imply that the principal part of the Laurent
expansion of ((«) — ¢() vanishes. However, if all resc, vanish (¢ € Iy), then there
exists a 8 with «(0) = 8(0) such that ¢(8) is holomorphic in a neighborhood of
zero (e.g. 8 being M-gauged; see below). Having a non-vanishing res«, for some
¢ € Iy, on the other hand, implies that every ¢(3) with «(0) = 8(0) has a pole at

zZero.

DEFINITION 2.10. Let o = o + X ,c; v, be a gauged poly-log-homogeneous dis-
tribution. If all &, are independent of the complex argument, i.e. «,(z)(r,v) =
r*2 (Inr)ta, (0)(v) = r*a,(0)(r,v), then we call this choice of gauge an M-gauge

(or Mellin-gauge).

REMARK The M-gauge for Fourier Integral Operators can always be chosen locally.

COROLLARY 2.11. Let o = ag + X ,c7 @, be a gauged poly-log-homogeneous dis-

tribution.

(1) If o is M-gauged, then all resa, are constants.
(ii) If resa,(0) =0 for some v € I, then the corresponding pole in ((a) can be

removed by re-gauging.
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(i) If resa,(0) = 0 for some v € Iy, then the corresponding pole in () in
independent from the gauge. In particular, res,(0) does not depend on

the gauge.

PROOF. (i) trivial.

.. . . (—l)l”lll,!resaL(z)
(ii) The corresponding pole contributes the term (@ M )T to the ex-

pansion of {(a). Choosing an M-gauge yields

(D" resa(2)  (=1)%* U res o, (0)

(dimM +d, +2+ 1) (dimM +d, +2+1)""

by holomorphic extension.
(iii) Lemma 2.5 shows that oilco((e,) and ilco(¢(c,)) are independent of the

gauge. Since, resa, (0) # 0, we obtain oilco¢(«,) = -1, - 1 and

ﬂCOC(aL)

res CYL(O) = W

REMARK Suppose we have a gauged distribution « such that
VzeC V(r,§) eRyy x M a(z)(r,&) =r*a(0)(r,§)
is satisfied and we artificially continue a by zero to R, x M. Then,

/ (=) (r.€)dvol_ car (1) = / plim gz / a(0)(r, €)dvolys (€) dr
R, xM R, M

=:A(r)

=M(A)(dimM +z+1)

holds where M f(2) = [, t*7'f(t)dt for f: R,y — R measurable, whenever the
>0

integral exists, denotes the Mellin transform. Hence, the name “M-gauge”.
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PROPOSITION 2.12 (Laurent expansion of ((fpya)). Let o = ag+ Y ,cr v, be a
gauged poly-log-homogeneous distribution with Iy = @. Then,

()= 3 SO

neNg

holds in a sufficiently small neighborhood of zero.

Let 5 = Bo+ X, B be a gauged poly-log-homogeneous distribution without
structural singularities at zero, i.e. Y€ I : resfB, = 0. Then, there exists a gauge

B such that

Z’ﬂ

((B) ()= 3 SO

neNg n!

holds in a sufficiently small neighborhood of zero.

PROOF. The first assertion is a direct consequence of the facts that the n'®

9"1(0) and

Laurent coefficient of a holomorphic function f is given by =

9" ((a) = 8”/ a dvolg_ xn = 0"a dvolg_ xym = (0" ).

Ry, xM Ry, xM

Now

|
neNy n:

follows from the fact that we may choose an M-gauge for 8, with ¢ € I which yields

¢(B) = ¢(fpo ).

O

M-gauging will, furthermore, yield the following theorem which can be very
handy with respect to actual computations. In particular, the fact that we can
remove the influence of higher order derivatives of «, with critical degree of homo-

geneity will imply that the generalized Kontsevich-Vishik density (which we will
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define in chapter 7) is globally defined, i.e. for M-gauged families with polyhomo-
geneous amplitudes the residue trace density and the generalized Kontsevich-Vishik

density both exist globally (provided the kernel patches together).

THEOREM 2.13. Let a =g+ Y 5, be a gauged poly-log-homogeneous distri-

bution. Then, there exists a gauge & such that

l,+1 es ar n a
3) (2) = Z( )", res L(O) Z ¢(9"fpo )(O)Zn

2+l n!

ely neNg

holds in a sufficiently small neighborhood of zero.

ProoOF. This follows directly from Proposition 2.12 using an M-gauge for a,
with ¢ € I.

O

REMARK In general, there will be correction terms arising from the Laurent ex-

pansion of res «,. Incorporating these yields

1\, +1 res o 1, 1\ +1 19 res o
C(Oé)(z):Z(( 1)4+17, I ves L(o)+zl( 1)1+17,19" res L(O)ZMJ)

1,+1 |
ely z n.

. (c(a”fpoaxm .y (—1>h“zb!a”“b“resm(@))Zn

el n! < (n+1,+1)!

COROLLARY 2.14. Let o = apg + X,c7, and B = By + ¥.,c1 B, be two gauged
poly-log-homogeneous distributions with «(0) = B(0) and such that the degrees of

homogeneity and logarithmic orders of a, and B, coincide. Then,

l +1 " res _
C(a)(z) -C(B)(z) = Z 1,10 (o ﬁ‘)(o)zn—ll,—l

n!

elp n=1
Ly SO IR (2= 5)O)
neNg n!

~D)lr 19+  res (o, - B,) (0) o

(-1 !
t2 ) (n+1,+1)!

neNg telp

holds in a sufficiently small neighborhood of zero.
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In chapter 4, we will see that Corollary 2.14 applied to pseudo-differential

operators implies many well-known formulae, e.g. (2.21) in [47], (9) in [55], and
(2.20) in [56].

EXAMPLE Let a=ap+Y,;a, and B = Bo+2.,c; B, be two gauged polyhomogeneous

distributions with «(0) = 5(0) and such that the degrees of homogeneity of o, and

B, coincide. Then, #Iy <1 and (because) all [, are zero. Hence,

—res« i o n+1 res o
a)(z) =S “resa,(0) 5 (<(<9 fro)(0) _ 5 0 L(O))Zn

n! (n+1)!

el neNg ely

and

(o))~ = T (C(a"f”f’(“‘ﬁ VO 5 - res(““m(o))zn

n! st (n+1)!

neNg
holds in a sufficiently small neighborhood of zero. This shows that the residue trace
— Y e, tes a, (0) is well-defined and independent of the gauge for polyhomogeneous

distributions. Higher orders of the Laurent expansion depend on the gauge.

Furthermore, ¢(«) - ¢(3) is holomorphic in a neighborhood of zero and

(¢(@) = ¢(8)) (0) =¢(fpo (= 8))(0) = 3 Ores (e, - B,) (0)

Lely

=((fpoc) (0) = C(fpo3)(0) = 3 Ores (a, = 5,) (0)

ely
=0
=— > Ores(a, - B,) (0).
ely
Defining 7,(2) = M and y(z2) = M we, thus, obtain

(¢(a) =¢(8)) (0) == 3 dres (a, = 5,) (0) = = 3 resy,(0) = reso ((7)-

velp telp
Since res~,(0) # 0 implies that it is independent of gauge, we obtain that resy ()

is independent of gauge which directly yields

(C(a) =¢(B)) (0) =reso ((v) =reso ¢ (O = B)) .
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In other words, (¢(«) —¢(3)) (0) is a trace residue.

THEOREM 2.15 (Laurent expansion of {(«)). Let a = ag+ Y5, be a gauged
poly-log-homogeneous distribution. Then,

Lo (=)0 [, 0md, (0)dvolyy

@)= X

relp n=0

nl Zl+l-n

fR>1xM 9" ap(0)dvolr_, xm .
= z

>

|
neNg n:

. Z Z Zn: (_1)lL+j+1(lL +j)!fM8n—jdL(O)dV01Mzn
neNg tel\Ip j=0 n'(dlmM +d, + 1)lb+j+1
l, n+l,+1 ~
5 3 UL 0 0ty

neNg telp (n+lb + 1)'

holds in a sufficiently small neighborhood of zero.

In particular, if « is polyhomogeneous, we obtain

fRzlxM 8”0&0(0)dV01]R21XM Zn

- OCL(O)dVO].M
o) =y, 2 .y
velp z neNg
+ Z Z i (—1)j+1j!fM 8"’jab(0)dV01Mzn
neN, teI\Ip j=0 n'(dlmM + dL + 1)j+1
+ Z Z _fM 8n+1o¢L(O)dV01M

neNO Lely (7’1, + 1)'

n!

n

in a sufficiently small neighborhood of zero.

ProOOF. Note that having a gauged log-homogeneous distribution

B(2)(r,€) = r** (lnr) 5(2) (€)

the residue res 8 = f M B dvolys does not depend on the logarithmic order. Hence, we
may assume without loss of generality that [ = 0 and we had a gauged homogeneous

distribution in the first place, i.e. replace 8 by

B(2)(r,€) =1 B(2)(€)
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Then, we observe

0" B(2)(r,€) = Z( et ()0 I3(2)(©)

and
IO = (e H@(O) ()= 5 () ) e
for every n € Ny, r € R, and £ € M. In particular, for r = 1, we deduce
0"5(2) =0"B(2)\ur,
i.e.
O resf =" / B dvoly = / " dvoly = / "B dvolyy.
M M M
Especially, for 8 homogeneous, we have B = 3 and, therefore,
0" res 3 :/ O™ B dvoly, :/ 9" B dvolyy :/ O" 3 dvoly;.
M M M
Hence,

(O ipo) ()= [ 0 au(z)dvole s

o S U1
velNIp j=0 (dlmM + dL +2+ 1)lb+j+1 '

This directly yields

Cla)(2) =

ely

. (c(anfpoaxm Ly (DL 8”*““6a(0>dvolM)2n

n! (n+1,+1)!

((—1)h+11L!fMdL Ydvolys IZ 1)1L+1ZL!fM6"dL(O)dvolM)

Zlﬁ—l n! Zlﬁ—l—n

neNg velp

( 1)l +1l 'fM anal, )dVOl]W fR21XJW 8n060(0)dV01R21XM .
' ZN n! z
ne 0

n (=D)L 5)! [y, 0776, (0)dvol
oy oy s EO U L e Ol
neN, el~To j=0 n!(dim M +d, + 1)L+5+

%)

rvelp n=0 n! Zl o

(-1)"* L [y, 0™ &, (0)dvoly
(n+1,+1)! :

DY

neNg telp
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L (=1)k+1,) [, 076, (0)dvoly Ja_,xar "0 (0)dvole,_ -

>

1elp n=0 n! Zl+l-n e, nl
. » z": (-1l (1, + ) [y, 0" &, (0)dvolyy n
neN, veINIg j=0 n!(dim M +d, + 1)l1,+j+1
N Z (_1)1L+11L!IM 8n+lL+1O~[L(O)dV01M n
neN, tely (n+1,+1)! :

DEFINITION 2.16. Let o = ap + ),y o, be a gauged poly-log-homogeneous dis-
tribution such that («) is holomorphic in a neighborhood of zero. Then, we define

the generalized -determinant
det¢(a) = exp (¢(a)'(0)) -

REMARK This generalized (-determinant reduces to the (-determinants as studied
by Kontsevich and Vishik in [47,48]. In other words, we do not expect it to be
multiplicative if a corresponds to a general Fourier Integral Operator. Though
an interesting question, we will not study classes of families of Fourier Integral

Operators satisfying the multiplicative property, here.

Knowing the Laurent expansion of {(«) we know that

(@)= ap0)dvole, e

>1%
Z 21: (_1)l['+j+1 (lL +])' fM 61_j0~4L(0)dV01]W
+ -

(dim M +d, + 1)l+i+1

velNIp j=0
. Z (—1)lb+1lL!fM 9%*2&,(0)dvolyy
T (I, +1)!
holds. In particular, if Iy = &,
@)= ap0)dvols ar

R, xM

DML+ )y, 977E (0)dvolas

5 (
i L;J;J (dim M +d, + 1)k+5+1
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If o were polyhomogeneous we obtained

(()'(0) = ap(0)dvolg s
R, xM
Lo(-1)7*t fM 0o, (0)dvolys "0 \dvel
2 Z (dim M +d, +1)i+1 =2, | «al(0)dvoly
velNIp j=0 2 elp J M

— ! O)
— ! O d 1 " + res(aL)(
/RleM%( Javols, s + ), dimM +d, +1

velNI

. Z resca, (0) _ Z res(a!') (0)

elNIp (dlmM + dL + 1)2 Lely

If we were to choose an M-gauge, we would find d&, = 0 and may assume Iy = @
(¢(a) cannot have a structural singularity and non-structural singularities do not
appear within the ¢-function of an M-gauged poly-log-homogeneous distribution),
ie.

(-1)b (1, + 1)! [, @.(0)dvolyy

((a)'(0) = QIO(O)dVOIRyXM * Z (dim M +d, +1)1+2

R, xM elNIy
1)k (1, + 1)! res a, (0)

= o(0)dvolg_ xar + ( L -
/R oy 20(O)dvolz as ZI (dim M +d, + 1)L+

>1%

and, for o additionally polyhomogeneous,

0)
’oz/ (0)dvoln_pr + Y — 10 .
(@) (0) R>1><Ma0( Jvole,, M+Ld (dim M +d, +1)2

REMARK Note that ((«)'(0) depends on the first 1 + max ({l, +1; ¢ € Ip} u{0})
derivatives of a. Hence, the generalized (-determinant does so, too, and is, thus,

not independent of the gauge.



CHAPTER 3
Remarks on more general gauged

poly-log-homogeneous distributions

The results obtained for gauged poly-log-homogeneous distributions can largely
be generalized. In fact, the degree of homogeneity d,(z) can be chosen arbitrarily
as long as it is not germ equivalent to a critical constant. In this chapter, we will

investigate these direct generalizations and consider distributions of the form

/ () (€)dvolp_ i (€)
RZIXM

where M is an orientable, compact, finite dimensional manifold without boundary

and the holomorphic family « is given by an expansion

a:a0+ZaL
el

where I ¢ N, ag(z) € L1(R,; x M) in an open neighborhood of {z € C; 9i(z) < 0}
and each of the «,(z) is log-homogeneous with degree of homogeneity d,(z) € C

and logarithmic order [, € N, that is,
3a, e CM VreRy, Yve M : a,(2)(r,v) = r* @ (nr)ta,(2)(v).
We will furthermore assume (for now) that every d, is an entire function,
Vze[-dimM -1]d, : d|(z) #0,

the family (93(d,(2))).er is bounded from above for every z € C, sup,.; R(d,(z)) —
—00 (R(z) - —00), the maps I 5 ¢+ (d,(2),l,) are injective, there are only finitely

many ¢ satisfying d,(z) = d for any given d,z € C, the families ((d,(2) +)™)ses

57
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are in ¢5(I) for any z € C and § e C~ {d,(2); t € I}, and each ¥,.; &, (z) converges
unconditionally in L;(M). Any such family « will be called a gauged poly-log-

homogeneous distribution with holomorphic order.

If the conditions above are satisfied, we obtain

/ a(z)dvolR>1xM = Oéo(Z)dVOIR>1xM+Z aL(z)dvolR>1xM
R, xM = R, xM “ el JR xM :

=:i19(2)eC

~ (-1 Ires o, (2)
=To(2) + Z, (dim M + 1+ d, ()l

which converges absolutely. For d,(0) # —dim M - 1, we observe

dim M+1+d, z)lett
(-D)* Y res o, (2) (=1)"* !, es ( ((dimI\/J[rier(L(z)z;)l)ﬁl o‘b) (2)

(dim M +1+d,(2))+t (dim M + 1 +d,(0) + z)l+1

in a neighborhood of zero. Hence, let

5, (dim M +1+d,(0) + z)k*!
(dimM +1+d,(z))0+!

Bu(2)(r,€) = r®O* (lnr) a,(2)(€)-

=B.(2)(€)

For d,(0) = —dim M - 1, there exists an entire function J, such that
dim M +1+d,(2) =d (0)z +6,(2)2*

and, since d] (0) # 0, we obtain that z — d, (0)+4,(z)z has no zeros in a neighborhood

of zero. Then, we observe

(-1)4*1, res o, (2) (=1)"+17, I ves o, (2)

(dim M +1+d, ()01 (d/(0)z +5,(2)22)l+1
B (-1 Ires a, (2)
2 (dr(0) + 8,(2) )"
—1)k+1 _ a(®)
(~1)k zL!res((d:(om(z)z)w)
ZlL+1
—1)e+1 _a(m
(-1) lb'res((d;(o)mL(z)z)ml)
(dim M + 1 +d,(0) + 2!
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and define
. (2)(&)
(d(0) +6,(2)2)"""

=B.(2)(€)

Bu(2)(r,€) = ™= (Iny)"

Thus, we obtain the following observation.

OBSERVATION 3.1. Let a =g+ X5, be a gauged poly-log-homogeneous dis-
tribution with holomorphic order. Then, the -function ((«) is germ equivalent to
¢(B) with B8 as defined above. Thus, (&) inherits all local properties from ((B),
i.e. all local properties of C-functions associated with gauged poly-log-homogeneous

distributions.
In particular, if resa,(0) # 0 with d,(0) = —dim M — 1 and 1, mazimal, then
the initial Laurent coefficient of ((a) is

(-1, Ires o, (0)
Ty

and the {(«) has the Laurent expansion

~1)*, L[ 0B, (0)dvolyy

n! ZlLJrl—n

L
MOIOEDIDY :

rvelp n=0

+ Z fR21XM anaO(O)dVOlRleM P

|
neNg n.

o (D)8, + ) [, 0779 B.(0)dvolas
NPIRP DY Al(dim M + d, + 1)l+i+1 ‘

neNy telNIg j=0

DY

neNg telp

(=1)4*1) [, 016, (0)dvolas
(n+1,+1)! ?

i a sufficiently small neighborhood of zero.

PROOF. Note that zero is either a pole of ((«) or a regular value, that is, we
can choose a neighborhood uniformly for all + with d,(0) # —dim M - 1. Since there

are only finitely many ¢« with d,(0) = —dim M — 1, we obtain germ equivalence of
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the series representations and, since the Laurent expansion was solely determined

from the series representation, the observation follows.

O

We may generalize this even further. Suppose « is meromorphic in C, that is,
holomorphic in £ Copen € such that C\ Q is a set of isolated points in C. Let 0 € §2
and let « satisfy all properties of being a gauged poly-log-homogeneous distribution
with holomorphic order but on €2 instead of C. Then, we call @ a meromorphic
gauged poly-log-homogeneous distribution with respect to zero. Since 0 € €2, we
directly obtain that « is locally a gauged poly-log-homogeneous distribution and

still all local properties are preserved just as they are in Observation 3.1.
Now, we can even drop the assumption
Vze[-dimM -1]d, : d;(2) #0

in the definition of a meromorphic gauged poly-log-homogeneous distribution with

respect to zero (in exchange for an increased logarithmic order). Instead, let
d(z)=-dimM -1+4,(z)z™

with 6,(0) # 0 and call any such « a generalized meromorphic gauged poly-log-

homogeneous distribution with respect to zero. Then,

(-1 I res o, (2)
(dim M +1+d,(z))0+!
(=D res o, (2)
(6,(z)zm )l
(-1)%+, res (5;lt’1ab) (2)

ZmL(lL+1)

(_1)mL(lL+1)(mL(lL + 1) _ 1)! res ((_1)mL(lL+1)+lL+1W(SL—ZL—IQL) (Z)

mu(l+1)

()™ D 1+ 1) = Dbres ()™ 0D g0 ) (2)

(dim M +1+d,(0) + z)m(L+1)
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shows that choosing

_1)mL(lL+1)+lL+1lL!

(m,(l, + 1)~ 1)!

B,(2)(r,€) = r (O (1 pyme )t 8.(2) " a (2)(€)

=B.(2)(€)

for ¢ € I with d,(0) = —dim M -1 also yields germ equivalence and, again, all local
properties are preserved.

Hence, we can state the following Definition and Theorem.

DEFINITION 3.2. Let ©Q Copen C, Qo Sopen 2, 0 € Q, and a = (a(2)):c a

holomorphic family of the form

a:a0+ZaL
el

where
e JCN,
o VzeQ: ap(z) e L1(Ryy x M),
o VzeQo: a(z)eLi(Ry x M),
e cach of the a,(2) is log-homogeneous with degree of homogeneity d,(z) € C

and logarithmic order [, € Ny, that is,
Ja, eCM VreR,, YveM: a,(2)(rv) = G (Inr)ea, (2)(v),

e cach d, is holomorphic in 2,

e none of the d, is germ equivalent to —dim M -1 at zero (i.e. none of the
d, is the constant —dim M - 1),

o the maps I3~ (d,(2),l,) are injective,

e there are only finitely many v satisfying d,(z) = d for any given d € C and
z€e),

o the families ((d,(2) +0)™1) s are in £o(I) for any z € Q and § € C ~

{d.(2); tel},
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e and each ¥, &, (2) converges unconditionally in Ly (M).
If every connected component of () has non-empty intersection with g, then we

call o a generalized gauged poly-log-homogeneous distribution and

1)1 res o,
¢(a) ::/ aodvolelxMJrZ )

R, xM vel (dlmM +1+ db)l”'l

the associated C-function of a.

Otherwise (in particular, if Qo = @), we call a an abstract generalized gauged

poly-log-homogeneous distribution and

(-1 res
= dvolr_
() /]R xMaO VOB M ; (dim M + 1 +d, )k+1

21

the associated C-function of a.

REMARK Because abstract generalized gauged poly-log-homogeneous distributions
have empty 2y on some connected component of €2, we will still obtain the Laurent
expansion and all other local properties derived from the series expansion we used
to define the (-function here but applications to Fourier Integral Operators might
lose all properties that are obtained from meromorphic extension of the classical

trace, e.g. traciality.

THEOREM 3.3. Let = ag+ Y c; @, and 5= Bo+X.,c; B, be (abstract) generalized

gauged poly-log-homogeneous distributions with By = oy,

5, (dim M +1+d,(0) + z)l*!

Bu(2)(r,€) = r® O (lnr) (dim M +1+d,(z))l+!

a,(2)(¢)

=B.(2)(&)
for ve I with d,(0) # —dim M -1, and

_1)mL(lL+1)+lL+1lL!

(m.(l, + 1)~ 1)!

B,(2)(r,€) = r O+ (1 pyme )t 8.(2) " a (2)(€)

=.(2)(&)
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for v € I with d,(z) = —dimM -1+ §,(2)2z™ in a neighborhood of zero and 6,

holomorphic such that 6,(0) # 0.

Then, the (-function ((«) is germ equivalent to ((B) at zero. In particular,

¢(a) has the Laurent expansion

() (=) = Z m[,(lil)—l (_1)m[,(lz,+1)(mb(h +1) - 1)!fM 5”3L(0)dV01M

el n=0

+ Z fRzMM anaO(O)dVOl}RleM P

|
neNg n.

n! ZmL(lL+1)—n

Py Y i (-4 (1, + ) [, an-jBL(o)dvolen

: l,+7+1
nelly veT~To 120 n!(dim M +d, + 1)4+3

253 (~1)m D (my (1, + 1) = 1)1 [, 0D B (0)dvolyys |,
+ z
neNg el (n+mb(lL + 1))'

in a sufficiently small neighborhood of zero.



CHAPTER 4

Application to gauged Lagrangian distributions

If we consider a dual pair (u(z), f) where u: C - I(X,A) is a gauged La-
grangian distribution (I(X,A) is the space of lagrangian distributions with micro-
support in the closed conic Lagrangian sub-manifold A of T* X \ {X x {0} }; cf. [34]

and chapter 25 in [38]), then we obtain integrals of the form

W)= [ [ e Oaz)@,6) de dvolx(a),

In particular, we are considering distributions of the form

() = /R (s, ).

If 9 is non-degenerate, then Theorem 25.1.3 in [38] shows that the Fourier transform

of u; satisfies (in local coordinates)

Vy e RE™ X\ Bramx ¢ Fui(y) = e HWy(y)

dim X

with A = {(H'(y),y); y € R¥™X < {0}} where v e S™ i~ (Rdimx) if uy e
I ompact (Rdimx ,A) and Bpgaimx is the closed unit ball in RY™X  Furthermore,

Theorem 25.1.5" in [38] shows that v is poly-log-homogeneous if and only if a is

and we obtain

up () :/B ei<x’y>}"u1(y)dy+/ ei<x’y>7iH(y)v(y)dy
dim X

Rdim X \BRdimX

=70 (x)

=7 (z) +/ )= W)y, (1) dy
Rdim X \B]Rdim X

=7o(x) +/ ei“’H’(y)*y)v(y)dy.
Rdim X \B]Rdim X

64
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Changing coordinates locally from x to 2 — H'(y) yields an integral of the form

[ g
RAM X\ B i x

which is paired with another Lagrangian distribution f. In particular, extending v
by zero on Bgaim x yields the inverse Fourier transform = (v)(z) since, by Theorem
21.2.10 in [38], we may assume that X = RY™X (cf. also the proof of Theorem 2.1

in [34]).
Returning to
W) f)= [ [ e Oa(e)(a.6) de dvol
X JRN
we will split off the integral
T0(z) = / / @O0 (2) (2,€) dé dvolx (x)

X J By (0,1)

which defines a holomorphic function and we are left with

/ / " 9a(z) (2, €) dvolx () dvole_ xop,y (€)
R,,xdBpn J X 7

which can be re-parametrized (choosing suitable coordinates in a conic neighbor-

hood of A) into the form

/ a(z)(&)dvolg_ xam,  (£)-
R,,x0ByNn

For f = P'§y with some pseudo-differential operator P whose symbol p is poly-log-

homogeneous, we obtain
[ a)@dvolean ©)
R>1 XaB]RN

=(u(z), f) -70(2)
:(w H/ e’ 0a(2)(x,£) dvolgn . p_ (£), P’y
RN\Byn

:<]-'71(v(z)),Pt50>
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= (PF ! (u(2)).80)

-fe / (e, O F (F7(0(2))) (.o

fom [ ) e o)

_ /R vy POV ol ()

which is a distribution as considered in chapter 2.1 In other words, if A is a gauged

Fourier Integral Operator with phase function ¥ and amplitude a on X, then

— W (x,xz,£)
C(A)(2) /X /B o9 ) dE volx (@)

=7o(A)(2)

+/ / @ (2) (2, 2,€) dvolx (z) dvolx_ xap,y (€)
R, x0Bpn J X _

exists and inherits all properties described in chapter 2 because dgiag is of the form

Pt§y for some pseudo-differential operator P with polyhomogeneous symbol.

THEOREM 4.1. If a = ag + X,y a, is the amplitude of a poly-log-homogeneous
Fourier Integral Operator A with phase function 9 and A, the gauged Fourier In-

tegral Operator with phase function ¥ and amplitude a,, then

res A, (z) 12/ / V@28 (2)(x,z,€) dvolx () dvolap, (&)
OByn J X

and

¢(A)(2)

fX fBRN(o,l)ew(z’z’g)ana(o)(%fﬂ,g) d¢ dvolx () "

:Z z

|
neNg n.

l, (_1)lb+1lL!fA(X)XBBRN ewandb(o) dVOlA(X)X‘?BRN

n! Zl[,+l—n

velp n=0

I This parametrization was already observed by Duistermaat and Hérmander in the proof of
Theorem 5.4.1 in [21]. Furthermore, it is crucial for Guillemin’s work on the residue trace; cf.

(2.15) in [34].
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. fR>1><aB]RN [y €7@ m00mag(0) (2,2, £) dvolx () dvolg_ xom,y (£) .
= z

|
neN, n.

n (—1)l['+j+1(lL +j)!fA(X)xaBRN eiﬂan—jdL(O) dVOlA(X)xaBRN .
z

+ Z z Z n!(N+dL)lL+j+1

neNy tel\Ip j=0

(_1)lL+llL!fA(X)xaBRN eiﬂa"+l"+1dL(O) dVOlA(X)xaB]RN .
z

(n+1,+1)!

D

neN, telp

holds in a neighborhood of zero where A(X) = {(x,y) € X?; z =y}.

For a polyhomogeneous a this reduces to

@29 q(0)(z, 2, &) dE dvolx (z
() - 3 DX Smen (0)(w,2,8) df dvolx(@)

|
neNg n.

- / ¢"a,(0) dVOlA(X)xBBRNZ_l
Lé]g A(X)X(?B]RN

fA(X)x(R>1><8BRN) 9" an(0) dvOlA(x)x(R,,x0Byn ) "
+ Z z p

|
neNg n:

n (_1)j+1j!fA(X)><aBRN €"9"7a,(0) dvola(x)xoB,x n
z

PP IDY (N +d, )L

neNg tel\Ip j=0

6“987”10%(0) dVOlA(X)xBBRN

(n+1)! o

Z Z - fA(X)xBBRN

+
neNy telp

i.e.

res0"*1A4,(0) ,

()@ == DresA ()= = 3 Y — 5,

el neNg el

Jx Jp o) €77 00"a(0) (2, 2,€) dE dvolx(w)
> :

|
neNg n.

fA(X)x(R>1><aBRN) e 9™an(0) AVOIA(X)x(R,,x0B,n) .
+ Z — z

|
neNg n.

no(=1)7* 1l res 07 A,(0) ,
+ Z Z Z( )n!(jNJrde)ﬁl ()z

neNg tel\Ip j=0

where 0" A, is the gauged Fourier Integral Operator with phase ¢ and amplitude

a,.
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From this last formula, and the knowledge that res A,(0) is independent of the

gauge, we obtain the following well-known result (cf. [34]).

THEOREM 4.2. Let A and B be polyhomogeneous Fourier Integral Operators.
Let Gy and Gy be gauged Fourier Integral Operators with G1(0) = AB and G2(0) =

BA. Then,

reso C((G1) = reso ((Ga),

i.e. the residue of the (-function is tracial and A — resg ( (A) s a well-defined trace

where A is any choice of gauge for A.

Proor. This is a direct consequence of the following two facts.
(i) reso((Gy) == X,c1, res(G;).(0) is independent of the gauge (j € {1,2}).
(ii) C(AB) = Q(Bfl) holds for any gauge A of A because it is true for (%)

sufficiently small.

Hence, reso ((G1) = reso C(AB) = reso ((BA) = reso ¢(G2).

O

Similarly, for In(AB) = @, G1(0) = AB, and G2(0) = BA, we obtain that
¢(G1)(0) = ¢(G2)(0) where we used that ((fpya)(0) is independent of gauge. In
other words, we may also generalize the Kontsevich-Vishik trace to ((fp,A)(0)
where fp,A is the gauged Fourier Integral Operator with phase 9 and amplitude

a-— ZLGIO a,.

DEFINITION 4.3. Let A be a Fourier Integral Operator with phase function
and poly-log-homogeneous amplitude a = ag + ¥,y a,. Let A be a gauged poly-log-
homogeneous Fourier Integral Operator with A(O) = A with phase function ¥ and

amplitude a = ag + Y.,c1 G,, and prA the part offl corresponding to the amplitude
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a— 1, O, that is, all but the terms with critical degree of homogeneity. Then, we

call

triv A= C(fpoA)(0)

the generalized Kontsevich-Vishik trace of A.

In particular, we may also consider the regularized generalized determinant

detgy (A) := exp (¢(fpeA4)'(0))

where

C(poA)(2)

Jx Jo 00y €790 a(0) (2,2, €) d€ dvolx ()

= o

n!

i An
LY fA(X)x(]RleaBRN)e 9"ao(0) dVOlA(X)X(RZIX(?B]RN)Zn

neNg

n!

N (_1)lb+j+1(lb+j)!fA(X)xaBRN 9" 9g,(0) dVOlA(X)xaBRN N

UPIRPIDY nl(N +d, )Lttt =

neNy tel\Ip j=0

ie.
((froA)'(0) = / / @m0 0/ (0)(z, x,€) dé dvolx ()
X J By (0,1)
e ag(0) AVOlA (x)x(R,, x0B,n)

g/
A(X)x(Ry, x0BpN)

(‘Ulﬁllﬂ fA(X)xaBRN emdi(o) dVOlA(X)xBBRN
(N +d,)k*1

(-1)"*2(1, +1)! JaxyxoB,x €a.(0) dvola(x)xaB,x

(N +d,)l+2

+
velNIy

p>

velNIy

which reduces to
((fpoA)'(0) = / / 06! (0) (2, x,€) dé dvolx (z)
X JByn (0,1)

i
" ag(0) dVOlA(X)x(RZIXBBRN)

g/
A(X)x(R,, x0Byn )
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fA(X)xBBRN e"a;(0) dvola (x)xaB,x
N +d,

2

velNIy

2

elNIp

o (9A)(0) + /A e
res A,(0)
2 (Ntd)?

elNIgp

fA(X)xBBRN e"a,(0) dvola(x)xoB,x
(N +d,)2

e af(0) dvOla (x)x(R,, x0B,x)

res(0A,)(0) .
N +d,

2

elNIp
for polyhomogeneous A. This will further reduce nicely if we choose an M-gauge
for the 4, on X x (RY \ Bgn (0, 1)) and constant “gauge” (i.e. no gauge) for ag on

X xRY and for a on X x Bpn(0,1). In that case, we obtain

res A,(0)

o) (0) = 5 0T

eINIp
To be fair, this would be a gauge in a generalized sense for Fourier Integral Operators
because such a gauge may not yield C*° (X x X x RN)—amplitudes a(z) though the
set of exceptions is the null set X x 0Bg~. If we wanted to avoid that, we would
have to gauge the X x Brn(0,1) part, as well, and the correction term can easily

be estimated by

[70(A)'(0)] =

/ / @28 ¢ (0)(, 2, €) dE dvoly (z)
X BRN (0)1)

<volx (X) volgn (Bew (0,1)) a"(0)]L_(a(x)xB,x (0.1)

<volx (X) volgy (Bew (0,1)) [a’(0)],_ (xxxxm

RN).

An important class of gauges (since they can be constructed fairly easily) are mul-

tiplicative gauges.

DEFINITION 4.4. Let A be a Fourier Integral Operator and G a gauged Fourier
Integral Operator with G(0) =1 such that each G(z) and all derivatives "G (z) are

composable with A. Then, we call AG(-) a multiplicative gauge of A.
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A multiplicative gauge G is called exponential if and only if there exists a poly-

log-homogeneous Fourier Integral Operator operator Go such that the derivative G’

of G satisfies

VzeC: G'(2) = G(2)Go.

Note that the name “multiplicative” just means that we gauge the operator by
multiplication with a previously chosen family. This is analogous to “@Q-weighted”
generalized (-functions ((A,Q,z) = ((s = AQ®)(z) for pseudo-differential opera-

tors, i.e. G =(z+~ Q7).

REMARK If we consider a canonical relation I" and the corresponding algebra of
Fourier Integral Operators A, then we may be inclined to search for multiplicative
gauges in Ap. Unfortunately, the identity will not be an element of A, in general.
An appropriate candidate of an algebra to consider if looking for a multiplicative
gauge, therefore, should be the unitalization A ® C of Ap. If Ay is unital already,
taking the direct sum with C will not change anything at all. Note that we interpret

the element (a,\) € A ®C to be a+ A which directly yields the following structure.

o (0,0)=acAp, (0,1)=1
e VAeC: Aa,p)+(bv)=(Aa, \u) +(b,v) =(Aa+b,A\u+v)

o (a,\)(b,p) =(a+A)(b+p)=ab+ap+ b+ Au=(ab+ pa+ Ab, \t)

Since derivatives should exists within the algebra and we might be interested in
using a functional calculus, it may be necessary to also include an L(Ly(X))-closure

of AreC.

However, keeping the search for multiplicative gauges simple, we may gauge
with properly supported pseudo-differential operators G(z) (cf. section 18.4 in [69])

at the cost of potentially leaving the algebra even further, that is, AG(z) should
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not be expected to be in mL(L2(X))

anymore. In other words, it is easy to
find gauges for A € A but the gauged operators may be “very far away from” A.

Let P be a gauged pseudo-differential operator. Then, we may also consider

(P(2)u, f)

as a gauge. This is due to Theorems 18.2.7 and 18.2.8 in [38]. In particular, if f is
a Lagrangian distribution, then it can be represented in the form [ ei(zf)af(x, £)d¢
which is nothing other than Prdy where Py is the pseudo-differential operator with

amplitude ay. Hence,
(P(2)u, f) = (PpP(2)u,do).
For traces, though, a multiplicative gauge yields

((A)(2) = (a(2) © ka, baiag)

where g(z) o k4 is the kernel of G(2)A and Yy € C(X) ¢ daiag(p) = [y o(z,2)dx
(i.e. ddiag is the kernel of the identity).

EXAMPLE Suppose u is an M-gauged log-homogeneous distribution. We, thus,

obtain

u(0)(x) :To(U(O))(l“H/N 5 80(0)(€) = 7o(u(0)) (w) + (Pudo) ()

\Ban

where P, is a pseudo-differential operator with amplitude p,(z,&) = v(&) for £ €
RY \ Bg~. Furthermore, the complex power H? with H := \/m has the ampli-
tude p,(z,€) = (2m) ™V H{“HZ(N) where |A] is the (non-negative) Dirichlet Laplacian.
This follows from |A[™" = F~! HmHtf( ~yF where m is the maximal multiplication

operator with the argument on Ly(R™)

D(m):={feL(RY); (R"3&m £f(€) eCV) e Ly(RY;CY)},
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m: D(m) € Ly(RY) = Ly(RY;CV); £ (€ ££()).

(-A)™! is well-known to be a compact operator. Hence, let r — 1 be its spectral

radius. Then, the holomorphic functional calculus yields

Hz — (|A|71)_§
1 _z -1 -1
= A2 (A= (-A)T) da
271 JraBe
1 . . :
=— A2 S AT ((—A)THY ax
27T’L rdB¢ jg\;o ( )
1 . : _ j
=—— A S AU (F T m|)% v F) dx
271 JraBe jeZN:O ( £2(N) )
1 Z o — J
= AE S AU E L (Im2 ) FdA
2mi Jrop: jeZN:O ( MN))
o1 _z (i o\
=F 1—,/ A S A (m| ANF
2mi JroBe jezN:U ( ) )
_ 1 _z -2 -1
=F ' — AT (A= v
i L X (= Imli)

1 (Iml2 ) CF

=FH Imllg, w0y F-

Using the composition formula for pseudo-differential operators, we obtain that

(27)N H? P, has the amplitude (for 1€,y 2 1)

> 05 ((2m)5:) (2.€) (=300)pul:6) = [€], (0 (©) = 0(2) (©)
© =0 <= a#0

In other words,
u(z) = (27) N H*u(0)

modulo whatever happens on By~ .
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EXAMPLE Let A be a poly-log-homogeneous Fourier Integral Operator and u a
poly-log-homogeneous distribution with Io(A) = Iy(u) = @. Suppose G and P are

exponential multiplicative gauges, that is,
G'(2) = G(2)Go and P'(2)= P(2) P,

for A and u, respectively. Then

O"GA0) ,

n!

(GGEAO) ,

n!

2

neNg

(A -y, LG 0 5

neNg neNg

and

(P = T Qfﬁi%}QSQZZn: 5 C@Pu)(O) o 5y LPEEU)(O)

| |
neNg : neNg n: neNg n.

hold in sufficiently small neighborhoods of zero. Using

(GG A)(2)

Jx S0 €000 (GGEA)(0) (2, 2,€) d dvolx (x)

= n

|
neNg n.

fA(X)X(RZIXaBRN)emanU(GGlgA)O(O) dVOIA(X)X(RZIXBBRN) n
z

>

nENO n'

55 i (1)l +‘j)!fA(X)><aB]RN oI5 (GGEA),(0) dvola(x)xaB, n .
+ . o

neN, el j=0 n!(N +d, )l +i+1

where o(GEA) denotes the amplitude of G§ A, we obtain

k
((Ga)(e) = 3 HEADO)
keN, :

1

T ([ (@A) dolsce
keN, ™* A(X)xBgn

[ k
+ € O'(G A)Q dvol y «
A(X)X(R>1X8BRN) 0 A(X) (Rzl aB]RN)

- (-1)4+1, I res(GE A), k
i (N+d)hrt
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in a sufficiently small neighborhood of zero. For ((PPJu)(0), we will denote the
gauged poly-log-homogeneous distribution associated with PPFu by « (PPé“u) and

use

1

n!

C(PRyu)(2) = ).

neNg

/ oo (PPé“u) (O)dvolBRN 012"
By (0,1)

.y fRzlxaBRN 0"a (PPyu), (0)dvolg_ <oB, n

|
neNy n:

n (1)L, +j)!faBRN 0" & (PPyu), (0)dvolap,,

+ Z ZZ n!(N+dL)lL+j+1 Zn

neNy el j=0

to obtain

k'LL

keN, k!

1
2
keN, % \J By (0,1)

k
+ / o (Po u)o dvolg_, xoB,
R>1X88RN

(_1)lL+1[L! res « (P(;CU)L L
et (N +d,)lt '

ExXAMPLE If we consider a multiplicatively gauged A(z) = BQ* where @) may be
non-invertible but is an element of an admissible algebra of Fourier Integral Oper-
ators with holomorphic functional calculus, e.g. a pseudo-differential operator of
order 1 (order ¢ > 0 can be obtained using the results of chapter 3) and spectral

cut (the following is to be interpreted in this setting), then Q° =1 - 1101(Q) where

1 _
10)(@) = —/m ERRE

o

with ¢ sufficiently small such that B(0,e) no(Q) = {0}. In other words, 170y(Q)
is the projector onto the null space of (). Thus, assuming Iy = @ (that is, the

Kontsevich-Vishik trace triy (A(0)) is well-defined and coincides with ¢((A4)(0)),
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we obtain

¢(A)(0) =trgv (BQO) =trgy (B) - trgv (Bl{o}(Q))

and

VEeN: ¢(9"A)(0) =trgy (B(InQ)*Q°)

=trv (B(InQ)*) - trxy (B(InQ)*1(0y(Q))

where we note that there still is a dependence on the spectral cut used to define
the operators Q* and In(@Q. These generalize the formulae (0.17) and (0.18) in [56]

(note that the factors (=1)* are due to sign convention Q* vs. Q7%).

PROPOSITION 4.5. Let A(z) = BQ? be polyhomogeneous with @ as above, fp¢
the finite part of ¢, and try, the finite part of the trace integral (that is, removing
the principal part from the Laurent expansion ((A) and evaluating at zero; cf. [47],
[48], [61], and [56]). Furthermore, let ¢ be the coefficient of i—): in the Laurent

expansion of ((A) with k e N,.

Then, we obtain

ek =C ((9ka0 (O) + Z/ / @29k q, (0)(z, 2, £) dE dvolx (z)
Bpn (0,1)

ely

-2

T res (0¥ A,) (0)

LEIO
=fp¢ (9% A) (0) - : i - res (01 4) (0)
=trjp (B(InQ)*Q°) - e (B(ln@)"'Q").

In particular,

co = trjp (B) —res (BInQ) — tr (Bl{o}(Q))
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and

VkeN: ¢ :tl”fp (B(IHQ)]C) - kl

T res (B(an)kH) — tryp (B(IHQ)kl{O}(Q))

generalize equations (0.12) and (0.14) in [56] (keeping in mind the factors (—1)*

due to sign convention).

If Q is invertible, then 1(0y(Q) =0, and for another admissible and invertible

operator Q)', we obtain

(4.1) c0(Q) —co(Q") = -res (B(InQ-1nQ"))
which is a generalization of equation (2.21) in [47] and (9) in [55].

Furthermore, for A(z) = [B,CQ?] with invertible Q (that is co = 0 since ((A) =

0), we obtain

trjp ([ B, C]) =res ([B,CInQ)])
a generalization of (2.20) in [56].
EXAMPLE Applying our (-calculus and the considerations above to complex powers
also allows us to reproduce the variation formula for the multiplicative anomaly
(2.18) in [47] using effectively the same proof. However, it should be noted that

this approach now also works in algebras of Fourier Integral Operators provided they

contain complex powers (or, at least, such that the {-functions are still defined).

9y05 (C (2= (A:B)?) () = C (2= A7) (s) = C (2= B7) (5))

=05 (0:C (2 = (AtB)7) (s) = 0:C (2 = A7) (s))

can be evaluated using a suitable contour I' and C' € {B, 1} which yields

0 (2 = (ACY) =¢ (2 01 /F N (- A0) )
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:C(ZH %/AZ(AQC)()\—A,&C)‘%M)
C(ZH(A,C) /F)\Z (—8,\()\—At0)‘1)d)\)
g( (A'C)—/(a MY = A,C) 1d)\)
g(z (A’C)—/ AT (A= 4,C) 1d/\)
=¢ (2 » 2(AJC)(AC) (A C)?)
=( (2~ 240471 (A:0)7).

Taking the other derivative, we obtain

00C (2 7> (A1C)7) (5) =0C (2 7> 241 A (A C)7) (5)
=( (2= 0: (2414, 1 (4:C)7)) (5)
:C (z — A;A;l (AtO)Z + 20, (A;Agl (Atc)z)) (S)

=(1+50,)¢ (2~ ALAT (A:C)?) ().

However, by assumption Q(z > AgAt_l(AtC)z) is holomorphic near zero, i.e. its

derivative ¢ (z > AL AT (A C )Z)’ is holomorphic near zero; hence,
s05¢ (2> AJAT (A 0)7) (s) =0 (s—=0).
In other words,

0,05 (C (2 = (A:B)?) (5) = (2= A7) (s) = C (2= B7) (s))

=( (2= 44T (AB)7) (5) = ¢ (2 > ALATTAT) (5)
which, according to equation (4.1), yields

Oy In F(Ay, B) =005 (C (2 = (A:B)®) (s) = ¢ (2= A7) (s) = ¢ (2= B7) (s))

=( (2~ ALAT(AB)7) (5) = ¢ (2 = AJAT A7) (5)
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_ ln(AtB) In At
=—res| Aj A -
res ( e ( order A; B order 4; ) )

with the multiplicative anomaly

exp (¢ (z = (AB)*)'(0))
exp (¢ (z = A7) (0)) exp (¢ (2 > B*))" (0)

F(A,B) =

Choosing a multiplicative gauge G with G’ = GGy, we obtain a different vari-

ation formula of the multiplicative anomaly; namely,
0y (C(ALBiG) = C(ALG) - ((BG)") =C(ALBiG) + C(ABIG) - C(ALG) - ((BG)'
=C(Ay(B: - 1)G)" +(((A: - 1) B,G)’
=C(A(B: - 1)G") + (A - 1) B,G")
=C(A,(B, - 1)GGo) + C((A, - 1) BIGGY).
.

REMARK Note that the mechanism explored in this chapter works whenever there is

a representation [pr [y @8 (., &)dvolx (z) dé with poly-log-homogeneous

=a(€)
a. In particular, we may consider algebras that do not have the form A, where

T" intersects the co-normal bundle of the identity cleanly. Above, we used that
(k,ddiag) can be written as (Pk,do) for some pseudo-differential operator P, i.e. we
used the clean intersection property to obtain the poly-log-homogeneous distribu-
tion form. However, for f3(z) sufficiently small, the gauged k(z) is continuous, that
is, (k(2),0diag) is well-defined and if we can show it extends meromorphically, the

clean intersection property won’t be necessary.



CHAPTER 5
The heat trace, fractional, and shifted fractional

Laplacians on flat tori

In this chapter, we will apply Theorem 4.1 to some examples which are well-

known or can be easily checked through spectral considerations.

EXAMPLE (THE HEAT TRACE ON THE FLAT TORUS RY/r) Let T' ¢ RY be a dis-
crete group generated by a basis of RY, |A| the Dirichlet Laplacian on RY, § the
Dirichlet Laplacian on RY/r, and T the semi-group generated by -6 on R¥ /p. It

is well-known that

vl (BYr) o A Dl
(Art)> S 4

holds; cf. e.g. equation 3.2.3.28 in [67]. Furthermore, the kernel ks of  is given

trT(¢) =

by the kernel ra| via £5(2,y) = X, er K|a)(2,y +7); cf. e.g. section 3.2.2 in [67]. In

other words,

CENEDY etrumre (2 )N Hf”i(z\r) dg.

el /RN

Hence, using functional calculus, we obtain

KT(t) (z,y) = Z ei@—y—%f)(QF)—Ne—t”ﬂ@(N)dg'
~el' JRN

Considering some gauge of T'(t) we obtain from the Laurent expansion (Theorem

4.1)

¢(T())(0)

:/ Z e—ih,f)(27T)—Ne—t\lf\|§2<w) dVOlRN/prRN (z,€)
R

N[rxBgn el

80
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+/R 5 e 2y N (e—t|\~|\52<N))O €3] dvolRN/FX(RZIXaBRN)(x,f)

N/rx(Ryy x0Bgn ) vel

(-5 res(T'(1)),
(N+dL)lL+l .

el

; ~tl€l; N ~t|-I7 ~t-17
Since (£ e "2t ) e S(RY), we can choose I =@ and (e (M) e £2(N)

which yields

¢(T(#))(0)

:/ 3 e—l’('y-,E)(27T)*Ne*t”5”52<N> dvolgx /rxB_ (,€)
]RN/FXBRN vyel'
,1-(,),15)( -N _-t|&ll3,
. . or) Ve 2(N) dvol (R x (2,€)
/RN/FX(R>1XBBRN) vel R
Volgw /. (RN/F) i ~tlell;
_volgn ) (R7/r) e M8 ety gvoly | ()
(27T)N Bgn 'VZEI; RN
volgw /. (RN/F)/ =4 ~tlel
, Yolax e (RY/r) e M8 e el 0 dvoly cop.  (€)
GO e s 2 o
N
ol (RYr) o~ [ i) s g
(277) yel' RN
_VOl]RN/F (R /F) Z ﬂ-%t*%e* H’Y\\zft(N)
(47T2) 2 'yEF
2
_VOI]RW/F—URN/F) > exp —M
(47Tt)% ~el 4 ,

i.e. precisely what we wanted to obtain.

Please note that the following example of fractional Laplacians exceeds the ap-
plicability of the (-function Laurent expansion as it is for now. However, we will
consider shifted versions of the fractional Laplacian afterwards (there applicabil-
ity is given) and show in chapter 6 that the Laurent expansion still holds in the
non-shifted version (the relationship between the shifted and non-shifted fractional

Laplacian are, in fact, the basis of the idea leading to the notion of mollification
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which will allow us to extend the (-function calculus to amplitudes that are poly-
log-homogeneous everywhere on RY \ {0}).

EXAMPLE (FRACTIONAL LAPLACIAN ON THE FLAT TORUS R/s,7) Let H := \/W
on T := R/oyz where |A| denotes the (non-negative) Laplacian. It is well-known
that the spectrum o(H) of H is discrete, satisfies o(H) = N, and each non-zero

eigenvalue has multiplicity 2. Furthermore, the symbol of H? has the kernel

KH=> (,T,y) = Z ei(w—y—2ﬂ'n)f|§_|d§'
neZ JR ™

The singular part is given for n =0 and ¥,z 10} fR ei(w‘y‘%")ggdﬁ is regular.’

Let a € (-1,0). Since ( is the spectral (-function, we obtain (u) denoting the
multiplicity of A and R(z) < -1)
C(s—>HHY)(2)= > A =2) n*"* =2(g(-2-«)
Aeo(H)N{0} neN
where (g denotes Riemann’s (-function. In particular,

C(s—>H H®)(0) =2¢r(-0).

On the other hand, we have the Laurent expansion (Theorem 4.1)

s rro 1 % e
C(s—=H°HY)(2) = Z E(/ eﬂa((lnH)kH ) dvola(TyxaBy
keN, * A(T)xBr
0 k rra
+ e“o((InH)"H Avol (Tyx (R x
/A(T)X(R>1><QBR) ( )0 ARy x082)
(-1)" 4 res ((n H)* H®)
+ - Z
o (1+db)h+1
ie.
(s HH®)(0) = o (H*) dvola(ryxos,

A(T)xBgr
1Here7 we will assume this is well-known. However, it would also follow from the fact that
the kernel is C'* in a neighborhood of the diagonal which we will prove independently from any

results of this chapter (beginning of chapter 8).
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+ Vo (H)y dvols ryu(r «
/A('Jl‘) (R, ,x0Bx) 0 A(T)x(R,, x8Bz )

.y (-1)8+1, res (HY),
vel (1 + dL)lH—l

Plugging in our kernel yields

2m
C (S . HSHOz) (0) Z / —2miné |§| dé— dr

nez

/Qﬂ/ —27rzn£ |§| dé. dx
neZ\{O} R UR,,

- L/277/ @ dvolpp, (§) dx
1+« 8Bg 27 ®

/ 61 de + ¢2mine g0 ¢
neZ\{O}

1
1+«

/ 1° dvola, (€).
OBr

Since a € (-1,0) and volypg, is the sum of point measures §_; + d;, we obtain

[ e [erte- 2ot [ i dvolon,

i.e.

C(sw HH")(0)= 3 [ ™"l de.

neZ~{0} VR

Using that the Fourier transform of & = [¢]” is

/ ¢~2miTE ¢ g 2sin (29%)T(a +1)
R

|27TI|0(+1

and Riemann’s functional equation

Cr(z) = 2(27) L sin (%Z) (1 - 2)Ca(l - 2),

we obtain (in the sense of meromorphic extensions)

C(swm HH™)(0)= 3> [ e7™nof¢["dg

neZ~{0} VR

2sin (=¢%)T'(a+1)

a+l

neZ~{0} |27TTL|

83
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2sin(=§%)T(a+1) 1

(2ﬂ-)o¢+1 nZEI:\I na+1

—29(27) )1 sin(i;) (1 = (=a))Cr(1 - (a)) .

=Cr(-a)

REMARK Using identification via meromorphic extension of

sin (ZZZ)T(2+1)

Cr(2)= ),

neZ~{0} |27TTL|

z+1

and, therefore,

VzeC~{-1}: Z e~ 2ming €7 d¢ = 2¢R(~2)
neZ~{0} VR

as well as

1
z 1 4
[ ras=r [ avolon, ©)

the example above extends to all « € C \ {-1}, i.e.

= (am 3¢ G 1 H) ).

84

EXAMPLE (THE GENERALIZED (-DETERMINANT OF s » H**®) Let aw € C ~ {-1}.

In order to calculate det¢ (s~ H*H®) = exp(( (s HHSHO‘)'(O)), it suffices to

know the derivative ¢ (s ~ H*H®)'(0). From the spectral (-function we directly

obtain
( (s H H")'(0) =9 (2 = 2(r(~2)) () = 2R (~cv).

On the other hand, we may invest

1 .
(s H'HY) ()= ¥ (/ o (nH)" H*) dvolae)son,
keN, " \JA(T)xBr

i k rre
+ e“o|l(lnH)"H dvol (R
/A(T)X(R>1XOBR) ( )0 A(T) (Rz1 8B]R)
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(=1)%+1, I res ((ln H)* HO‘)
i (L d)T .

(Theorem 4.1) again, and find

((s—H*H*)' (0) = o (InHH®) dvola(r)xops
A(T)xBg

e’o(In HH?), dV01A('JI‘)><(R21><BBR)

.
A(T)x(R,,xOBg)

by (-1)* ], ves (In HH®),
(1+d,)l+

el

Using the amplitude 1121_\75\ of In H on R, yields that

Z ei(w—y—2ﬂ'n)§|§| 1n|§| d§
nez. JR 2m

is the kernel of In HH® on T. Again, the singular part is given for n = 0 yielding

#I=1,d,=a,and [, =1, as well as

, 2 1 Ny aln
C(S'—)HSHQ) (O):/O /_1%6 2771n£|§|27r|€| dde

2 a
. 1
+/ / } : 672ﬂ1n5|§| 2n|§| dé» dx
0 R__;UR_; nezZ~{0} ™

1 g g
+ (1 +a)2/0 /BBR T dVOlaBR(é—) dx

1
= [ €% nlg| d¢ + e 2T 1Y In |¢] dE + ——
[ ace B[ alg e s

Note that

2

1 1
/Jsl In e d5:2/0 e dt =

holds for R(«) > -1 and, hence, by meromorphic extension

C(sm HHYY (0)= S [ 27 |e|*mg| de

neZ~{0} VR

= e 2ming - 1€1?) (o
_neZZ\:{o}/]R : ga(ﬁ |§| )( )d{

:a(ﬁ» > ey d&)(oo

neZ~{0} VR
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=0 (B = 2Cr(-P)) (a)

= - 24 ().

Similarly, we can take higher order derivatives

EXAMPLE (9%¢ (s~ H*H®) (0) ON R/2,7) Regarding higher order derivatives the

spectral (-function yields

"¢ (s = HH") (0) = 0" (2 = 2(r(-2)) (@) = (-1)" -20"Cr(~0).

From

srra 1 i a
C(s—»H°HY)(2) = E(/ eﬁa((lnH)kH ) dvola(TyxaBs
]{;GNO . A(T)XB]R

i E rra
+ eVol(InH)"H dvol (R«
/A(T)X(RzlxaB]R) ( )0 A(T) (R 1 aBlR)

(-1)" 4, res ((n H)* H®)
el (1+db)lL+1 §

+ k

(Theorem 4.1) we obtain
A T armel€” (0 D"
8C@HIFH%UDi/ / e Pmnenl DU d¢ da
0 1nez 2m
27 « k
+/ / Z e—27‘rinf|§| (21n|€|) dé— dw
0 JR\Br nez~{0} ™
( 1)k+1k| /QW/ |§|
1+a)k+1 0B, 2T dvolag, (§) dz

- /0 o)t des Y [ e (et ae

neZ~{0} /R
C2-(-1)"k!
(1+ )+l

=29k (ﬂ . /01 §5d§) (o) - Ll)kk'

(1+a)k

+o" (BH > e dé) (a)

neZ~{0} VR
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2. (-1)Fk!

=29k ([3»—> (1+[3)’1)(a)— +0" (B~ 2¢r(-B)) ()

=(-1)FE!(1+a)=(F+D)

=(-1)*-20"Cr(~a).

Finally, let us calculate the residue of ¢ (s ~ HH ’1).
EXAMPLE (reso( (s~ H*H™) ON R/2xz) ( (s H*H™")(z) = 2¢g(1 - 2) shows
that resg (s — HSH’l) = —2resy (g = —2. Also, using the Laurent expansion (The-

orem 4.1) of ((A) for A= (s~ H*H™'), we obtain

¢l

27
YGSOC(S'—’HSHJ):—/ / = dvolypp, dr=-2.
o Jops 27

Furthermore, we can consider shifted fractional Laplacians which do not have singu-
lar amplitudes, that is, these are actually covered by the theory we have developed
so far. They will also lead to the crucial observation that will help incorporate the

case of singular amplitudes and, thus, justify the example of fractional Laplacians.

EXAMPLE (SHIFTED FRACTIONAL LAPLACIANS ON R/o,z) Again, let H := /|4

on R/2,z. Furthermore, let h e (0,1] and G :=h + H. Then,

C(s~> G (2) =Y (h+|n))™ ™ =2 > (h+n)™* = h*** =20y (-2 — a;h) = K***

nez neNy

where (g (z;h) denotes the Riemann-Hurwitz-(-function. In order to use our for-
malism above (Theorem 4.1), we will need to write £ — (h + |£])® as a series of

poly-log-homogeneous functions. Using Newton’s binomial theorem

Ve,ye R VreC: (|:1:| Syl = (z+y)" = Z (Z)Irkyk)

keN,

where

(=)=

(r) _ %j_: r(r—1)~~}€(!r—k+1),
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we obtain

(i = ¥ (1)t

keNg

for || > 1, i.e. the kernel

(x-y-2mn 1 zZ+o
kgea(m,y) = Y [ V72 )52—(h+|§|) g
neZ JR ™

of G*¥*“ is, in fact, given by a poly-log-homogeneous amplitude. For o = -1, the

critical term in zero is given by the k = 0 term of Xy, (z) |§|O‘_lC R*, ie.

reso ¢ (s> G°71) = —/ €7 dvolog, (€) = 2.

0Bgr

On the other hand, the spectral calculation yields

resOC(s — Gsfl) =tesy (2 = 2Cg (=2 + 1;h) = h¥*) = 2resy (z = Cy (-2 + 1;h))

=—2resg (2~ Cu(z—1;h)) = —2res; Cy (- h) = -2.
For a # -1 and [¢] > 1,

(h+1eh” = ¥ ()t

keNg
implies & — k = -1 if and only if k= o+ 1 € N,. However, since (Oﬁl) =0 for a € Ny,

we obtain Iy = @ and

1
C(s= G ) (0)= 3 [ ™S (h+e])"dg

nezZ J -1

S / ¢72TIE (1 4 |€) e
neZ~{0} RN[-1,1]

= /8 . (5)* 61" dvolas.

kEN01+a—k k

R et )

keNg

+ > /e‘2”i"5(h+|§|)ad§.
neZ~{0} /R
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Observing
1 1
[ lehie=2 [ neeyrag
-1 0
1+h
:2/ £4dE
h
_ 2 ((1 + h)a+l _ ha+1)
a+1
_9opa+l
_ 2h N 2 (a;l)hk
a+l o+l keN,

_opa+l
_ 2h +9 Z 1 (Oé)hk
a+1 keNoa_k+1 k

leaves us with

_2ha+1 Z oming
+ e (ho+ €)Y dE .
a+l neZ {0} /R

((s = G")(0) =

non-singular

pl-=
z—1

This is precisely what we expect since the principal part of (g (2;h) near 1 is

(cf. equation 3.1.1.10 in [67]), i.e.
C(s=>G")(0) =2Cu (-2 — oz h) = K7™
. . h1+o¢
has principal part 22—

Unfortunately, evaluating ¥,z (0} [z e 2mnE (b + |€])*dE is a wee tricky. We

will use that

a+1

[ovirrae= [ eeyae=s [ erae= 20

= P4

holds for R(a) < -1 and note

C(s=> G ) (0)= 3 [ ™S (h+ [g])dg

neZ J R

by meromorphic extension. Furthermore, we obtain

C(s= G)(0)= 3 [ ™" (h+|e])dg

nez
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DN I (R 1) S S B R A3

neZ J Ry, neZ JR_g

_ Z eQﬂ'znh / e*Qﬂané-adg + Z e—27r1n§(h _ é-)adg
nez R, neZ J —oo

— Z e27rznh/ e—2wzn£§ad§ n Z (_/ e—2ﬂzn(h—£)€ad€)
nez R, nez o0

_ Z eQﬂ'inh/ e*QﬂinEé-adg + Z e*Qﬂ'inh/ €2ﬂin£§ad§
nez R,, nez R,

— Z e27rinh/ e—2ﬂin£§ad§ + Z e27rinh/ e—2ﬂin£§ad§
nez R, nezZ R_,

-y e ([ et @+ [ et oge).
nez R R

For €€ (0,1) let
0 , xeR_, .

pe(z) = e x-h+e) ,xe(h-eh)

1 , veR,,
and
0 , TeR,
Ve(2) = e Yz -h) ,ze(hh+e)-
1 , xeRy, ..
Then,

(s> G (0) = 3 e ( /R e Iy, ()87 dE + /R e*Q“i"flR>h<£>£ads)

nez

= Z g2minh iii% (/R e 2T K (€)E7dE + /R 6‘2”"%8(5)5%5)

nez

90

can be evaluated using the Poisson summation formula on a lattice A (cf. Chapter

VII.2 Theorem 2.4 in [71])

PINICERVED IO i

AeA AeA
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which yields (we can move lim.\ freely in and out of integrals and series due to

meromorphic extension, dominated convergence, and the series converging abso-

lutely for R(a) < -1)

C (S . Gs+a) (O) _ hm Z e27rmh (/]R —27rin£s08(€)§ad§ n /]R e—2win£w€(€)§ad§)

neZ

—hrn Z (pe(h+n)(h+n)*+¢(h+n)(h+n)%)

nGZ

—hm(z% h+n)(h+n)*+ Y Ye(h+n)(h+n)® )

ex0 neN neN

= > (h+n)*+ > (h+n)®

neNg neN

=2y (-a;h) — h™.
Considering derivatives, we obtain
9"( (s> G°G?)(0) =2(-1)"0"Cu (-3 h) = R (In k)™
from the spectral {-function while the Laurent expansion (Theorem 4.1) yields

9"( (s > G*G)(0)

=2 [ TR D (n(h+ )™ d

nez

- / e (h 4 |€)® (In(h + €)™ de
neZ~{0} [-1,1]

5 CD o 0 (8 ()n*1el”™) (@) dvolas, (6)

keN,, j=0 (a—k+1)i+

=2 ’Q”inf(m|§|)“(1n(h+|€|))m d

nez

9 / (h+ €)™ (In(h +1¢))™

Z

~ [ym, (DRF1E”™ dvolas, (€)
keN B-k+1

(a)

_om (ﬁ» > [ e gl)? d&) (a)

nez



. HEAT TRACE AND (SHIFTED) FRACTIONAL LAPLACIANS ON FLAT TORI

_Qam(BH/R

=™ (8 2Cu (=85 h) - 1) (@)

(1+ h)8+ . (1+ h)B+
@20 (5 D ) @)

_o(B\pk
(h+1eD)? dg) () +0" (6 -2 Bz_(z)fl) (a)

>1

_zam(ﬁﬁ_

=2(-1)" "¢ (- b)) — h*(Inh)™.
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CHAPTER 6

Mollification of singular amplitudes

In this chapter we will address the fact that many applications consider am-
plitudes which are homogeneous on RY \ {0} rather than just RY \ Bgn~ (0,1). In
particular for pseudo-differential operators, this is the classical case. However, it
does not add too many problems because we can use a cut-off function near zero
and extend the symbol as a distribution to RY (which is uniquely possible up to
the critical degrees of homogeneity). Then, we are left with a Fourier transform
of a compactly supported distribution, i.e. the corresponding kernel is continuous
and we can take the trace. In the general Fourier Integral Operator case, on the
other hand, the situation is more complicated. Hence, in this chapter, we will
show that the Laurent expansion holds for such amplitudes, as well, and not just
modulo trace-class operators. We will prove this result by showing that we can
always find a sequence of “nice” families of operators (that is, the amplitudes are
C* in By~ (0,1)) such that their ¢-functions converge compactly (this process is
called “mollification”). Once compact convergence is shown, we know that all local
properties (in particular the Laurent expansion) are preserved taking the limit. In
other words, by the end of this chapter, the (-function calculus considered above

will fully contain the pseudo-differential case.

The idea of mollification is strongly intertwined with the examples of the
shifted and non-shifted fractional Laplacians in the previous chapter. Our cal-
culations of ¢ (s = H*H®) have been pushing the boundaries of our formulae in the

sense that the Laurent expansion of Fourier Integral Operators assumes integrability
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of all amplitudes a(z) on Bg~. This is obviously not true for a(z)(z,y,¢) = €]
it R(z) < -1-R(a) (recall H := \/m on R/orz where |A| is the non-negative
Laplacian on R/2,7). Hence, we would have to consider the Laurent expansion in

a more general version where we also allowed

z |—>/ / @80 () (2,2, &) dE dvolx ()
xJB.n

to have a non-vanishing principal part.

However, we may use ( (s » G*G®) to justify the calculations as they are by
taking the limit A ~ 0 in ( (s~ G*G?) (recall G := h + H with h € (0,1]). Note

that

(1) =

oy E -y

1 neNg n

and

CR(Z)ZZil + Z (_Tb)n,}m(z—l)n

neN,
hold with infinite radius of convergence where the Stieltjes constants ~, and gen-

eralized Stieltjes constants ~, (h) are given by

n+1 N n
g 0 )
k=1
n+1 N n
Y (R) = lim _(n(N+h)™t & (n(k+h)"
N—oo n+ 1 P k N h

These imply v,(h) = vn (h x 0) and, hence,
;linéCH(—z—a;h) =Cr(-z-a) compactly.
N

On the other hand,

Cua(zh) =h7 =% (h+n)™*

neN

R

neN keNj
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= (_]:)h’“g‘R(z+k)

keNg

holds by meromorphic extension and, thus,
}1111% Cu(z;h)-h™% =Cr(2) compactly.
N
Finally, we obtain
lim ¢ (s~ G°G?) (2) =lim (Cy (-2 — a;h) + Ca (-2 — a; h) = B**Y)
h\O h\O
=2(r(-2z - )

=C (s H*H®) (2)

compactly. In fact, knowing a bit more about (g we can get the result from the

fact that

CrR(8)+Xp k™ , n<0
Ynez: CH(s;n):
Cr(8) =il k™ ,n>0

which directly implies (g (s;1) = (g (s;0) = Cr(s) and, hence,

2g(-z—o;h) =h*" =Cy(~z—a;h) + (g (-z—a; 1+ h)
Cu(-z-;0) +Cu(-2z - ;1) (h—0)

=2(r(-z- )

where the limit is compact again using Vitali’s theorem (cf. Theorem 6.1 below).

In any case, the important observation is

}llir%g“ (s> G°GY)=C (s~ H°H®%) compactly.
N
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Let us have a closer look at what happens with respect to the amplitude when

we replace H by G. Here, we regularized the kernel a(z)(z,y,&) = |£|° by adding
an h € (0,1] yielding a perturbed amplitude ap(2)(x,y,&) = (b +|¢|)* which has
no singularities. Showing that the compact limit h N 0 exists, then, justified our
calculations. Using Vitali’s theorem (cf. e.g. chapter 1 in [42]), we can largely

generalize this idea.

THEOREM 6.1 (Vitali). Let € Copen,connected C, f € C* (N locally bounded®,

and let

{2 e (fu(2))nen converges}

have an accumulation point in Q. Then, f is compactly convergent.

We will consider two approaches to mollification. First, we will discuss a spec-
tral approach in generalized convergence (cf. Chapter IV in [44], also known as gap
topology; the most important results can also be found in appendix B). Then, we

will generalize the shift H ~ G to poly-log-homogeneous distributions.

Spectral mollification

Let (An)neny be a sequence of gauged Fourier Integral Operators with C*°-
amplitudes and A a gauged Fourier Integral Operator whose amplitudes may con-
tain singularities. Furthermore, let A, (z) - A(z) for every z in gap topology (cf.

appendix B). Let d € R such that
VzeC: (R(z)<d = A(z) is of trace-class)

and  := Cm(~)<d—1' Then, for every z € Q, (A, (2))nen is eventually a sequence

of bounded operators and A,|o — Alg converges pointwise in norm (cf. Theorem

1f eC¥ (Q)N is called locally bounded if and only if for every z € €2 there exists a neighborhood

of z such that f is uniformly bounded on that neighborhood.
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B.13). Furthermore, let (A;(2)),cy be the sequence of eigenvalues of A(z) count-
ing multiplicities and (Ax(2) + h}(2)),y be the sequence of eigenvalues of A, (z)
counting multiplicities. Suppose that h"(z) := Y sy |} (2)] exists and converges to

zero for z € Q.

REMARK Note that A, (z) - A(z) in the gap topology implies that the A}l (z) exist
and for every k and z we have lim, o hj(2) - 0. However, in general, we will
not have any uniform bound on them, let alone find an h™(z); cf. the discussion

following Theorem B.21.

Then,

[C(An)(2) = C(A) () =| 20 (M(2) + B (2)) = 30 Ak(2)| =

keN keN

> hi(2)

keN

<h™(z) -0

for z € Q shows

{zeQ; (C(An)(2)),n converges} = (.

Let Q ¢ C be open and connected with © ¢ Q such that all {(A,,)|g are holomorphic

and {C(4,)|g; n €N} is locally bounded. Then,

lim ¢(An)|g = C(A)lg compactly.

n—> 00

In particular, if A" admits an analytic continuation to €2, then lim, e ¢ (An)lg =

C(A)|g compactly.

DEFINITION 6.2. Let A be an operator with purely discrete spectrum. For every
A€ a(A) let ux be the multiplicity of \. Then, we define the spectral (-function

(s (A) to be the meromorphic extension of

CG(A)(s)= >0 A
Aea (A)N{0}
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and the spectral ©-function ©,(A)

VieR g On(A)(t) = Y paexp(—tA)
Aeo(A)

if they exist.

DEFINITION 6.3. Let T € R,y and ¢ € C(R,,). We define the upper Mellin

transform as

T s) = s—1
M7 ()(s) A;Dwﬁﬁ d

and the lower Mellin transform

N%@ﬂ@%:/ S5t

RzT

(if the integrals exist). If both integrals exist and have non-empty intersection  of
domains of holomorphy (that is, the mazimal connected and open subset admitting
an analytic continuation of the function), then we define the generalized Mellin

transform of ¢ to be the meromorphic extension of
M(p) = M (p)la + Mz(#)la-

EXAMPLE Let (t) :=t* for some « € C. Then

TS+a
MU= [ rrtar
(0,7) S+«
for R(s) > a extending to C \ {-a} and
TS+O£
Mr(@)(s) = [ o=
R, S+«

for M(s) < a extending to C \ {-a}. Hence, M (¢) exists with

TS+OL TS+O¢

=0
s+a s+a

M(#)(s)

on C~ {-a}, ie. M(p)=0.
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REMARK The example above is very important for pseudo-differential operators
or, more generally, Fourier Integral Operators whose phase function 1 satisfies
Va: Jd(x,x,-) = 0. It means that homogeneous terms in the asymptotic expansion,
which are not of critical degree, vanish under regularization in the Kontsevich-
Vishik trace, i.e. it is the reason why we can split off finitely many terms in the

Kontsevich-Vishik density.

[
EXAMPLE Let A e R, and s € C with 2(s) > 0. Then
/ e MLt :/ e TTSTINTEdE = AT (s)
R>0 R>0
shows that A wa e Mt71dt extends analytically to C \ R_,.
[

ExXAMPLE Let A be an operator with purely discrete spectrum. For every A € o(A)
let p1x be the multiplicity of A and 2(A) > 0. M (1) =0, then, implies

M(0:(4)) ()= 35 M (t= exp(-tA)) (s)

Aea(A)

= Y Mt~ exp(=th)) (s)
Aea (A)N{0}

= Y mATT(s)

Xeo (A)N{0}

=Co(A)(8)0(s)-

LEMMA 6.4. limpo M (t = exp(=th)) = M (1) =0 compactly.

PROOF. For R(s) > 1, we obtain

1

> exp(- s :L e thyst
M (e exp(-t1) (9) F(S)/R 11y

>0
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:h_s

=Y (k+h)™= > (k+1+h)~®

keNg keNg

=Cu(s;h) = Cu(s;1+h).

Hence,

M (t = exp(-th)) (s) =L'(s)Cr (s;h) =T(s)Cu(s;1+h)

holds on C \ Z_;. Furthermore, I'(s)(m(s;h) —T'(s)Ca(s;1 + h) is locally bounded

on C\Z, for h \ 0 which implies

]111{4%/\/1 (t = exp(-th))(s) = ;133(1) (T'(s)Cu(s;h) —T(s)Cu(s;1+h))
=I'(s)Cu(5;0) = T'(s)Cu(s;1)
=I'(s)Cr(s) ~T'(s)Cr(s)

=0

compactly, i.e. the compact limit limp o M (¢ = exp(—th)) exists and vanishes on

C\Zsl-

COROLLARY 6.5. Let A and Ap be operators with spectral (-functions. Let
Co(A) be the meromorphic extension of Y ey Ai° for some N €N and (,(Ay) the
meromorphic extension of Y1, iL;S + Y ken Ak + )™ where all hj € Ry, (the h; are
the perturbations of the eigenvalue zero and n is the multiplicity of the zero in o(A)).
Suppose Ay, converges to A in the gap topology and the meromorphic extension fp

of Yren Ak + hi) ™% is locally bounded and converges to (s (A) pointwise.
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Then, (5 (Ap) converges to (,(A) compactly.

PROOF. The assertion is a direct consequence of 2?21 iL;S — 0 compactly

(Lemma 6.4) and fr - (,(A) compactly (Vitali’s theorem).

Mollification of poly-log-homogeneous distributions

The considerations regarding the spectral (-function have given us useful in-
sights on the spectral level of the operator and contain some nice properties, e.g.
that mollification will be essentially the generalized Mellin transform. However,
it did not provide us with existence of a mollifying sequence of operators (and
even if it did, it would only contain a rather restrictive sub-class of operators). In
this section, we will consider gauged poly-log-homogeneous distributions which are

poly-log-homogeneous everywhere on R, x M and show that they can be mollified.

PROPOSITION 6.6. Let a = aig + X.,cr v, be a gauged poly-log-homogeneous dis-

tribution on Rog x M with I finite and o regular. Then, ((a) can be mollified.

In particular,

C(a)(2) = ap(z)dvolg oxM + Z ozb(z)dvolRﬂxM
R, oxM ] el IR, xM -

+ Z/ pdimMrditz (1) (b drres o, (2)
el 4 (0,1)
is the compact limit of

Clan)(2) :/ ao(z)dV01R>0><M + Z ab(z)dvoanxM
R xM el RZIXM B

+ Z/ (h, +7)imMrderz 1y (h, 4 1)) e drres o, (2)
eI/ (0,1)

for h, e Ry, h, 0.



MOLLIFICATION OF POLY-log-HOMOGENEOUS DISTRIBUTIONS 102

Proor. The part

/ ozo(z)dvolR>oxM + Z oeb(z)dvoanxM
R, xM el JR, xM -

creates no problems in the formalism used to obtain the Laurent expansion. Hence,

we only need to consider
Z/ pAm Mrditz (1 1) drves o, (2)
el J(0,1)
= Z/ ol (s~ pdim M+d['+s) (z)drresa,(z)
el J(0,1)

=y ol (s > / pdim M+d['+sdr) (z)resa,(z)
(0,1)

vel

1
= 81L( = ) L
Lez; T AmM+d, +s+1 (z)resay(z)

~ (1),
S (dimM +d, + 2+ 1)kt

resa,(2).
Introducing h, € R, we obtain
Z/ (h, + )3 Mrderz 0y (p, 4 r))edrresa, (2)
eI J(0,1)
= Z/ ol (s (h,+ r)dim M+d”s) (z)drresa,(z)
el J(0,1)

= Z@h (s - / (h, +r)dim M+d”sdr) (z)res,(2)
(0,1)

vel
1+h )dimM+dL+s+1 _ hdim]\l+dL+s+1
— alL ( L L .
; (SH dimM +d, +s+1 () resan ()

L (_1)jjl _ ‘
= : ‘ 1+h, dim M+d, +z+1 (1, (1 h, l,—j .
;;J (dimM+dL+z+1)J+1( +h) (In(1+h,))" ™ resa,(z)

I, (_1)jjl . .
_ . . hdlmM+d[,+Z+l 1 hL l.—j . .
5 T ) s ()

Since each of the (1 + h,)dmM+drz+1(1n(1 4+ b,))l77 is locally bounded for h, — 0

(taking derivatives in Lemma 6.4) and

_ . 0 j+I,
(1+hL)d1mM+dL+z+1(1n(1 +hL))l['_] N

1 j:lL
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for h, - 0, we obtain

L, (_1)jjl . :
li . ‘ 1+h, dim M+d,+z+1 In(1+h, l—j .
h}@OZ}Z%(dimM-ﬁ-dL+z+l)3+l( +h) (In(l+h)) P resan(z)

5 (-1)k1,!

2 @M+ d, 25 Dy 1)

compactly. Furthermore,

h?lm M+d, +z+1 (ln hL)ll,—] :h'lem M+d,+z+1+5-1, (hL In hL)l[,—g

being locally bounded for h, - 0 and converging to zero compactly (in z) (recall

limp o h* =limp\o Car(-2;h) — (r(-2) = 0 compactly) shows

Clan)(2)

:/ ao(z)dvolR>oxM + Z oeb(z)dvolRﬂxM
R xM el SR, xM -

L, (-1)75! ) ,
. ‘ 1+ h’L dim M+d, +z+1 In(1 hL l,—j .
+L;§)(d1mM+db+z+1)J+1( ) (In(L+ k) resan(z)

3 (=1)74! dim M+d, +2+1 1
_ZZ (dim M +d +Z+1)j+1hL (Inh,)* 7 resa,(z)
el 3=0 L

—>/ ao(z)dV01R>0xM + Z O‘L(Z)dVOIRHXM
R, xM tel YR xM )

'y (1),

S (dimM +d, + z+ 1)L+

resa,(2)
=C(@)(2)

where the convergence is compact by Vitali’s theorem.

O

EXAMPLE (RE-VISITING ( (s = H*H®)) Let I' ¢ RY be a discrete group generated
by a basis of RY, |A| the Dirichlet Laplacian on RY, § the Dirichlet Laplacian on

RY/r, and H := /8. Then,

(s H®) (2) =volgn ;. (RV/p) 3 » e 8 (2m) N €], vy dE
el
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where

5 e @ el
vel'N{0

is regular, i.e.

ao(2)(€) = volanyp (RY/r) 30 e 08 2m) ™ J¢[7, x,
~vyeI'\{0}

and

Z;aL(Z)(S) = volgw, (R™ /1) (2m) ™ €17, vy -

Hence, Proposition 6.6 is applicable.

In the following proposition, we will use Abel’s summation.

LEMMA 6.7 (Abel’s summation). Let G be a group, a,be G~, and
VneN: B, := Zbk-
k=1
Then,
VneN: Z arby = ans1 By + Z(ak — ax+1) Bk
k=1 k=1

PRrOOF.

n n n
an1Bn + Y (ak = age1) B =an41Bn + Y arBr = Y, ake1 By,

k=1 k=1 k=1
n n-1
=Y axBr - ) ar1 B
k=1 k=1
n k n-1 k
=2 kb= 0 ) kb
k=1j=1 k=1j=1
n k n-1 k
=a1b1 + Z Z akbj = Z Z agﬁ.lbj
k=2 j=1 k=1 j=1
n-1k+1 n-1 k

=a1b; + Z Z ap+1bj - Z Z ar+1b;

k=1 j=1 k=1 j=1
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n-1

=a1by + Y. Qpr1bpe
k=1

n
= Z akbk
k=1

PROPOSITION 6.8. Let a = aig + X.,c7 v, be a gauged poly-log-homogeneous dis-

tribution on R, o x M with I €N, ag regular on (0,1) x M,

. (2)(r,€) =" (Inr)" a (2)(6),

where (R(d,)),.; is bounded from above, each (%) L€ O(I), (1), €
LE

dim M+d, +z+1
boo (1), U= (L) et o (1y» and each ¥,c; &u(2) converges unconditionally in Li(M).

Then, ((a) can be mollified.

In particular,

C(a)(2) :/]R ¥ ao(z)dvolg_ xnr + > a,(z)dvolg_ xm

el SR, xM

+Z/ TdimM+dL+Z(1nT.)lLdrreSaL(Z)
eI /(0,1)

is the compact limit of

Clan)(z) = ao(z)dvolg_ xnr + Z a,(z)dvolg_ xnm
R xM el SR, xM B

+ Z/ (h, +r)dmMederz (1 (p 4 1)) e drresa, (2)
el J(0,1)
for h:=(h,),.; € loo(I;Ryy) and h 0 in Lo (I) such that
Z,(z)=Cu(l-d,—z;h,)-Ca(l-d, - z;1+h,)|

defines (Z,(2))er € Loo(I) which is uniformly bounded on an exhausting family
of compacta as h ~ 0,2 i.e. there exvists a family (y)nen such that ¥Yn e N :

2Note7 this is a restraining property on the choice of h € £ (I). It is possible to find such

sequences because each Z, converges compactly to zero as h, \ 0.
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Q, Ccompact C,V¥neN: Q,cQuii, Unen 2, =C, and

VneN: lir;llfélp H(HZLHLDQ(QTL))

<
el lleoo (1)

PROOF. Proposition 6.6 yields the assertion for finite /. Hence, we may assume

I =N without loss of generality. Furthermore, we only need to consider the part

A(h) =Y (h, +r)dmMrdotz 1y (g 4 ) edrresa, (2)
el J(0,1)
L (-1)7j!res o, (2)

dim M+d,+z+1 l.-j
:Z;;)(dimMer +z+1)j+1(1+hL) P (In(1+ by )
el j= L

B Z i (_1)jj! res CYL(Z) hdim M+d[,+z+1(1nh )lL—j
r1 20 (dim M +d, + 2+ 1)7+ I

i.e. show that it converges compactly to zero. Recall that ¥ ,.; w

d,+2z+1 con-

verges absolutely and |dim M +d, + z+ 1| > oo (¢ > o0). Hence, we will assume,
without loss of generality, Ve € I : |dim M +d, + z+ 1| > 1 (as there can only be
finitely many with |[dim M +d, + z + 1| < 1 which is handled by Proposition 6.6).

Then, we observe (for ho :=[h[,_y<e-1)

L (-1)7jres o, (2)

dim M+d,+z+1 l,—j
vl =0 (dimM+dL+z+1)j+1(1+hb) (In(1+h))™

< L Jlresa,(2)]

} 1+ h,)dmMrdotztl )y (9 4 p,))ed
150 |dim M +d, + 2+ 1] i ) (In( N

L [res o, (2)] . ,
<] L 1 hL dim M+d,+z+1 In(1+h 1,-j
B ;;J|dimM+dL+z+1||( +h.) | (In(1 + ho))
<1 (h0<€*1)
<l!'lZ |reso¢L(z)| (1 +h0)dimM+£R(dL+z)+1

o |dim M +d, +z+ 1]

[res o, (2)]

<1 (1 4 ho)max{dimM+9%(z)+1+supLeI R(d,),0}
N S |dim M +d, +z+1]

-1 (h\0)



MOLLIFICATION OF POLY-log-HOMOGENEOUS DISTRIBUTIONS 107

resa, (z)

which is locally bounded by absolute convergence of ¥, ¢; g—r9 757

and compact

1+ hL)dim M+d,+z+1

convergence of ( . Furthermore, we obtain (for hg < e™!)

L (-1)7j!res v, (2) dimM+dL+z+1(1nh )lﬁj
o (dim M +d, +z+1)3%0 ’

L l!‘resaL(z)hfl”Z’l(hLlnhL)l| dim M1

1550 |dim M +d, + z + 1 ‘

‘res a,(2)h%+* (b, In hL)l|

Sl . l!hgimM+l Z

vy |dim M +d, + z + 1]
Note that
1 ,1=0
|h, Inh,|" -
0 ,1+0

for h, — 0, i.e. it suffices to show that

resa, (z)hdt#

GdimM+d, +z+1

converges absolutely. Since
|hd* = = (¢ (1 - d, - 2h) = Ca(l=d, = 2,1+ h,)| = Z,(2)

holds (we can choose (Z,(2)),er locally bounded because z — (g (I —d, - z;h,) -

Cg(l-d, —z;1+h,) converges to zero compactly as h, \ 0)3, we observe

plma@i L | gl e |,
gldmM+d, +z+1| G|dmM+d, +z+1
resa, (2)

and the assumed

which is bounded by absolute convergence of ¥,/ | g=FTrma 557

boundedness of (Z,(2)),.;. Furthermore, local boundedness (with respect to z)

3Since we have to construct a sequence H e ZOQ(I;R>O)N where each element H, is of the
form h, it suffices to have uniform boundedness of (Z,),c; on some compact set 2y, for Hy and

choose (Q2n)pey to satisfy Vn e N Qp € Q41 and Upey On = C.
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resa, (z)

follows from local boundedness of ¥,/ | g 3mg 5251

and Z,. Observing

(-1)7j!res v, (2)

dim M+d, +z+1 l,—7
> Gt e (n(1 + )"
=051,

$ (-1l res o, (2)
=
~ (dimM +d, +z+ 1)L+

and

L (-1)7j'res a,(2) dim Md,+2+1 (1) Y1~
& 2 (dim M +d, + 2z +1)3+1 ¢ ‘

L (-1)7j'res a, (2) dim Msd,+2+2+5 - (1 g Ve,
S5 (dimM +d, +z+1)70 " e '

L,

z z 'res aL(Z) hdlm M+d,+z+2+5-1, (h Inh )lL—j
Ld]o(dlmM+d +z+ 1)+ e

-0
for R(dimM +d, +z+2-1) >0 and h \ 0 shows

A(h) = Z/ (h, + )8 Mederz (1 (h 4 1)) edrresa, (2)
eI J(0,1)

ZZ (-1)7j!res o, (2)
_LGIJ r d1rnM+d +z+ 1)1

L (-1)75!res . (2)

ZZ — d1mM+d +z+1(1 h )lL -j
o (dim M +d, +z+ 1)

D (-1, res o, (2)
S (dim M +d, + z + 1)b+1

compactly and, thus,

¢(an) = ((a)

compactly.

REMARK Note that

Gnzm ==+ ¥ -y

neNy

(1 + hb)dimM+dL+z+l(1n(1 + hL))lij

108
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with

o (In(N +R))" & (In(k +h))"
Yo (h) = lim (_ n+1 +,;1 k+h )

N —o0

implies that

2 Cr(2,ho) = Cu(z,h1)

is an entire function for every ho,h; € R,,. Hence, each Z, is everywhere defined

on C.

Finally, we may also drop the assumption (I,),cr € oo (I).

THEOREM 6.9. Let = ag+ Y.,cr v, be a gauged poly-log-homogeneous distribu-

tion on R,y x M with I ¢ N, ag regular on (0,1) x M,

. (2)(r,€) =" (Inr)" a (2)(6),

where (PR(d,)),.; is bounded from above, each (%) /€ l3(I), and each
LE

dim M+d,+z+1

Y1 @ (2) converges unconditionally in Li(M). Then, ((a) can be mollified.

In particular,

C(a)(z) = ag(z)dvolg_xar + ) a,(2)dvolg_ xnr
R, x M 7 el JR  xM =

+Z/ pdim Meditz (1) 1) g ves o, (2)
eI J(0,1)

is the compact limit of

((an)(z) = ao(z)dvolg_ xnr + Z a,(z)dvolg_ xnm
R xM el JR, xM B

+ Z/ (h, +r)dmMederz 1y (p 4 1)) e drresa, (2)
el J(0,1)
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for hii=(h,),; € loo(I;Ryy) and h 0 in Lo (I) such that
l,
Z,(2) ::ZLZ|CH(ZL—j—dL—z;hL)—CH(ZL—j—dL—z;1+hL)|
=0

is uniformly bounded on an exhausting family of compacta as h ~ 0.

PRrROOF. The proof works precisely as the proof of Proposition 6.8. The only

difference is that we have to show local boundedness of

(=1)7j!res v, (2)

dim M+d,+z+1 l.-j
33 T e (L) (1))
el g= L

and

Z Z 'resaL(z) hd]mﬁ4+d +z+1 (1 h )l =]
%0 (dlmM+d +z+1)3t1 "

since the estimates do not hold anymore. Since

ZZ Jjlresa, ()
1520 (dlmM+d +2z+1)i+1

is a well-defined meromorphic function, it is locally bounded. Furthermore, (1 +
h,)dimM+do+z+1(1n(1 4 b, )77 can be chosen uniformly bounded on any half plane
{z€C; R(z) <r} for any r € R, i.e. we can construct a sequence that is eventually

uniformly convergent on any given compactum. Hence,

ZlZ: (=1)7j!res v, (2)
120 (dim M +d, + 2+ 1)7+

(1 +hL)dimM+d"+z+1(1n(1 +hL))lL—j

is fine. Thus, choosing |k, Inh,| < 1 and |dim M +d, + z + 1| > 1 without loss of

generality, we observe

Z Z ( 1)J "resaL(z) hdlmM+d +z+1(1 h )lL -j

20 (dim M +d, + 2z +1)3+0

<y e

resa,(z)
dimM +d, +z+1

LJ|

el

res o, (2) 7 dim M1 l
O B L]
g|ldimM+d, +z+1 =
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dim M+1 resa, (2)
: HhHg""(I) g dmM+d, +z+1 29

which completes the proof.

O

REMARK Note that the application to Fourier Integral Operators is not as triv-
ial as for pseudo-differential operators because, even though we have an ampli-
tude that is poly-log-homogeneous everywhere on R \ {0}, going to the gauged
poly-log-homogeneous distribution form means we do not know how the poly-log-
homogeneous distributions look like on By~ . In fact, we already know that homoge-
neous distributions regularize to zero by virtue of the generalized Mellin transform
while we will see later (end of chapter 8), that there are Fourier Integral Opera-
tors with homogeneous amplitudes whose Kontsevich-Vishik traces don’t vanish.

In other words, we still owe an argument there.

The (-function of a gauged Fourier Integral Operator with an amplitude that

is poly-log-homogeneous everywhere on R™ \ {0} can be written in the form

z e <:17 > /RN ei<m’5>f2(1")v(z)(aj,§)d§,5O>

where v = v9+Y.,c; v, and each v, is log-homogeneous on RV \ B~ . Re-parametrizing

& ~ ¢ yields
s fom [ et @ e, o)
RN
where w = wy + ¥,; w, and each w, is log-homogeneous on RY \ Bpw.

Let b = wg + ¥,e; W, where each ), is log-homogeneous on RY \ {0} and

coincides with w, on RY \ Bgw~. Then,

z e (:17 > /RN eii(z’g)’%w)ﬁ)(z)(:z:,§)d§,50>
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is a (-function of a gauged poly-log-homogeneous distribution and can, thus, be

mollified. Furthermore,
VzeC Vo eX VEeRY N Ben : w(2)(z,€) —w(2)(z,6) =0
shows that
[ e () (,6) - i(:) (0. )) e
RN
is the Fourier transform of a compactly supported distribution (for every z), i.e.
s fom [ 980 (0 (0,0 - 0(2) (0, de. o)
RN
is a holomorphic function. In other words,
s fom [ et non@) @ e )
RN

is of the form “holomorphic function + mollifiable” and, hence, mollifiable itself
since, by construction, the holomorphic function precisely accounts for the difference

in the limit (of the mollification).



CHAPTER 7
On structural singularities and the generalized

Kontsevich-Vishik trace

In this chapter, we will discuss the integrals appearing in the Laurent coeffi-

cients. Most importantly, this will yield the generalized Kontsevich-Vishik density

/ @0 (0 (2, 2, €) dé dvolx ()
B]RN (0-,1)

+/ eiﬁ(z,z,E)ao(O)(x,x,g) dVOlR>1X33RN (&) dvolx (x)
R,,x0Bpn i

= Jop,y €T a,(0)(z,2,€) dvolap, (€)
N +d,

p>

velNIy

dvolx (z),

as well as the fact that this density is globally defined in the Iy = @ case, that is, in
the absence of terms with critical degree of homogeneity, provided that the kernel
is globally defined in the first place (rather than considering any locally finite sum
of local representations in the form of oscillatory integrals); whenever we will talk
about densities being globally defined, we will tacitly assume that the kernel is
globally defined since the entire discourse would make no sense otherwise. We will
be able to calculate interesting examples by the end of chapter 8 leading up to (and

including) Theorem 8.5.

Considering classical pseudo-differential operators, it is common to construct
the Kontsevich-Vishik trace by removing those terms from the asymptotic expan-
sion which have degree of homogeneity with real part greater than or equal to

—dim X where X denotes the underlying manifold, i.e. if k is the kernel of the

113
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pseudo-differential operator, then the regularized kernel is given by

where d—

N
kreg = k — Z kd—]
3=0

7 is the degree of homogeneity of the corresponding term in the expansion

of the amplitude a ~ ZJ—ENO aq-; and N sufficiently large. Then, k™8 € C'(X x X),

Le. [y k*8(x,x)dvolx (x) is well-defined. In other words, k*® and g play the

same role and we would like to interpret ¢(ao)(0) as a generalized version of the

Kontsevich-Vishik trace. The term Zj]\io Jx ka—j(x,z)dvolx (x) would, hence, be

analogous to spinning off ¥,.; ((«,)(0). Unfortunately, we have to issue a couple

of caveats.

(1)

(i)

The observation above is fine if we are in local coordinates. However,
when patching things together some of the terms in our Laurent expansion
will not patch to global densities on X. This is no problem for Fourier
Integral Operators, per se, as they are simply defined as a sum of local
representations and in each of these representations the Laurent expansion
holds. It will become a problem if we want to write down formulae in terms
of kernels, though (especially if we require local terms to patch together
defining densities globally).

Since F(aq-;(z,y,-))(2) is homogeneous of degree — dim X —d+j (where F
denotes the Fourier transform), we obtain F (a4—;(z,y,-))(0) = 0 for d—j <
—dim X, ie. kg_j(z,z) = Umy_y ke (z,y) = limy_p F(ag-;(z,y,-))(y -

z) = F(aq-j(x,z,-))(0) = 0. Thus, k"4(z,x) is independent of N.

However, this property does not extend to Fourier Integral Operators
as we can easily construct a counter-example. Let a(x,y,£) be homoge-

neous of degree d < —n in the third argument and the phase function
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Hz,y,8) = ~(O(2,y),&) e, (n) such that ©(z,z) has no zeros. Then,

Ky = [ @O Dumate,y. e = F(a(r.y.))(O(.0)

shows that k(z,z) is well-defined and continuous. Furthermore, since
F(a(z,y,-)) is homogeneous, vanishing k(z,z) implies F(a(z,z,-)) =0

on {rO(x,z); reR 4}
On the other hand, for pseudo-differential operators the terms aq—; with d - j =
—dim X define a global density on the manifold giving rise to the residue trace.
If this extends to poly-log-homogeneous distributions, then we obtain the residue
trace globally from 3,7 «,. Furthermore, this would imply that

oo =a- Y a,

vely

induces a global density, if & does and the contributions of the «, for ¢ € Iy to the
constant term Laurent coefficient vanish (in particular if Iy = @), which allows us

to interpret ((fpya)(0) as the generalization of the Kontsevich-Vishik trace.

This, of course, needs to be interpreted in a gauged sense. ((fp,c)(0) corre-
sponds to the kernel k(z,y) — kq-j(x,y) where d — j = —dim X. Hence, all terms
ka-; with j € Ny _j, qim x Still appear in fpoa but not in £™€. Since ((fpoar)(0) is
but constructed by gauging, we should do the same for k4—;, i.e. consider kq_;..
which is continuous for 9(z) sufficiently small and vanishes along the diagonal.

Therefore,

(i) (0) = /X K98 (o, ) dvol ().

holds in the regularized sense for pseudo-differential operators; particularly so since

Corollary 2.8 guarantees that ((fpya)(0) is independent of the gauge. In other
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words, the objective is to show that

> resaX(0) :Z</ dX(O)dvolaBRN,f>
X X BBRN
= (p/ G (0)dvolop, 50>
X OByN
zz</ @YX (0)(2,y,£) dvolap, (5),60>
x \/OByn
is globally well-defined (¥, denotes a partition of unity and P is a suitable pseudo-

differential operator) if the aX are log-homogeneous with degree of homogeneity

-N.
At this point, we return to the fact that we can find a representation
/ | @)L eam G((z,y), £) AvOlg2aim X\ By g x (€)
RZdlmX\BRQdimX
of

/ eiﬂ(z,y,E)a(L Y, g) dVOIRN\B N (5)
]RN\BRN E

where @ is poly-log-homogeneous with degree of homogeneity —2dim X and loga-
rithmic order [ if a has degree of homogeneity —N and logarithmic order [. Thus,

we want to show that the locally defined

/ ei((ﬁvy);f)l2(2dimX)dX((x7y)75) dvolos,, gim (6)
OBp2dim x
patch together if aX is log-homogeneous with degree of homogeneity —2 dim X .

Let ¢ be a suitable test function, and

[ et sate, y, ) p(e.y) dE dvolya(z.v)
x2 JR2dim X

and

/ / @O X (2, €) ol y) dE dvolya(z,y)
X2 R2d]n‘1X
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be two representations of (u, f) where ¥ is another linear phase function.! Propo-
sition 2.4.1 in [39] warrants the existence of a C'*-map © taking values ©(x,y) €

GL(R?4mX) such that

19(5572/75) = ((:Euy)u G(xuy)§>fz(2dimX)

holds. Hence,

/ / @O X (2, &) p(z) dE dvolyz(z)

X2 JR2dimX

:/ / 2 O@) e aim ) X (1, €)p(z) dE dvolye (z)
X2 JR2dim X

:/ / ei(z’g)’%(“im?{)ax(x,G(x)’lf)go(x)|det®(w)’1| d¢ dvolyz(x).
X2 JR2dimX

In other words, the amplitude a transforms into aX(z,O(z)71¢) |det 6(w)’1| for

some C*-function © taking values in GL(R?4™X) more precisely

a(z,y,€) = aX(x(z,y),0(x,y)¢) |det O(z, )| |det x' (z, y)]

for some diffeomorphism x, and we need to show

res 04(0) = d(g)dV01aBR2dimX (5)

OBp2dim X

= / aX (@715) |det @71| dV0183R2din1X (5)
OBp2dim x

? ~

L[ @ ©dvolon. ©
OBp2dim x

=resaX(0)

where o and oX are the corresponding log-homogeneous distributions, and a and
aX are the restrictions to the homogeneous part of a and oX, i.e. a(r¢) = rta(¢).
ISince we are considering representations with phase function {(z, Y),€) e, (2dim x> changing

charts yields a phase function (x(z,y),&)s,(2dim x)- Hence, it suffices to consider replacements

by linear phase functions only.
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LEMMA 7.1. Let a € C (R™~ {0}) be homogeneous of degree d, k € Ny, z € C,

and T € GL(R™). Then

/ o(T€) |TE| (In | T€])* dvolop... (€)
OBgn

~1)* _
e L a©lr

T () dvols, (€)

PROOF. Let D := (2Bgn) ~ Brn(0,1) = {£ € R™; [£],,(,,) € [1,2]}. Then, we

observe for z # -n—d

/ o(TE) | TE|" dt = / / a(rTE) | TE|" dvolos,. (€)dr
D [172] OBgn

:/ Tn+d+z_1d7°/ a(Tf) HT§HZ dvolpBgn (5)
[1,2] O Bgn

2n+d+z -1

n+d+z

| @) avlos, ()
&Bzn

as well as,

/ o(TE€) [T de = / a(€) €] |det T
D T[D]

= a(€) €|” d¢
|Glet T| Jigern; 7-1¢]e[1,2])

|det T /63 / 109 relF 7 dr dvolos,. (€)

HT li\l Ir= liH

1
a(€) /
det T
“[aet 7] Jon,, uT e T lau]

! Ot 2" s (©)
= a Vi n .
|det T Jopan n+d+z|p-1g|t OBs

prtdia=l g dvolppgn (§)

In other words,

2 _ 1 1 —-n—-d—-z
/{)an (I(Tg) HT€H dVOl@BRn (6) - |det T| 9Bgn a(§) ||T 5” dVOlaBRn (5)

holds for z € C \ {-n —d} and by holomorphic extension for every z € C.
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For k € N we, thus, obtain

/ o(T€) |TE|* (I |T¢)* dvolop,.. (€)

OBprn

" ( o [ o) iTel* avoas, <5>) )
OBgn

_o ( " ﬁ /8 G |71 dvolo,, (5)) (2)
(-1

_ -n—-d-z (
|det T'| Jopyn

In|[77¢])" dvolo . (¢)

a(®) 77|

which completes the proof.

O

Lemma 7.1 (first observed by Lesch; equation (2.13) in [51]), and the fact that a
is a homogeneous function with degree of homogeneity —N if a is log-homogeneous
with degree of homogeneity —N, yield (using N = 2dim X, a suitable U Copen RY,

a diffecomorphism x : U — x[U], and a ¢ € CZ(x[U]))

/ / i, €)p(x () dvolop,  (€)dz

U aB]RN

- / / i (x(2), 0 (x) 1) |det ©(2) | [det 1’ ()| @ (x () )dvolas_ (€)dz
U aBRN

- / / i (x(2), 0 (x) 1) |det ©(2) | |det 1’ ()| @ (x () dvolas. (€)da
U JoByw

- / ldet ©()| / X (x(2), 0 (x) ) dvolop, . (€) [det X' ()] (x () )dz
U aB]RN

[ ). dvolon, (O etk @) w(x(@))d
U JoByw

:/ / dX(;[;7§)QD({II)dV018BRN (§)d$,
x[U] 9Byn

i.e. the following theorem.

THEOREM 7.2. res(u, f) = resa(0) = [, , @(0)dvolsp, is form-invariant
R

under change of coordinates if a(0) has degree of homogeneity —N .
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In particular, ¥, ¥,crxresa(0) and X\ ¢ (fpoa™) (0) + Xy Xyerx Ores a(0)

induce globally defined densities provided that Yee Iy: I, =0.

PRrOOF. Note that ((a) induces a globally defined density through the im-
plicit assumption of the kernel being globally defined and, given Vi€ Iy : [, =0,
Xy Ziery res aX(0) being form-invariant implies that the principal part of {(«) in-
duces a globally defined density. Hence, their difference (here evaluated at zero)
Zy C(fpoa®) (0) + £y Eyeryx Oresaf(0) must induce a globally defined density, as
well.

d

REMARK Note that this means that if a is polyhomogeneous and ¢ is the index

such that a,, is homogeneous of degree —IN, then

Z// em(m’m’g)aL(I,x,{)dvolaBRN({)dvolx(x)

welg / X JOByN

:/ / ew(w’m’g)abo(w,x,f)dvolaBRN (&)dvolx ().
x JoB.n

This, of course, extends to higher order residues

/ / @2, (1,2, €)dvolop, , (€)dvolx ()
X JoByn

with ¢ € Iy and [, > 0; this generalizes Corollary 4.8 in [51] on the residue traces for
log-polyhomogeneous pseudo-differential operators; that is, the k' residues (Lau-
rent coefficients of order —k — 1) are well-defined and induce globally defined densi-

ties.

Uniqueness of the residue trace, then, directly implies the following proposition.

ProrosiTiON 7.3. Let a ~ ZFNO Gm-; be the amplitude of a Fourier Integral

Operator where m € Z and an—; is homogeneous of degree m — j. If the residue
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trace is the (projectively) unique non-trivial continuous trace, then none of the
fBBRN ew(z’g)am,j(x,{)dvolaB]RN (&) with m—j + —N can define a global density, in

general, unless they are trivial (i.e. vanish constantly).

In particular, removing non-trivial terms from ((fpya) will, in general, destroy

global well-definedness of the induced density.

PROOF. Let j € Z ~ {-~N} and suppose faB]RN ew(w’g)aj(x,ﬁ)dvolaBRN (€) de-
fines a global density. Then, it defines a continuous trace functional 7. On the other
hand, we know that fBBRN €iﬁ(m’£)a_N($,§)dVOlaBRN (&) defines a continuous trace
functional restr. Since restr is the unique trace, 7 must be a constant multiple of

restr, i.e. 3t € C: 7 =trestr. Hence, there are two cases; t =0 or t £ 0.

If t =0, then 7 = 0, i.e. 7 is trivial. If £ # 0, we might replace a; by zero and
leave a_n unchanged. Let A be the unchanged Fourier Integral Operator and B
the changed. Then,

0= %T(B) =restr(B) =restr(A) = em(x’g)a_N(:C,ﬁ)dvolaBRN €3]
OBy

holds independently of the choice of a_p, i.e. restr = 0, contradicting the assump-

tion that restr is non-trivial.

The proposition above can be extended to the formulation

PROPOSITION 7.3°. Let A be an algebra of polyhomogeneous Fourier Integral Op-
erators such that the residue trace is the unique non-trivial continuous trace. Let
a=ag+y,a, be the amplitude of a Fourier Integral Operator A € A. Then, none
of the fBBRN ew(m’g)ab(x,g)dvolagkjv (&) with d, #+ =N can define a global density,

in general, unless they are trivial.



7. ON STRUCTURAL SINGULARITIES AND THE GENERALIZED KV TRACE 122
In particular, removing non-trivial terms from ((fpya) will, in general, destroy

global well-definedness of the induced density.

using the same proof.

Now, we may ask when the residue vanishes. As a first result we obtain the
well-known fact that the residue trace vanishes for odd-class operators on odd-

dimensional manifolds.

OBSERVATION 7.4. Let (=€) = —a(§). Then,

resa = /83 a(§)dvolag,_ (€) =0.

ProoFr. Using Lemma 7.1, we obtain

res o :/BBRN a(§)dvolop, y (§)

= _/ a(=§)dvolsp,_ (§)

£
o al = |I- dvol
/f)BRN (|—§|e2(N))| €y volon, (€)

¢ N1
- e o dvol
/aBRN ’ ( |§|MN)) I€1z3 ) dvoloz, (€)

= _/ a(§)dvolap,  (£)

=-resa,
i.e. the assertion.
Note that the property a(-¢§) = —a(&) is invariant under change of linear phase

functions with the same “/N”. Choosing non-linear phase functions or changing NV

might destroy this property. In fact, having phase functions with J(-§) = —9(¢)
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will only yield
res(a, ) ::/ ew(g)a(ﬁ)dVOlﬁBmw 9
OB,
-_ / em(f)a(—g)dvolaBRN (&)
OBy

([ o >dvolaBN(s>)
OB, n

/ - suez(N)) _75) |=€le. vy dvolos, (f))
=&l ey (v

/ \\5\\12(N)) €1 5% dvolas, y ()
H€H62(N
/ e’ ®a(&)dvolyp, (5))
OBy
~ (ves(a,9))"
i.e. R(res(a,?)) =0 but not necessarily J (res(a,?)) =

On the other hand, if NV =1, then

/ a(€)dvolys, (€) = a(1) + a(-1)
OBr

shows that resa vanishes if and only if « is odd. Equivalently, we obtain
/ ew(’v’g)a(a@,f)alvolaBR (&) = ew(w’l)a(:t, 1)+ ew(m’_l)a(x, -1).
OBg

Note, this implies there are two residue traces for N = 1; namely, a_1(1) and
a_1(-1).

REMARK Boutet de Monvel [7] considers Fourier Integral Operators on the half-
line bundle only, since for N = 1 the residue trace is not unique. Hence, in his case,
the amplitude and phase function are defined on X x X xR, which can easily be
modeled using V(z,y,&) € X x X xR_y: a(x,y,&) = 0. However, using the gauged
poly-log-homogeneous distributions, no such trick is necessary since we can simply

choose M to be a single point, i.e. R,o x M = R,,.
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In chapter 8, following Proposition 8.4, we will have a closer look at the case
Boutet de Monvel studied in [7]. In particular, we will re-obtain the kernel singular-
ity structure and the residue trace as the logarithmic coefficient, as well as, calculate
the generalized Kontsevich-Vishik trace which will turn out to be form-equivalent

to the pseudo-differential case.

]

For N > 1, the de Rham co-homology of 0Bgn~ is given by

R , ke{O,N-1}

VkeNy: Hbg (0Bgn) =
0 , keNN{N-1}
k+1
(cf. Example 9.29 in [52]). Let d be the exterior derivative and dy, := d|gk(a(gi“*;v).
R
Then,
Yw € QNﬁl(aBRN) tdw = dN_lw =0

implies

R 2 Hip ' (0Be~) = [{0}dN-1/ay_si0v—2(08,x)) = 2" (0Brn)ay_afo¥-208,x)]-

Hence, for every (N - 1)-form w there exists an r € R and an (N — 2)-form @ such

that w = rwg + dw where? wy := volom, v (aBRN)71 dvolop, , i.e.

/ w:r/ w0+/ d&):r+/ w=r.
dByN dByN dByN 89Byn

=1 =0

If w is complex valued, then there are r, s € R and w,,w; such that Row = rwy + dw,

and J ow = swy + dws hold and, therefore,

/ w:/ i)‘{ow+i/ Jow=r+1s.
aB]RN aB]RN 6BRN

2Note that wo ¢ dN,g[QN’z(ﬁBRN)] since /E)B N wo = 1 and Vw € QN’Z(aBRN) :
®

faBRN dw = faaBRN w=0.

———
=g
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In other words, H}; ' (0Bg~,C) = C or
Vw e QN1 (0Bgn,C) 3ceC F0 e QY2 (0Bgn,C) : w = cwy + d.

Thus, we obtain the following statements.

(i) fBBRN e @Yz, y, §)dvolap, \ (§) =0 if and only if the differential form
em(ﬂ”’y")a(az,y,~)dvolaBRN is exact.
(i) %(J, o5 €0 a(a,y, dvolyp, (€)) =0 if and only if the differential
form cos (V(z,y,-)) a(z,y, )dvolsp,_, is exact.
(iii) 3y

form sin (9(z,y,)) a(z,y, )dvolyp_ is exact.

L e@va(z,y,)dvolap, (g)) = 0 if and only if the differential

R

REMARK Since we are integrating dim M-forms over a manifold M, we assume
that all manifolds are orientable as we can only integrate pseudo-dim M-forms if
M is non-orientable. So far everything can be re-formulated for pseudo-forms and,
thus, on non-orientable manifolds. From this point onwards (until the end of the
chapter), though, statements will need orientability; in particular with respect to
uniqueness of residue traces and the commutator structure since

. R , M orientable, connected
im M ~
Hgg" ™ (M) =

0 , M non-orientable, connected
(cf. Theorem 10.13 and Corollary 10.14 in [52] for the orientable case, that is the

case we are going to use).

]
The case above allows us to treat Laurent coefficients of the form f 9B,y advolap, y -
However, considering more general poly-log-homogeneous distributions means we

will want to replace 0Bz~ by some other manifold M. Similarly, if we want to

choose more suitable coordinates, then our Laurent coefficients are integrals over
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X x M where X is the underlying manifold and M = 0B~ in the canonical Fourier

Integral Operator case.

Using the fact that the de Rham co-homology is additive on disjoint unions,
ie. VkeNy: Hi.(MuwM') = HE, (M) @ HY;(M'), and splitting in real and

imaginary parts again, we obtain for a smooth, compact, orientable manifold M
HEpM (M, C) = C*
where k is number of connected components of M.

DEFINITION 7.5. Let A be a polyhomogeneous Fourier Integral Operator on a

compact manifold X and resy ((A) be locally given by

/ / V@ (x, ) dvolpp, (§) dvolx ().

x JoB.n

Then, we call the (N -1 +dim X )-form 9(A) on X x OBgn locally defined as
0(A) = expo(iv) -a dvolxxon,

the residue form of A (in other words, +o(A) = ¢®’a where * denotes the Hodge-*-

operator).

PROPOSITION 7.6. Let Y € X be a connected component and o(A) a residue

Jorm. Then, [y 5 N 0(A) =0 if and only if o(A) is exact on' Y x OBy~ .
R

More precisely, let X = Y1 u...0Yy be composed of finitely many connected
components (v denotes the disjoint union) and let o(A)ly;xoB,y = cjw;+dw; be the

corresponding decomposition of o(A) with

-1
wj = voly,xap,  (Yj x OBg~ )" dvoly,xapB_y -
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Then,

k
/ o(A) =Y ¢
XxdByn i=1

Using the Hodge-*-operator *, the co-derivative d* := (—1)NX(NX_1)Jrl *d* with

Ny :=N+dimX -1, as well as
o(A) =dw <= e’a=x*dw
=swdx (-1 1wy
:d*(—1)NX(NX*1)+1(_1)NX—1 .
=d* ((—1)N>2< *w),

and the divergence div F' = #d * F* = (=1)Nx(Nx=D+1g* [ with the musical isomor-

phism
P T(X x0Bgn) > T* (X x 0Bgn); . F;0; = Y. Fida,
we can re-formulate Proposition 7.6.

THEOREM 7.7. Let X x M be connected and orientable. Then, the following
are equivalent.
() [ €7@ 9a(x,€) dvolyxar(x,€) =0.
(ii) There exists an (dim M + dim X — 1)-form w on X x M such that dw =
e a dvolxum locally.
(iii) There exists a 1-form w on X x M such that d*w = e™a locally.

(iv) There exists a vector field F on X x M such that div F = ¢’ a locally.

COROLLARY 7.8. Let a be a poly-log-homogeneous distribution and resa =
fM advoly;.  Then, resa = 0 if and only if there exists a vector field F on M

such that & = div F.
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REMARK Condition (iv) can be extended to X x (R™ ~{0}). Let M =X x M,
(gs)s the local frame in which e™q is given by «, and (g'); the dual frame. Let

M :=R_, x M such that the metric tensor is of the form

1 0
3(r,) = |
0 TZdim]Wg(g)

ie. dvoly (r,€) = \/det g(r, €)dradé = r™ M. [det g(€)drad¢ = ri™M dradvol , (€).
Let F be a vector field on M and F be a vector field on M. Then,

dim M dim M ) )
divF(¢) =trgrad F(¢&) =tr Y. > 9;Fi(6)d’(€) ® ¢'(€)
j=1 =1
dim M dim M

= Z Z 0;Fi(£)g" (€)

and
N dim M dim M B ) .
divF(r,&) =tr Y, > 0;F(r&)f ®g"
j=0 =0

~ . dimMdimM .
=00 Fo(r, &) +r2dimM > > 9iFi(r, )" (€).
j=1 =1

In other words, we obtain div F(1,£) = div F(€) if 9gFy(1,£) = 0 and 9;F;(1,€) =
9;F;(€). On the other hand, we want div F(§) = &(¢) and div F(r,€) = f(r)a(€)
with f(1) = 1. Choosing Fy = 0 and Fy(r,&) = f(r)F;(€) implies div F(r,&) =

f(r)a(€) and div F(1,€) = div F(€).

Thus, knowing (iv) we can construct a vector field ' such that ¢’ = div F
on X x (R,gx M) and F satisfies the conditions above. Conversely, if ' has the
described properties, then F|x s satisfies (iv).

]
At this point, using the framework of gauged poly-log-homogeneous distributions,

we can follow the lines of Theorem 1.1 in [34] to obtain the following theorem

(Theorem 1.2 in [34]).
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THEOREM 7.9. Let Ay be an algebra of classical Fourier Integral Operators
associated with the canonical relation T' such that the twisted relation T (Ae A <
ka € I(X2 ")) has clean and connected intersection with the co-normal bundle of
diagonal in X?. Then, the residue-trace of A € Ap vanishes if and only if A is a
smoothing operator plus a sum of commutators [P;, A;] where the P; are pseudo-

differential operators and the A; € Ap.

PROOF. If A= S+Y¥ [P, A;] € Ap where S is a smoothing operator, A; € Ap,
and the P; are pseudo-differential operators, then ((A) = ¢(S) which is an entire
function choosing any appropriate gauge, i.e. resg((A) = 0. The interesting direc-
tion is, therefore, the other implication. Let Icompact (X, A) be the set of compactly
supported Lagrangian distributions on X with micro-support in a closed conic La-
grangian sub-manifold A of T* X \ {X x {0}}. Let f € Iompact (X, A) such that the
intersection of A and A is clean and connected. Furthermore, let f be non-vanishing
on AnA. Let ¥»DO(X) be the ring of properly supported pseudo-differential oper-
ators on X, that is, pseudo-differential operators mapping C2°(X) into itself. We

will define the transposed annihilator of f to be
ann(f)" = {PeyDO(X); P'f e C™(X)}

and we say u1,u2 € Icompact (X, A) are equivalent (u; ~ ug) if and only if there are

keN, v; € Iompact (X, A), and P; € ann(f)* such that

k
Ul — Uy = Z Pv;
i=1

modulo smoothing terms.

e As we are interested in traces, we will need to consider f = d4iag and, since

ann(dqiag )" is generated by operators of the form P(z,D,) - P(y, Dy)",
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we obtain that two kernels K and K’ are equivalent if and only if
u t
!
i=1
(modulo smoothing terms) which implies that the corresponding Fourier

Integral Operators are a smoothing operator plus a sum of commutators

[P;, A;] (K; is the kernel of A;) as

/X (P;(z, D) = Pi(y, Dy)") Ki(w,y) f (y)dvolx (y)
=P A f(x) = (P K(x,), f)
=P A f(z) - (Ki(z,-), P f)

=(PA; - AiP;) f.

Since A € A and the Lagrangian sub-manifold associated with pseudo-
differential operators is the co-normal bundle of the diagonal in X2, we
need to assume that I has clean and connected intersection with the
co-normal bundle of the diagonal in X? for this calculation to be senseful.
e let pe An A. By assumption f does not vanish at p, hence, there is
a gauged distribution u € C*(C, Icompact (X, A)) such that reso(u, f) =1
(we can freely choose the amplitude of critical degree of homogeneity) and

we will have to show
Vu' e Coo((ca Icompact(XaA))gauged s~ (reso(u', f)) u.

We may assume that u has micro-support in a very small conic neighbor-
hood U of p. Now, we may localize. Suppose the assertion holds and let v’
have micro-support in a small conic neighborhood U’ of a point p’ € AnA.

(i) HUNU’ # @, then we may assume that u has micro-support in UnU’

and we have the assertion on U’.
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(ii) If UnU’ = @, then we can find a sequence of points py,...,pr € AnA
and sufficiently small neighborhoods Uy, ..., Uy such that p; = p, pg =
p’, each p; € U;nUj;q, and there are u; € C%°(C, Iompact (X, A))gauged

with resg(u;, f} = 1 and micro-support in U;.
If the local version of the assertion holds, then we directly obtain u’ ~
(reso(u’, f))u in case (i) and w ~ ug ~ ... ~ ug and u’ ~ (reso{v’, f)) up
in case (ii). Using this localization, we may introduce charts to obtain

X =R"™ and f = Pdy. Hence, it suffices to show that reso(u, dp) = 0 implies

k
3P; e ann(8p)" v € O (C, Leompact (X, A) ) gauged U =w + > Pu;
i=1

where w € C*(C,C (X)) and ann(dp)" is generated by smoothing oper-
ators and multiplications with the argument x;. Furthermore, u is given

by an expression of the form

u(z)(z) = e 8a(z)(€)de

RN\BRN

modulo smooth functions. Thus, we will have to find distributions

us(2) () = / (e

such that ¥, zus(z) = u(x) modulo smooth functions.
o Let y e C° (RY) with x =1 in a open neighborhood of zero and a5(€) :=
as(&)x(ef) for € € (0,1). Then, Proposition 1.1.11 in [39] yields that

. .. / . . .
af - a; in every Hormander class S™ with m' > m if g € S™, ie.

/ " (€)dé = lim el (€)de.
RN\Byn

eN0 RN B, N

Let R. € R,, be such that af|g~v .5, =0. Then,

CL‘S/ ei<m7£>a5(§)d§
RNNByn

=lim 258 s (€)de

exo0 RN\BRN
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=lim —i8y "™ s (€)de
N0 RN B, N
=lim ~i0o 5" aZ (€)dE
N0 JR B v Byw
=i lim X9 9,08 (€)dE +ilim X8 0f (€)€ de
eNo0 REBRN\BRN €N BBRN
=i / 99, a,(€)dE +ilim @8 o ()e (Bsx) (£€)dE
RN\BRN eN0 RN\BRN

+i/ el ()¢ de

OBy

’/ T, 0, (€)de +i / SN (SINS
]RN\B]RN aB]RN

As if@BRN e"®8 o, (€)€,dE is smooth again, we are looking for ag such that
(modulo smooth functions) ¥V, idsas = a. Since o has an asymptotic
expansion (and the smoothing terms are irrelevant), we may also assume

that « is homogeneous of degree d (in a neighborhood of &). For d + —N,

we observe

N —if.a N
a( & “))— L 30, (6a(9)

foe] N+d | N+dZ

1 X 1 X
e & 60O+ g X al®
1 Na(¢)
—m(§agfada(§))+ N+d
_da(§) | Na(g)

N+d N+d
=a(§).

For d = —N we actually have a residue to consider. However, the remark
above warrants the existence of a vector field F' on RY \ Bg~ such that

div F' = « if the residue vanishes and, thus, the assertion follows from

N N
a=divF =) 0,F, =) i0s(-iFy).
s=1 s=1
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[e3%
EXAMPLE Considering G := (h + |A|) on R/a2xz we are interested in integrals

2m «
J> Re—zmng<h+|€|> de de =y [ T (hvle)” de
nez

2m nez

=2 (w - /R e (1 |g))” dg,ao).

nez

Hence, we are looking for v(x) = [, e (@278 (€) de such that

o) = [ )
is equivalent to zv(z) modulo smoothing terms. Now,
zv(x) :/Rxemge*zﬂmga(g) d¢
- [ ite (e e age) de
= /R ¢"%ide (e a(€)) dg
shows that we are looking for a such that i0 (e’Qﬂi”'a) = e 2™ (b + ).

Let T'y; be the upper incomplete I'-function given by the meromorphic exten-

sion of
Toi(s,) ::/ Pletdt (R(s) >0, @ eRy).

Recall that Ty, satisfies T'y;(s,0) = T'(s) where T' denotes the (usual) I-function,

I'(s,00) =0, and 3ol yi(s,2) = —2°Le . For € >0 and n # 0, we obtain

. ie2™PhT (1 + o, 2min(h + 1)) e2™mh (min(h+ €))* e~ 2min(h+)
Za n- ; 1+« (5) = ; o
(2min) (2min)
- (h+ ) e,
ie.

2™ (1 + a, 2min(h + 1))
(2min)l+e

0 (1 [CRNTRE
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that is,

Z-ezmn(thE)Fm.(l +a,2min(h + [€]))
alg_,(§) = (2min)t+ '

For ¢ < 0 we obtain

e—27rinh (—27Tin(h _ 5))04 eZﬂ'in(h—f)
(—2min)«

9 (77 ie”2™ "D (1 + a, —2min(h - 1))

(2min) (-2min)® ) (€)=

:(h _ é-)oce—%'rin{,
i.e.

ie 2= (1 + o, =27win(h - 7))
(2min)(-2mwin)™

01 ORI

that is,

ie” 2 (=OD (1 + a, —2min(h +|€]))
(2min)(-2mwin)®

G|R<0(§) =

In other words,

ie2minsen(OHEDT (1 + o, 2minsgn(€) (h + 1€N)
(2min) (2minsgn(&) )™

a(§) =
for large values of || where sgn denotes the sign-function.

Let xp, € C°(R) with x,, =1 in a neighborhood of zero. Let vg{h(:zr) be given

by

/ei(m‘%")g(l—x (5))m(ie2”insg“(£)(h+|5)Fm-(l+a,2m’nsgn(§)(h+|§|))) "
R

(2min) (2minsgn(§))>

and vg"h(:zr) be given by

i(a-2mn)e (1 _ ierin s ©QUHEIT i (1 + a, 2minsgn(€) (h + [€]))
/Re (1 X"(g))j( (2rin)(2rinsgn(€))® -

For n = 0, we obtain

o () = / 78 (h + |e])de
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and

_ Y ix€ de = iz 1 d ,
ro(a) = [ (006 () ae)ds = [ eia' (e
i.e. we are looking for a such that ia’(¢) = (h +|£])® which is

—isgn(¢)

1+«

a(§) = (h+[gh—=—>=

and, hence,
@)= [ e (e e D
as well as,
B4 = [ e xa(@)a (1 e D g
Then

Un,n () = T (x) + ixv;l’h(a:)
modulo smoothing terms; in fact,
Unp() - (v;’h(:zr) + w?h(x)) = / ei(””*””)fanyh(g)dg
R

with a, p € C°(R) and

1.
Cr(-) =3 i 3 (1.0
_1 . n,h . n,h
=5 ]111\%1% (:17 - (unh(x) —avy (x) —irvy (a:)) ,50>
L im S| e, 5 (€)dE
2 h\OneZ R ’
:5 Ilzlin Z F (ann) (n).

135

Guillemin also proved the following (more general) version of Theorem 7.9 (cf.

Proposition 4.11 in [35]).
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PROPOSITION 7.10. Let I' be connected. Then, the commutator of Ap is of

co-dimension one in Ap modulo smoothing operators.

Hence, resgo( is either zero or the unique continuous trace on A up to a
constant factor provided that I' is connected. Regarding the trace of smoothing op-
erators, Theorems A.1 and A.2 in [35] yield the commutator structure of smoothing
operators (the following two definitions, the theorem, and the remark can all be

found in the appendix of [35]).

DEFINITION 7.11. Let H be a separable Hilbert space and e := (€;)ien an or-
thonormal basis of H. An operator A € L(H) is called smoothing with respect to e

if and only if
VneN JceR: [(Aei,ej)m| <c(i+j)™".

DEFINITION 7.12. Let H be a separable Hilbert space, e an orthonormal basis,
Q Copen K™ with K € {R,C} and A e L(H)® such that each A(s) is smoothing with
respect to e. Then, A is said to be (scalarly) smooth/holomorphic if and only if all

s (A(s)ei,ej)m are C(Q).

THEOREM 7.13. (i) If A is smoothing with respect to e and tr A =0, then
A can be written as a finite sum of commutators [B;,C;] where the B;
and C; are smoothing with respect to e.

(ii) If a family A € L(H)$ of smoothing operators is smooth/holomorphic,
then A can be written as a finite sum of commutators s — [B;(s),C;] on
every compact K ¢ Q where the B;(s) and C; are smoothing, and the B;

are smooth/holomorphic.

REMARK (i) Let X be a compact Riemannian manifold, H = L3(X), and

e the family of eigenfunctions of the Laplacian on X. An operator A ¢



7. ON STRUCTURAL SINGULARITIES AND THE GENERALIZED KV TRACE 137
L (L2(X)) is smoothing with respect to e if it is smoothing with respect
to the Sobolev norms.

(ii) Let H = La(R™) and e the family of Hermite functions. An operator
A e L(H) is e-smoothing if it is smoothing with respect to the Schwartz

semi-norms.

These theorems yield the following table assuming that the residue trace respo(
is non-trivial and unique, and Ap = () + ([Ap, Ar]) + {smoothing operators} for

some A € Ap with reso ((2A) # 0.

Iy +o Iy=0
reso C(A) #0 resp(A) =0 | C(A)(0) 0 ¢(A)(0)=0
A=aA+S+Yr
A=S+%5,Ci
Cj € [Ap, Ar] A= Z§=1 Ci
Cz' € [AF,AF]
o = (reso () ' reso C(A) C; commutators

S smoothing
S smoothing

REMARK Note that the obstruction to the generalized Kontsevich-Vishik trace is
given by the derivatives of the a, for ¢ € Iy. Using the example above Theorem 2.15,
we obtain that these are residue traces themselves if the operator is polyhomoge-
neous. These residues are explicitly calculated for gauged families A(z) = BQ* in

Proposition 4.5.
u

REMARK Recall that (g(a) = %g (s H*H™ ) (0) holds. Since Iy = @ for R(«) €
(0,1), we obtain H™* = S, + Zf;l [B;, C;] where S, is a smoothing operator. Hence,

the following are equivalent.

(i) Riemann’s Hypothesis

(i) R(a) € (0,1) A H*e([Ap, Ap]) = R(a) =3
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N . 1
(iii) M(a) € (0,1) A Sy =0 is possible = R(a) = 5

(iv) R(a)€(0,1) A trSq=0 = R(a)=1



CHAPTER 8

Stationary phase approximation

In this chapter, we would like to get to know a little more about the singularity

structure of

k(z,y) = / @V o,y €)de,
]RN

primarily to calculate the integrals

/ eiﬁ(zﬁyqf)a(:uy,g)dVOIE)BRN (5)
9ByN

We will prove the following theorem.

THEOREM 8.3 Let k(z,y) = [on e @v8q(x,y,€)dE be the kernel of a Fourier In-
tegral Operator with poly-log-homogeneous amplitude a = ag+Y.,c; a, and phase func-
tion satisfying O3 (19|X><anBRN)($,y,§) e GL (RN_l) whenever 039(x,y,£) = 0.
Let I := 1U{0} and choose a decomposition a = a° + Zil a® such that there is
no stationary point' in the support of a®(x,y,-) and exactly one stationary point

£ (z,y) € 0Bgn of ¥(z,y,-) in the support of each a®(z,y,").

Let 9*(x,y) = 0 (2,9,€ (2,9)), ©°(2,9) = 0359 (2,9,6*(x,y)), sgn©°(,y)
the number of positive eigenvalues minus the number of negative eigenvalues of

0% (z,y), gradaBRN = Jsp and divop,, are the gradient and divergence operators

on the (N —1)-sphere OBgn, and
Dopes(ry) = (0°(2,y) " 0op,dop) =~ divon,, ©°(z,y) ' gradyp,, -

LA point € € RY is called a stationary point of ¥(z,v,-) if and only if 930(z,y, &) = 0.

139
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Furthermore, let

im

(2m) "7 |det O (z,y)| 2 T 5O ()
31(2i)i

h;)L((E,y) = AéB)@s(;my)af (.’I],y,gs(l',y))

and

ol (z o D (g+1+2) i1 (9% (a,y) + iO)_q_l_z) (0) , geC~(-N,)

95 .(z,y) =
1, -I'(2+1) (-0) ¥ (cin+lno)
9 (Z a7 (-q)! fc+iR (_ilgs(m y)l_'_O_U)ZH dO’) (O) y 4 € _NO
with q :=d, + % -7, ceR,, and some constant ci, € C.
Then,

) S
Ka) = [ O, e+ 53 T 0w (o)

vel 5=1 jeNO

holds in a neighborhood of the diagonal in X?2.
This will yield the following theorems.

THEOREM 8.5 Let A be a Fourier Integral Operator with kernel

Ka) = [ "0 Oate.y, )it

whose phase function ¥ satisfies Vo e X V¢ e RN« 9(x,2,€) =0, and whose ampli-
tude has an asymptotic expansion a ~ Y,y a, where each a, is log-homogeneous with
degree of homogeneity d, and logarithmic order 1,, and R(d,) - —oo. Let Ny € N

such that Vi e N,y R(d,) < =N and let

. X Ny
K (2, ) = / @1 S g (2, €)de
RN =1

denote the singular part of the kernel.
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Then, the reqularized kernel k — kS8 is continuous along the diagonal and
independent of the particular choice of Ny (along the diagonal). Furthermore, the

generalized Kontsevich-Vishik density is given by

. No
(k- ksmg) (z,z)dvolx () :/ a(z,z,8) - > a,(z,z,§)dédvol x (z).
RN =1

THEOREM 8.7 Let A be a Fourier Integral Operator with phase function ¢ satisfying
02 (19|X><XXBBRN ) (x,y,€) e GL (RN_l) whenever d59(z,y,€) = 0 and £° (s € Nss)

the stationary points. Furthermore, let
VreX VseN_g: 19(90,90,55(90,90)) +0.

Then

(X320 k(z,2)eC )eC(X)
and
trA:/Xk(:v,:v)dvolx(:v)

is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, (-functions of

families of such operators have no poles.

For the remainder of the chapter, let a be log-homogeneous. Then, we obtain
Bag) = [ "o Oaa e
RN
:/ / PN e @ym g (g g, rn)dvolap,_ (n)dr
R., J8Byn

:/ TN+d71(lnr)l/ eiw(m’y’”)a(x,y,n)dvolaBRN (n)dr.
R 90BN

>0

=I(x,y,r)

Let (x,y) be off the critical manifold, i.e. Vi€ OBgn~ : 939(x,y,n) #+ 0. Then, we

observe

83€ir19(m,y,n) _ ireirﬁ(z,y,n)83§($7 v, 77)5
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i.e.
i) _ (ageiTﬁ(x’y’"), d59(x,y, W))RN
= , 2 )
ir [ 0s9(@, y,0) [y ()
and
[ (z,y,7)| = / eiw(z"y"n)a(%yaW)dVOlGBRN (77)’
(Oer?Cvm) 03 (2, y,m))
_ / , PV o,y m)dvolos, , (n)
9B, N ir [039(2, y,0) [0y )
_ / eirﬁ(z,y,n)ag a(xvyan)8319(x72y5n) dVOlaBRN (,'7)
OB, ir 059z, y.0) [,
:}/ e”ﬂ(””’y’")aé*a(x’y’")aw%y’”)dvolww(n).
r|JoB, N 1059 (2, y:m) 2,
Using

La(x,y,n)039(x,y,
Da(a,y,n) = 05 LD 3.1),
1059z, y,m) |7,y

we conclude

1
VneN: |I(z,y,r)|=—
r

/ eirﬁ(z,ym)pa(m’y,n)dVOlaBRN (77)‘
0Byn

1

,r.n

/ eirﬂ(w,y;ﬁ)'D"a(;[;7y, n)dvolaBRN (77)‘
0ByN

L
<= D"l (xxxxom0)
i.e.

VneN JceR,y: |[(z,y,r)| <er™

which proves that k is C* away from the critical manifold.

142
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On the critical manifold, we will assume that
a32 (19|X><X><BBRN ) ((E, Y, 5) eGL (]RN_l)
if 939(x,y,€) =0.
ExaMPLE For pseudo-differential operators

I(z,y,8) = (& -y, Orn-r.

Let spta(z,y,-) € O0Bgn~ N {Bp} uniformly (z,y) in some sufficiently small open
set and o : RN™1 —» 9Bgpn \ {By} the stereographic projection (or any other nice

diffeomorphism). Let
190'(1:73/75) = <(E -y, 0(§)>RN :
Then,

0=050q(x,y,8) = (x-y)T0'(§) <= x-yis normal to B~ at (&)

«— z-yelin{o(§)}

2y g(g)e{ Yy oty }

|z - y”ez(zv) |l - yHb(N)

as well as,

0305 (2,y,€) = (z —y) " " (€)

which is a multiple of the second fundamental form II if z —y is normal to 0 Bg~ in
a(£). Using the first fundamental form I and the fact that the Gaussian curvature

k of OBg~ is 1, we obtain

det IT
det1’

i.e.

0305 (2,y,€) =0 = 959,(w,y,£) e GL(RN ).
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In other words, pseudo-differential operators can be treated with the stationary

phase approximation considered in this chapter.

LEMMA 8.1 (Morse’ Lemma). Let (zo,y0,&0) € X x X x OB~ be stationary
(in particular, 8spd(z0,Y0,&) = 0) and 93 59(x0,Yy0,&0) € GL (RNfl) where Jyp

denotes the spherical derivative, i.e. the derivative in OBgn.

Then, there are neighborhoods U Copen X x X of (%0,y0) and V Sopen OBrn of

&0 and a function € e C=(U, V) such that
V(2,,8) eUx Vi Oppd(w,y,6) =0 < &=E(x,y).
Furthermore, there is a function ne C® (U x V,RY) such that
V(2,9,6) €UxV: (2,9, - (6 -E(z,9)) €O (||§—é<:v,y)HZ(N))
and
O3 (,,8(x,y)) = 1.

PRrROOF. The existence of U, V', and é is a direct consequence of the (analytic)
implicit function theorem. From now on, we may suppress the first two arguments
(that is, “a” and “y”) for reasons of brevity. Then, using Taylor’s theorem with

A= {aeNY; al,, vy =2}, we obtain for all & € V

9O =0+ a0 (©)(c-8)+ T 2 [[a-naga (e 1(e-E)ar(e-)"

—_—— acA

with some appropriate function B € C* (U X V,L(RN)). According to Taylor’s

theorem, we have

V(z,y) eU: B(z,y,&(x,y)) =059 (2,y,&(z,y)).
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We are, therefore, looking for a function R € C'*° (U xV,L (RN)) with

V(z,y) eU: R(z,y,&(x,y)) =1

and

V(2,y,€) € UxV: B(,9,€) = R(w,9,€)" 050 (2,9,£(2,9)) R(w,y,£)-
Since the radial derivative 0,9(&) is constant, we obtain

) afﬁ(x,y,f) a’raaBﬁ(x7y7§)
V(x,y,£) eUxV: 059(x,y,§) =

38337«19(117,%5) 83319(%%5)

0 0

)

0 6%319(557%5)

where Oyp is the spherical derivative dypt} = 8319|@BRN, which shows that we may

assume, without loss of generality,

0 0
V(z,y,§) eUxV: B(x,y,§) =
0 C(z,y,8)
and
1 0
V(z,y,) eUxV: R(z,y,§) = :
0 S(z,y,6)

This reduces the problem to showing that a solution of

S(@,y,8)* 559 (2,y.£(2,y)) S(z,y.€) =C(z,y,£)

S(x,y,f(x,y)) =1

exists in U x V' (reducing U and V if necessary).
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Note that (using the symmetrization operator sym: L(H) - L(H); h— ’”Th*)
T: L (RN&) - sym [L (RNfl)] ;s 870559 (x, y,é(x,y)) s
has surjective Fréchet derivative
T'(1): L(RY™") ssym[L(RY)];

s 8" 050 (2,9, E(2,)) + 0350 (2,y,6(2,y)) s

since s := %85319 (x,y,é(:z:, y))71 t solves
s 0359 (,y,6(2,y)) + 00 (2,y,E(2,y)) s = ¢
for t € sym [L (RN_l)]. Let Ly:=L (RN_l) /1oy (1)- Then,
(TlLy) (1) s Ly > sym[L (R¥)]

is an isomorphism and the implicit function theorem yields a C*°-solution of

s*agBﬁ (w,y,é(w, y)) s=Cc¢€Ly

s (w,9.€(z,y)) =1

in a neighborhood of (a:,y,é(x,y)). Let S be a C*-representative in L (RV"") of

the solution. Thence,

VeV s 9(€) =0 (€) + 5 (30 (€) R(E) (€-€) R(E) (6-€) )

Letting

77(1%%5) = R(x,y,{) (g - E(Iay))

and observing

R(,y.€) ~1€0(|¢ @), n))
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shows

1w0.6) - (6~ Ew)) €O (Je =) )
Finally,

a1 (w,y,€) =R (x,y,€) (€ - &(w,y)) + R (,y,€)
implies

0sn (2,y,€(x,y)) =R (z,y,&(z,y)) = 1

which completes the proof.

COROLLARY 8.2. Let ¥ be as in Morse’ Lemma (Lemma 8.1). Then, stationary

points of 9(x,y,-) are isolated in OBgrn~ . In particular, there are only finitely many.

PrOOF. For given stationary (z,y,£) we can find a neighborhood V' Cipen
OBgrn~ such that £ = é(:v,y); thus, stationary points are locally unique. By com-

pactness of By~ they are isolated and at most finitely many.

Hence, we may assume that

S .
k(zy) = [ Ve (2,y,€)de
s=0J RN

where a° has no stationary points in its support and each of the a® has exactly one
branch (:c,y,és(:c,y)) in its support. As we have already treated the a case, we

will assume, without loss of generality, that a is of the form of one of the a®.
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Let ngp be defined as the spherical part of  and
O(x,y) = 959 (.9,(x,9)) -
Then,
(030 (2,9,£(2,9)) (2, 1,©),1(2,9,€)) pn = (O, ¥)05 (2, 4,£), 105 (2,,) )
and, defining ¥ := 9 (a:, y,é(az,y)),

I(z,y,7) = @ a(z,y,€)dvolop, (€)
BBRN

:e"& / e!5(0(@y)nos(x,y,€):mo(2,4,€) Jzn-1 a(z, v, f)dVOlaBRN (6).
OBy

Let o : RN - 9Bgn be a stereographic projection with pole —£(z,y) (which is

assumed to be outside of spta(z,y,-)),

no(xayug) = ﬂaB(UCayaU(f)),

and

a5 (2,y,€) = a(z,y,0(£))\/det (' (€)*0" (£)).
Then,
I(z,y,7) :eirﬁ / 20 y)nos (@,y,€),mo8(2,4,€) )pN-1 a(z,y, f)dVobBRN €)
8BRN
:em?/ (5 (O@ 1 (0. (w0 an-1 g (14 €)de

RN-1

and
O30 (2,y,€) = O3nap(z,y,0(£))o’ (€)

combined with the fact that d3n (x, v, &(x, y)) =1 yields that 7, (z,y,-) is invertible

in a neighborhood of o~ (£(z =0 (we will also use n,(x -) for ny(x,vy,-)).
g &(z,y Ne(,y Mo (Z,Y,
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Without loss of generality, let a,(x,y,-) have support in such a neighborhood and

a(z,y,&) = ag(z,y,n0 (2, )~ )\/det (o (2, 9)7) ()" (0o (2,9)71) (€))-
This yields

I(z,y,7) :e"@/N 16 15(0(z,y)n0 (2,9,6) M0 (2,9,6) Jpn - Yag(z,y, €)dE
RN-

:eir@/ e/ HOEMSEN1G(,y, ) dE.
RN-1
Using

F (z e %(re(w,y)f,f)w,l) ©)

|det(’l”@(3: y))| 3 e o sgn(rO(z,y)) 71%<(T®(z’y))ilfvf)]{z\171

1 1
N

= |det O(z, y)| % T B (O@ ) -i3((rO(=¥) €D

where sgn(©(z,y)) is the number of positive eigenvalues minus the number of neg-
ative eigenvalues of O(z,y) (cf. Lemma 1.2.3 in [20] and noting that Duistermaat

. N .
uses “F = [on” whereas we are using “F = (2m)"2 [,5”), we obtain

/]RN—1 ei%<T®£7£>RN—1 d(§)d§

1 -1 AT o . —
= |d€t ®| %GT sgn © ‘7_—3—1 (e—l%((re)) 1£7£)RN—1)d(§)d§
rz RN-1
1 —= im o . O\~
= |det@| ;ST sgnO/ ]_-g (671%((7“0) lfvE)RN—l)d(g)dg
rz RN-1
_ ]\:}71 |det@|_% 6% sgn(—)/ e*i%((T@)ilfyf)RN—lfga(&)d&
roz RN-1

1 _1l im g -J - j N
—grheo ety [ (e, ) Fa©

o2 jeN, J! 2

et F e 3 T / (G o)) Face

T jeN j

_ J
|d€t®| 264 o Z ]' /]RN 1‘7:3( 3 6 83783>RN—1) d) (§)d§

T JjeNy
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and investing

/ Ff(&)de = / 08 Ff(€)de = (2m)E FH(F ) (0) = (27) % f(0)
Rn Rn
yields

/ ei%@@(z,y)&ﬁ)w*ld(a&,y,f)d§
RN-1

N-1 . .
2\ 72 1 img (=i)Ir

_ sgn ©(z,y)

—( . ) |det O(z,y)| 2 e E 7120

JjeNy

(9(.’[], y)_la?n a3>§QN—1 d((E, Y, 0)

REMARK The evaluation of (@(.I,y)ilag,ag)gy\_l a(z,y,-) at zero yields an evalu-

ation at €(z,y) undoing all the changes of variables.

Hence, defining

21)"= |det © x, "3 o senO(w) _ j _
hi(z,y) S ](.,(2%);]» (O(w,y) 7105, 08)pxy (,y,0)

we obtain

_—

TN+d_1(lnr)l/ eirﬁ(w’y’g)a(a:,y,{)dvolaBRN (&) dr
>0 aBRN

TN+d71(1n T)leirﬁ(z,y) / ei%(r@(m,y)E,E)RN_l EL(I, n §)d§ dr

RN-1

Il
_—

>0

PN+ (I )Lt ) S5 > i (x,y) dr
. JeNg

Il
_—

= hj(x,y)/ rd+%7j(lnr)lem§(z’y) dr,
R>0

je

2

0
i.e.

S
k(w,y) = Z

s=|

:/ rN“i*l(lnr)l/ e"ﬂ(z’y’g)ao(x,y,{)dvolaBRN (&) dr
R

BBRN

/ PN (1 ! / rIEIO 8 (2, y, O)dvolog_ (€) dr
R OByN

(=)

>0

>0

S . - .38
+y ) h;(:v,y)/R Pt St (Inr)le™ @) qp.
>0

s=1 jeN,
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For [ = 0 we may invest the well-known fact
Vg eCopiysq Vs €Cp(ysp / tle™*'dt =T (q+1)s 7!
R>0

about the Laplace transform to obtain

— . .98 N 1 ~ —d- N+1
/ e e UL AR M (d + 2+ —j) (-i9°(z,y) +0) ~ ° +
R

>0

N+1

N+1 s -d- Ny
:P(d+ 2+ —j)id+¥-ﬂ(195(x,y)+i0) =

if R(d+ % - j) >0 where f(t+i0) := lim. f(t+i€). By meromorphic extension,
we obtain
-d N+1

/ rd+¥-jeiré5(w,y>dr:r(d+N2+1—j)id+%—j (0% (2,y) +i0) B
R

>0

whenever d + 251 — j e C \ (-N;) and, for [ € Ny,

/ 4 (Inr)’ et (@) g —g! (z ,_>/ ,r,q+Zei’r"L§S(z,y)dT) 0)
R R

>0 >0

=0 (20 (4 1)1 (0 ) +i0) ) )

Ifd+ Y —je-Ny, ie d+ % —j € =N, then we can use the following property

2
/R>0 /Otf(r)dTeStdt = é/ﬂ@)of(t)e“dt

to obtain
' q
Vq,5€Coysp : / tle~*tdt :/ / qr? dre st dt = —/ t e st at
R>0 R>0 0 § R>0
and, hence,
q_-—st S g+l _-—st s" qg+n _—st
tle ™ dt =—— 17 e Al = ———— tT e dt
R>O q + 1 R>0 Hp:l (q + p) R>0
by meromorphic extension. Thus, for ¢ € -N and n = —¢ -1, we have

—g-1
/ t‘?e*“dtzﬂ/ tlestdt
R (—¢-1)!'Jr

>0 >0
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reducing the problem to finding fR t~te~stdt. Consider the Borel measure
>0

ot B(Rog) > C5 Ame [ 07l
A

on R, for ¢,s ¢ (C%(-)>0' Then,

5(0 - /]R Fh)e dt) (s) = -/Rm LF(t)e e

implies
9(0 = pg,o) (8) = —figs1,s
and, hence,
I'(g+2) 1
0(0 > pg.) (5) (Rog) = ~1gr1.s (Rog) = =—2= > == (¢~ -1).

In other words, fR t~te~*'dt is logarithmic (up to a constant) and fR tdestdt for
>0 >0

q € -N is log-homogeneous; namely,

- 0% (z,y) - 0) " .
/R raeV (@) g = - (Z ((x_,j)_ 1;)|) (Cln +1n (—iﬁs(%y) + 0))
>0 :

with some constant cj,. Finally, we can add the In7 terms for g € -N by investing

the the multiplication property of the Laplace transform

LUNG) = 5= [ LUN@L@)s-a)do

c+iR
where ¢ € R such that ¢+ iR is a subset of the region of convergence for L(f) =

(s - fR>o f(t)e_Stdt). Thence, for ceR,;, ¢ € -N, and [ € Ny, we obtain

/ r9 (Inr) e dr
R

>0

s=—i0° (x,y)+0

= (z r—>/ rir® (lnr)le”dr) (0)
R

>0

=9 (z > / rir? esrdr) (0)
s=—i9* (z,y)+0

=9 (z > —/ / ‘"dr/ rze_(s_“)Tdrdo) (0)
2mi c+iR

>0

s=—i9* (z,y)+0

s=—i9% (z,y)+0
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_ g (2 -T'(z+1)

-q-1 -z-1
- m/R (o) " (e + o) (5 — o) da) 0)

s=—i9% (z,y)+0

Thus, we have proven the following Theorem.

THEOREM 8.3. Let k(x,y) = [pn @y q(x,y,€)dE be the kernel of a Fourier
Integral Operator with poly-log-homogeneous amplitude a = ag+Y.,.; a, whose phase
function satisfies O3 (19|X><X><BBRN) (z,y,€) e GL (RN_l) whenever 039(x,y,£) = 0.
Let I := T1U{0} and choose a decomposition a = a° + Zil a® such that there is
no stationary point in the support of a®(x,y,-) and exactly one stationary point

& (z,y) € 0Bgn of ¥(x,y,-) in the support of each a®(z,y,").

Let 9 (x,y) = 0 (2,9,€ (2,9)), ©°(2,9) = 039 (2,9,6*(x,y)), sgn©°(,y)
the number of positive eigenvalues minus the number of negative eigenvalues of
O%(z,y), and Npp e (24 = (0°(2,y) ' 0s5,008) = ~divap,y ©%(z,y)™" gradyp -

Furthermore, let

(27) T |det ©%(a, y)[ 2 T w00 (2)
B 71(24)7

h;,L(xvy) : AéB7@saf (iv,yaés(iﬂ,y))

and

ol (z T (g+1+2)d072 (ﬁs(x,y) + i())iqiliz) (0) , geC~(-Ny)
95.(@,y) =

l, -T'(2+1) (—o) U (cin+lno) _
0 (Z ™ Bt ()l Jevim (_ms(w)m_a)mda) (0) » 4€ Ny

with q:=d, + % -7j, ceR,y, and some constant ci, € C.

Then,

_ s
Kaa) = [ O, O+ T T B a)gg (o)

vel s=1j€N,

holds in a neighborhood of the diagonal in X?2.

REMARK Suppose 9359 is not invertible at some stationary point but we can split

the third variable in a pair (&,¢) such that 979 (zo,vo,%0,C0) is invertible at the
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stationary point. Then, we can find open neighborhoods U of &y and V of ¢ as well
as a function ¢ such that 9,9(x,y,€,¢) = 0 if and only if ¢ = {(¢). In particular,
since U x V is open in the compact set 0Bg~, we can use a partition of unity to

reduce I(x,y,r) into a sum of integrals of the form

//em<z,y,5,<)a($,y,g,g)dvolv(c)dvolU(@-
uJv

Using stationary phase with respect to ¢, then, yields

/ / eirﬂ(w,y,fxC)a(x7y,§7<)dVOlv(C)dV01U(§)
vJv

:/ eirﬁ(myyyéyf(é))/ e"(azﬁ(z’y’g’é(g))"(o’"(C))R"a(:z:,y,{,()dvolV(C)dvoly(g)
U v

which, again, yields an expansion of the form above but where the coeflicients need

to be integrated once more.

u
ExaMPLE For a pseudo-differential operator, we have
I(,y,€) = (x —y) o (£).

Choosing coordinates such that (z —y) = — |z - y”g2(N) en and letting en be the

pole of the stereographic projection, we obtain

2¢
0_(5) _ 1*”5”(2(1\7_1)
€0, (n-1y—1
€0 ey (n-1y+1

and

15(5) _ Iz, y,§E) _ 1- H§He2(1v_1)'
|z - y”eg(N) L+ ”5“22(N71)

Then, we observe
-2 i 1- f _
g é_l ” Hfz(N 1)

3115(5) = 2
R T
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as well as,
- —20;5 46, - —
HORIE) =gt e T g 20 Bluory
£2(N-1) (1 + ngub(m)) (1 + H&wafl))
o e L= [€ll gy n-n)
) J 2
1+ H§Hl2(N—1) (1+ H{Hb(N,l))
_ _4517' + 12&5]

(1 lelvn)” (1 lelovan)

From O(z,y) = BgBﬁ(x,y,é(x,y)) and &(z,y) = ‘L = 0(0) in these coordi-

|I—y“/_72<N)

nates, we obtain

O(x,y) = |2 =yl 4yny 97 (0) = =4z =yl 1, () -

Hence, using z :=x -y,

(2#)% |det (-)(x, y)|’% e%’ sgn ©(z,y)

h_j(i[],y) = j'(QZ)J (G(xvy)_la3aa3>§§N—1 d((E,y,O)
N Tz _im(N-1)
O () T EED )
TG RIS B
N-l _N-1 im _
LB T Fluy et :
i 1(~8i)7 BN el )
J £5(N)
Let
R (E)T_ e E(N-1) .
hi(z,y) = 2/ — Al calx,y, — |.
! JI(-8i)J oB 1216y ay
Then,
~ _N-1_
h’J('rvy):h’J(Iay) HZ”[2(§V)]
and

S hy(a,y) [ rT T ()@ gy
JjeN, R_,

> N1 1 . .
= Z h]((E,y) HZHE2(§V) J/]R 'f'd+¥_] (ln’f‘)lez’r”Z”EQ(N) dr.

jeNo >0
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In particular, for 1 =0 and d + &= - j e C \ (-N),

R

jENO >0
b N1 _ L.
- Y (o) el [T e ar
JeNg 2 R,
= _N-1_ g N+1 . . —d-NHLl g
= 2 hi@ )2l &y JF(C“ 2 _])(‘Z Il +0)
JjeN,
7 N+1 . N—d_ N1 s ' _d-N
= Z hj(w,y)l“(d+ 5 —J)(—z) 3 +J(Hz\|b(m+zo)
JjeN,

yields the following proposition since, for k = d4iag, we have J(z,y,&) = (z - y,§)

and a(x,y,£) = 5=, i.e. d=0 and

27

PROPOSITION 8.4.

N-1

2

N+1

e~ T (N-Dp (
2

1 (7 N1 \N
5diag(xuy):%(§) )(—l) 2 (Hx_yH£2(N)+7’O)

1 [T\ 2 _inon N+1 N1 AN
5-(5) T e FOIL () 0T (<ol + i0)

In particular, for N =1, we obtain

[ . .
Sdiag (2,Y) “on ((Hx = Yllen vy ”0) - (H:v = Ylle, vy ‘ZO) )

This is precisely what we expect; cf. end of section 4.4.3.1 in [67].
]

REMARK Note that in the IV = 1 case everything collapses as there are no spherical

derivatives. We will simply obtain

ka(z,y) :/ Tdeiw(x’y’l)ad(x,y,1)dr+/ rdeiw(x’y’fl)ad(x,y,—1)dr
R>0

R.o
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and

/ Tdei“?(m’y’il)ad(x,y;il)dT
R

>0
caaq(x,y, 1) (9(z,y, £1) + z'())_d_l , d¢ -N

aa(z,y, 1) LELE0O (g s In (i9(x,y, 1) +0)) , de-N

with some constants c¢q. Hence, for

k(z,y) ~ > | @V Oay i(2,y,€)de
jeNy /R

with d € Z and aq—; homogeneous of degree d - j, the coefficient of the logarithmic

terms are

(i0(z, y, +1) — 0)7 4
(j-d-1)!

Z ad*j(xayv il)

7Nz 441
In particular, in the critical case where J(x,y,+1) = 0 (in fact, we are only interested
in 9(z,2,+1)) we are reduced to the known fact (cf. formulae (3) and (4) in [7])
that the densities of the residue traces at = (that is, a_1(x,x, £1)) coincide with the

coefficients of the logarithmic terms (that is, In (—i}(x, 2, £1) + 0)) in the singularity

structure of k.

Furthermore, we can calculate the generalized Kontsevich-Vishik trace for a =
ap+ Y,era, if Veel: d, e Rx{-1} A [, =0. Then, the kernel k satisfies (note

Wz, 2,r) =0 by assumption)

k(x,x) :/ ao(z,z,r)dr + a,(z,z,r)dr.
R>0

el YR
Since 1g_ a,(v,,-) is homogeneous of degree d,, we obtain that wa a,(z,z,r)dr
vanishes for d, < ~1 since the Fourier transform F(1g_ a,(x,r,-)) over R is a ho-

mogeneous distribution of degree —1 —d,. For d, > -1, we obtain

/ @I g (2,27 )dr = coa (2,y, 1) (9, y, 1) +i0)
R

>0
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which is precisely the other singular contribution (that is the f(z,y)(¢+0)™" term
in equation (3) of [7]) to the kernel singularity. In other words, the difference of

k(x,y) and its singular part k58 (x,y) satisfies

(k- ksmg) (z,x) :/ ao(z,z,r)dr.
R>0

In order to use Theorem 4.1, we will have to show that the regularized singular
terms vanish. This follows directly from the Laurent expansion with mollification.

For d, > -1, we have the two terms

fX fol em(x’x’f)anab(O)(a:,x,{)d{dvolx(x) "
z

n!

2

neN,

5 Z (-1 [ e?@eDgna, (0)(z,x l)dvolX(:zr)
+

neN, j=0 n!(1+d,)i+!

to evaluate at z =0, i.e.

hN\O

1
1irn/ / (h+r)*a,(x,x,1)drdvol x ()
xJo

1+h
:/ a,(z,z,1) lim rdrdvolx (z)

hNO h
1+h d,+1 _ hdﬁ—l
/ (z,2,1 11\%( i )d 1 dvolx (z)

/ (z,z,1) dvolx(:v)

and

- [ a(z,z,1)dvolx (z)
1+d, '

Hence, the generalized Kontsevich-Vishik trace reduces to the pseudo-differential

form. Let a ~ ZJ—ENO aq—; and N be sufficiently large, then

Jj=0

N
trgy A :/ / a(z,z,r) = Y ag—j(z,x,7) dr dvolx ()
x Jr,

which is independent of N.



8. STATIONARY PHASE APPROXIMATION 159

In fact, we can generalize the case above.

THEOREM 8.5. Let A be a Fourier Integral Operator with kernel

me:/,JW”@ML%O%
]RN

whose phase function 9 satisfies Vo e X Y& e RN @ 9(x,2,€) = 0 and whose ampli-
tude has an asymptotic expansion a ~ Y,y a, where each a, is log-homogeneous with
degree of homogeneity d, and logarithmic order 1,, and R(d,) - —oo. Let Ng € N

such that Vi e N,y R(d,) <-N and let

. . No
B Ga) = [ O Y 0oy )
RN =1
denote the singular part of the kernel.

Then, the reqularized kernel k — kS8 is continuous along the diagonal and
independent of the particular choice of Ny (along the diagonal). Furthermore, the
generalized Kontsevich-Vishik density® is given by

Ny

(k—ksmg) (z,x)dvolx (x) :/ (z,2,8) Z (z,x,&)dEdvol x ().
RN

PROOF. Note that k — k" is regular because it has an amplitude in the Hor-
mander class S™(X x X x RY) for some m € R__. Hence, it suffices to show that
the (-regularized singular contributions of a, vanish for d, # —-N. Let + € N such

that d, # —N. Then, we need to show that

/ / a,(0)(z,x,£) d¢ dvolx (x)
X =N (0,1)

(—1)lb+1l0!fanBRN a,(0)(z,xz,) dVOlXx(’)BRN (x,€)

" (N +d,)l+1

2Mind that this density is only locally defined. It only patches together (modulo pathologies)
if we assume the kernel patched together in the first place and the derivatives of terms of critical

dimension d, = —N regularize to zero, i.e. if ((fpyA)(0) is tracial and independent of gauge.
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vanishes. Mollifying
1
[ a@@rde= [ a0 nm)dvolos, ()i
Byn (0,1) o JoB,y

1
_ / / PN (In e g, (0) (2, 2, v)dvolpp, (v)dr
0 JOByn

yields (note that f, — f compactly implies f; — f’ compactly for holomorphic

functions)

1 1+h
lim / (h+7r)N* =Y (n(h + 7)) dr = lim N ()l g
rNO g h~0 Jp

1+h

=i l, s N+d,-1+z d
lim : 0 (z r )(O) r

=1im o (z —

(1 + h)N+dL+Z _ hNerﬁZ
hNO (O)

N+d, +z

=" (20 (N +d, + z)_l) (0)

~ (1),
= (2 - W) (0),

i.e.

/ / a,(0)(x,z,£) d§ dvolx(z)
X JByn (0,1)

(—1)lL+1lL!fXX33RN a,(0)(z,x,£) dVOlanBRN (x,€)
(N +d,)*1

~ (_1)lLlL! fanBRN ELL(O)(x, xz, 5) dVOlXX@BRN ('rv 5)
(N+d)i

(—1)lL+1lL!fXX33RN a,(0)(z,x,§) dVOlanBRN (x,€)
(N +d,)*1

+

+

=0.
(]

REMARK (i) Reduction to the pseudo-differential form is highly non-trivial

and, in general, false. Consider, for instance,

ei@(m,m)rr—n rdvo ) = —iﬂ'(—27‘l’i®({£,l’))n71 sgn(@(:v,:v)) Vo x
|/ drivol(a) - [ = dvolx (x).
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4rtvol(X)

3 . In other

If ©(x,x) =1 and n = 4, then this term reduces to
words, such a term would violate independence of N.

(ii) Instead of using mollification directly, we could have used the generalized
Mellin transform which yields

/ rdr=M(r~r®)(1)=0
R

50
where fR>o r®dr is understood in the regularized sense. However, this
does not apply to the critical case d, = —N because the coefficients in the
Laurent expansion are integrals over @,(0) on Bg~ and over 9“*1g,(0)
outside Bgr~. Hence, we cannot re-write those integrals such that the
generalized Mellin transform appears as a factor and the critical terms

will not vanish, in general.

At this point, we can return to Proposition 4.5 where we had the formula

ooz > BQ?) = /X tr, (oo B) - greswmmw dvolx () - tr (B0 (Q))

with B and @ polyhomogeneous, @ admitting holomorphic functional calculus and
the logarithm, and with finite dimensional kernel (e.g. an elliptic classical pseudo-
differential operator on a closed manifold with spectral cut), and ¢ is the order of

Q. In [56] (equation (2.14)) it was shown that

poC(z = BQ?) = —2 res (BIn Q) — tr (Blio) (Q))

holds if (z~ try (fpyB)) = 0 (e.g. if B is a differential operator) and Sylvie
Paycha conjectured that this formula should hold more generally. (Note that
we are using a different notation as we might want to assume a global point
of view rather than just considering everything a sum of local patches without

patching properties. Under these stronger conditions, we cannot simply write
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Jx tre (fpoB) - % res(BInQ), dvolx (z) = trgy (B) - %res (BInQ) since they are
not separately globally defined densities.) The following corollary shows an equiv-
alent characterization of Paycha’s conjecture for Fourier Integral Operators as in
Theorem 8.5 (in particular for pseudo-differential operators) in terms of the regular

part of B.

COROLLARY 8.6. Let Q be as above and B be a Fourier Integral Operator whose
phase function O satisfies Yo e X V€ e RN © 9(x,x,&) =0 and whose amplitude has
an asymptotic expansion b ~ ¥,y b, where each b, is homogeneous (on RY < {0})
with degree of homogeneity d, and R(d,) - —oo. Furthermore, let I € N be such
that the amplitude b decomposes into the form bg+ Y. ,.; b, where by is integrable in
RYN (i.e. of Hormander class S™(X x X x RY) with m < ~N ), and let By the part
of B corresponding to by. Then,

. 1
fpoC(z = BQ*) :/ try (fpoB) — ares (Bln@), dvolx(z) — tr (Bl{o}(Q))
X
1
:/ try (Bo) — —res(BInQ), dvolx (z) — tr (Bl{o}(Q)) .
X q
In particular, the following are equivalent.

(i) Paycha’s conjecture: fpo(z » BQ*) = —i res(BIn@Q) - tr (Bl{o}(Q)).

(ii) =~ [pn bo(z, x,&)dEdvolx (x) is a globally defined density on X and
tr (Bo) = / / bo(x,2,&)dédvol x (x) = 0.
X JRN

REMARK If we remove the question of global patching and simply consider sums

of local representations, then we obtain
5 1
fpoC(z = BQ?) =trgv (B) - areS(Ban) —tr (Bl (Q))
1
=tr(By) - p res(BInQ) — tr (Bl{o}(Q))

by default. In particular,
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(i) Paycha’s conjecture: fp,((z — BQ*?) = —% res(BInQ) - tr (Bl{o}(Q)).
and
(ii") tr (Bo) = [y Jan bo(z,x,&)dEdvolx (x) = 0.
are equivalent.
]
Finally, we will consider an example of linear phase functions which will be

generalized to find algebras of Fourier Integral Operators which are Hilbert-Schmidt

and whose trace-integrals are regular.

EXAMPLE Let ¥(z,y,&) = (0(z,y),&)gy and O(zo,yo) # 0. Then,

ba) = [ | MO oy, €)d = F (a.90)) (-6(.0)

is continuous in a sufficiently small neighborhood of (xg,0) for homogeneous a
because F (a(z,y,-)) is homogeneous and O(x,y) non-zero. Hence, if © does not
vanish on the diagonal, then X 5 2 — k(x,x) € C is continuous and, by compactness
of X, [y k(x,z)dvolx (z) well-defined.

[

The stationary phase approximation above generalizes this observation (here,

¢ - O(z,y)
§(,9) = *lem o

Ly’

Le. 0% (2,y) = (<1)" [0(2,y) |1y With s € {0,1}).

THEOREM 8.7. Let A be a Fourier Integral Operator with phase function 9
satisfying O3 (19|XxXXaB]RN)(3:,y,§) e GL (RNfl) whenever 939(x,y,£) = 0 and

{és; S€ NSn} the set of stationary points. Furthermore, let
VreX VseN, : ﬁ(x,x,és(x,:v)) £ 0.
Then,

(X320 k(z,2)eC )eC(X)
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and

trA:/Xk(a:,:zr)dvolx(:zr)

is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, (-functions of

families of such operators have no poles.

This yields many algebras 4 in which the generalized Kontsevich-Vishik trace

is everywhere defined.

EXAMPLE An example for such non-trivial Hilbert-Schmidt operators occurs on
quotient manifolds. Let I be a co-compact discrete group on M acting continu-
ously® and freely* on M/r, k a T x D-invariant® Schwartz kernel on M, and k its
projection to M/r. Then, k(x,y) = ¥ er k(x,vy) (cf. e.g. equation (3.2.1.3) in

[67]). Suppose k is pseudo-differential, i.e.

F(2.y) = / VN (1, €)d.
RN

Then,

k(z,y) =Y, e 8den g, vy, €)dE.

&
~el JRN

Hence, for v = id we have a pseudo-differential part and for v # id the phase

-y

T that s,
le=vylley vy

function 9,(z,y,§) = (x — vy,§)r~y has stationary points =+
Dy (az,y,és(z,y)) = (-1)* |z =yl (n) does not vanish in a neighborhood of the

diagonal.
u
REMARK Note that we may use the stationary phase approximation results to get

insights into the Laurent coefficients of the (-function without having to consider

3L x M/r 5 (y,2) = vy& € M/p is continuous
Yy el: (FIzeM/r:yx=2) = v=id

Yy el Va,ye M: k(z,y) = k(yz,vy)
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all these Laplace transforms because those coeflicients are of the form ¢- I(z,y,1)
with some constant c € C, i.e. we do not need the radial integration and obtain an

asymptotic expansion

/ @Y (g, y, §)dvolap, y (£)
OByN

. S ) N
- / 19002,y O)dvolop, , (6) + 3. 3 (Ve (2 )
BBRN

s=1 jeN,

:/ eiﬁ(ﬂ?ﬁ‘h&)ao(x’y,g)dvolaBRN (6)
0By~

(2m) 7 [det O (z, )| * F 20" :
A?)B’@sas (xayugs(xvy))

+ ZS: o0 (2.y) »
s=1

j1(2i)7

with 1§S($7y) = ﬁ(xvyaés('rvy))a @S(.’,E,y) = 83319(%%55(17,34))7 A()B,(—)S(z,y) =
<®5(3:,y)’1833,833) = —divop,y O%(z,y)~* gradyp ., and £%(z,y) is the unique
stationary point of ¥(x,y,-) in dBg~ Nspta®(z,y,-) while a® has no such point in

its support.

We will close this chapter by considering two examples of wave traces.

EXAMPLE Let us consider manifolds with diagonal metric, that is, the metric tensor

is given by
9" () = 9(x)?6V
with some function g. An example of these are hyperbolic manifolds. Let
HY := {z e RY; 25 >0}
with the metric

9i5(2) = 9(2) 72055 = 23763
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Then, v/|det g(x)| = g(z) ™. The Laplace-Beltrami operator on HY is given by

n

Agn = 9(55)2 Z ai2

i=1

and the wave operator exp(it\/|Ag~|) has the kernel

g (2,7) = (27) N / 8l €L 0 g

RN
Let T be a co-compact, discrete, torsion-free sub-group of the isometries of HY such
that I is a lattice and X = HY /p can be identified with a fundamental domain in
HY under action of I'. Then, we call X a hyperbolic manifold. Since I' is a subset of
the isometries, the metric on X is given by the metric on HY taking a representative

of the orbit and the wave-operator exp(it\/|A|) factors through with the kernel

k(2,y) = Z(Qﬂ)—N/ e e i8Iy g
~el RN

Let A" be a gauged Fourier Integral Operator with A*(0) = exp(it\/|A]). Then,

A%(0) has the phase function

0V(x7y7§) = (.’I] _’yyué_)RN +tg(.’I]) Hé-”EQ(N)

and amplitude (z,y,£) = 1, i.e. each term in the sum ¥, yields a ((A%) which
is holomorphic in a neighborhood of zero. Thus, Lemma 2.6 yields that ¢ (Atv) is

independent of the gauge and we obtain

C(At)(()) - Z C(Aty)(o) - Z (QW)_N/ / PUC e E R eitg(w)\lﬁl\ezm)dgdm
X JRN

yel' yel'
For v =1 we will use the property
V¢ Copor s L1 ()= [ 1 dr=T(q+ )5
R>0

of the Laplace transform (where I' is the I'-function) and obtain

C(AD(O):(%)_N/X/RN ¢t el ) e



8. STATIONARY PHASE APPROXIMATION 167

:(27)_N/X/R /83 TN_leitg(w)TdvolaBRN (n)drdx
RN

_VolaB 8B]RN)// PN-1gita(@)r g a0
(2m)N

_VO]@BRN (8BRN)
O
vol OBg~) (N -1)!
-2 ((27TD§N)( ) /X (~itg(x)) N do
VO]@BRN (8BRN) (N— 1)!
= (—27Tit)N /XdVOIX
_(N = D)hvola, (9Bgx) volx (X).
(—2mit)N

L (r - erl) (—itg(x))dx
b's

For v € I'~ {1} we know z — vz # 0 and stationary points of ¥, (z,z,-) are

Eo(m) = % (since the term tg(z) €[, () vanishes taking derivatives with

respect to £ € 9Brn ) with

T —vT
|2 = yzl4,n)

T —vT

Uy (z,2,8:(2)) = |z -7z, + T —
|l —WTHMN)

> +tg(x) ||+
RN L2(N)

=tg(x) + |z = 72| 1,y -

Since g is a positive continuous function and X compact, we obtain that g is
bounded away from zero and z = [z -z, () is bounded, ie. U, (2,2, (2))
has no zeros for ¢ sufficiently large (similarly for sufficiently small ¢). By Theorem
8.7, we obtain that each ((A!)(0) exists for sufficiently large ¢ (and sufficiently

large —t, as well).

Hence, we want to evaluate

D I B

:(27T)_N// TN_leitg(m)T/ eir(m_w’mﬂ@NdvolaBRN(n)drd:v.
X Jr, OBy
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/. 9B, n e (@=rEMeN dyoly Byn (n) can be evaluated using stationary phase approxi-
R

mation. The stationary points are

T —-yT

| _7$‘|€2(N)

() =

and the corresponding phase function J(z,7) = r (z - vz, n)gn satisfies

I, nu (@) = 27 |2 =72l gy vy -

Since the amplitude is the constant function 1, all higher order derivatives in the

stationary phase approximation yield zero and we obtain

N-1

. _ _N-1 T\ 2 _im _ . _
/ ezr(m VTN N dVOlaBRN (77) — Hx_’nyéQ(?\]) (_) e 1 (N l)ezr“I Yl oy ()
OBy 2
Not

_N-1 [\ 2 im ,
2 -ir (N-1) —ir||z—vyz|
+|\x—7x|\62(N)(§) e % e £5(N)

which, in turn, yields

¢(A5)(0)

_@m) N / / (i t9E o) ey
RN

(E)N —im (N 1) . .
=2 (27 )N / (B ”ﬂHb(N)/ PN Leite(@)r i le=yele, () Gy
R

>0

(1) e~ F(N-1) ‘ ‘
+ 2 2 )N / HZE FYng (N)/ N—leztg(m)re—zruz—vm\|[2<N)drdx
™
(5) 7 e FOD(N-1)! e N
) (-2mi)N /X (e 7x”éz(N) (tg(:v) +z - VngQ(N)) dx

N-1 .
(2) 7 e TW-D(N-1)! N -N
e [ sl (190 el ) e

Let us consider the special case of a flat torus, that is, g = 1 and ya =y + . Then,

the formula collapses to

N-1 .
(2) 7 e TW-D(N-1)! N -N
¢(A2)(0) = :) IO /XHV\I@Q&V) (t+ W)~ de




8. STATIONARY PHASE APPROXIMATION 169

N
(2) 7 e TW-D(N-1)! _Na1 -N
: [ (6= ) e

i N
:zi: (—27‘ri)N H’YHKQ(N) (ti H’Y”@(N))

This shows the well-known result that the (-regularized wave trace has a pole if ¢
is equal to the length of a closed geodesic ||,y and for all other ¢, we obtain

¢ (N -1)lvolx(X)
A0 = sy

VOlaBRN (6BRN) T &5 _im(N-1) -N-1 -N
(T 2 (5) T FY Y Ml (4 M)

vyell +

EXAMPLE In light of the last example, we can even go a step further and consider

manifolds where the Laplacian has the symbol ¢/ (z)&;&;, i.e.

a3 (x)e

() gHT=7T,E ) déda.

-3 [ [

el
Using Fubini’s theorem
THEOREM (FUBINI) Let Q € R™ be open, p € C(), f € CH(Q,R), Yo € Q=

grad f(x) £0, and M, == [{r}]f ={x € Q; f(z)=r}. Then,

/Q () = / /MT o(€) lzrad £()];. o) dvolas, (€)dr.

with f(¢) = HG’%(:Z:MH on RN\ {0}, i.e. grad f(¢) = @ gives rise
£2(N) ’ HG*%(x)g ’

L3(N)

to the definition

Ve eX: M= %GRN; £ € 0Bgn~
|63 (@)l v
and, thus,
]G3 (a)e
X JRN

e @il +ite—ya.)

S G
i 2 ol g, (1) drd

X JR M, (2W)NHG_1($)/1H£2(N)
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2 (2)p
27T / / / zr(t+;E YT, 1) N)H £2(N) N ld le(/J,)d’f‘d(E
M, G- (x)MHZQ(N)

:(QW)—N// eirt,rN—l/ eirle=yz,m)en ||G‘1(x),u||z(N)dvolMI(,u)drdx.
X JR, M,

. o (2, a1 -1
Note that integrals similar to me Ty T N ||G (a:)u”b(N) dvoly, (i) also ap-
pear if we choose such a decomposition of RV and want to calculate Laurent co-
efficients. Furthermore, note that we can re-write those integrals over M, into

integrals over the sphere®; namely,
fdvolyy, :/ foWwy/det (d\I!;{d\I!gc)dvolaBRN
M, 90BN
with

13
V(&)= —r
N T TY:

For ~ =id, these integrals simply reduce to
(27T)_N/ / eirtTN_l/ ||G_1(:C)u||;1N dvoly, (u)drdx
X JR, M, 2(N)
(- 2mt)N/ / &€ x)“Hé (v ol (w)dx

( QWZt)N/ /QB]RN

6Let M, Ms be manifolds, ®: T — M; a parametrization, ¥: M; - Mz a diffeomorphism,

_ Gl@)E

0W, (€)dvolap,  (€)da
6= @)l v, <fv €l "

£2(N)

and f € Cc(Mz2). Then,

fdvolyr, :/T(fo\IIOCI>)(t)\/det((\IIO<I>)’(t)T(\I/oCI>)’(t))dt

Mo

:/ (f 0 W o ®)(t)/det (¥ (£)T (AW o ) (£)T (dW o D) (£)P' (1)) dt
T

:/(fo\IloCP)(t) det ((d¥ o ®)(£)T (dW o ®)(2))+/det (7 ()T D/ (¢))dt
T

= foUy/det (d¥TdV)dvolyy, .

My
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1)' ‘GF fz(N)
—— =20V, (&)dvol d
( 2mit) N / /¢93sz |G (2) 5“132(1\/) (§)dvolop,  (§)dx

where 00, (€) = \/det (d¥,(£)TdV,(€)).

For ~ # id, we want to evaluate

(27T)7N/ it N- 1/ / eir{T=ym,phpN ”G 1(:1:)#”[ ) dvolyy, (,u)dxdr

The stationary points are obviously characterized by = —~vyx L T,,M, and there is

always the possibility to change coordinates in the M, integral to obtain

zrm’Yﬂa\I/(f)RN Gt v, dvol .
/ /{)BRN H (z) (g)Hg (N) z(§)dvo OByN (&)dx

In particular, for the torus, we have yx = v+ z and

_zT’Y‘I’(f)RN Gt v, dvol i
/ /BBRN H fL') (g)HZ (N) 5) VOl N(é’) x

can be evaluated applying the stationary phase approximation to
/ e—zr(’Y Ve (€))gN ||G 1($ ||€ ) 6\11 (g)dVOIOBRN (5)
OBy N

REMARK Replacing 0Bg~x by M, becomes even more interesting if we want to

calculate the Laurent coefficients
/ DG, (0) (2, ,€) dvola(xyxon, y (%:€)
A(X)xdByn ®
which are now integrals
/ / (@ TG (0) (3,2, €) dvolys, (€)dvolx (z).
X x

In cases such as the example above, the integration over M, is now without a phase

function because M, 5 £ — 9(x,x,€) is a constant 9, leaving us with integrals of
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the form

ee / az (&) dvolyy, (€)

M,
where a, is homogeneous of some degree d. For M, = T, [0Bg~ ] with T, ¢ GL(R™),

this is equivalent to

Ve / a; (&) dvolp, (€) =ee / az(§) Hng_lgninid dvolap,. (§).
M 0Ban

x R

In particular, for the case of the residue trace, we have d = —n, i.e.

eiﬂz /Mt az(f) dVOle (5) :eiﬁx / Ay (g)dVOI({)BRn (5)7

Bgn
which shows that we have reduced the pointwise residue of the Fourier Integral Op-
erator to the pointwise residue of a suitably chosen pseudo-differential operator and
a rotation in the complex plane ¥,. In fact, the symbol of that pseudo-differential

operator can be chosen to be the amplitude of the Fourier Integral Operator itself.



Part 11

Integration in algebras of Fourier

Integral Operators



CHAPTER 9
Bochner/Lebesgue integrals in algebras of Fourier

Integral Operators

In this chapter, we will lay out the fundamental theorems of integration in
topological vector spaces and algebras from our point of view directed to integration
of families of Fourier Integral Operators. In particular, we will distinguish between
two notions of measurability - those functions that are limits of simple functions
and those whose pre-images of measurable sets are measurable. Note that for most
Hérmander spaces Dr- (the set of distributions whose wave-front set is in the closed

cone I') those will be different notions.

DEFINITION 9.1. Let (Q,%, 1) be a measure space and E a topological vector
space.

(i) A function f e E® is called simple if and only if f[Q] Sgnite E and Yw €
FIQ)~N{0}: [{w}lfeX A pw([{w}]f) < oo where [A]f denotes the pre-
set of A under f. We will use S(u; E) to denote the set of all simple
functions.

(i) Let f = Toestalaior Wlwylr € S(; E). Then, we define the Bochner

integral

fau= Y o).
Q we f[Q] {0}

(iii) A function f e E is called measurable if and only if V.S Copen B+ [S]f €

Y. We will use M(u; E) to denote the set of all measurable functions.!

1f € M(u; E) is also called Lebesgue measurable.

174
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f e E2 is called strongly measurable if and only if there exists a se-
quence (8n)nen of simple functions such that s, - f p-almost everywhere.

We will use SM (u; E) to denote the set of all strongly measurable func-

tions.?

Let f e M(u, E) such that Va' € E': ¢’ o fe L1(u) and I € (E')* defined

by
Vo' e E': I(2') = [ 2’ o fdp.

Q

Here E’ denotes the topological dual of E and (E')* the algebraic dual of

E’. If I is unique, then we will also use the notation fQ fdu:=1.

f is called p-Pettis-integrable if and only if I is unique and an element
of E. In that case, we call I the Pettis integral of f.3
Let E be locally convex with semi-norms (p,)er- For p € Ry; U{co}, we

define
L,(E)={fe M E); Yoel: pofeLy(pu)},
Ny B) s={f € £, (i E); Yoel: o fly, =0},
and
Lyp(p E) = L,(15 E) [ n, (1:E)
as well as the semi-norms
plr W) L (1 B) = Rygs f o [peo fly, -

We call f € L,(1; E) p-integrable or just integrable if p=1.

2feSM (u; E) is also called Bochner measurable.
3f is called p-Dunford-integrable if and only if I is unique in (E’)*. In that case, we call I

the Dunford integral of f.
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REMARK Note that this notion extends the idea of parameter dependent Fourier
Integral Operators in the sense of chapters 2.1.2 and 2.2 of [63], as well as families of
operators as in the index theorem for families. In both cases, we have a continuous
function of operators b~ Dj, where b ranges over some interval in the case of [63],
and for the family index we have a fibration* M — B and an operator Dj in each
fiber M. Replacing the manifold/interval B by some more general measure space
(2,%, 1) and relaxing the continuity assumption of b — D, to mere measurability
(here we will only consider measurability with respect to the Borel o-algebra in the
target space/algebra), we can see that the formalism we are about to develop is
a proper extension and we can think of a stochastic version of the index theorem
for families, for instance. Furthermore, a stochastic version of the index theorem
itself may be interesting because (as we will see) the pointwise index of a mea-
surable functions is only locally constant on a dense set (at best) which does not
imply that the function is continuous, let alone constant; in fact, the expectation
of the pointwise index might not even be an integer (here, we may think of random

manifolds allowing singular deformations like turning a sphere into a torus).

It is obvious that a simple function is Pettis integrable if points in F are separated
which itself is a direct consequence of Hahn-Banach’s theorem given that F is locally

convex (cf. Theorem 2.2 in [74] for part (i) and §20.7(2) in [45] for part (ii)).

THEOREM 9.2 (Hahn-Banach). Let E be a topological vector space over K e

{R,C}, A, B ¢ E both convex and non-empty, as well as An B =g.

4A fibration is a continuous map 7 : X — Y between topological spaces X and Y satisfying the
homotopy lifting property for every topological space Z, i.e. for any homotopy f: Z x[0,1] > Y

and fo: Z — X such that f(-,0) = wo fo there exists a homotopy f: Z x[0,1] - X such that

f=mofand fo=f(,0).
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(i) If A is open, then there exists an x' € E' such that
VoeA: Ra'(x) <inf{R2'(y); ye B} =,

i.e. the hyperplane {x € E; Rx'(x) =~} separates A and B.
(ii) Additionally, let E be locally convex, A compact, and B closed. Then,

there exists an x' € E' such that

sup{Rz'(z); = € A} <inf{Rz'(y); y € B}.

Since separation of points is a highly important property, we will assume from
now on that F is a locally convex topological vector space which is also a Hausdorff
space. In other words, the main issue is existence of the Pettis integral (which we
will address in chapter 10) since it is the weaker notion of integrability, i.e. the
minimum requirement for us to talk about integrals in algebras of Fourier Integral
Operators. First, however, we will investigate the L, spaces and (strong) integrals
taking values in the completion of E; existence of the Pettis integral or suitable
completeness assumptions on E will, thus, ensure that those (strong) integrals, in

fact, take values in F.

Before we can start working with the Lebesgue integrals we should investigate
which measurable functions are strongly measurable as many of the proofs for

Lebesgue integrals will only work with strongly measurable functions.

LEMMA 9.3. Let f € E® and s € S(u; E)Y such that s, — f p-almost every-

where. Then, ¥S Copen £+ [S]f € X. In other words, SM(u; E) € M(u; E).

PRroOOF. We observe

sp — f p-almost everywhere <> VieI: p,os, - p, o f p-almost everywhere

= Viel: pofeM(uR)
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< Vel VS Copen R [[SIp] f=[S](p.o f) e 5.

And since {[S]p,; S Sopen R} generates the topology in E, the last line is equivalent

to
VS Copen B [S]f eX.

O

With the same proof, simply replacing s,, € S(u; E) by s, € M (u; E), we obtain

the following corollary.

COROLLARY 9.4. M(u; E) is sequentially closed with respect to p-almost ev-
erywhere convergence. In other words, let f € EY and s € M(u; E)N such that

Sn = [ p-almost everywhere. Then, f € M(u; E).

LEMMA 9.5 (Sombrero Lemma). Let E be metrizable, Q compact, 3 the Borel

o-algebra, and p a measure on (Q,%).

Let f e C(Q,E). Then, there exists s € S(u; E)Y such that s, — f pointwise,

i.e. C(Q,E)cSM(; E).

PROOF. Let d be a metric on E which generates the topology. For € € R,
the open balls B(g q)(f(w),e) (w € Q) are an open cover of f[Q] which is a
compact subset of FE. Hence, there exists a finite set 2. Cganite {2 such that

J19] € Usea. B(g,a)(f(w),e). Let ne = #Q. be the cardinality of Q., (we ;)

jeNSnE
an enumeration of Q., A. ; := [B(g,a)(f(we;),€)] f ~ Ul A, and
se= . flwe )la.,.

J=1

Then, we obtain

YweQ 3] ENSnE : SE(OJ),f(W) € B(E,d)(f(w&j)u‘g)'
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In other words,
Ywe: d(s.(w), f(w)) <2

implies that (s 1 )nEN converges u-almost everywhere to f.

O
REMARK Note that a Hausdorff topological vector space is metrizable if and only if
it is first-countable® (cf. §15.11(1) in [45]), i.e. replacing the balls B(g 4 (f(w), %)

by a countable local base will not generalize the lemma.

DEFINITION 9.6. Let (Q,%, 1) be a measure space and E a topological vector
space. Then, (0,3, u; E) is called a Sombrero space if and only if SM(u; E) =

M(p; E).

EXAMPLE If E =R, then the usual Sombrero Lemma (cf. e.g. Theorem 8.8 in [65])

shows that (Q, X, u; E') is a Sombrero space (independent of the choice of (2, %, 1)).
[ ]

Lusin’s measurability theorem (cf [53] and Theorem 2B in [24]) yields a useful

extension of the Sombrero Lemma.

THEOREM 9.7 (Lusin). Let (Q,%, 1) be a Radon measure® space, E a second-

countable” topological space, f : Q — E measurable, ¢ € R.y, and S € ¥ with

1(S) < oo.
5Every point has a countable neighborhood basis, that is, for every point x there exists a
countable set U of open neighborhoods of = such that for every neighborhood V' of = there exists

Ug € U satisfying Ug c V.

6Radon measures are locally finite (every point has a neighborhood of finite measure) and reg-

ular (every Borel sets B satisfies u(B) = SUP K c o ompact B p(K) = infoo,,e, B #(O)) Borel measures.

"The topology has a countable base, i.e. there exists a countable set U of open subsets of

such that U contains a neighborhood basis for every point in E.
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Then, there exists a closed set C. € Q such that (S~ C;) < e and flo, is

continuous.

If E is a topological vector space (thus, separable® and metrizable), then we

can choose C¢ to be compact.

LEMMA 9.8 (Generalized Sombrero Lemma). Let (£2,3, ) be a Radon measure

space and E a separable metric space. Then, (2,2, u; E) is a Sombrero space.

PROOF. Let f e M(u; E). For n € N, Lusin’s measurability theorem warrants
the existence of compact sets Q,, € Q such that f|q, is continuous and p (2N ;) <
%. Furthermore, we may assume that €, € ,, for m <n. The Sombrero Lemma,
then, implies that there exists an s, € S(y; E) with (d o (s, f))le, < = where d
denotes a metric on E generating the topology. In other words, s, (w) - f(w) for
every w € U,y 2 and

VneN: M(Q\ U Qm)Su(Q\Qn)<l
n

meN

shows that s, - f p-almost everywhere.

LEMMA 9.9. L,(u; E) is a Hausdorff space.

PROOF. Let z,y € L,(u; E), x # y. Then, there exists ¢ € I such that

pLLP(‘“;E)(x —y)=:2§>0.

8For metric spaces separability and second-countability are equivalent. Note that every
second-countable space is separable since choosing a countable base {Uy; n € N} of the topology
and x, € Uy, yields a dense sequence, i.e. proves separability of the space. The other implication
follows since {B (wn, 7—1L) ; ne N} is a countable base of the topology given that (zn)nen is dense;

cf. chapter L5 in [70].
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Hence, the neighborhoods

U:= {z € Ly(u; B); plrsB) (g 2) < 5}
of x and

V= {z e Ly(u; E); plr™B(y-2) <6}

of y are open and disjoint.

DEFINITION 9.10. Let E and F be locally convex topological vector spaces with
semi-norms (pF),er, and (pF),c1,., respectively, and A: E — F a linear operator.

A is said to be continuous if and only if

Vielr Icelp IceRyyVae E: pl(Az) < cpZ(z).

K

We will denote the set of all continuous linear operators mapping E to F by L(E, F)

and the minimal ¢ satisfying the condition by |A],,.

In an algebra A, we will assume that the composition is a continuous operator,

ie.
Viel 3k, el JceRyy YA, BeA: p,(AoB) <cps(A)pr(B).
The minimal constant ¢ will also be denoted by [of, . ,.

THEOREM 9.11 (Holder’s inequality). Let A; € Ly, (pn;A) for i € N, and

Z’ﬂ 1 _%. Then7 AloAQO...OAnELT(N;A) and

i=1 p; ~

Viel 3kel™ JceRy,: plr(A) (A10Az0...04,) <c[]px, (4;).
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ProoF. First, let n = 2. We need to prove
Viel: poAjoAge L ().
However, we know that VeeI: p,o Ay €L, (u) A p,oAgeL,, (1)

For p1 = o0 or py = oo, the usual Holder inequality yields

poAioAz<of, .\ (Pso A1) (proAz)eLr(p)
—_— — —

€Ly, (1) €Lpy (1)

for some K, A € I.

Let p1,ps < 00, p i= %, and q := p72. Then, % = 1”;2—’: = %—piz
(p,oA1)" € Ly(p) and (p, o A2)" € Ly(p), and we obtain
ok
|p. oAy o A2HLT(;L) = ” (p.oAyoAy) Li(p)
1
<[ol o [(r o A1) (px 0 A2)"[ ]
1 ryt
<fol o [0 A7 Ior e 427 )

=llollwnlps e Atly, gy lpreAzlp,, )

for some s, \ € I. Hence, Ay o Ay € L.(u; A).

182

For more general n, we assume that the assertion holds for n — 1. Let B; :=

Ajo...0A,_1 and By = A,,. Let ¢3 := p, and qil =yt i. Then, By € Ly, (p;.A)

by the inductive assumption and
Ajo...0A,=BioBye L.(u;.A)

since we have proven the assertion for the n = 2 case.

LEMMA 9.12.

/: S E) < Ly(u E) > B fH/Qfdu
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is a continuous linear operator; more precisely, we have the triangle-inequalities

VieIVfeS(uE): pL(/Qfd,u)S/QpLofdlu.

Furthermore, if E is separable, (Q,%, 1) is o-finite, and p < oo, then S(u; E) is
dense in Ly(pu; E). The same holds for p = co and u(2) < co. In particular, the

integral extends uniquely to a continuous linear operator
/ : Li(E) > E
where E is the completion of E.

PROOF. Linearity of [ and

veer v es(uE): pi( [ fau)< [ pio s
Q Q
are trivial.

Now, let 2 be o-finite and f € L,(u; E). We can find 3 € Q... € Q such
that Q = Upeny Qn and Ve N @ p(€2,,) < oo and we obtain 1, f — f in L,(1; E)

for p < o0, i.e. we may assume without loss of generality that € is finite.

Let (2,)nen € EY be a dense sequence and U, the neighborhood filter of zero

in E. For neN and U €U, let
n-1
VY [z, + U f N (U VkU).
k=1
Then, we define

fu = Z Tplyu.

neN

fu is obviously measurable and the net (fr (w))UEuD converges to f(w) for p-almost

every w € ).
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Let e I and € € R,y. Then, Uf := {z € E; pF(x) <&} is in U, and for every

U €U, with U < U?

pl(fu(w) - f(w)) <e

holds for p-almost every w € Q. In particular, p¥ o (fy - f) € L,(p) and

pLLp(u;E) (fu-f)< amax{l,#(Q)%}

where 1 is the p = oo case. Hence, (fU)UeZ/{O converges to f in L,(u; E). Finally,

n 1
pLLP(’“E) (fU—Z:vklvku)s Z pF (xk)u(VkU)P -0 (n - o)
k=1 keN

for p < o0 and
P = Sty )€ T 0 () >0 (a )
k=1 keN,,,

Lp(E) <7~ Lo(E)

for p = oo show fy € S(w; E) and, hence, feS(u; F)

The existence of the unique extension of f follows directly from the fact that
any uniformly continuous® function f: Yy €Y — H has a unique uniformly contin-
uous extension to the closure of Y; in Y, where Y is any topological vector space
and Yj any subset and H is any complete Hausdorffian topological vector space (cf.
Theorem 2.6 in [1]). Linearity follows from taking two nets z, —: z and yg —: v,

as well as A € K, and observing

@+ Xy) < f(za+Ays) = f(@a) + A (yp) = f(z) + Af(y).

d

9Let E and F be topological vector spaces. f: Eg € E — F' is called uniformly continuous if
and only if for every open neighborhood V' of zero in F' there exists an open neighborhood U of

zero in E such that Vz,ye Eg: (z-yeU = f(z)- f(y)eV).
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REMARK If Li(p; E) € SM(u; E) (in particular, if (2,3, 1) a Sombrero space),
then we do not need the separability assumption on E because f[2] is contained

in a separable subspace of F.

DEFINITION 9.13. The subspace
SLy(; E) == SM(p; E) n Ly(p; E) € Ly (s E)

is called the strong L,(u; E). Furthermore, we define

M (;E) p-almost everywhere

SM(u; E) :=SM(; E)
={feM(;E); 3(fa), net: fo— f p-almost everywhere}

and

- L, (E)
SL,(;E):=8SLy(1; E) .

In other words, SL,(u; E) is the sequential closure of the set of simple functions
in L,(u; E) and SL,(u; E) is the closure of set of simple functions in L, (u; E).

EXAMPLE Let € be a compact space, X the induced Borel o-algebra, and p a finite
measure. Since Y is the Borel o-algebra, we obtain C(Q;E) ¢ M(u; E) and Q
being compact implies C(Q; E) € Leo(u; F). Furthermore, p being finite implies

Loo(p5E) € L1(p; E). In other words,
C(E) < Li(u; E).

If E is metrizable or separable, then C(Q; E) ¢ SL1(; E).

THEOREM 9.14 (Fischer-Riesz). Let E be a Fréchet space, (2, %, 1) be o-finite,
and p < co. Then, L,(u; E) is complete, i.e. a Fréchet space, and every Cauchy-

sequence contains a p-almost everywhere convergent sub-sequence.
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PROOF. Let (fn)nen € Lp(p; E)Y be a Cauchy-sequence and ¢ € I. Choose a

sub-sequence ( fy,);jen such that
v] € N : pLLp(N?E) (f’ﬂj+1 - fnj) S 2_']

and let f,, :=0. For j e N, let g; := f,, = fn,_,. Then, we obtain for n e N

((Erren) o)

and

n p p
(ZPFOQk) ~ (ZPFogk) :
k=1

keN

Hence,

p
/(progk) dpu < oo.
Q \keN

In particular, g(w) = Yy PE (gr(w)) < oo for p-almost every w € Q and f, =

S wen gk converges absolutely with respect to p” for these w. Then,

P (fL(w) -5 gkw)) < T PE (@) < 9(w)

keN,

-0

wherever g(w) < oo and the theorem of dominated convergence implies

pLLP(H;E) (fL - fn) :pLLP(ME) (fL - i gk) -0 (7’L - OO)

k=1
Finally, let x € I. The same argument with p, applied to the sub-sequence con-

structed with p,, then, shows that f, = f. p-almost everywhere and f,, - f, in
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. Lp(E Lp(E . . .
with respect to p, P(E) and p,ﬁ’(” B Inductively, we continue thinning the sub-

sequences such that the diagonal sequence converges p-almost everywhere to some

f with respect to all p¥ and f, - f in L,(u; E).
L p

The following lemma aims at the composition of Fourier Integral Operators,

i.e. if we have an algebra A, A€ A, and f: Q — A, then we would like to obtain

A fdu:/ Afdpu.
Q Q

However, we only know that [, fdu is in the closure of A (which might be quite
bad). Since we assumed that the composition is continuous though, we can extend
the operator Ao to the completion A of A. The lemma also shows that the Bochner
and Lebesgue integrals fQ fdu coincides with the Pettis integral if f is p-Pettis
integrable; thus, legitimizing the clash of notation and ensuring that the integral

itself is an element of the algebra, again.

LEMMA 9.15. Let (Q,%, 1) be o-finite, F' another Hausdorffian locally convex

topological vector space, and f € SLi(u; E).

(i) Let Be L(E,F). Then, Bo f e SLi(; F) and

B fdu:/BOfdu.
Q Q

(ii) Let Ep € E be a closed subspace and f(w) € Ey for p-almost every w € Q.

Then, [q fdp e Ey.

PROOF. (i) For feS(w; E),

B/Qfdu:/QBofdu
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is trivial. Furthermore, the functions

Ll(,u;E)afHB/Qfd,ueF

and

Ll(,u;E)afH/QBofd,ueF

are linear and continuous because of

Py (B/Qfdu) <|Bl..p’ (/Q fdu) <|Bl,, P E)(f)

and

o /QBOfdu) < /pr(Bf(w))du(W)
< [ 1Bl .0F o fd

=B, o (f)

for some ¢ depending on k. Hence, we obtain

B/Qfdu:/QBofdu

on Lq(u; E) by the unique extension property.

(ii) Let ¢ € E’ with ¢|g, =0. Then,

) oo
=0

Hence, fQ fdu € Ey by Hahn-Banach’s theorem (otherwise there exists a

@ € B’ with w(fﬂ fdu) =1).

THEOREM 9.16 (Hille). Let f € SLi(u; E), F another Hausdorffian locally

convex topological vector space, and A: D(A) € E - F a closed linear operator
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(that is, A< ExF is a closed subspace). Let f(w) € D(A) for p-almost every w €

and Ao f € SLy(1; F). Then, we obtain [, fdue D(A) and A [, fdu= [, Ao fdpu.
PROOF. Since the injections
ig: E>ExF; zw (z,0)
and
ir: F>ExF;yw(0,y)

are continuous, it follows that Q3> w — (f(w),Af(w)) =ie(f(w)) +ir(Af(w)) is
in SLy(u; E x F) and, since A is a closed linear subspace and p-almost every w €

satisfies (f(w), Af(w)) € A, we obtain

/Q(f(w),Af(w))du(oJ) cA

Let
prp: ExF—E; (2,y) - a
and
prp: ExF—F; (2,y)~y.
Then,
e | (F)Af@)dn() = | pra(r@). AFe)dute) = [ fdu
and
e [ (F@). AF@)du) = [ prip(1(@). AF@)dutw) = [ Ao fa
yield

(f fn [ a0 gau)= [ (#@). A7@)dne) e A
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ie.

fdue D(A) A A fdu:/AOfdu.
Q Q Q

COROLLARY 9.17. Let f € SL1(u; E), F another Hausdorffian locally convex
topological vector space, and A: D(A) ¢ E — F a sequentially closed linear operator
(that is, A ¢ E x F is a sequentially closed subspace). Let f(w) € D(A) for u-
almost every w € Q and (sp)nen € S(u; D(A))Y a sequence of simple functions
approzimating f p-almost everywhere such that Aos, — Ao f u-almost everywhere.

Then, we obtain [, fdue D(A) and A [, fdu = [, Ao fdp.

ProOOF. From Hille’s theorem, we directly obtain ([, fdu, [, Ao fdu) € A.
However, ([, fdu, [, Ao fdu) is the limit of the sequence ( [, spdp, [, A o S”d“)neN

in A and A being sequentially closed yields the assertion.

For the rest of this chapter, we will develop some fundamental theorems al-

lowing us to actually use this integral.

THEOREM 9.18 (Fundamental Theorem of Calculus). Let J R be an interval.

(i) Let fe CY(J;E), a,be J, a<b, and ) the Lebesgue measure. Then,

fldx=f(0) - f(a).

[a,b]

(ii) Let f e C(J;E) and x € J such that g: J > E; t— f; f(8)d\(s). Then,

g is differentiable and g' = f.
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PROOF. (i) Let p € E'. Then, o feCl(J) and (po f) = po f'. Hence,

the classical fundamental theorem of calculus yields

‘P(/ f'dA—(f(b)—f(a)))=/ (o f)dr=(po f(b)—po f(a))=0.
[a,b] [a,b]

(ii) Let z € J and h € R \ {0} such that Br[x,|h|] € J, as well as ¢ € I. Then,

we obtain
x+h
p(Mz—g(@ —f(x)) =pb(%/ f(t)dt—f(w))

z+h
(i [ 0= 1@a)

1 x+h
<t ( [ —f(:v)dt)

Sﬁlhlsw{pb(f(t)—f(:v)); t € Ba[x.|n[]}

-0 (h~0)

since f is continuous.

PROPOSITION 9.19 (Dominated Convergence). Let u € E® be the pointwise

limit (u-almost everywhere) of (u;)jen € L1(p; E)N and

Veel v, e L1(w;E) VjeN: p ou; <p, ouv,.

Then, u e M(u; E), and

(%) lim [ p,o(uj—u)du=0
Jj—=o Jo -

and

() lim [ p,ou;jdp = / pooudp

hold. In particular, we Li(u; E).
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PROOF. Since u is the pointwise limit (u-almost everywhere) of a sequence of
measurable functions, it is measurable, as well. Then, (*) and (**) follow directly
from the usual dominated convergence theorem and (#x) implies that w € L1 (u; F).

d

LEMMA 9.20 (L,-Dominated Convergence). Let u € E be the pointwise limit

(1-almost everywhere) of (u;)jen € Ly(p; E)YN with p e Ry, and
Veel Ju, e L1(w;E) VjeN: p ou; <p, ouv,.
Then, we Ly(p; E), uj > w in Ly(p; E), and Ve el : pLLP(“;E)(uj) apLLP(“;E)(u),

PROOF. The assertion w; — u p-almost everywhere implies u € M (u; E).
Then, L,-dominated convergence theorem in R yields u € Ly(u;E), Vo e I :

pLLp(ME)(uj) epLLP(”;E)(u), and VeeI: pFouj—pFouin L,(u). Finally,

1
Lp(1;E) p
¢ Li(p)

p (u; =) = [pi” o (uy _U)HLP(M) - H(pLE"(“J““))p

converges to zero because (pLE o (uj - u))p — 0 p-almost everywhere and the con-

vergence is dominated by (2p, o v,)". O

THEOREM 9.21 (Riesz). Let (u;)jen € Lp(p; E)N, we Ly(p; E), and uj — u p-

almost everywhere. Then,
wj —uin Ly(u; E) < Yeel: plrsB) () o plr(E) (),

PROOF. We have u; - uin L,(u; E) if and only if Ve e I : pLL’)(“;E)(uj—u) - 0.

Thus, “=" holds by reversed triangle inequality

|pLL”(“*E)(uj) —pLLP(“;E)(u)| < pLLp(u;E)(uj —u) > 0.
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“<=" Since x ~ 2P is convex for p>1 on R,,, we obtain

p p D
Va,beR,: (‘”b) Laxb

2 2

and, hence,
(pF o (uj—w))" < (pF 0wy +pf o)’ <227 ((pF 0uy)” + (p o w)")
which implies
2 (o) + (pF 0w)”) = (PP 0 (s = )" 20,
Thus, using Fatou’s lemma, we obtain
9P pLe(iE) (1)

:/ lim inf 2P7* ((pﬁE o uj)p + (pﬁE o u)p) - (pﬁE o (uj - u))p du
Q

j—oo
<liminf (/ 277! (piE o Uj)p dp + / 2Pt (pﬁE o u)p dp — / (pF o(uj; - u))p du)
J=ee Q O Q

= li]II_1><i>£1f (2p—1pLLp(u;E)(uj)p + 2p—1pLLp(u;E)(u)p _ pLLp(H;E)(uj _ u)p)

=P~ pLe () ()P 4 9P L pEr(E) ()P _Jim suppfp(“;E)(uj —u)?

j—o0

:2ppLLp(u;E)(u)p — lim suppfp(“*E)(uj —u)?,

j—oo

i.e.

0< 1imsuppLLT’(“;E)(uj -u)?<0

j—oo

and, thus, the lim;_ o pLLp(ME)(Uj —u)? =0.

LEMMA 9.22 (Continuity Lemma). Let J € R an open interval, and u: JxQ —
E satisfying
(i) VteJ: u(t,") e L1(w; E),

(ii) VweQ: u(,w) e C(J, E),
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(i) Yeel Ju, e L1(u; E) Vee J: p,ou(t,”) <p, ov,.

Then,
0o V() = [ ey
Q
1S continuous.

PROOF. Since J is an interval, continuity of V' is equivalent to sequential con-
tinuity. In other words, if ¢y € J and (¢;);en € JV with t; — to, then we need to

show that V'(¢;) - V(t) in E.
Let w; := u(t;,-) for j € Ny. Then, we have u; € L1(u, E') by (i) for all j € N,
uj — uo pointwise by (ii), and
Viel Ju, e Li(p; E) VjeN: p,ou; <p, ou,.
by (iii). Hence, dominated convergence yields
V() = [wdn— [ undn=V(to) (G0,
Q Q
O
LeEMMA 9.23 (Differentiability Lemma). Let J € R an open interval, and u :
J xQ - FE satisfying
(i) VteJ: u(t,") e L1(w; E),
(ii) Yw € Q: u(-,w) differentiable,
(ifi) Veel Ju, € Ly E) V(s,t,w)eJxJxQ: p, (%}“(t“)) <, (v, (w)).
Then,
V()= [ utdn
Q

is differentiable and

V() = /Q Oul(t, )du
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holds.

PROOF. Let tg € J, and (¢)jen € (J N {to})" with ¢; - ¢y and define

ulty,) = ulto,)

Uj =
J t; —to

Then, assumption (ii) implies u; - d1u(to,-) pointwise. In particular, d1u(to,-)
is measurable. Furthermore, (iii) implies Vj e N : wu; € L1(y; F) and dominated
convergence yields

V() - V(to) _ [ u(ty,-) - ulto,)
ti—to  Jao tj —to

= [ wsdn > [ ouuttodn (G- o).
Q Q

THEOREM 9.24 (Fubini). Let (Q,%, 1) and (Q,3, i) be o-finite. Let u e M (pux
i; B) satisfy at least one of the following conditions.
(a) Yeel: [, [qap.ou dfidp<oo
(b) Yeel: [5 [opooududii<oo
(c) Veel: [, opeou d(pxfi)<oo
Then, all of the above are true and we obtain
(i) uwe Li(px i E)
(ii) u(-,w) € Ly(u; E) for fi-almost every w € Q
(ii) u(w,-) € L1(@; E) for p-almost every w € Q
(V) fopu(w,)dp(w) € La(ji E)
(v) Jau(w)di(w) € Ly (1 E)

Furthermore, if ue SLy(u; E), then

(Vi) Joequ d(uxp)=Jqo Jqu dfi du= [ [ou du dii

holds, as well.
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PRrROOF. Everything but (vi) follows directly from Fubini’s theorem in R using

composition with p,. Then, (vi) follows by approximation with a net of simple
functions.

A ~ud(uxzi)+/g s,d(px fi)

X2 X2

yi(px 1) (Si)

IOE

<
Il
—

s

<
Il
[

yz/{ g d(px fi)

2xQ2

{

usual Fubini

i [ / L, dudp
Q

://s,,dud/l

QJa

e//ududﬂ
QJa

where the s, = ¥.7; y;1g, are simple functions approximating v in L;.

s

b
X
S~

PROPOSITION 9.25 (push-forward measures). Let f € M(u; E). Then,
VS B(E): u(S)=u([S]f)

defines a Borel measure v on E where B(E) denotes the Borel o-algebra on E.

Let F be another Hausdorffian locally convex topological vector space and u €
M(v; F). Then, u € L1(v;F) if and only if uo f € Ly(u; F). Furthermore, for

ueSLy(v;F) we obtain

/UOfdu:/udV.
Q E

PROOF. The equivalence “u € Ly (v; F) if and only if uo f € Li(u; F)” follows

directly from “pf ow € Ly (v) if and only if pf ouo f € Li(u)” for every semi-norm
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pf" of F. The assertion fQ wo fdu= |  udv then follows by approximation with a

net of simple functions

/uOfdue/sVOfdu:Zyi/15i0fdu:Zyi/1sidu:/sudue/udu
Q Q =1 Jo -1 JE E E

where the s, = Y1, y;1g, are simple functions approximating u in L (v; F).

DEFINITION 9.26. Let (up)nen € M (p1; E)N and u e M(u; E). We say (un)nen

converges to u (globally) in measure if and only if
Vel VeeRy: p([Ry.]p,o (un-u) =0 (n o).
If I © N is countable, then we define the metric
d: ExE—>R; (z,y) ZQ_LM
@ l+p(z-y)

and say that (un)neny converges metrically to A (globally) in measure if and only if

Ve eRy: u([Ry.]do (unu)) >0 (n— o).

COROLLARY 9.27. Global metric convergence in measure implies global conver-

gence m measure.

PRrROOF. Let I ¢ N and u,, - u (globally) metrically in measure. Then, for ¢ € I

and € e R,

M([R>a]d°(un,U))=u({weQ; o Pr(tn(w) —u(w)) >€})

vt 1 ps(un(w) —u(w))

ZN( {w o o Pl(@) (@) })

L+p,(un(w) - u(w))

shows

Viel VeeR,,: u([R>E]pL0(un—u))§u([R> c ]dO(un,u))

2t(1+¢e)
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which converges to zero.

COROLLARY 9.28. Let (un)nen € M (1 E)Y converge to u e M(u; E) p-almost

everywhere. Then, (up)nen converges to u (globally) in measure.

If E is metrizable, then (un)neny converges metrically to u (globally) in mea-

sure.

PROOF. u, — u p-almost everywhere implies Vi € I : p, o (u, —u) = 0 p-almost
everywhere. Since the assertion is known for real random variables (cf. Lemma

16.4 in [65]), we directly obtain

VeeRy: p([Ro]p, o (uy—u)) =0 (n— oo)

for each of the semi-norms; thus, the assertion. Similarly, the “metrizable” assertion
follows from the fact that d o (u,,u) - 0 p-almost everywhere for the real random

variables d o (uy,u).

COROLLARY 9.29. Let (un)nen € Lyp(p; E)N converge to we L,(u; E) p-almost

everywhere. Then, (up)nen converges to u (globally) in measure.

If E is metrizable, then (up)neny converges metrically to u (globally) in mea-

sure.

PROOF. wu,, » uin L,(u; E) implies Ve e I': p,o(up—u) - 0in L,(p). Since the
assertion is known for real random variables (cf. Lemma 16.4 in [65]), we directly

obtain

VeeR,o: p([Roc]pio(un-u)) >0 (n—o0)
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for each of the semi-norms; thus, the assertion. Similarly, the assertion follows from

the fact that d o (u,,u) - 0 in L,(u) for the real random variables d o (uy,u).

THEOREM 9.30. Let E be a Fréchet space and (un)ney € M (p; E)N. Then, the

following are equivalent.

(i) JueM(u; E): uy —u (globally) metrically in measure.
(ii) Jue M(u; E): up > u (globally) in measure.
(i) Yeel YeeR g limpy e SUP e, M ([Ryc]p o (up —um)) =0
(iv) There exists u € M (u; E) such that every sub-sequence of (tn )nen contains

a sub-sequence which converges p-almost everywhere to u.
If E is not a Fréchet space, then we still obtain (iv)= (ii)=>(iii).
PRrROOF. “(i)=(ii)” Corollary 9.27.
“(i1)=(iii)” up — u (globally) in measure means that
Viel Vo,eeR 5 IN(0) eN VneN,y 5 p([Ro]po(un—u))<é.

Let 6,¢ € R,. Then, we obtain for m,n € Nst(é)

1 ([Rogelpuo (un = um)) <p([Rooc] (puo (un =) +poo (um —u)))
<p([Roc]pe o (un = w)) + p([Roc]py o (um —u))

<29,

ie.

lim sup 1 ([Ron.]p, o (un — 1)) < 26

n—oo
meN,
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for every 6 e R . Hence,

lim sup g ([Ryo:] e © (un = tm)) = 0.

n—oo
meN,

“(iii)=-(iv)” Let (u.,)nen be a sub-sequence of (uy)ney. For every k € N there

exists ny € N such that
Vm,neN,, : H([Rogoi P o (Un —um)) < 27k,

Without loss of generality, let Vk,m eN: (k<m = ng<n, ). Let

and

k= [Rogon]puo (g —ug).

Then, w(2}) < 2%, ie. Ypen 1(Q4) < 0o. Borel-Cantelli'®, thus, implies
u( N U QZ) =0,
neN keN,,,
that is, for p-almost every w € {2 there exists k/, € N such that for every k e N,

P (us () = () < 5

Thus, for n € Nzk;g

sup p, (U, (W) —up (W) € 3 pu (Upir (w) —ug(w)) < ) 2% ~0 (n—oo).
mENzn keN. keN

2n 2n

10¢f. Theorem 18.9 in [65]

TueoreEM (BOREL-CANTELLI). Let (Q,3, ) be a probability space and (S;)jen € >N, Then,

Sus) <o = ul N U s]=0.

jeN keN jeN .

If the sets Sj are pairwise independent, i.e. Vj,keN: pu(S;nSy) =pu(S;)n(Sk), then

2u(S)=00 = pf M U S|=1

jeN keN jeN, .
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Furthermore, u,(w) = u} + Y ey (uf, —u}) converges p-almost everywhere abso-
lutely with respect to p,. Now, we can find a p,-pointwise limit u, of a sub-sequence
of (u},)ren so that the resulting sub-sequence converges p-almost everywhere to
some u, with respect to p, and p,. Inductively, reducing to sub-sequences, the

diagonal sequence converges p-almost everywhere with respect to all p,.

“(iv)=(1)” If (un)nen does not converge (globally) metrically in measure, then

there is a sub-sequence (u),)nen, as well as d,¢ € R, such that

p (R, Jdo (uy,u)) > 0.

wev i - - neN wWhi Vi -
However, this sub-sequence has no sub-sequence (u./ hich converges p-almost

everywhere to u. This is a contradiction.

If E is not metrizable, then the same contradiction holds for at least one of
the 1 ([R,]p, o (u, 1)) > 6.

O

REMARK Note that this theorem implies that, in general, there exists no topology
of p-almost everywhere convergence in a Fréchet space because convergence of a
sequence in a topological space is equivalent to the face that every sub-sequence
has a convergent sub-sub-sequence. In other words, if there were a topology of
p-almost everywhere convergence, then condition (iv) would show equivalence of
p-almost everywhere convergence and convergence in measure. However, we know

this to be false in R.



CHAPTER 10

The Pettis integral

Now we shall be interested in the existence of Pettis integrals. Often the natural
assumption is to require that E is quasi-complete, i.e. all bounded and closed sets
are complete. For topological vector spaces, quasi-completeness is (usually) the
appropriate general completeness notion and, as such, Hilbert, Banach, Fréchet, and
LF-spaces are all quasi-complete, as well as their weak-*-duals and many spaces of
operators, e.g. the bounded linear operators on a Hilbert space with the weak and
strong operator topologies. In particular, the fact that weak-*-duals of LF spaces
(e.g. C2) are quasi-complete is of prime importance for the integration theory
of distribution valued functions. Another very compelling argument for assuming

quasi-completeness is

(VoeE': pofeC™(Q,C)) = feC™(Q,E)

where 2 Sopen R™.!

However, as we are interested in algebras of Fourier Integral Operators we
might not have the luxury of working in a quasi-complete algebra. Luckily, the
Hérmander space Dr, the set of distributions with wave front set in the closed cone
T, is a nuclear, semi-reflexive, semi-Montel, complete normal space of distributions
in its normal topology and quasi-complete in the Hormander topology (cf. [17]), i.e.
the canonical examples are still “nice”. It should also be noted that the topological

2

properties of Hormander spaces and generalized Hormander spaces” are still actively

Lef. Theorem 3.7 in [11]
2¢f. [15]; we are not going to discuss them here.

202
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under investigation (cf. [15-17]). Especially the topological properties of subspaces
of Héormander spaces are interesting, keeping in mind that considering subspaces
of nice spaces can mean that we lose a lot of nice properties even if the spaces are
reasonable. For instance, if we look at the space of compact operators between
two Banach spaces with the strong operator topology, then we have a space that
is not even sequentially complete (in particular, not quasi-complete). However, the
technical condition we need for Pettis integration, the convex compactness property,

is still satisfied (cf. [75]).

DEFINITION 10.1. Let E be a locally convex topological vector space and a Haus-

dorff space. Then, E has the convex compactness property if and only if
VC Scompact £ conv C Ccompact L.
Here, conv C' denotes the convex hull of C.
Furthermore, E has the metric convex compactness property if and only if

vC Ccompact,metrizable E: convC Ccompact E.

The following observation by Pfister (1981) is stated as Theorem 0.1 in [75].

THEOREM 10.2. Let E be a locally convex topological vector space and a Haus-
dorff space. Then, the following are equivalent.
(i) E has the (metric) convex compactness property.

(ii) Let Q be a compact (metric) space, u a (positive) Borel measure on €,

and f e C(Q,E). Then, f is pu-Pettis integrable.

In [75], we can also find the following remarks.

e The metric convex compactness property is equivalent to the fact that

every continuous function f: [0,1] - E is Pettis-integrable with respect
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to the Lebesgue measure. In other words, the metric convex compactness
property is a natural property to consider if we want to extend ideas from
algebras with a continuous functional calculus to those without.

e All the implications are strict:

complete

U

quasi-complete

sequentially convex compactness

complete property

metric convex
compactness property
U
Mackey complete

(=locally complete)

where we note (as in [75]) that Mackey completeness is equivalent to

compactness of the closed convex hull of any convergent sequence.

At this point, we would also like to remark that condition (ii) can be applied to

measurable functions, as well, by virtue of Lusin’s measurability theorem.

THEOREM 10.3 (Lusin). Let (2,%, 1) be a Radon measure space, E a second-

countable topological space, f: ) - E measurable, € e R, and S € 2.

Then, there exists a closed set C. € ) such that (S~ C:) < e and flc, is

continuous.

If E is a topological vector space, then we can choose C. to be compact.
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In the light of the Schwartz kernel theorem, we are considering algebras which

are endowed with the weak-#*-topology (or finer topologies). If we integrate a func-
tion A with pointwise kernel «, then [, Adu should satisfy for ¢, € C°(X) with

sufficiently small support

([ A@ute) ¢.0) = [ 0@ [ (A1) @du)dvolx ()
[ ] [ e dwolx(w) du) dvolx ()

- / / k() (2, 9)dp(w) o(y)ib(a) dvolxe (x,y),
X2JQ

ie. fQ Adp ought to be the operator with the kernel fQ kdp. If we assume that
fQ Ady is a Pettis integral, then we need to find conditions relating it to the integral
Jo, kdp which itself can be defined as a Pettis integral in a subspace D’y of CZ°(X?)".
In particular, if D', has a convex compactness property, then Theorem 10.2 tells

us about the existence of the integral fQ Kdjs.

PROPOSITION 10.4. Let D'y be sequentially complete and with conver com-

pactness property, (Q,%, 1) a Radon measure space, and k € SL1(u;D’y). Then,

JordpeDy.

PROOF. Since & is strongly measurable, there is a separable subspace E ¢ D'y
such that x(w) € F for p-almost every w € Q. For € € R, Lusin’s measurability
theorem implies the existence of an ¢ Ceompact § such that © (2N Q) <& and &lq,
is continuous. Thus, by the convex compactness property,

/ kdp € D'y.
Qe

Since € L1(u; Dy),

/ Kkdp € (D;‘)N
Q3

n neN
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is a Cauchy sequence and we obtain

/ mdu»/ﬁduel)k
Q Q

1
n

by sequential completeness of D’,.

For applications of Cauchy’s Integral Theorem (from complex analysis), we
only need to integrate with respect to metric spaces. Hence, we can choose slightly
weaker assumptions which yields the following version of the proposition above
(using the same proof because now we only need the metric convex compactness

property which follows from sequential completeness).

PROPOSITION 10.5. Let D'y be sequentially complete, 2 a metric space, p a

positive Radon measure, and k € SL1(u;D'y). Then, fQ kdpeD'y.

REMARK Note that all closed and bounded sets in a Hésrmander space D are com-
pact, complete, and metrizable (cf. Proposition 1 in [17]). Hence every bounded
continuous function on a compact space with values in Dr. is strongly measurable

by the Sombrero lemma.
[

REMARK If we want to consider the algebra A directly, then there are a couple of
interesting topologies. For instance, we may want to consider the integrals fQ Adp

with respect to the strong operator topology, that is, fQ Adyp is defined by

/Adu <p::/A<pdu
Q Q

where [, Apdp is a Pettis integral in C2°(X), i.e.

Vo, e CZ(X): </QAdu %¢>=/Q<A%¢)du-
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Another interesting topology would be the gap topology (cf. appendix B). A
particularly interesting case arises if the algebra A is a closed (in the norm topology)
subspace of L(B,C') where B is a separable Banach space and C' any Banach space.
Then, as pointed out in Remark 3.1 in [75], the convex compactness property and
the metric convex compactness property are equivalent even with respect to the

strong operator topology.
u

The Pettis integral also allows generalizations of some of the theorems in the pre-

vious chapter.

LEMMA 10.6. Let (2,3, u) be o-finite, F' a Hausdorffian locally convez topo-

logical vector space with separating dual and f € Ly (u; F).

(i) Let Be L(E,F). Then, Bo f is u-Pettis integrable and

B/Qfd,u:/QBofdu.

(ii) Let Eg € E be a closed subspace and f(w) € Ey for p-almost every w € Q.

Then, fQ fdup e Ey.

PROOF. The assertion (i) follows directly from the fact that for every ¢ € F’,

poBeFE and

<pB/fd,u:/gpoBofd,u:<p/Bofd,u.
Q Q Q

The proof of assertion (ii) is unchanged; namely, for ¢ € E’ with ¢|g, = 0, we obtain

90( Q fdu) ) /Qﬁiifzdu -
=0

This extends to Hille’s theorem (same proof as in Theorem 9.16).
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THEOREM 10.7 (Hille). Let f € L1(u; E) be p-Pettis integrable, F a Hausdorf-
fian locally convex topological vector space with separating dual, and A: D(A) c
E - F a closed linear operator (that is, A ¢ E x F is a closed subspace). Let
f(w) € D(A) for p-almost every w € Q and Ao f € Li(u; F) u-Pettis integrable.

Then, we obtain [, fdue D(A) and A [, fdu = [, Ao fdp.

Furthermore, we obtain Fubini’s theorem and the theorem of push-forward

measures.

THEOREM 10.8 (Fubini). Let (0,3, 1) and (0,3, i) be o-finite. Let u e M (px
ii; E) be p-Pettis integrable and satisfy at least one of the following conditions.
(a) Veel: [ [apoou dfidp< oo
(b) Veel: [5 [qpoou du dii<oo
(c) Veel: [o apeou d(puxfi)<oo
Then, all of the above are true and we obtain
(i) we Li(px i E)
(ii) u(-,w) € Li(w; E) for fi-almost every w € Q
(iii) w(w,-) € L1(fi; E) for p-almost every w €
(iv) Jqu(w,)du(w) € Li(j1; E)
(v) Jou(w)di(w) € Li(u; E)
(60 iyt (i ) = o Jy e i dp = oy oy dp

holds, as well.

PROOF. (i-v) are unchanged. (vi) follows from Fubini’s theorem in R since

VpeE': / ~<P°Ud(ﬂ><ﬂ)://¢°Udﬂdﬂ://¢°Ududﬂ
QxQ QJQ QJQ
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PRrROPOSITION 10.9 (push-forward measures). Let F another Hausdorffian lo-

cally convex topological vector space and f € M(u; E) p-Pettis integrable. Then,
VS e B(E): u(S) = u([S]f)
defines a Borel measure v on E where B(E) denotes the Borel o-algebra on E.

Let we M(v;F). Then, ue Li(v;F) if and only if uo f € L1(u; F). In that

case we obtain

/UOfdu:/udV.
Q E

PRroOOF. Here, the only change is that we lost a restriction on v in

/UOfdu:/udV.
Q E

However, since we are using Pettis integrals, we observe

YoeF': /<p0u0fdu:/<poudy.
Q E



CHAPTER 11

The index bundle

In this chapter, we want to consider measurable index bundles, i.e. we want
to show that the theory above extends the continuous case of the Atiyah-Jénich
index bundles (cf. e.g. [4]). In order to do that, we will have to define a topology
in a suitable space the index bundle maps into. Then, we can define Borel sets
and, thus, measurability of the index bundle. Similar considerations for continuous

families can be found in [6] and (very extensively) in chapter 6 of [76].
The index bundle of a family of operators (f(w))_.q is given by
IND(f) () = ker f () — ker f(w)"
as interpreted in the K-theory of vector bundles with the direct sum where
ker f(w) = N(f(w)) = [{0}]f(w)
is the kernel (null space) of f(w).

Here, we will consider the following construction. Let S be an abelian monoid.

Then, we define
K(8) = 5%[((@)es® a=u}
with the canonical injection S5 s+~ (5,0) € K(S) and Vse S: —s=(0,s).
Hence,
IND(f)(w) =ker f(w) —ker f(w)”

~(ker f(w),0) - (ker f(w)*,0)

210
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=(ker f(w),0) + (0,ker f(w)")

- (ker f(w), ker f()")

can be interpreted as ker f(w) @ ker f(w)* and, if each f(w) is a closed linear

operator between Hilbert spaces Hy and Hy, we obtain
IND(f)(w) =ker f(w) ®ker f(w)* € Hy® H;.

In particular, IND(f)(w) is a closed linear relation in Hy @ Hy. Since the space
of non-empty closed linear relations CLR(Hy, Hy) in Ho ® H; is a complete metric
space, we have found a space and topology we could consider; namely the gap-
topology ) (cf. appendix B). However, we cannot use this topology directly because

the function
CLR(Ho,Hl) E) f = kerf S5} kerf* € CLR(Ho,Hl)

is not continuous. If we assume that f,g ¢ CLR(Hy, H;) are Fredholm opera-
tors and g a small perturbation of f (in the gap-topology), then it is well known
that dimkerg < dimker f and dimker ¢* < dimker f* are possible! which implies

dimker g @ ker g* < dimker f @ ker f*, i.e.

0(kerg@kerg® ker f@ker f*) =1

no matter how small §(f,g) is (cf. Theorem B.21 and the following discussion).
Luckily, the index of Fredholm operators is locally constant in the gap-topology (cf.

Theorem 1V.5.17 in [44]), i.e. for §(f,g) sufficiently small
dimker f — dimker f* = dim ker g — dim ker ¢g*

1 0
ITheorems 1V.5.17 and 1V.5.22 in [44] and the fact that [0,1] 5t~ A(t) := satisfies

0 t

Vte (0,1): 1=dimker A(0) > dimker A(¢) = 0.
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or equivalently
dimker f - dimker g = dimker f* — dim ker g~
and, since we are interested in the K-theory, we are allowed to consider
(kerg+Vp) @ (kerg* + V1)
with Vp € (kerg)*, Vi € (kerg*)* and
dimVp =dimV; e Ny

instead of kerg @ ker¢g*. Similarly, we may add finite dimensional subspaces of

(ker f)* and (ker f*)* of the same dimension to ker f @ ker f*.

The following is close to Atiyah’s construction in [3]. For Hilbert spaces Hy

and H;, we define the set of Fredholm operators
F(Hy,H,) :={f e CLR(Hy, Hy); f Fredholm operator}

endowed with the metric & (cf. appendix B). Let Q be a topological space, F €

C(Q,F(Ho,Hl)), and wo € Q.

Let (eij)jen, be an orthonormal basis of H; such that (eoj)j€N0,<dimkerF(w0)

an orthonormal basis of ker F'(wp) and (e1;) jen is an orthonormal basis
0,<dim ker F(wg)*

of ker F'(wp)*. Furthermore, for n € N, let
[ -
H,, =lin{e;j; jeN,,}

and pry, : H; - H; the orthoprojection onto Hy,. Then, all pry, —are self-adjoint

Fredholm operators, i.e. they have vanishing index, and the operators

Fo(w) :=pry,, oF(w)



11. THE INDEX BUNDLE 213

satisty
ind F,(w) = ind prgy, +ind F'(w) = ind F(w).

For n > dimker F(wp)*, we obtain F(wg)[Ho]* = ker F(wy)* € Hi,, i.e. Hy, C

1n>

F(wo)[Ho]. In other words, F), (wo)[Ho] = H1,, and ker F, (w)* = Hyi,,. Let

G(w): Fy(wo) >Hi, @ ker F, (wp);

Fr (wo) -1
Fr(w) x , prkchn(wo) Pr, |-

x (erl (PFFH(WD)
Then, G is well-defined and continuous in w (cf. Lemma B.17) and we observe for
(2,y) € Fn(wo)

-1
Fn(w )
G(wo)(z,y) =(er1 (ern(wo)|Fn(wz)) (z,y) . prkcrpn(wo)ero(I,y))

=(PYH1(17ay) ) Prkchn(wo)x)

= (y, PTker F, (wo) iU)

= (Fn(wo)xvprkchn(wo) x) .
Hence, G(wyp) is an isomorphism and there exists and open neighborhood Qg ¢ 2
of wg such that each G(w) is an isomorphism for w € Qy. This also implies that

~ Fp(w
G(w) = G(w) Py (o )+ Falw) > Hip @ ker o (wo)

is an isomorphism for every w € Q. Let (e;)jen_, be a basis of ker F, (wo). Then,
<dq

= Fp(wo)
G(W)(.I,y) :G(w) ern(w0)|Fn(w) ($,y)

Fn(wo)
= erl (‘Tuy) ) prkean(wo) ero ern(w0)|Fn(w) (‘Tuy)
Fp(wo)
=\Y s Plker F,(wo) PYH, ern(W0)|Fn(w) (I’y)

Fr(wo)
(P2 P ooy P, e ol @)
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for (z,y) € F,,(w) shows that
VjeNgy, : sj(w):=pry, G(w)™(0,¢;)
defines a basis of ker F,, (w) and
VjeNy : s5€ C(Q0, Ho).

In [3], Atiyah defined the index bundle for bounded Fredholm operators on a Hilbert
space H as ker F,—ker F)} = ker F,,—Qx H{, . If we use this representative of IND(F),

then it suffices to show that continuity of the s; implies gap-continuity of ker F;,.
However, for m > dimker F'(wp) we can define
Fo (W) =pry,, oF (w)"

and the same construction yields ¢; € C(Q4,H;) for j € N_; such that each

(¢ (w))jENgdl is a basis of ker F\, (w). Furthermore, we have
VYw ey : ker F(w)* cker F, (w).
Let Q:=Qyn Q. Then, we have
VweQ: ker F(w) € ker F,(w) A ker F(w)* € ker F* (w).

Furthermore, the co-dimension of Hy,, increases by one if n is replaced by n+1. Since
the index of Fj,(w) is constant with respect to n, this means that the dimension
of ker F,,(w) must increase by one, as well. Hence, it is possible to choose m >

dim ker F'(wp) and n > dimker F'(wp)* such that
dimker F,, (w) — dimker F(w) = dimker F;, (w) — dimker F(w),
ie.

dimker F,, (w) — dim ker F}, (w) =dimker F'(w) - dim ker F'(w)”
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=ind F(w)
=ind F(wo),
e.g. by setting
m =dimker F'(wp)
n =dimker F'(wo)” +ind F(wo) + dimker FJ; yor ey (W)
— dimker Fiim ker 7 (wo)* (W)
for dim ker Fgin, ker 7 (wo)+ (W) — dimker F}, . Fwo) (w) <ind F(wp) and
m =dimker F'(wo) + dimker Fyim ier F(wo)* (w) = dimker Fgi or ) (@)
—ind F(wo)
n =dimker F'(wg)”

for dim ker Figim wer p(wo)* (W) — dimker Fj, | F(WO)(w) > ind F'(wp).

DEFINITION 11.1. Let P (CLR(Hy, H1)) := {A; A € CLR(Hy, H1)} be the power

set of CLR(Hy, H1) and let
IND: F(HQ,Hl) - P (CLR(HQ,Hl))

be defined such that, for f € F(Hy,Hy), IND(f) is the set of all ker f,, & ker f},

satisfying m € Nygiver 15 € Nygi ker - and dimker f,, —dimker f7, = ind f.
Furthermore, the sets

Binp(f,€) :z{gEIND[F(HO,Hl)]; JrefIyeg: b(zy)<e

A (dim:z: =mindim2’ v dimy = mindim y')}
x'ef y'eg

for e € Ry, and f € IND[F(Ho,H1)] define a subbasis of the topology Tinp in

IND[F(Ho, Hy)].
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This topologizes “(ker g + Vp) @ (ker g* + V1)” in Ho ® H; with minimal dim Vp
and still it suffices to show that continuity of the s; implies gap-continuity of ker F},

in order to show that “g ~ (ker g + V) @ (ker g* + V71)” is continuous.

ProrosiTioN 11.2. Let Hy and Hy be Hilbert spaces. Then,
IND € C(F(Hy, H1),IND[F(Ho, H1)])-

PROOF. Let ¢ € R, and A € F(Hy, H;). Then, we define for B € B; (A4, %)

G(B): A, »Hy, ®ker Ay;

-1

An
= (IOI"H1 (pfAn|Bn) T, Plker A, PTH, 95)

and

G(B) = G(B) pry, g" : B, >Hy, @ker A,

n

similar to G(w) and G(w) above where A takes the role of F(wo) and B the role
of F(w), and the constructions of A,, and B,, are as above. Then, G(A,) is an
isomorphism, again. Let €o € R, such that for all B € B; (A,g0) the map G(B) is
an isomorphism. Since the same holds for the similar construction with respect to

A*, let ¢ be sufficiently small such that G(B*) is an isomorphism, as well.

Let 534 = pry, G(A)™(0,e;) and sf = Ppry, G(B)™(0,¢;) for an orthonormal
basis (e;); of ker A,,, and tj‘ = pry, C:'(A*)_l(O,e;) and tf = pry, é(B*)_l(O,e;)
for an orthonormal basis (e}); of ker A}, accordingly. Without loss of generality,
let gg € (0,¢) be sufficiently small such that each of the following conditions holds

for every B € B;(A,£0).2
. supaje(c{Zj|aj|H(~;(A)—(~;(B)||Lip; ;s e@BHO} <=

2Note that the first and third point are merely a matter of choosing eo sufficiently small.

However, we can also satisfy the second and fourth point since sf - s;‘ and tf — t? as B — A.
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o sup, e {5105l [G(A) - G(B)| i 5057 € 0B, | < 55

o supg o {2l |G(A) =GB, 0 Ty 05tit 0B, | < 5
o b o (Xl [G(A) - G(B) 1 Bjutf € 0B, | < 55

Then

)

(soe-pn )

Ho®H,

)

Ho

gﬁmax{

A
Zaj(sj —Sf’)
j

> Bt - tF)

J

)

sﬁmax{z o5 |G(A) - G(B)| - 1B [ G(A™) - é(B*>Lip}
<€

implies IND(B) € Bixnp(IND(A),e) whenever B € Bs(A, €o).

COROLLARY 11.3. Let Hy and Hy be Hilbert spaces, Q2 a topological space, 1t a

Borel measure on Q, F e C(Q,F(Hy,H1)), and G e M(p, F(Ho,Hy)). Then,
INDoF e C(Q,IND[F(Hy, H1)])
and
IND oG € M (u, IND[F(Hy, H1)]).
Note that the function DIM : IND[F(Hy, H1)] — Z defined as
DIM(f) = dimker f,, — dimker f,

for any ker f,, @ ker f; € f is locally constant with respect to T;yp; in particular, it

is continuous, i.e.

ind = DIMoIND ¢ C(F(H,, H1),Z).
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Similarly, we may consider other functions than DIM, e.g. the odd first Chern
character ¢; to obtain a measurable version of the spectral flow (cf. Proposition

7.3.1 in [76]).

Hence, we are able to consider measurable index bundles, that is, the integra-
tion theory extends. The next chapter will consider an example of “holomorphic
functional calculus” in algebras, that do not have a holomorphic functional calculus,
by means of a replaced phase function. Afterwards, we shall apply the integration

theory to (-functions.



CHAPTER 12
“Holomorphic functional calculus” in algebras
without holomorphic functional calculus via

replacement of phase functions

As an example, we are now able to calculate the spectral invariants of the heat
trace from this generalized point of view. Luckily, the algebra of pseudo-differential
operators allows us to use the functional calculus which makes the calculations a
lot easier. A more in-depth account of the calculations in the pseudo-differential
case can be found in chapter 3 and the appendices A and B of [31]. For the purpose
of this chapter, however, the extension to the Fourier Integral Operator case is the
vital observation. In other words, this chapter is all about using the integration
techniques above and applying them to formally use the idea of functional calculus

with Fourier Integral Operators.

EXAMPLE Let (X, g) be a compact Riemannian C*°-manifold of dimension! N € 2N
without boundary. Let |g| be the determinant of the metric tensor G and write
dvolyx =+/|g|dz with the Lebesgue measure dz in the parameter space. Then, the

Laplace-Beltrami operator is given by

1 )
A =-——=0;9""\/Iglo
Vgl

INote that N € 2N has very far reaching implications; compare with stationary phase ap-
proximation and the problem d + % — 7 € =N which cannot happen if d € Z and N € 2N.

219
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where ¢7% are the coefficients of the inverse of the metric tensor G™'. Let « be the

positively oriented contour

. | 7 .
{rezz; reR,, U{ce“"; pE [%75]}U{7~6*12; reR,,

/./
N

with c e R, and consider the integral

7

2

/ e M(A =)t
y

which has the kernel

(ry ™ [ et L [ Mo (A=) (@inds
vy

For now, we will ignore that we already know the existence of these integral since
it is simply an application of the holomorphic functional calculus. Instead, we will

use that o ((A - /\)’1) has an asymptotic expansion

U((A - )‘)71) (Iag) ~ Z 7127]'(:17,5,)\)

JeNg

with
r-2-j (.I, té.a tzA) = tizij’r72fj ('Iv 55 A)

whenever ¢ > 0 and [, n) + |/\|% > 1. From

1 .
A =-——0;9""\/|glok

Vgl
1

== g’"0;0k - (9;9"") 0k - mgjk(aj |g]) Ok
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g (=i g]) (~idh)

=g7% (=10;)(~i0y) + (-i0;¢"" ) (~i0k) +
2|g]

we obtain
a(A) = aa(2,8) + a1 (z,§)
with
as(w,€) = 97" ()&
and
009 = (520" (sl + D)
where D; := —i0;. Furthermore, we have the recursion (which follows from the

formula of the symbol of the composition of pseudo-differential operators)

roo(z,&,0) = (az(z,&) = N\) 7"

P (@ N =B N) Y (asn(@,6) (Do i(@,6,0)

(ol yer; H°

where

I = { (k1) € NE % {0, x No i ity oy + i +1= 5}

To obtain the asymptotic expansion, it suffices to consider the integrals

2

(27T)_N/ ei(m—y,S)RN ¢ /\6_>\t7'_2—j(x7§7)\)d)\d§'
RN Y
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Let j = 0. It is easy to see that A » e (ag — \)7! is integrable taking values

in the Hérmander class S72 (a Fréchet space). Hence,

. / e M(ag —A\)7rd\ = et
2 Jy

is well-defined and the top-order contribution of trexp(—tA) evaluates to

/X ((27T)—N /RN ei(w—yf)]gN%/’Ye—)\t(a2(x7§)_A)_ld)\dg)
- [em [ g [ o -0 inigas

= / (em)™ / et (20 gedy
X RN

_ / (2m)™ / exp (~tg™ (2)¢;¢4) déda
X RN

:/X(27T)’N /RN exp(—% (tGil(x)faﬁ)RN)dfdx

1
2

dzr

y=x

:/X(27T)’N(2ﬂ')%(det((2t)’1G)) dx

:/ (47t) ™= \/|gldz
X

:VOIX (X)
(4mt) %

It is interesting to note that this extends the highest order pole coefficient of our

previous observation

2
() 0y <22z (BUr) 5 exp(_M)

(4mt) % ot 4t

for the heat semi-group on a flat torus to a significantly larger class of (even-

dimensional) manifolds.
For j =1, the recursion yields

I 1:{(H7kal) e Ng x{0,1} x No<is (6l vy +E+1= 1}

={(1.0,0) € N x N x N: [l vy = 1} 0 {(0,1,0)}
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and

1
r_3g=—"T-2 Z = (95 az-k) (Dy'r-2-1)
(nkdyer; 1

=— r%Qal —r_g Z (05 as) (Dlf'r_2)

”#”11(1\7)=1

=—r%a1+ro Y. (9Ya) (Dias)r?,

”#Hzluv):l

:1"?2 Z (05 az) (DY as) —7%2&1.
H#”el(N):l

=:b

tA

Again, it is easy to see that A » e "*r_3(-1,2,\) is integrable with values in the

Hérmander class S73. Cauchy’s integral formula

(9nf(2’0) = L'/~ %dz,

2711 zZ— 2

where 7 is a cycle around zp with winding number one, allows us to calculate the

next coefficient

N A e (2. E) — o £ N (2 ’
/X(27r) /RN 2WA (roa(@,6,2)°0(2,€) = r-a(2,€, M) a1 (2, €) ) dAdéd
= )N T L e My (o 3 .
_/X<2 ) /RNM ’5)%/7 (£ )P dNdEd

- /X (2m) /R a6 /7 Ny (2,€, \)dAdEda

:/X(gw)*N/RN b(x,{)%/vmd/\dfdx

2
[ [ b exp (tar(e.6)) déda

—/(27T)_N/ a1 (xz,&)texp (~tas(x,&)) dédx.
X RN

Since £ — b(a:,{)% and & — a1(z,£)t are polynomials where each monomial ¢,

has an odd number of variables, that is, [, € 2N -1, it follows (cf. equation
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(3.27) in [31]) that both inner integrals vanish, i.e.

)N L e M (ro(x 3b(x -r_o(x 201 (x x =0.
Lo [ o [ (a0 0 a0 . 6)) draa =0

For j € N,,, the recursion

roo(2,&,0) = (az(z,€) = N\) 7"

rag(EEN) =B 6N Y (asn(@,6) (Do i(@,6,0)

(ke l)el; B
yields that each A = r__;(‘1,2,A) takes values in S™27 (O5aasy, € 5’2_]“_”“”@1“),
r_2(-1,2,A) € 72, and DYr_o_y(-1,2,)\) € S7271). Furthermore, note that as and a;

can be written as sums a(z,£) = ¥; az j(x)o2,;(§) and ay(z,£) = ¥, a1 j(x)o1 ()

where the 0; ; are monomials of degree 7. Assuming

rat (2,6 0) = 3 o, € 0) by ()51 (€)
k=1

(which holds for [ = 0 with ng =1, b1 = 1, and so; = 1) for all [ € N; _; implies

there are functions f,, which are sums of products o2 ;D" s ; such that

1 <
T_2-j=—T-2 Z —| (8§La2_k) (Dil (Z r’fzbmsl’k))

(w,k,lyer; H° k=1
— 1 H H ; v(. .k pn—v
=—T_9 Z —' (82 ag,k) Z ZDl (T?Z)D bl,ksl,k
(R )el; B vep W =21
_ 1 1% H 5 v -k pn—v
=—T_9 Z —| ((92 ag_k) Z Dl ((ag —)\) )D bl,ksl,k
(w,k,yer; H° vep W/ g1
1 < ket ] .
=—r9 = Y oo kmO a2 pm Y, (,u) Y Barly Dby sy
(p,k,l)el; ey v<p V/ 21 k<v

holds. In other words (inductively), all r_o_; are sums of terms of the form
r_o(z,&,\)¥s(x,€) where the s(z,£) are polynomials in €. Hence, the j*™ coef-

ficient is given by a sum of integrals

/X(%)’N /RN %/VeMTz(x,é,A)ks(x,é)d/\dﬁd:z:.
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Again, the functions A = e *r_5(-1,-2, \)¥s(z,€) are integrable with values in some

Hormander class (making the integrals well-defined) and we obtain

/X (2m) /R L A Ny (2,6, A)Fs(x, €)dNdEdo

:/X(zw)—N /RN s(w,f)%/ye"\tr_g(:v,f,)\)kd)\dﬁdx

k-1
:/X(27T)7N /RN s(x,{)h exp (—taz(x,€)) ddx.

As explained in [31], the inner integrals can be evaluated

B tk—l
Cry [ s(o.6) Gy exp (tan(e. )
=(27) N (ZW)% ex —1 iv T) gra s(x,- 7#64
~(2r) ( e p (-5 div2 Gla) grad, ) s ,>(k_1)!)<o>

- k-1

V@

(4m)% (k- 1)! (eXp (_% divs G(2) gradz) s(x, -)) (0).

We shall not include higher order calculations here as these get rather lengthy very
soon. However, in [31] (equation 3.64) the explicit calculation for the j = 2 term
can be found which produces

N
1-3

+ total curvature(X).

(47)=

ExaMPLE Using our general integration theory, we obtain that replacing the phase

function (x -y, &)rny by ¥z, y,§) in

(27T)7N/N ei(m*yf)RN i / eiAt’Ilej (x7§,/\)d/\d§
R ’Y

is perfectly fine (because Dr. is at least quasi-complete if you choose the Hsrmander

or any finer topology - Proposition 29 in [17]; hence, the integrals all converge in
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Dr) and we obtain, for instance,

(27T)7N/ em(z’y"g)i/ef)‘tr,g(:zr,g,)\)d)\dg :(27r)7N/ eiﬁ(z"y’g)e*t”(z’g)d{.
RN ot

2 RN

Considering a linear phase function 9(z,y,£) = (O(x,y),&)r~ the integrand be-

comes

exp (0. 1). s - 5 (€:2G (@) 16),)

which is the characteristic function ¢y of a normally distributed random variable Y
with mean ©(z,y) and covariance 2tG(x)~!. Since Z € N'(u1,0) (that is, a normally

distributed random variable with mean p and standard deviation o) has the density

exp (_(n Hs ;n :U'))RN)

fz(n) = \/m

= 2m) ™V /RN e oy (1)t

we conclude

fy(0) =(2m)N / o
R

exp (_ (G(x,y),G(x)G(x,y))RN )

=

=((2m)N det (2tG(x)™")) At

_ Vldl eXp(_<®(:c,y),G(:v)@(:v,y)xRN)
(4mt)= 4t '

In other words, the first coefficient in the trace expansion is given by

1 |©(z,2)[;
m /Xexp (—T) dVOlX((E)

where H@(:z:,:z:)Hz =(0(z,2),G(z)O(x,z))g~. In particular, if Yz e X : O(z,x) =
0, then we are reduced to the example above. If we have a pseudo-differential
operator on the quotient RY /i, we obtain 9., (z,y,£) = (z -y -7, &)~ , and have to

sum over y €[, i.e.

2 2

1 olgn . (RY v
> / exp <22 ) gyotgn (o) <20 BT) v Dleen )
yeb (4mt) = JrNr 4t (47t)= ot 4t
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For 7 > 0 we also have polynomial factors to consider, that is, we have integrals

of the form
(QW)—N/ (2 €. 1) @) v —H{E2G@ ) g
RN
where p is a polynomial in ¢. For any monomial £€%, we obtain

2m)N [ goeiO@w) Oan—3(6.216(@)€)uw ge
RN

=(2r) T F (5 s 0 BE2AG@) T Ean ) (-0(z,y))

vz

=(2m) "7 ((10)°F (¢ > e 32O ) (-0 (2, y))

w2

=(2m)"% ((10)" (n = Vet ((20) TG(@))e HrCD 6@ )) (~0(a,y))

- (4@ ()7 (n > e HE@DN)) (-O(z,y))

vfz

where F denotes the Fourier transform. Let f(n) := e~ ae{nG@men Then, the j*

coeflicient is given by a sum of integrals

5@ o -O(z,z))dvolx (z
. G (@) (-6t m)olx ()

where the s are polynomials in ¢.

For even more general phase functions, we will introduce polar coordinates.

Then, coefficients are sums of integrals of the form
/ / D,y )@ BTt GE e g dyolys (),
Byn JR_,
that is,

/ p(a,y,n) £ (7 e rhe O (Lid(a,y,m)) dvolos, ()
BN

R

=(—1)kakﬁ(r»e*“"’c(z’*lmwTz)

where £ denotes the Laplace transform. These can (in principle) be evaluated since

L (r > e"‘"Q) (s) :/ e e gy
R

>0
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1 _r2__s
=— e “Vva'dr
Va R,

1 / ~(r+52 )2 2
= e el etadr
va v,

s
e

2
a 2
= / e " dr
\/5R>s
2Va
2

where erfc denotes the complementary error function (an entire function) which is

defined by the holomorphic extension of

2
erfe(z) := —/ e " dr
R
for z e R. Let

f(s):= Le“(”'d_lmkﬁi erfe| ——2 |
2v/t(n, G 1n)gx~ 2v/t(n, G n)pw

Since

Oerfe(z) = —ie_z2 ,

NG

it follows that

0 (s ~ erfc (;)) (2) =- ;e—ﬁmcflmw 7
2y/t(n, G )gw tm(n, G- 1)~

i.e.
52
df(s) = VT i e ETIeN e %
2/t(n, G- 1)~ 26(n, G"1n)pw 2\/t(n, G-1n)p~
s2 —32
_ ﬁ e4t(n,G‘1n)RN 1 674’5(Tlvc_177)mz\7

2v/t(n, G=1n)rx tm(n, G1n)rx
$2

= T 3emerfc 5 — 1_1

4(t(n, G n)pn)? 20/t(n, G In)en | 26, G

- f(s)- v
2t(n, G=1n)rw 2t(n, G=1n)gw
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and we obtain, inductively,

" f(s) —pn(mvs)f(s)+q"(m7s)

with po(z,y) =1, go(x,y) = 0. Furthermore,

1 1
O G e e LR Crrv el O

1 1 /
O (7%(77, . ) £(5) +pn (7%(% L ) 7(s)
1
+ 2t (2t(n, G nan "

1
oapn (7% i ) (s)

f
1 s 1
" (215(77, G=1n)rw S) (Zt(n, G1n)rw U 2t(n, G=1n)gw )
1
+ 0ot (2t(77, Gil??)RN ’ S)

1 1 s
) (82p” (m S) o (2t(n, G 1n)aw S) 2t(n, G~ 1n)gn ) i)

1 1 1
—Dn , Oogn | —/——————,
P (2t<777G_177>]RN S) 2t(n, G-1n)gw o2 (2t<777G_177)]RN S)

implies

Pn(2,y) = Oapn-1(x,y) + xypp-1(2,y),
and

4n(2,y) = 02¢n-1(2,y) = Tpn-1(2,y).

In particular, p, is a polynomial of degree n in both arguments, as is ¢, in the first

argument, whereas ¢, is a polynomial of degree n — 1 in the second argument.
Let 9(z,y,£) = (z -y, )rn £ €]y, (- For =y and j =0, we have p=1, i.e.
/ (-1)N-1gN-17 (r N e—t(n,G(m)’ln)RNTQ) (Fi) dvolap, (1)
OByn

_ / (-1)NLON (i) dvolys,, (1)
OByn
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to evaluate. For N =1, this collapses to

f(:an:l N f(jFi)|n=71 ) VT 0?2 ( Fi )

34;—1 erfc
2VtG1 2VtG1

ﬁ 1 ( F1 )
= e wcT erfc .
ViG1 2VtG1

Thus, the leading coefficient is given by

N ¥ / VT _lal Fiv/lgl
— ¢ 4G () erfc R — dCC = —c 4t erfc dVOl .
/x\/tG‘l(x) 2 /IG1(z) x Vi W1 X

For N >2

/ (-1)N10NL f(xi) dvolas (1)
OBy

becomes

N-1 1 . :
/83RN (-1 " pNna (m7 H) f(F1) dvolap, v (n)

1
+ (—l)Nfqu, (731') dvolyp_ (n)
/‘93RN ' 2t(n, G~1n)pn BN

1 -1 F7
= PN-1 | ———, Fi | et Iw erfc | ————] dvolsp_, (n)
/f)BM ( 2t(n, G ') ) 2\/t{n, G 'n) o

1
Lt ) o
/(93RN 2t<777G_177>RN BN

where

)N/
pn-1(7,y) = %WDN& (z%y).

Supposing we have a flat manifold with G™!(z) = 1, i.e. (5, G™'n)g~ = 1, we observe

/ (-1)N 10N f(3i) dvolyp, (1)
OByn

/ D (—1 H')e:1L1 erfc(—ﬁ. ) dvol (n)
= _ s t Vi
- PN-1 NeT /i 0B~ \T]

_ 1
+/ (—l)N 1qN71 (%’:FZ) dV01aBRN (77)
8B]RN

:(—1)N_1V01BBRN (0Bgn~) (\ / %pN_l (%, H') e T erfe (;—\;E) +qN-_1 (%, ﬂFz))
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\/ﬂ (1 ?') T erfe i + (1 ?')
— _ -— 1)e4t er — — -— 1
4.tpN 1 2t7 2\/% gN-1 2t7 )

N
2

21

RN

i.e. the leading coefficient becomes

(-DV 22 voly (X) [ /7 1\ = i 1
F(%) (\/gle(E,ﬂ)eu erfc(2—\/i)+qN1(§,¥z)).
Since po(z,y) =1, qo(@,y) =0,

pn(2,y) = O2pn-1(2,y) + 2ypn-1(2,y),
and

qn(2,y) = O2qn-1(x,y) — 2pp-1(2,y)

hold, we obtain

n| pa(zy) | pa(3F) | an(zy) | an (5, 7)

0 1 1 0 0
1 Ty Fig: —r _%
3|32y +a?y? | 15 (33i-1) | -222 -2 | sh+ o

which yields
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N (-~ 127T2volx(X) (pr 1(2t’ )e4t erfc(

) + N1 (%,ZFZ))

1 2vol x (X) (\/%ezl_1 erfc(Qf}Z))

2 —27volx (X) (f(ﬁ%)eﬁ erfc(;it)_%)

3 Arvolx (X) (\/g(% ~ L) erfc(;it) . 24%)
4 —WQVOIX(X)(\/Eﬁ(¥3i—1)eﬁerfc(;\}z)+8%—2%)

where we used T’ (%) =/mand T (%) = @ The complementary error function can

be evaluated using the upper incomplete I'-function T'y; which satisfies erfc(z) =

%Fm— (i,zg) or

2 (_1)k22k+1

fe(z)=1- ——
erfe(2) ﬁ%{) K2k +1)

erfc (1) =1+ : (4t)7k
2/t vt e, k(2K + 1)



CHAPTER 13

The (-function on Hérmander spaces Dy

Since Radzikowski [57, 58] showed the importance of the wave front set in
quantum field theories on curved space-time, the Hsrmander spaces Dr. (set of dis-
tributions with wave front set in the closed cone I' such that the semi-norms || v 1.
in Definition 13.1 are finite) have become very important in the re-formulation of
quantum field theories. In this chapter, we want to return to the (-function and
study it on those spaces D whose topological properties were studied in [15-17].
There are multiple canonical® topologies on Df; most notably, the normal topology
(which is the Arens topology as introduced by Arens in [2]; the topology of uni-

2 compact sets) and the coarser Hérmander

form convergence on absolutely convex
topology (defined in [39] on p. 125) which is given by the following semi-norms

(Definition 8.2.2 in [38]).

DEFINITION 13.1. Let U € R" be open, I' a closed cone in the co-tangent bundle
of U without the zero section, and D € C(U)' the set of distributions with wave

front set in T such that the following semi-norms are finite.

(i) For f € C(U) we define

ps: Dr—~>R; ue|(u, f)].

lHérmander initially defined the topology as a pseudo-topology, that is, he defined what con-
vergent sequences and their limits are. It should be noted that not every pseudo-topology defines
a topology; for instance, there is no topology of almost everywhere convergence. In Hérmander’s

case, however, there are multiple different topologies which induce his pseudo-topology.

2A subset A of a topological vector space over K € {R,C} is called absolutely convex if and
only if Ve,ye AV \,peK: (|A\+|u/<1 = dz+puyecAd).

233
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(ii) For N €N, a closed cone VS R", and x € C(U) with (sptxxV)nl' =@

(spt denotes the support), we define

N
o DF =B e sup (14 [kl ) 17 () ()

where F denotes the Fourier transform which exists because xu is a com-

pactly supported distribution.

In the light of Corollary 9.17, we will want to show that the {-function on
gauged poly-log-homogeneous elements in DT defines a sequentially closed linear
operator in a certain sense, i.e. it suffices to consider the coarser Hérmander topol-
ogy which makes D} quasi-complete (cf. Proposition 29 in [17]). The topology on
the set of gauged distributions in D will be the induced topology of compact con-
vergence in C (€2, Df) where Q2 ¢ C is an open and connected set and C* denotes

the set of analytic functions.

DEFINITION 13.2. Let E be a locally convex topological vector space with semi-
norms (pE),er and Q Sopen connected C. Then, we endow C¥ (), E) with the semi-

norms
CUUE) . w ,
pL,K( ). C’(QLE)->R; f|p.o f”Lw(K)

for every v eI and K Scompact €2

DEFINITION 13.3. For R € R and 2 Copen,connected C such that Vr e R : {z €
Q; R(z) <r}+ @, we define D,F,R,Q,plh c C¥(C,Dr) to be the set of gauged poly-log-
homogeneous distributions in DT whose -functions are holomorphic in Q and none
of the degrees of homogeneity at zero have real part greater than R. Furthermore,

! -— !/ .
we define D g g ph = {u €Dr rapm; U polyhomogeneous}.

With this prelude, we can state the following theorem.
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THEOREM 13.4. Let R € R and Q € C be open and connected such that Vr €

R: {zeQ; R(z)<r}+a. Then, {|p

. / w :
fraen - PTRopm = C¥(Q) has a quasi-

complete extension® Cr,-

PROOF. Let (va,{(va))aca be a bounded net in Dt g o 1, ®C* () with v, - 0
and ((vq) = v e C¥(2). Then, we need to show v = 0. In fact, it suffices to show

[{0}]v has an accumulation point in .

Let z € Q. Then, (vo(2))aca is a bounded net in Dy and (((va)(2))aca
is a bounded net in C. In particular, V := {v,(2); a € A} is metrizable (cf.
Proposition 1 and Theorem 33 in [17]), as is Z = {{(va)(2); a € A} u{v(z)}.
Hence, {(va(2),¢(va)(2)); a € A} is contained in the metrizable set V x Z, i.e.

(0,v(z)) can be calculated using sequences.

Let (un(2))nen € VY be such that u,(z) = 0 and ((u,)(2) - v(z). Note that
¢(ur)(2) is the regularized dual pair (u,(2), ddiag). Let (fm)men be a “d-sequence”

approximating dgiag. Then,

VmeN: (up, frn) >0 (n > o0) compactly

holds by assumption and implies

VmeN: (un(2), fm) =0 (n — o0)

Furthermore, there exists r € R such that

VzeQn Cm(.)q : (un(2), ddiag) need not be regularized,

3Just as the completion can be constructed by adding all limits of nets in (|p/ we

I',R,Q,plh’

can construct the quasi-complete “closure” by taking all bounded nets in ¢ ‘Di, - and add
\R,Q.p

their limits if they converge in Df. @ C¥(Q)
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ie.

(un(2), fm) = C(ua)(2) (M~ o00).

Let € € Ry, z € Q with 9i(2) <7, n € N such that |v(z) - ((u,)(2)| < 5, and

m € N such that [((un)(2) = (un(2), fm)| < § as well as [(un(2), fm) = 0| < 5. Then,

[0(2)] <lv(z) = C(un) ()] + [C(un) (2) = (un(2); fm)| + [{un(2), fm)| <

shows Vz e n(C%(_)q : v(2) =0, i.e. the assertion.

O

This theorem has a couple of very important consequences. On one hand, it
allows us to extend the (-function to elements of D(Cgr,n) which may very well
include distributions that are not poly-log-homogeneous. On the other hand, and
much more importantly, (r o has the convex compactness property, i.e. we can
calculate Pettis integral of continuous functions f on compact Borel spaces (K, %, 1)

with values in (g o. In other words,

[ G@ratr@dn=([ @ [ cratr@)in) eces
exists and implies
| 1@dueDcra) » ([ 1@in)- [ cratrean

REMARK So far, we only had the fundamental theorem of calculus which allowed

the following. Let a,b,ce R, a<b, c€[a,b], f € C([a,b],C*(C,Dr)), and
g: [ab] > CH(CDp): o [ (s
Then, g is differentiable with ¢’ = f, i.e.

/abf(S)ds = /ab g'(s)ds = g(b) - g(a).
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Then, we obtain

b
c( / f(s)dS) ~C(9(8) - 9(a))
~C(g(5)) - C(g(a))
b
- / B.C(g(s))ds
b
- / C(g'(s))ds

- / " ))is.

Since the restriction of considering only (-functions on a shared holomorphic do-
main is quite technical, it would seem more natural to consider ¢ as a map from
C“(C,Dr) to the set of meromorphic functions Mer(C). Furthermore, we would
like to still have compact convergence on holomorphic domains; i.e. we are looking
for a locally convex Hausdorff topology on Mer(C) which extends the topology of

compact convergence. This, however, is a rather delicate problem.

The probably most natural way of topologizing Mer(€2) for © Copen,connected C
non-empty was introduced by Ostrowski [54] and regards Mer(2) as a subspace
of C(,C) where C is the extended complex plane with the chordal metric (that
is, identification with the Riemann sphere and using the induced ¢5(3) metric of
R3). C(9,C) is then endowed with the topology of compact convergence and the
induced topology 7. on Mer(£2) makes Mer(2) a metric space which is complete
if we add the constant function oo; cf. chapter VIL.3 in [14]. Unfortunately, this
topology is not linear. In fact, Cima and Schober showed (Proposition 4 in [12])

that there is no locally convex vector space topology comparable with 7.
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In [72] Tietz introduced a locally convex topology based on the Mittag-Leffler
theorem which states that every meromorphic function f in €2 can be decomposed

as

f(z)=9(2) + Zk: (™ (2) = ri(2))

where h™* are the principal parts of f at its singularities o, and g and the 7y are
holomorphic in €2. Tietz also posed the problem of finding a locally convex topology
on Mer(€2) which satisfies a certain duality relation appearing in §5 of [72]. This
problem was solved in [32] studying a topology introduced by Holdgriin in [40]
and paralleling methods used by Golovin in [29,30] who studied a slightly different
topology. Any of these topologies can be considered natural from a certain point
of view. However, Tietz’s, Holdgriin’s, and Golovin’s topologies are too strong for

our purposes here.

If, for instance, we consider the operator H := \/|A| on R/2,7 where A is the

Laplacian, then we may think of the continuous function
f:[0,1] > C¥(C,¥); 2~ (C32zm H*** W)
where ¥ denotes the set of pseudo-differential operators. Then, we obtain
C(f(2))(2) = 2¢r(-2 - 2)

where (g is the Riemann-(-function. Hence, {(f(z)) has a pole at -1 — z and we

would most certainly like
[0,1]5 @ = C(f(x)) € Mer(C)

to be continuous. In Tietz’s and Golovin’s topologies, however, this is not the case
and, since Holdgriin’s topology is strictly stronger than Golovin’s, neither of them

is adequate for our purposes.
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In [12] Cima and Schober defined a locally convex topology on Mer(£2) which
does allow singularities to converge (and makes Mer(§2) metric, in fact). Unfor-
tunately, these topologies depend on a previously chosen exhaustion of €2 and,
depending on the exhaustion, it is possible to construct a sequence (py)ney € QY
with p, —: p such that the meromorphic functions z ﬁ do not converge to
z - # even though they usually do. Hence, even though this topology looks
much more promising, it exhibits properties that are wholly undesirable. Further-

more, these properties are deeply linked to the construction of the topology making

it inherently difficult to get rid of with only minor changes to the construction.

In other words, if we want to consider ¢ as a function taking values in Mer(C)
as a locally convex Hausdorff space, then we will have to define yet another “natural”
topology on Mer(Q2) or, at least, Mer(C) which reduces to the topology of compact
convergence on the subspace of holomorphic functions. However, we were not able

to find any such topology.

Luckily, any ¢-function of a gauged poly-log-homogeneous distribution is holo-

morphic on some half-plane JR(z) < r € R. Hence, we can consider the subspace

M :={f: C— C measurable; IreR: f|c holomorphic}

R()<r

of the measurable functions (note that we need to use the complete* Lebesgue
measure here, so that almost everywhere continuous functions are measurable).

Let

D:= {Q Copen,connected C; IreR: (C%(A)q c Q}

4A measure is called complete if and only if every subset of a null set is measurable and a

null set itself.
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and
He () :={f e M¢; flo holomorphic}.

Then, (D,?2) is directed® and M, = Ugep He (). On He(2) we will want to have
compact convergence and the plan is to endow M, with the corresponding final
topology. This can be done but the inductive limit will not be strict®, i.e. there is
very little we know about that topology. Instead, we will define a slightly different

topology on H ().

Let dgq) be a metric defining compact convergence on the set of holomorphic

functions in . We will extend dp(q) to the semi-metric

do: He()? > Ryo; (f.9) ~ ducay (flo, gla) -

Furthermore, let d,, be the metric of local convergence in measure” on C (cf. 245A

and 245E in [25]), that is, f, - f locally in measure if and only if

VeeR,, VBeB(C): (/\(B)<oo = lm A({z<B: |fn(z)—f(z)|25}):0)

5Let A be a set and < a pre-order on A, that is, a reflexive and transitive binary relation.

Then, we call (A, <) directed if and only if Va,be A Jce A: a<c A b<ec.

6This is a consequence of the fact that compact convergence in an open set does not imply

convergence anywhere else; e.g. (z = e"?) converges compactly to zero on C but there

R(-)<0
is no compact convergence anywhere else. Hence, if we consider Q,Q' € D with € Q' then the
topology of compact convergence on 2 for holomorphic functions on Q' is strictly weaker than

compact convergence on ', i.e. the inductive limit is not strict (to be strict the topologies need

to coincide).

"To construct such a metric, choose an increasing and exhausting sequence (K )pey of sets
of finite measure (e.g. compacta) and consider on(f,g) = [; min{|f(z)-g(2)|,1}dz. Then,
o(f,9) ==X hen %f(}g{)) is a metric that induces the topology of local convergence in measure;

n

cf. 245E in [25].
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holds where A is the Lebesgue measure in C and B(C) is the Borel o-algebra in C.
Note that d,, is strictly weaker than do on Q. We will now endow H () with the

metric
dg () =do+d,.
LEMMA 13.5. H¢(Q) is complete.

PROOF. Let (fn)nen € He(2)N be a Cauchy sequence. Since the set of measur-
able functions with the topology of local convergence in measure is complete, we
have f, —»: f with respect to d,,. Furthermore, (fu|q)nen is Cauchy with respect to
compact convergence, i.e. f is holomorphic in , that is, f € H-(9).

d

In order to prove the following lemma, we will quickly recall Vitali’s theorem

(cf. e.g. chapter 1 in [42]).

THEOREM 13.6 (Vitali). Let Q Sopen,connected C, f € C¥ ()N locally bounded,

and let

{2 e (fu(2))nen converges}

have an accumulation point in Q. Then, f is compactly convergent.

LEMMA 13.7. Let Q0,91 € D and Qo 2 Q. Then, He () € He(Q1) and the

topology induced by H¢ (1) coincides with the topology of H¢ (o).
Furthermore, H: (o) is closed in He(€4).

PROOF. H:(Qp) € H:(Q4) is trivial and since every compact set in € is a
compact set in Qy we obtain that every semi-norm of H¢(£21) is a semi-norm of
H (), 1i.e. He(Qo) = He(27) is continuous. It remains to show that any sequence

(fu)nen € He(20)Y which converges to f € H(Q0) with respect to the topology
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of He() implies convergence f, — f in H¢(€o). In other words, we need to
show that f,, converges to f compactly in . By Vitali’s theorem (since we have
pointwise convergence in 1), it suffices to show that (fy, )ney is locally bounded in

Qo.
Suppose (fr)nen were not locally bounded in €. Then,
J20€ Qo Ve, M eR,y IneN Vz e B(zp,¢): |fu(2) - f(2)]> M.
In particular, there exists a subsequence (fy,)jen such that
Jz0 € Qo Je Ry VjeN Vze B(z,8): |fn, (2) - f(2)] > J.

However, this violates local convergence in measure. Hence, (f,)nen is locally

bounded in €y and the first assertion holds true.

In order to show that H¢ (o) is closed in He(Q1), let (fn)new € He(20) be
convergent to f € Hc(21) in He(£21). Then, we need to show that f ¢ H:(Qo).
However, we already know that (f,)ney converges compactly in g by the previous

part of the proof, i.e. the limit is holomorphic in .

O

Since each H. () is contained in at least one H ((CEK(~)<—71) for some n € N and

its topology is given by the induced topology, we may endow

M, = UNHc(Cm(.><_n)
with the strict inductive limit topology, that is, the finest topology that renders
all HC((CER(A)<777,) < M, (n € N) continuous, i.e. the finest topology rendering all
H(2) = M, (2 € D) continuous.
THEOREM 13.8. (i) M is a Hausdorff LF-space.®

8LF—spaces are countable inductive limits of Fréchet spaces.
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(ii) The topology of H:(Q) coincides with the topology induced by M.
(i) B < M is bounded if and only if B € He (Cm(~)<—n) holds for some n € N
and B is bounded in H (Cm(-)«n)-
(iv) M¢ is bornological.?
(v) Mc is sequential.'®
(vi) Let E be a locally convex topological vector space and A: M¢ — E a linear
operator. Then, the following are equivalent.
(a) A is continuous.
(b) A is sequentially continuous.
(c) A is bounded.'*
(vii) Mc is complete.
(viil) M, is barreled.*?

(ix) M is ultrabornological™®.

9A topological vector space over K € {R,C} is called bornological if and only if it is locally
convex and every absolutely convex bornivorous set is a neighborhood of zero. A set is called
bornivorous if and only if it absorbs all bounded sets, i.e. let A be bounded and B a set then B

is bornivorous if and only if there exists a € R_, such that VA e K : AcAB.

Hza

10A subset U of a topological space is called sequentially open if and only if every sequence
converging to a point in U is eventually in U. A topological space is called sequential if and only if
every sequentially open set is open. Being sequential is the minimum requirement for a topological
spaces such that sequences suffice to determine the topology.

1A bounded linear operator maps bounded sets into bounded sets.

127 topological vector is called barreled if and only if every barrel is a neighborhood of zero.
A barrel is an absolutely convex, closed, and absorbing set. A set A ¢ E is called absorbing if and

only if Vx e £ e R, VA e KI-IZa T x e MA.
13Let D be absolutely convex and bounded. D is called a Banach disk if and only if lin D

equipped with the Minkowski functional pp(z) := inf{\ € R_j; Az € B} is a Banach space. An
absolutely convex set is called infrabornivorous if and only if it absorbs all Banach disks. A locally
convex topological vector space is called ultrabornological if and only if every infrabornivorous set

is a neighborhood of zero.
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(x) M¢ is webbed.'*
(xi) M¢ is not metrizable.
(xii) M¢ is not first-countable.

(xiii) M is not a Fréchet-Urysohn space.*®

PROOF. (i-iii) Theorem of Diedonné-Schwartz (cf. Theorem 9.7 in [75]).
(iv) Theorem 9.13 in [75] (the H, ((C%(-)<—n) are bornological since metriz-
able).
(v) Follows from (iv) with Corollary 1.7 in [23].
(vi) “(a)=(b)” Let A be continuous. Then, we obtain Az, - Az in F whenever
a net (zq)q converges to z in M¢. In particular, this implies sequential

continuity.

“(b)=(a)” Suppose A is not continuous. Then, we can find U Copen £
such that [U]A is not open, i.e. not sequentially open. Let (2, )nen € (M~
[UJA)Y satisfy x,, »: z € [UJA. Then, we obtain Vn e N: Az, e ENU

and Az € U. In other words, A is not sequentially continuous.

“(a)<(c)” Proposition 6.13 in [66].
(vii) Kothe’s theorem (cf. Theorem 9.17 in [75]).
(viii) Theorem 9.13 in [75] (the H¢ (Cm(.)<—n) are barreled since metrizable).
(ix) cf. below Corollary 4 in chapter 13.1 in [41]
(x) cf. §35.4(8) in [46]
HLet E be a topological vector space. A class W = {Cny,....n, € E; k,n; € N} is called a
web if and only if Yk € N Vna,...,np 0 Cny,nge =Uny 1 en Cny,ongyy a0d E=Up v Cny - Wis
called a C-web if and only if for every fixed sequence (n),)ren there exists (o )ken € (R,o)Y such

that for all Ay € [0, 05 ] and all zy € Cny ... .0, the series Yy Ay converges in E. E is called a

webbed space if and only if there exists a C-web on E.

157 space is called a Fréchet-Urysohn space if and only if the closure and the sequential

closure of any subset coincide.
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(xi) No metrizable strict LF-space can be complete by Corollary 5 in [64].
(xii) Follows directly from the fact that a Hausdorff topological vector space is
first-countable if and only if it is metrizable (cf. §15.11(1) in [45]).
(xiil) If M¢ were a Fréchet-Urysohn space, then it would be metrizable by The-
orem 2.2 in [10].

O

These properties of M. are sufficient for us to consider many Pettis integrals of
(-functions. Even though the Pettis integral may not be a meromorphic function

anymore, we still obtain the following proposition.

PROPOSITION 13.9. Let Qe D, jeZ, v a cycle in ), and o € C with wind, (7y) =

1 where wind denotes the winding number. Then, the Laurent coefficient map

, , 1 f(z)
Icjaq: H(Q) > C; fr Gy . 7(2 o) dz

18 continuous.

PROOF. lcj q,, is continuous if and only if it is sequentially continuous. Let
(fu)nen € He ()N be convergent to f € H¢(2). Since the image im+~ of v is a

compact subset of 2, we obtain

an - fHLw(im'y) -0,

ie.

L [ fa(x)-F(2)

2mi ), (z-a)i*!

¢,y (fr) =1¢j 0~ ()] =

1
2—/z—a|ﬂ 321~ T

6R>0

shows the assertion.
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EXAMPLE Returning to H := \/|A| on R/2:z where A is the Dirichlet-Laplacian

and
f:[0,1] > C¥(C,¥); 2= (C32zm H*** W)
where ¥ denotes the set of pseudo-differential operators, we can interpret
C(f(2))(2) = 2¢r(-2 - 2)
as an element of H-(C \ [-2,-1]).
Choosing a cycle v in C \ [-2,-1] with wind_; () = 1, we obtain

Vo e [0,1]: lea 15 (C(f(2))) = res1-2(¢(f(2))).

Using Pettis integration in M, and our extension of ¢ to (r q, we find

1 1
/ res_1_;(C(f(x)))dx :/ le1,-14(C(f()))dz
0 0

1( / c(f<a:>>da:)
er s ( / cz,n<f(x>>dx)

1
=lc 1,1,y 9 (2,0 (/ f(:c)dx) .
0

Similarly, for j € N,

/ lcj,l,w(«f(x)))dx:lcj,m( / C(f(x))d$)=1cj,MOCM( / f(x)d:r)-

EXAMPLE At this point, let us consider an orientable compact Riemannian C*°-
manifold (M,g) of dimension N € 2N. Let |A| be the non-negative Dirichlet-
Laplacian on (M, g) and T the semigroup generated by — |A|. For any multiplicative
gauge g we have seen that ¢(7T(¢)g)(0) admits a Laurent expansion at zero with

highest order negative Laurent coefficient VOlMi(Aﬁ) (in fact, if g is another gauge,

(4mt)2
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then ¢(T(t)g)(0) = ¢(T(¢)g)(0)). The second highest order Laurent coefficient is

total curvature(M)
— . N N
3(4m)2t2

given by

Let us now assume the metric g is a measurable function on a Radon measure
probability space K, that is, (M, g) is subject to random perturbations in the met-
ric, such that K 3w ~ T(t)(w) is bounded and takes values in a separable subspace

of Dy 1 ¢ pin- Let E denote the expectation, i.e. integration in the probability space

K. Then, we obtain

E¢.c(T()g) = C.e(BE(T()g)) = C.c(E(T(1))9)

and, by continuity of dy in H(C),

E (¢1.c(T(1)9)(0)) = ¢1,c (E(T(2))g)(0)

as well as

VjeZ: E(lcjo (C.e(T(t)9)(0))) =lejo (G (E(T(1))g)(0))

where lc; o(f) denotes the j*® Laurent coefficient of f in zero, i.e. a meromorphic
function f has the Laurent expansion f(z) = ¥ ez Icjo(f)2 at zero. In particu-
lar, the expected volume and the expected mean curvature are determined by the

operators ET'(t).

Note that the Hormander classes S™ and, hence, all U™ are Fréchet spaces,
i.e. ET(t) € U™ whenever all T(t) are elements of ¥™. Since all T(0) are the
identity operator, we obtain ET'(0) = 1€ ¥°. Since all T'(¢) for t € R, are in U™,
ie. VmeR: T(t) e U™, we conclude Ym e R: ET(t) € U™, that is, ET(t) € U=,
In particular, the extension to ¢; ¢ is not even necessary to evaluate the ¢-functions.
However, we need it in order to justify integration (note that the same works just

as well for wave traces but, then, we will need the quasi-complete extensions of ().
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On the other hand, ET'(¢) can be expressed using the holomorphic functional

calculus
T(t) =18 = = / (A=Al A,
211 5

that is, T'(¢) has the kernel

1 i(x— —to T
kT(t)(.I,y) :(27T)N /RN 6( y’E)e t (lAD( 7yyf)d§

Hence, E(T'(t)) has the kernel

1 i{x— —to -
Ekr () (2,y) =W/RN6< B (¢t (1ANE0O) g,

Since the T'(t) are smoothing operators (save T'(0)), we can largely reduce the
assumptions on the measurable functions w — T'(t)(w). The important equality

here is
trET(t) =Etr T(¢)

which is also satisfied if tr is continuous and the T'(t) are Pettis integrable (above,
we considered it in light of Hille’s theorem). The assertion tr € (=) is an
application of the following version of the closed graph theorem (cf. Corollary 1 in

chapter III.12 in [73]).

THEOREM 13.10 (Closed Graph Theorem). Let X be an LF-space, Y a Fréchet
space, and T': X —-Y a linear operator (everywhere defined). Then, the following
are equivalent.

(i) T is continuous.
(ii) T is closed.

(iii) T is closable.

LEMMA 13.11. tr: ¥~ — C s continuous.
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PROOF. It suffices to show that tr is closable. Let (A, )nen € (I™°)" such that
A, - 0 and tr A, - t. We need to show that ¢t = 0. Let a,, be the symbol of A,.

Then, we have
VmeR: ap - 0in S™(X x X xRY).

In particular, the set {a,; n e N} ¢ S™(X x X x RY) is bounded for each m € R.

Let m € R such that m < =N — 1. Then,
70 S™HX x X xRY) c O (X x X xRY) - C; f»—>// f(x,x,€)dédvol x ()
X JRN

is continuous and Vn e N : 7(a,) = tr A,. Since the topology of C* (X x X xR™) and
S (X x X x RY) coincide on bounded subsets of S™(X x X xRY) (cf. paragraph
above Proposition 1.1.11 in [39]), we obtain 7(a,) - 0 in S™1 (X x X x RY). In

other words, the assertion follows from

t < trA, =71(an) — 0.

Considering wave traces, we can follow the same idea as above but with the
analytic semi-groups W generated by —/|A|. Again, we will obtain that all ex-
pected Laurent coefficients are determined by the operators EW (¢) and, in terms

of the kernel, by

1 (x—y, —to x
Ekw @) (2,y) :WE/RNe( v:6) o=t (VIAD@w.8) gc.

At this point it may be more convenient to not yet Fubini-ize this integral because

we are interested in the extension to ¢ € {R. For the sake of simplicity, let us assume

o (VIAD(2,9,€) = 5(2.) |€] s - Then,

1 (x— —to T
Ekw 1) (2,y) =WIE/RN6< v:6) o to (VIAD (2.:6) g¢
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5 1)N - / (700300 el 1y ) ) RO @DIEN ) g
m RN

shows that we may also consider these integrals in an algebra of Fourier integral

operators where our phase functions are
Ve(w,y,€) = (@ —y,&) = I(B)s(x,y) [€] 0, vy -

ExXAMPLE Let Q be a connected, compact, separable, metric space and (2,3, 1) a
finite Radon measure space such that every open set has positive measure. Let EII"
be the set of elliptic pseudo-differential operators of order m on a compact manifold
without boundary and E ¢ U™ a separable subspace of the pseudo-differential
operators of order m with FnENI™ # @. Let f € Ly (u; E) take values in EII",

f:=(Q)tp, and E the expectation with respect to ji. Then,

| s (@S,
Q

By Lusin’s measurability theorem, there exists . such that u(Q2~Q.) <& and f|q,
is continuous for every € € R,,. Let ind f(w) be the index of f(w). Then, ind f
is locally constant on each 2. and Ueer,, Q. is dense in 2 because 2 \ Ueer,, Q.

cannot contain an open set. But ind f need not be a constant function.

Consider Q :=R/z with the Borel X-algebra and the Lebesgue measure A, and

let
f= Aol[o)%] +A11(%71).

Then, Qo= (0,1) ~ {%} and f|q, is locally constant. However,

_ A0+A1

Ef 5
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and
Eindf:/indo Aplig 11+ A1lis 4y ) dA
inde (Aol g+ Ail )
:/ indO(Aol[O 1]+A11(l 1))d)\+/
[0.4] o 1

[3.1]
:/ ind Agd\ + / ind A1d\
[0,5] [5.1]

_ind AQ +ind Al
_f'

indo (Aglpg 1)+ Arl(y,y) dA

1
2

In particular, the expected index and the index of the expectation need not coincide.

Since U™ is a Fréchet space, F is a separable metric space and (2, %, u; F)
a Sombrero space. Thus, Fubini’s theorem and Hille’s theorem hold. Let D ¢
M (u; E) be a measurable family of Dirac operators (we may think of a manifold
with random metric here) such that e *?"P e*PP" e L (u; E) (e.g. D € Loo(p1; E)).

Then, the pointwise index is given by
ind D =tr (eftD*D - eftDD*)

and we can use the fact that tr is a bounded linear operator on the smoothing

operators ¥~ (Lemma 13.11) to obtain
Eind D =E tr (e"tD*D - e_tDD*) =trE (e_tD*D - e_tDD*)

where E (e’tD D _ e tDD ) can also be taken in U™, ie. trE (e’tD D _ e tDD )

is well-defined.

This becomes particularly interesting if we consider non-continuous deforma-
tions. Let (Q,X,u) be the space ([0,3],B([0,3]), ) where p = %)\ and A is the
Lebesgue measure. Let My be the 2-sphere and (0,1) > w — M, be a continuous
deformation of My such that the north and south pole converge to the origin and

the pointwise limit M exists. Furthermore, let M; \ Bgs(0,€) be a manifold for
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every £ € R,y. Let M3 be a torus in R and (1,3) > w = M,, a continuous defor-
mation approximating M;. In other words, [0,3] \ {1} 5w - M,, is a continuous
deformation and M exists as a limit but is not a manifold. For instance, we may

think of rotations of the following.

For w € [0,3]\ {1}, let E,, be the sum of even exterior powers of the cotangent
bundle of M, F, the sum of odd powers, and D(w) := d,, + d;, where d,, is the
exterior derivative on M,,. Then, D is measurable (in fact, continuous on [0,3]x{1})
and ind D is locally constant. Since ind D(w) is the Euler characteristic of M,,, it

follows that ind D =21 ;) and we obtain the expected Euler characteristic

Eind D = 2
3

If, on the other hand, we wanted to consider this family on the geometric side

of the index theorem, then we would look at integrals of the form

E(w '—>/ chhw)
M.,

with no chance of applying Fubini here since the M, may not even be written
as the same set and changing metric. The operator treatment is not faced by
such problems giving us a tool to consider random manifolds and their expected

characteristic values under discontinuous perturbations.
u

REMARK Note that we do not expect ¢ to be continuous/closable in general. Con-
sider the Hormander classes S™. According to Proposition 1.1.11 in [39], S~

is dense in S™ with respect to the topology of S™ whenever m’ > m. Let A
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be a polyhomogeneous pseudo-differential operator with symbol in S™ and non-
vanishing residue trace. Furthermore, let g: Cg(y > S ! be gauged and (A, )nen
a sequence of operators with symbols in S™° such that A, — A with respect to
their symbols in S™*!. Then, we also have Vz € Coiyer + Ans(z) ~ Ag(z) with
respect to S™1. Hence, if ¢ were continuous, we would obtain ((A,g) - ((Ag)

and, thus, 0 = resy ((A,g) — resy ((Ag) # 0.

In other words, obtaining quasi-complete extensions is the best we can do (in

this generality).

REMARK Note that the dependence on R in (g q is (essentially) irrelevant if Q € D,
that is, € contains a subspace (C%(A) - If we consider an operator A with poly-log-
homogeneous expansion A = Ay + X ,c; A,, then each of the A, contributes a term
m, i.e. we have poles at —N - d,. Now, for A,(z) to not be of trace-class

R(d, +z) > -N is necessary, i.e. R(d,) > —N -R(z). Hence, having no poles p with

R(p) < r implies
R(d,)>-N-r = ¢, =0.

In other words, defining I := {1 € I; :(d,) > -N -7} and I := {0} uI~ T we can
write A= A+ A where A := YfAe ,Di",—Nfr,Q,plh and A = > ,ef A is an operator

whose (-function vanishes.

Finally, we will remark that the proof that ¢ has a quasi-completion on H(£2),
does not extend to H¢(2) (i.e. not to M) without further arguments since we
cannot use Vitali’s theorem because there my not be a dense and open subset of C

which does not contain any poles of a sequence of (-function. As a counterexample,
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consider a bijection ¢ € (iQ)YN. Then, C(z — \/mqnﬁ) (s) = 2¢r(-s — ¢qn) has a
pole at —1 — ¢y, i.e. there exists no open and connected €y € C such that -2 €
and 0 € Qy. However, this counterexample violates that sequences used in the proof

converge to zero. If, on the other hand, we define

/ . / w /
Drom= U DF,m,Cm(')Ql,plh c C¥(C,Dr),
(m,n)eZ?

then ¢ ¢ Di‘,plh ® M¢ is everywhere defined and we do obtain the following theorem.
THEOREM 13.12. Let (va,((va))aca € ¢4 be a bounded net, (va,((va)) = (0, s)

m ¢ C Di‘,plh ® M¢, and Qy ¢ C open, connected, and dense such that Vo € A :

C(va) € H(Q9). Then, s=0.

PROOF. Since each Di‘,m,({j%() pin has the subspace topology of C(C,D})
and (D%’m’cox(.)<_nxplh) with

(m,n)e(N?,9)

V(m,n),(m',n') eN*: (m,n) d(m/,n') :& m<m A n<n/

is directed, we obtain that

!
= D’ cD ® M,
‘ (mHeW ¢ Tl (e P Foplh ¢
—_—
gDi",wn,Cm(‘)<7n,plh®HC(Cm(A)<—n)

is a strict inductive limit. Let B be a bounded subset of (. Then, the Theorem of
Diedonné-Schwartz (cf. Theorem 9.7 in [75]) implies the existence of (m,n) € N?

H C <-n . . .
such that B is a bounded subset of ¢ |Df( noeer) which is metrizable.
F,7n,ﬁEm(l)<_n,plh

Let (Va,C(va))aca € ¢ be a bounded net such that v, — 0 in Df,m,Cm() plh

and ((vy) = s in He (Cm(.)<—n)' Let (m,n) € N? be such that (va,((va))aca €

A
(ID%,m,CmOGn,plh@HC (Cm()<7n)) , Vo= {Uoz; « € A} U {O}a Z = {C(’Ua)u o €

A} u (s), and d a metric on V x Z. Then, (va,((va))aeca = (0,8) is equivalent to
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(ug(k), 58(k) Jken = (0,5) where 3: N — A is chosen such that
1
VkeN VaeA: ( a>pB(k) = d((ua,sa), (u,@(k),slg(k))) < p )

holds. Then, by definition of H, (C%(<)<fn)’ (88(k) Jken is a locally bounded se-
quence. Hence, Vitali’s theorem yields that s is holomorphic in 2y and by Theorem

13.4, we obtain Sﬂ(k)|Cm4)<, — 0. In other words, s = 0 almost everywhere.



Concluding remarks

Based on Guillemin’s work [34,35] on the residue trace for Fourier Integral
Operators, we have developed an extension of the theory of (-functions for pseudo-
differential operators to a large class of Fourier Integral Operators. By introducing
the notion of gauged poly-log-homogeneous distributions explicitly and, thus, work-
ing in a generalized setting that shares the fundamental analytical structures that
are preserved when replacing pseudo-differential operators with Fourier Integral Op-
erators, we were able to study the Laurent expansion of Fourier Integral Operator

¢-functions and prove existence of a generalized Kontsevich-Vishik trace.

In conjunction with stationary phase expansion results for the Laurent coeffi-
cients and the kernel singularity structure, we have extended many known formu-
lae from the pseudo-differential operator case to varying classes of Fourier Integral
Operators. Furthermore, these considerations allowed us to identify non-trivial
algebras of Fourier Integral Operators consisting purely of Hilbert-Schmidt oper-
ators with regular trace integrals, as well as utilize our unified approach to inde-
pendently verify known results for special cases of Fourier Integral Operators. A
particular special case that deserves highlighting are Boutet de Monvel’s results
[7] on generalized Szegs projectors since they gave rise to a class of Fourier Inte-
gral Operators whose generalized Kontsevich-Vishik trace is form-equivalent to the

pseudo-differential operator case.

At this point, the lack of a holomorphic functional calculus in most algebras of

Fourier Integral Operators became the limiting factor since many a consideration in

256
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the pseudo-differential case makes heavy use of the functional calculus. It was not
even clear if we could replace phase functions in calculations that use holomorphic
functional calculus and end up with an expression that is defined within a given
algebra of Fourier Integral Operators. Hence, in part II, we had a look at Bochner-,
Lebesgue-, and Pettis-integration in algebras of Fourier Integral Operators. We
were, then, able to prove that replacement of phase functions is indeed possible and

the integrals remain well-defined.

Furthermore, these integrals permit considerations of measurable functions of
Fourier Integral Operators which extend the notion of continuous families of Fourier
Integral Operators and whose “measurable index bundles” reduce to the Atiyah-
Janich bundle. In particular, these measurable Fourier Integral Operators raise
the question whether or not it is possible to consider stochastic applications, e.g.
randomly perturbed manifolds, directly (that is, without the need of the Colombeau
algebra). We were able to give a positive answer to that question by calculating
the expected volume of a randomly perturbed manifold as part of the expected
heat- and wave-trace. Additionally, in appendix A, we have developed the basic
theorems of probability in algebras of Fourier Integral Operators including versions

of the law of large numbers and a Lindeberg type central limit theorem.

With a well-functioning integration theory in our hands, we returned to the
(-functions. By introducing a topology on the set of {-functions, we proved the
existence of quasi-complete extensions of certain restrictions on the ¢ function.
Hence, we obtained that the (-function and the integral commute in certain cir-
cumstances. Similarly, the extracting Laurent coefficients and taking the classical
trace commutes with the integration (modulo some technical caveats); thus, validat-

ing that the expected heat- and wave-trace coefficients are, in fact, the coefficients
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of the trace of the expected semi-groups (a property that is very useful but far from

obvious).

Of course, there are a number of open problems. For instance, we have ob-
tained a notion of generalized (-determinants. However, it remains unclear for
which classes of gauged Fourier Integral Operators these are actually determinants
in the sense det¢(AB) = det¢(A) det¢(B). Finding such classes of Fourier Integral
Operators, as well as extending more known formulae from the pseudo-differential
case, will probably need to make heavy use of integration techniques; at least if we

want to stay fairly close to the known cases.

Regarding stochastic Fourier Integral Operators, essentially everything needs
to be done. However, since we know that the index bundle is measurable, existence
of measurable versions of the spectral flow, for instance, would follow directly from
a proof of continuity/measurability of the first Chern character (in case of the

spectral flow) with respect to the index bundle topology.

The most important open problem, however, is probably the case of Fourier
Integral Operators on manifolds with boundary. While non-compact manifolds can
easily be incorporated by assuming that the kernel representation as a series of os-
cillatory integrals is locally finite and by adding a condition that makes the series of
local contributions to the (-function summable, considering manifolds with bound-
ary is a far more complicated problem. Nevertheless, such further development will

be left to future work.
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APPENDIX A
Probability in certain algebras of Fourier Integral

Operators

Since we have seen that our integration theory allows us to consider random
manifolds, it would be an interesting question whether or not it also permits theo-
rems of classical stochastics, e.g. the central limit theorem. Hence, in this appendix,
we will consider theorems from classical probability. From now on let A be an al-
gebra of Fourier Integral Operators such that the integral on Li(u;.A) takes values
in A (e.g. an algebra associated with a Hérmander space DT.) and p a probability
measure (though some of the theorems work for finite measures or more general
measures as well; mutatis mutandis). We will also continue to use the letter E if
we do not use the algebra structure of A (so that, later on, we can easily consider
subspaces of algebras which are not an algebra themselves). Furthermore, we will

make no distinction between A and the corresponding space of kernels D’y .

Recall that we assume that composition in the algebra is continuous, i.e.
Viel 3r, el JceRyy YA, BeA: p,(AoB) <cp.(A)pr(B).

The minimal constant ¢ is also denoted by ||, ,. ,. Similarly, we assume that the

involution in a *-algebra is continuous. Furthermore, recall Holder’s inequality.

THEOREM 9.11 (HOLDER’S INEQUALITY). Let A; € Ly, (u; A) for i € N, and

Z’ﬂ 1 _%. Then7 AloAQO...OAnELT(N;A) and

i=1 p; ~

. n (A
Viel 3kel™ JceRy;: plr(A) (AlOAQO...OAn)SCHpifj(H )(Aj).

260
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OBSERVATION A.1. Let E be a subspace of a *-algebra which is invariant with

respect to the involution and A € L,(u; E). Then, A* € L,(¢; E) and

Adp = (/ Adu)
Q Q

for p=1. Furthermore, if Ae SL,(11; E), then A* e SL,(11; E).

PROOF. Since A 3 a~ a* € A is continuous, we obtain A* € L,(u; E) directly

from
Viel3kel: poA*<|Asara”eA|, psoAeLy(p).

A* € SL,(1; E) follows from taking the adjoints of each of the simple functions

approximating A € SL,(u; E). Finally,

<(/9Adu)*%¢> (i [ Aduo)

:/QW,AU))du

= / (A%, ¥)dp
Q

=</§2A*du<p,¢>

implies [, A*dp = ([, Adu)yc for the Pettis integral. For the Bochner/Lebesgue
integral it follows directly from the Pettis case (or applying Hille’s theorem directly

to the linear operator A — A*).

O

Let us now define and study the most important property of classical proba-

bility; the notion of independence.

DEFINITION A.2. Let Ae M(u; E) and B(E) the Borel o-algebra on E. Then,

we define the distribution pa of A with respect to i to be the measure

VS e B(E): pa(S) = p([S]A).
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We say that a family (Ax)eex € EX is independent if and only if for every finite

set k Canite K and every B € B(E)k

o(NBA) - T e

rek rek

holds, i.e. the joint distribution ug, ., 4, satisfies

A.= X a4,
e Ax = X

LEMMA A.3. Let Ay,..., A, € M(; E) be independent, k,m € N, k <n, and
f: E¥ - E™ Borel-measurable. Then, g := fo (A1,...,Ar), Ags1,..., A, are

independent.

ProOOF. Let S € E™ and Siy1,...,5, € E be Borel measurable sets. Then,

:M([[S]f x X Sj] (Al,...,An))

J=k+1

=u(([S11 (A, A0) T w([8;14;)

O

An important application of Lemma A.3 is that the operations in our alge-

bra/topological vector space preserve independence.

COROLLARY A.4. (i) Let A,B,C € M(u; E) be independent. Then, A
and B+ C are independent.

(ii) Let A, B,C € M(u;A) be independent. Then, A and BC are independent.

(i) Let A be a *-algebra and A, B € M(u;A) be independent. Then, A* and

B are independent.
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PROOF. Follows directly from Lemma A.3 and the fact that addition, compo-
sition, and involution are continuous.

O

At this point the notion of independence turns out to be completely classical.
Let us now consider the convolution since it is the main tool to study random

variables and their distributions.

DEFINITION A.5. Let p,v be Borel measures on E. Then, we define their

convolution

VS e B(E): (u*1)(S) ::/EN(S—:v)du(:v)

where S—x:={s-xeFE; seS}.

LEMMA A.6. Let A\, u,v be o-finite Borel measures on E. Then, the following
are true.
(i) p*rv=v+*pu.
(i) A (p+v)=A*p+A*v.
(iii) Let a: E? - E; (x,y) = x+vy. Then, p* v is the push-forward measure
of uwx v under «.
(iv) If f e SLi(p*v), then [, fduxv = [g, f(z+y)d(pxv)(z,y).
(v) Let X be translation invariant and u have a density p e SLi(\, E). Then,
p* v has the density h(z) = [, p(x —y)dv(y).
(vi) Let \ be translation invariant, u have a density p € SL1(\, E), and v have

a density g€ SL1(\, E). Then, pu* v has the density
h@) = [ o =)aire) = [ ae-npmiw.
PROOF. (i) For S € B(E), we obtain

jx v (S) = /E u(S - )dv(x)
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- /E /E Lsa (y)dn(y)dv(z)

_ /E /E Ls(w +y)dp(y)dv(z)

:/ 15($+y)d(ﬂxy)($uy)
E2

by Fubini’s theorem.

(ii) For § ¢ B(E), we obtain
Ae (a)(8) = [ (e (S -a)dra)
:/E;L(S—:z:)d)\(:z:)+/EV(S—:zz)d)\(:z:)
A pu(S) + A ().
(iii) For S € B(E), we obtain

Jx () = /E (o +y)d(e <) (2,0)

:/ lsoaduxv
E2

=/ Lisjadp x v
E2

=u x v([S]a).
(iv) Let f € SLy(pu* v). Then,
/Efdu*v=/E2foaduxw/Ezf(my)d(uxV)(:v,y)-
(v) For S € B(E), we obtain
pev(S) = [ [ 15t e nautyiny)
- [ [ st pp@irai
EJE
- / / 15(@)p(x - y)dA(2)dv(y)
EJE

i} / / (e —y)dv(y)Ls(z)dA(x)
EJE
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, / 15(2)h(z)dA(x)
E

(vi) Follows directly from (v).

LEMMA A.7. Let A,B e M(u; E) be independent. Then,
HA+B = HA * UB-
PROOF. Let a: E? - E; (z,y) = = +y. Then, we obtain for every S € B(E)

pas(8) = ([S](A+ B))
= ([S]ao (A® B))
~u(([Sla] A® B)
=paen ([S]a)

O s x g ([S]a)

Dpig + s (S)

where (#) uses the definition of independence and (}) is (iii) in Lemma A.6.

DEFINITION A.8. Let A€ Li(u; E). Then, we define the expected value E(A)

of A to be
E(A) := / Adp.
Q
Furthermore, we define the variance of A € La(u;A) to be

V(A) ::IE((A—E(A))2).
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Note, by Proposition 9.25, we obtain

VAe Li(i1;E): IE(A):/QAdu:/ExduA(x)

provided that the identity id € L(E) can be approximated by a net of simple

functions, i.e. id e SM (pua; E).

LEMMA A.9. Let A,B € Li(u;A) independent such that id € SLi(pa;A) N
SLi(up;A) and A? 5 (z,y) = xy € A is an element of SLi(ua x pp;A). Then,

AB € Li(u; A) and

E(AB) = E(A)E(B).

PROOF.
IE(A)E(B):/ Adu/ Bdu
Q Q
= / zdpa / ydup
A A
=/A2 ryd(pa x pg)(w,y)
=/ ryd(paen)(z,y)
A2
:/ ABdpu
Q
-E(AB)
O

EXAMPLE Let f be a measurable family of m-forms, g a measurable family of

n-form, and f, g independent. Then, we obtain

E(f/\g) (Ulu"'avm+n)

=E((frg)(v1,. ., Umen))

1
=K (— Z sgn(a)f (va(l)v s 7va(m)) g (va(m+l)7 s 7va(m+n)))

In!
man: oeSym(m+n)
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= Z sgn(o)E (f) (Ua’(l)u e 7Ucr(m)) E (g) (Ua'(erl)u e 7Ucr(m+n))

|
* oeSym(m+n)

=(E()AE(9)) (V15 0men)

where Sym denotes the symmetric group and sgn(o) is the sign of the permutation
0. Here we used that the functions f (Ug(l), ... ,vg(m)) and g (vg(m+1), - ,Ug(mm))
are K € {R,C} valued and that (2, X, u;K) is a Sombrero space, as well as conti-

nuity of point-evaluation.

OBSERVATION A.10. Let A,B € La(u; A) and a,be A. Then, the following are

true.
(i) V(A4)=E(4%) -E(4)?
(ii) V(aA+b) =V (aA)

(iii) Let A:= A-E(A) and B:= B-E(B). Then,
V(A+B)=V(A)+V(B)+E(AB + BA)
(iv) If A, B are uncorrelated, that is,
E(AB) + E(BA) = E(A)E(B) + E(B)E(A),
then V(A + B) = V(A) + V(B).
PROOF. (i)

V(4) =E ((4-E(4))°)
“E (A2 - AE(A) - E(A)A +E(A)?)
“E(A%) - E(AE(A)) - E(E(A)A) + E(E(A)?)

=E(A?) -E(A)2.
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(i)
V(aA +b)
=E ((aA +b)?) -E(ad +b)*
=E (aAaA) + E(aAb) + E(baA) + b* — (aE(A) +b)?
=E ((aA)?) + aE(A)b + baE(A) +b* - (E(ad)® + aE(A)b + baE(A) + b*)
=E ((ad4)?) - E(ad)?
=V (aA)
(iif)
V(A+B)
=E (A®>+ AB+ BA+ B*) - (E(A)> +E(A)E(B) +E(B)E(A) + E(B)?)
=V(A) +V(B) +E (AB + BA-E(A)E(B) - E(B)E(A))
=V(A) +V(B) +E (AB -E(A)E(B) + BA-E(B)E(A))
=V(A) +V(B) +E (AB - E(A)E(B) - E(A)E(B) + E(A)E(B))
+E (BA-E(B)E(A) -E(B)E(A) + E(B)E(A))
=V(A) +V(B) +E (AB -E(A)B - AE(B) + E(A)E(B))
+E (BA-E(B)A- BE(A) +E(B)E(A))
=V(A) +V(B) +E ((A-E(A))(B-E(B)) + (B -E(B))(A-E(4)))
(iv)
V(A+B)
=E (A* + AB+ BA + B*) - (E(A)* +E(A)E(B) + E(B)E(A) + E(B)?)

~V(A) +V(B) +E (AB + BA-E(A)E(B) - E(B)E(A))
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=V(A)+V(B)+E(A)E(B) +E(B)E(A) -E(A)E(B) -E(B)E(A)

~V(A) +V(B)

DEFINITION A.11. Let A be a *-algebra and A € Ly(u; A). Then, we define the

symmetric variance of A to be
Vim(4) =E((A-E(A4)) (A" -E(A4"))).

OBSERVATION A.12. Let A,B € La(u; A) and a,be A. Then, the following are

true.
(i) Vym(A) =E(AA") -E(A)E(A")

(iii) Let A== A-E(A) and B = B-E(B). Then,

Vigm(A+B) =V (A) + Vi, (B) +E (AB* + BAY)

sym
(iv) If A, B are skew-uncorrelated, that is,
E(AB*)+E(BA*) =E(A)E(B*) + E(B)E(A™),

then V. (A+ B) =V, .(A) +V, .(B).

PROOF. (i)
Vom(4) =E ((A-E(A)) (A" -E(47)))
=E (AA" - AE(A") -E(A)A" + E(A)E(A"))
=E(AA") -E(AE(A")) -E(E(A)A") + E(E(A)E(A™))

“E(AA*) - E(A)E(A").
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(i)
Vo (aA+b)
=E ((aA +b)(aA+b)*) - E(aA + b)E((ad +b)*)
-E (aAA*a") + E(aAb™) + E(bA*a*) + bb* — (aE(A) + b)(E(A*)a* +b*)
=E ((aA)(aA)*) + aE(A)b* + bE(A*)a* + bb*
— (E(aA)E((aA)*) + aE(A)b* + bE(A*)a* + bb*)
=E ((a4)(ad)”) -E(aA)E((aA)")
=Veym(aA)
(iii)
Voym(A+ B)
-E (AA* + AB* + BA* + BB")
— (E(A)E(A*) + E(A)E(B*) + E(B)E(A*) + E(B)E(B"))
-V, m(A) + V0 (B) + E (AB* + BA* ~E(A)E(B*) - E(B)E(A"))
“V,m(A) + Vi, (B) + E (AB* ~E(A)E(B*) + BA* ~E(B)E(A"))
=V, m(A) + V. (B) + E (AB* —~E(A)E(B*) ~E(A)E(B*) + E(A)E(B*))
+E (BA* -E(B)E(A*) - E(B)E(A") + E(B)E(A"))
~V, m(A) + V. (B) + E (AB* —E(A)B* - AE(B*) + E(A)E(B"))

+E (BA* - E(B)A* - BE(A*) + E(B)E(AY))

“Voym (A) + Vi (B) + E ((A-E(A))(B” - E(B")) + (B-E(B))(A" -E(47)))
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=Vom(A) +V,

~ Vsym

(B)+E (AB* + BA* ~E(A)E(B") - E(B)E(A"))

=Veym(A) + Vo (B) + E(AB*) + E (BA") -E(A)E(B") - E(B)E(A")

=Vom(A) +V,

~ Vsym

B)

sym (

DEFINITION A.13. Let A,B € La(u; A). Then, we define the covariance

E((A-E(A4))(B-E(B)))+E ((B-E(B))(A-E(4)))
2
_E(AB) + E(BA) - E(A)E(B) - E(B)E(A)
5 .

cov(A, B) :=

A and B are called uncorrelated if and only if cov(A, B) = 0.

If A is a *-algebra, then we also define the symmetric covariance

E((A-E(A))(B*-E(B")))+E((B-E(B))(A"-E(4)))
2

_E(AB*) + E(BA*) -E(A)E(B*) - E(B)E(A*)

N 2

coveym (A4, B) :=

and A and B are called skew-uncorrelated if and only if coveym (A, B) = 0.

REMARK Note that there are other approaches to the covariance on a topological
vector space E (cf. e.g. Definition 2.2.7 in [5]). Let p be a probability Borel
measure on (E,0(E,E")) (c(E,E") is the weak topology in F, i.e. the coarsest
topology such that all linear functionals in the topological dual E’ are continuous)
such that E’ ¢ Ly(p). Then, the mean of u is defined as an element a, of (E')*

(the algebraic dual of E’) via

VB a,()= [ f@yinte)

Furthermore, we define the covariance operator R,, by

Rot B = ()5 1= (07 [ (@)= )a@) - (o) du )
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and the covariance of y is the corresponding quadratic form on E’, i.e.

Cu: (E')? =~ K; (f,g)H[E(f(x)—au(f))(g(x)—au(g))*du-

However, this means that we will have to work with the distribution of a random
operator rather than the operators themselves. In particular, the assumptions
needed to define these operators are much more technically involved (for instance,
how will one check that E’ ¢ La(114) holds for some A € Li(u; E)?). Hence, we are
using the notion of covariances which can be defined in algebras rather than the

one coming from topological vector spaces.

With those definitions, we can also write
V(Al + AQ) :V(Al) + V(AQ) + 2COV(141,142)7

Vsym(Al + Ag) :Vsym(Al) + Vsym(Ag) + 2COVsym(A1, Ag)

1

Since the covariances are bi-linear”, we obtain by induction

n—-1

2 n-1
V(sym) (Z; Az) :V(sym) ( Z; Az) + V(Syl’n) (An) + 2COV(Sym) ( Z; A'L; An)
n-1
- ; Vigym) (Ai) +2 37 cov(gym) (Ai, A7) + V(o (A)

i<j<n

n-1
+2 Z COV(sym) (Al7 An)
i=1

;V(sym) (AZ) +2 ZCOV(Sym) (Ai’ A])

i<j

= Z COV(sym) (Al7 AJ)

ig=1
where we used V(Sym)(A) = COV(sym)(A, A). We also observe that independent

variables are uncorrelated and skew-uncorrelated (whenever that makes sense).

IFor covesym we need to assume (A+ B)* = A* + B* to show linearity; in general, for densely
defined A+ B (A and B are operators between Hilbert spaces) we only have A* + B* ¢ (A + B)*

- similarly, A*B* ¢ (BA)* - with equality if at least one of A and B are bounded.
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So far, we have seen that many of the numerical characteristics of real proba-
bility theory still exist, though the assumptions on many theorems might be more
restrictive. However, it is still sufficiently nice for us to have a look at some more

interesting theorems.

PROPOSITION A.14. Let E be metrizable and (A,), . € M(u; E)Y indepen-

dent. Then,

Ay = 0 p-almost everywhere <> VYiel Yk eN: Z M([Rz%] (p.o An)) < o0,

neN
PROOF. The set g = {we Q; A,(w) - 0} is measurable (for every choice of

representatives) because

QO:{wEQ; VieIVkeNdIneN VmeN,, : pL(Am(w))S%}

NNU N {wet n@n@) =)

keN neN meN,

which is measurable because I is countable. Hence, Borel-Cantelli? yields

VeeIVkeN: Y pu([R,

1
%
neN

](pLoAn)) <00

neN meN

< Vel VkeN: N(ﬂ U {weQ; pL(Am(w))zé}):O

zn

w(uu N U {wen pL(Am(w»z%})w

el keN neN meN,

n

w(rm U N {wen pL(Am(w>><%})=1

el keN neN meN,

2¢f. Theorem 18.9 in [65]

THEOREM (BOREL-CANTELLI). Let (2,3, ) be a probability space and (S;)jen € >N, Then,

D u(Sj) <o = M(ﬂ U Sj)=0-

jeN keN jeN, .

If the sets Sj are pairwise independent, i.e. Vj, ke N: pu(S;nSy) =u(S;)n(Sk), then

> u(Sj) =00 = ,u(ﬂ U Sj)—l.
jeN keN jeN, .
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< 1 () =1

O

REMARK The proof shows that the set Qg might not be measurable if E is not
metrizable. Even if it were, as it would be the case choosing the A; €e SM(u; E),

then the union of uncountably many null sets need not be a null set anymore.

THEOREM A.15 (Hajek-Rényi). Let A be a *-algebra of densely defined linear
operators on a Hilbert space H, and Ay, ..., A, € SLy(u; A) independent. Further-
more, let Ty 219> ... 21rp € Ry, e Ry, D:=NiL; D(AY), and

VieN_,: S Z (Ax ~E(Ap))
k=1

such that the S; and A; are uncorrelated and skew-uncorrelated. For ¢ € D and

meN_,, let

Q:

{weQ max |Si(w) @l 5 2 }

N(Q)ga—t(riiE(H -E(4)e|,) + J_glrilﬁ(<A;*—E(A§>>so||2))-
PROOF. Let
Q= {w e rifSiw) el 2e)
and

Q\UQ

j=m
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Then, we have Q = Uj_,, w; (IJ denotes the disjoint union) and w; < ;. Let

7 = Z}l:m(rf- - 7"J2-+1)Sj5’;-r with 7,41 = 0. Then,

= _Zn: i(?"? _T12+1)V5ym(Aj) + i ZZ: (Tzz _Ti2+l)Vsym(Aj)

7=1 1=m j=m+1

:,r,?n Z Vsym Z Z Hl sym (AJ)

j=1 j=m+1i=j
:T72n Z Vsym(Aj) + Z 2%’sym(fl )
j=1 j=m+1

implies

E(Zp,0)u =(E(Z)p,0)n

n

22 S (Vom Ao ), + > 72 (Vem(A)er ),

j=1 j=m+1

=2 SE ((A; ~ E(A)) (4] ~E(49))) 0.)

- (B (4 B ~EA)) e.0),,

0, 0) o

=2 S E (A -BA)eh) + Y (A -El))el).

j=1 Jj=m+1

On the other hand, we obtain, since (Z¢, ¢}y is non-negative,
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z ()
2 (9),

ie.

u(@)si(rfniE(HA ~E(;)el;) ilrixa(m;—mm;»sou@)-

g=1 Jj=m+

COROLLARY A.16 (Kolmogorov). Let A be a *-algebra of densely defined linear
operators on a Hilbert space H, Ay,..., A, € SLa(p; A) independent, € € Ry,

D=y D(AL),

V’L'ENS". Z Ak— Ak))

k=1

such that the S; and A; are uncorrelated and skew-uncorrelated, and ¢ € D. Then,

< LS E(105 B,

j=1

({0 maxfsico) el <)) <

COROLLARY A.17 (Chebyshev). Let A be a *-algebra of densely defined linear

operators on a Hilbert space H, A€ SLy(u;A), € € Ry, and ¢ € D(A*). Then,
* * 1 * * 2
p{w e (AW -E(A))ely 2 2} < E (104" - E(A))ely).
We may also state the Hajek-Reényi inequality for closed linear relations.

THEOREM A.18 (Hajek-Rényi for relations). Let A be a *-algebra of closed
linear relations in a Hilbert space H, and Ay,...,A, € SLy(u; A) independent.
Furthermore, let r1 > 1 > ... 21, € Ry, e € Ry, D =N D(A, 0 AY), ¢ €

D, and x;j,vij, Vi; € H such that (¢,x;) € A7, (xj,%ij) € Ai, (Exj,Vi5) € A,
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h 7 . R oV}
(xj,vij) € EA;, and (Ex;,¥;;) € EA; for every j € N.,,. Let 7 :== ¥7_; xi — Exi,

=Y Zizl Yik = Wik — i + Vg, and
VieNg, : S Z (Ax - E(Ay))
such that the S; and A; are uncorrelated and skew-uncorrelated, i.e.

j ~ A
Eo; = ZE (wii =Wy —ii + \I’u‘) .

i=1
> 5} .
H

p(©) < L (r?n SE (o -Exs15) + > 1E (I —EXa‘liz))-

j=1 j=m+1

For meN let

<n’

Q0= {weﬂ maxrl

Z -Ex;

Then,

and

Then, we have ) = Wj=m wj (U denotes the disjoint union) and w; € €2;. Further-

more, let r,,1 := 0. Then,

2 B (I -Exsly )+ Y rE( *_EXJ||2)
j=1 j=m+1
ZlE(%J 3= i+ Vi5.0)
=

+ 00 By - Uy -+ g5, 0)

:< iE(w” —iﬁjﬁ‘i’ja‘)aw)

H

+<_ > 1’”32‘]E(1/fja‘ - W5 = by +¢’jj),s0>
Jj=m+

H
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:< ZE(Q/]]J _Q/A’jj""i’jj)ﬂ")
j=1 H
( >0 2 —rhE (g — Wy =y + 0y5), %0>
j=m+1li=j H
=< S S - rR)E (55— Uy - gy + 0y5) #7)
i=m j=1 H

+<Z > (Tf—rf+1)E(1/fjj—‘I’ja‘—@jj“@jj),%ﬁ)
H

i=m j=m+1

=<Z (rf =171) Z;E (55 = W =ty + ‘i’jj)a@>
i=m j=

H
=K ( S =ria) 2 (Wi = U5 =+ Ty5) 7<P>
=m j=1 H
= 2 =rh) YE (- Wy =1y + U5, 0)
i=m j=1
= Z Z (rg2 Tj+1 )E <Ui7 @)H
i=m j=m \—-:6—-—#

>3 2 (5 =3Bl o1, 0)

1=mj k=11=1
- Z Z (TJQ _TJQ'H) Z ZE(I (Xt —Exr,xi ~Ex1) )
i=m j=m k=11=1
n n i 2
PR (1% > xi-Ex. )
i=m j=m k=1 o
n n i 2
ST —@H)E(lwi ey )
i=m j=i = "
2 Z _Z(Tj _Tj+1)r_2,u(wi)
=m j=t i
= Z &2 p(wi)
=1 (Q)
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PROPOSITION A.19 (Weak Law of Large Numbers; Strong Operator Topology).
Let A be a *-algebra of densely defined operators in a Hilbert space H, (An)nen €

SLa(p; AN skew-uncorrelated, D = Nyey D(AL),
VneN: S, := Z(Ak_ (Ap)),
peD, and 75 ¥y (Vo (A))p, @), = 0. Then,
p{wels [Su(w) ey 2e}) =0 (n— o).
PRrROOF. Chebyshev’s inequality yields

i ({w €D [Sn(@) el 22} = ({w D5 [(Sn(@)" ~E(S3))¢ly 2 })
SE (1S5 -ES)¢l)

e (Isi0l%)

n252 (i E(Ap)e )
k=1 H
- ((Z B X (47 - B )
P =t .
:n2152 kzzzl( sym (Ak)@ ‘/’)
=0.

d

Note that the strong operator topology refers to convergence of S, i.e. S
converges to zero in measure with respect to the strong operator topology. With
the following lemma we can also formulate the strong law of large numbers in the

strong operator topology.

LEMMA A.20. Let (Ap)nen € EN and (tn)nen € Ry such that t, ~ 0 and

Yonen tndn is Cauchy. Then, t, Y51 Ax — 0.
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PROOF. For n €Ny, let By, = T, tpAg. Then, A, = £22Ea=t and

Bkl

n n
tn 3 A Z
k=1 k=1

=B, sz 1_+,€Z;Bk

n—1 t t
“B.- Y By ( ”) .
Z thr1 Tk
Let ¢ €I and € € R,,. Then, there exists ng € N such that for all m,n e NZM

p(Bm — Bp) <e

holds. Hence,

( Z Bk(ﬁkﬂ ;))

:pL(Bn-nZl(Bk (7 i—Z)‘nle"( » —%))

k=1 k=1 k1
n—1 tn tn n—1 tn tn
=p, | Bn 1—2 - — —z(Bk—Bn) - —
k=1 t/ﬁ—l tk k=1 tk+1 tk
tn no-1 tn tn n—1 t’n,
(Bt = S (B- B (- )= ¥ BB (2= )
t1 k=1 tr+1 123 k=no tr+1 123
no— 1 t
p(B)E+ Y pBe= B (== 1)+ S (Bi- B (- 3)
tr o i+l k=no et th
tn mo71 1 1 ol 1
DB, S pL(Bk—Bn)(———)+atn > ( -—)
tl k=1 tk+1 tk k=ng t/ﬁ—l tk
tn moz1 1 tn
<p(Bp)— +1tn Z (po(Bi = Bny) +0(Bng — Bn))|— - — | +e|1- —
t1 P} tk 1tk tno
<2maXkgn, pL(Bk—BnO) —

—e (n—o0)

-0 (n—o0)

holds. Furthermore,

AN eN Vm,neN,y: pL(thAj)<a

Jj=m

implies



A. PROBABILITY IN CERTAIN ALGEBRAS OF FOURIER INTEGRAL OPERATORS 281

tn n
St_ (PL (BN) +p. ( > fjAj))
1 j=N+1

<G (By) +2)
1

-0 (n—> oo),

i.e.

hmpb(t ZA;C)—hmpb( sz( ;))@.

n-voo thel

THEOREM A.21 (Strong Law of Large Numbers; Strong Operator Topology).
Let A be a *-algebra of densely defined operators in a Hilbert space H, (An)nen €

SLo(u; AN independent, D := Npey D(AL), Then VS%(ZA") Cauchy, ¢ € D, and

3

VneN: S, := E > (Ap -E(Az))
M g=1

such that the S,, and A,, are uncorrelated and skew-uncorrelated. Then,

HS;;SOHH — 0 p-almost everywhere (n — o0).

. \'A An) . .
PROOF. Since Y, n % is Cauchy, we obtain

Z sym (Ag) — 0.

Thus, for € € R,,

u({wéﬂ; sup |Si(w) el g 25})

:Iu({weQ; lim max HSi(w)*gaHHza})

m<a<

n—oo

= lim u({w € max [Si(w) ely 2 5})

m o E(](A: -EAD)e|
7 LE (1045 -l ) + 2 (1 ~Eael,)

Jj=m+1 J

1
< lim —2 —
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D

jeN,,, J

holds? and implies

lim N({w €Q; sup [Si(w) ey > 8}) =0.
m=eo éeN

zm

Hence,
0= lim p ({w €Q; sup [Si(w) |y > a})
m—oo €N,
= lim u( U {wed [Si(w) ey 2 6})
m=ee \ieN,,,
=u( N U {we® [Si(w)ely 2 8})
meN ieN,
=p ({w € Q; ||Si(w)*¢| g > ¢ infinitely often})
implies

p({weQ; [Si(w) ¢l 4 < e at most finitely often}) =1,

e. (IS5l i),y converges to zero p-almost everywhere.

O

ExXaAMPLE Since L spaces over separable measure spaces are separable, the gener-

alized Sombrero Lemma 9.8 yields that (Q,%, u; L) is a Sombrero space for every

Radon measure space (2,%, 1) and every algebra of Fourier Integral Operators

associated with a canonically idempotent canonical relation has the strong law of

large numbers with respect to the strong operator topology in a separable L.

3Recall that measures are continuous from below, i.e. (S;) ey € =N with Sj ~:5 € ¥ implies

1(S) =limp oo £(S;); cf. Theorem 4.4 in [65]. Similarly, all measures are continuous from above.
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If we want a to obtain a weaker formulation of the law of large numbers,
then we will need the following weaker Hajek-Rényi inequality which is simply the

Hajek-Rényi inequality for real random variables.

THEOREM A.22 (Hajek-Rényi; classical). Let Ai,..., A, € La(p;A) indepen-

dent, 12122 ...21r e R, e e R, and

ViENSn. Z Ak— Ak))

For ¢ € L(A,K) with Ke{R,C} and meN_,, let

Q= {w € Q; max r; o (Si(w))| 2 5}'

Then,
(Q)<_( Z sym SDOAj)-‘_‘ZlT‘_?Vsym(SDOAJ‘))'
= Jj=m+

In particular, if ¢ is a character,* then we obtain

7=1 Jj=m+1
PROOF.
M(Q)<_( Z Vegm (9o Aj)+ > TJZVsym(SDOAj))-
7=1 Jj=m+1

is simply the Hajek-Rényi inequality over K (the statement follows from the Hajek-
Rényi inequality above with A = K and noting that the o A; € Lo(p) = SLa(p)

are independent, thus, (skew-)uncorrelated). If ¢ is a character, then
Vym(poA) =E ((po A) (po A)") = (E(po A)) (E (po A))"

=E (9o (AA7)) - ¢ (EA) 9 (EA)”

4@ € L(A,K) is called a character if and only if ¢ is a homomorphism, i.e. VA, B € A :

©(AB) = p(A)p(B) A o(A*) =p(A)".
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=p(E(AA")) - ¢ (EAEAY)
=0(Viym(4))

shows the assertion.

(I
COROLLARY A.23 (Kolmogorov; classical). Let Ay,..., Ay € La(u; A) indepen-
dent, e e R ),
VieN,, : Z (Ay -
k=1

and ¢ € L(A,K) with K € {R,C}. Then,
1
{{ere s maxle (S@N12 e}) € 5 3 Vo (o0 1),

In particular, if ¢ is a character, then we obtain

u({wGQ; I%a}LXIw(Si(w))IZE}) %zj: (Vo (47))

COROLLARY A.24 (Chebyshev; classical). Let A € La(p;A), € e Ry, and ¢ €

L(A,K) with K € {R,C}. Then,
i ({w e [p(Aw) ~E(A))|>e}) < =V, (90 A).

In particular, if ¢ is a character, then we obtain

p{w e Jo(A(w) ~E(A))[2e}) <

w|’_'

# (Vgm (4)).

COROLLARY A.25 (Strong Law of Large Numbers; weak topology). Let ¢ €

L(A5K) wlth K € {R,C}, (An)nEN € LQ(IUHA)N

independent,

VneN: S’n::lZ(Ak—E Ay
k=1
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A% oA,
Y neN % Cauchy. Then,
po S, =0 u-almost everywhere (n — o0).
Considering convergent sums + Y.7_; Ay, we obtain the notion of tail events.
n k=1

DEFINITION A.26. Let (Ap)nen € M(p; E)N. S € X is called a tail event if and
only if Seo ((An)nesz) for all m e N where o ((An)nesz) denotes the o-algebra

generated by Unen,, {[S']An; S" € B(E)}.

REMARK Note that S € o ((An)nesz) and (A )neny independent imply indepen-
dence of S and o(Ay,...,Am-1). S being independent of (A1,...,A,) foralln e N

implies, thus, independence of S and o ((Ay)nen)-

PROPOSITION A.27 (Kolmogorov’s 0-1-Law). Let (Ap)nen € M (u; E)N be in-

dependent and S € ¥ a tail event. Then, u(S)€{0,1}.

PROOF. Since S €o ((An)nesz) for all m € N, we obtain that S is independent
of all 0(A44,...,A,), i.e. independent of o ((Ap)nen). However, S € o ((An)nen)-

Hence, S is independent of itself, that is,
p(S) = p(SnS) = p(S)Hu(S)

which implies p(.S) € {0,1}.

PROPOSITION A.28. Let (A )ney € M(u; E)N be independent and identically
distributed, B € M(u; E), and %22:1 Ay = B p-almost everywhere. Then, Vn €

N: A,eLi(i;E) and Be L1(1; E).
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If (A)nen € M(u; ENN furthermore satisfies the weak law of large numbers
in B, ie. Y0 (Ax=E(Ag)) = 0 in measure, and id € L(E) nSM(pa,; E) for

every n €N, then Vne N: B=E(A,) p-almost everywhere.

PROOF. Let

and, for 1€ I and k,neN,

Qk,n,L = {W € Q; D (Ak(w)) 2 TL} .

Then, Vk,m,neN Viel:

p (k) = ([[Rzn]pb] Ar) = pa, ([Rzn]pb) = HA, ([Rzn]pb) =1 (Qmn,) -

Hence, %An =S, - ”T’lSn,l — 0 p-almost everywhere implies that the set

{weQ; 3 eNY VEeN: ji <juet A WGij,jk,L}

must have probability zero, i.e.

0.

S—
Il

p ( N U Qo

keN neN,

Thus, by Borel-Cantelli,

VkEeN Vyel: Z w(Qn,.) = Z () < oo
neN neN

However, for real random variables X the inequality

%u([Rzn] [ X]) <E(X]) <1+ %u([Rzn] 1 XT)
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holds,® which implies

VkeNViel: E(p,oAg)<1l+ Z/L(Qk,n,L)<°°,
neN

i.e. Ag e Li(p; E). Furthermore,

o1&
E(p,oB) < lim — ZE(pboAk)Sgg@]E(pboAk)SH > 1 ( Q) < 00

oo Mo neN
shows B € L1(u; F).
Note that (A )neny € M (p; E)Y being identically distributed means Vk,n e N :

1A, = pa, which implies

Vk,neN: E(Ax) :/ xdpa, :/ xdpgy, =E(A,)
E E
provided that the A,, are integrable.

5Proor. Without loss of generality, let X > 0. Then, we obtain Q = UneNO An with Ay, =

[[n,mn+1)] X, and EX = Tnen, Sa, Xdp implies

> onu(An) <EX < Y (n+Du(An) =1+ > nu(An).

TLENO neNO neNO

Let By := [Ry, ] X. Then, Ay, = By \ Bpi1 and VN €N :

N N N N N
> nu(An) = Zl np(Bn) = Y np(Bni1) = Y npu(Bn) = Y (n=1)pu(Bn) - Nu(By+1)

n=1 n=1 n=1 n=1

3
I

2

=2 #(Bn) = Nu(Bn+1)

n

IfEX < oo, then p (mmN0 Bn) =0, ie.

OSNM(B]\ul)S/ Xdpu -0
BN+

implies ZneNO np(An) = ¥ heny #(Bn), that is, the assertion. If EX = oo, then ZneNO np(An) = oo

implies Z,ﬁl 1(Br) and, hence, the assertion.
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If % Y1 (Ax —E(Ag)) — 0 in measure, then

B-E(4)=B- 1 > E(4,)

k=1

1 n
=B- =Y E(4)

Ly

1 n 1 n
=B-=Y Ap+— > (A -E(4Ap))

T k=1 k=1

-0 p-a.e. —0 in measure

-0 in measure.

In other words, B=E(A4,).

Finally, we will define characteristic functions. These will lead directly to a

central limit theorem.

DEFINITION A.29. Let A e M(u; E). Then, we call

charg: L(E,R) > C; t— E (expo(it)o A)

the characteristic function of A.

COROLLARY A.30. Let Ae M(u; E). Then, the following are true.
(i) chara(0)=1
(ii) Vte L(E,R): chary(-t) = chars(¢)*

(iii) |chara(t)] <1

REMARK Note that for algebras A the functions ¢; = Rtr(T), t2 = Rtr(T™),
ts =Jtr(T-), and t4 = Jtr(T™*-) for smoothing T are interesting. For non-smoothing

T we may also think of choosing a different trace function tr.
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OBSERVATION A.31. Let A,B € M(u; E) be independent. Then,

Vte L(E,R): chara,p(t) = chara(t) charpg(t).

PrOOF.

chara, p(t) =E (exp (it o (A + B)))

= (exp (it o A+ it o B))

= (exp (it o A) exp (it o B))

= (exp (it o A)) E (exp (it o B))

=char 4 (t) charg(t)

DEFINITION A.32. Ae M (w; E) is called Gaussian if and only if

Vie L(E,R)~ {0} : to A is normally distributed.

A is called degenerate Gaussian if and only if there exists a subspace F' ¢ E such

that F # {0}, A takes p-almost every value in F, and A € M(u; F) is Gaussian.

Thus, for A € Ly(u; F) Gaussian, we obtain E(to A) = ¢(E(A)) in the Pettis

sense and, using « € R and

a? o
E (exp (tat o A)) =exp (iaIE(t 0A) - M)
=exp (iatIEA - W) )

the following statement (note that V(to A) = R, (¢)(¢) in the general covariance

of topological vector spaces sense).

LEMMA A.33. Let A€ L1(u; E). Then, the following are equivalent.

(i) A is Gaussian.
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(11) Vitq,ts € L(E,R) VaeR:

E (exp (¢(aty +t2) 0 A)) = exp (i(atl +15)EA - V((aty +t2)0 A) ) '

2

(iii) Vte L(E,R): E (exp (ito A)) = exp (itEA - HgA )

REMARK More generally, we can define a measure p on E to be Gaussian if and
only if for every f € E’ the push-forward iy is Gaussian. We can furthermore define

the characteristic function of a measure to be

char(y1) = ( L(E,R) > f > /Eexp(z'f(a:))du(x) ¢ c).

In that setting, it can be shown that a measure p on a locally convex space E is
Gaussian if and only if there exists L € L(L(F,R),R) and a symmetric bilinear

form B on L(E,R) such that f — B(f, f) is non-negative and
) 1
char(u)(f) = exp (iL(f) = 3B

cf. e.g. Theorem 2.2.4 in [5]. In fact, L(f) = [, fdp and B(f,g) = [(f-L(f))(g-

L(g))du, that is, in the case of a random variable A, we have L(f) =E(fo A) and

B(f,g)=cov(foA,goA),ie B(f,f)=V(foA)and L=E(A) in the Pettis sense.

It follows directly ([5] Corollary 2.2.6) that the product py x s of Gaussian

measures and the convolution p; * po are Gaussian, as well.
u

With that prelude, we can state a central limit theorem which follows directly from

Lindeberg’s central limit theorem for real random variables.

THEOREM A.34 (Central Limit Theorem). Let (Ag)gen € Lao(p; E)Y be inde-

pendent with Yk € N : EAg = 0 such that A = Yy Ar converges in Lo(u; E).
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Furthermore, let Vk e N: V(toAg) >0, s, 1=/ 25 V(to Ag) > s€ R,y (n— o0),
and let the Lindeberg condition

n

1
VeeR,,: lim — Z/ x2dutoAj (x)=0
{zeR; |z|[>esn}

n=eo s i

hold for every t e L(E,R) \ {0}. Then, A is Gaussian.

. . n A
PROOF. Since s, and Y'_; Ay are convergent, we obtain Z’“;—;’“ N %A (n — o0)
and, hence,

Melto/}(new),
S, s

Thus, Lindeberg’s Central Limit Theorem (cf. e.g. Theorem VIII.4.3 in [22])
implies that %t o A is Gaussian which directly implies the assertion.

O

The central limit theorem for independent and identically distributed is a lot
more involved. However, there are theorems in that direction like the following

lemma (Lemma 7.6.9 in [5]).

LEMMA A.35. Let pu be a probability Radon measure on E with mean zero and
the sequence (n)nen defined by p1 == p and Yn € N @ pi,41 = p* b, uniformly
tight, that is, Ve € R,g 3K Ccompact £ Vn e N: pp(ENK) <e. Then, py, converges

weakly to a Gaussian Radon measure.

The glaring problem, however, is that we do not know whether or not there
exists a random variable A satisfying pign 4, = pn = pra with (Ag)ken independent
and identically distributed such that (ux)gen is uniformly tight, that is, whether or
not the limit measure has a density; hence, raising the question whether the space

or algebra at hand has the Radon-Nikodym property.



APPENDIX B

The gap topology and generalized convergence

In this appendix, we want to recall a few facts about the gap-topology. We will

closely follow chapter IV in [44].

DEFINITION B.1. Let E be a Banach space and A, B € E (non-empty) closed
linear subspaces. Then, we define

0 , A={0}
§(A,B) =

sup{distg(u,B); ue AndBg} , A+{0}

and
5(A, B) = max{6(A, B),5(B,A)}.
§ is called the gap between A and B.

COROLLARY B.2. Let FE be a Banach space and A,B ¢ E (non-empty) closed
linear subspaces. Then, the following are true.
(i) 9(A,B)=0 < AcB
(i) 6(A,B)=0 < A=B
(iii) 6(A,B) =4(B,A)
(iv) 6(A,B) €[0,1]

(v) 6(A,B) €[0,1]

In other words, 4 is a semi-metric. Unfortunately, § does not satisfy the triangle

inequality (in general). However, if F is a Hilbert space, then Sisa metric; in fact,

292
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it is a metric that is nicer to work with than the metric we are about to define since

it satisfies

0(A,B) = pry-prp HL(H)

where pr, and prg are the orthogonal projections onto A and B respectively (cf.
footnote 1 p.198 in [44]). In order to obtain a metric in the general case, we will

use the following definition.

DEFINITION B.3. Let FE be a Banach space and A, B € E (non-empty) closed

linear subspaces. Then, we define

0 L A={0}

d(A,B) =9 , A#{0} A B={0}

sup{distg(u, BNn9BEg); ue AndBg} , A+{0} A B={0}

and

d(A, B) = max{d(A, B),d(B, A)}.

THEOREM B.4. Let E be a Banach space, A,B,C ¢ E (non-empty) closed

linear subspaces, and A*, B*, C* their annihilators, i.e.
At ={peE'; YaecA: p(a)=0}.

Then, the following are true.
(i) d(A,B)=0 < AcB
(i) d(A,B)=0 < A=B
(iii) d(A,B) =d(B,A)
(iv) d(A,B) €[0,2]

(v) d(A,B)€[0,2]
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(vi) d(A,C) <d(A,B) +d(B,C)
(vii) d(A,C) <d(A,B)+d(B,C)
(viii) §(A, B) <d(A,B) <26(A,B)
(ix) 8(A,B) <d(A,B) <26(A,B)
(x) 0(A,B) <1 = dimA<dimB
(xi) 6(A,B) <1 = dim A =dimB
(xii) 0(A, B) = 6(B*, A%)

(xiii) §(A, B) = (AL, BY)

PROOF. (i-v) are trivial.

“(vi)? If {0} € {A,B,C}, then the assertion is trivial. Hence, let {0} ¢

{A,B,C}. Then,

Vve BndBg: d(A,C) =sup{distg(u,CnIBg); ue An9Bg}

sup inf  distg(u,w)
ueAndBg weCNOBEg

IA

sup inf  (distg(u,v) +distg(v,w))
ueANdBg weCNOBE

= sup distg(u,v)+ inf distg(v,w)
E

ueANOBE weCNOB

< sup distg(u,v)+ sup inf  distg(v',w)
ueAnOBE v'eBNOBE weCNOBE

= sup distg(u,v)+d(B,C)
UEAOBBE

implies

d(A,C) < sup inf  distg(u,v)+d(B,C) =d(A,B) +d(B,C).

ueAndBg veBNOBE

“(vii)” Using Vao,y € R : |z| - |y| < |z + y| yields

d(A,C) =max{d(A,C),d(C,A)}
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<max{d(A, B) +d(B,C),d(C, B) + d(B, A)}
<max{d(A, B),d(B, A)} + max{d(B,C),d(C, B)}

=d(A,B) +d(B,C).

“(viii)” 6(A, B) < d(A, B) is trivial. For d(A, B) < 26(A, B) it suffices to
assume that B # {0}. Let ue An9dBg and ¢ € R,,. Then, there exists v e B\ {0}
such that distg(u,v) < distg(u, B) + €. Then, we obtain

v
- —

diStE(u,B al 8BE) <
lvl g

E

lvlg

<Nu-v|g+|v-
E

v
=l + 1ol 1| 2
S T

=lu-vlg+lvlg = lulgl

<fu-vlp+lv-ulg

<2distg(u, B) + 2¢.

Since ¢ was arbitrary, we obtain d(A, B) < 26(A4, B).

AL(iX)”

5(A, B) =max{6(A, B),d(B, A)} < max{d(A, B),d(B,A)} = d(A, B)

<max{20(A, B),26(B,A)} = 26(A, B).

“(x-x1)” Corollary IV §2.6 in [44]

“(xii-xiii)” Theorem IV §2.9 in [44]
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DEFINITION B.5. Let E be a Banach space. Then, we call
CLR(E):={AcE; Ais a (non-empty) closed linear space}
endowed with d the space of closed linear relation.

Convergence in CLR is called gap-convergence, §-convergence, or convergence

in the generalized sense.

Let F be another Banach space. Then, we will also write CLR(E,F) :=

CLR(E e F).

Furthermore, we will define the set of closed linear operators CLO(E,F) as

the set of all right-unique closed linear relations, i.e.
CLO(E,F):={AeCLR(E,F); V(z,y),(z,2) e A: y=2},
endowed with the topology induced by CLR(E, F).

REMARK As remarked in Remark IV §2.1 in [44], it can be shown that CLR(E)
is a complete metric space. However, for most applications, we are interested in
CLO(E, F) which, in general, is not complete. To see that, we may choose E = F'
and consider the sequence (nid),ey € L(E)YN. Then, we obtain Yz € EB: (n 'z, z) €

nid, i.e. {0} x E € lim,,_,. nid; but that is not a closed linear operator.

In fact, we can easily picture what is happening here.
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Just as the sequence of linear operators (z ~ n '),y converges to zero in d,
the sequence (z = nx)ney converges to the relation {0} x E because everything is

completely symmetrical.

Let us now state a few important theorems regarding CLO(E, F).

THEOREM B.6. Let T ¢ L(E,F) and S ¢ CLO(E,F) such that 6(S,T) <

V1+ITI gry- Then, S e L(E,F) and
(11713 .1 5(S.T)

1S =Tl pg,r) < > -
I=y/1+ HTHL(E,F)(S(Su T)

PROOF. Theorem IV §2.13 in [44].

THEOREM B.7. Let T e CLO(E, F) and A T-bounded with relative bound less

than 1, i.e. [F]T ¢ [F]A and
Vo [FIT: |Az|p <alzl, +b|Tal .
with b< 1. Then, S:=T + A e CLO(E, F) with
5(8,T) < (1-b)" Va2 +b2.
In particular, if A e L(E,F), then

3(8,T) < 1Al L&, Fy -

PROOF. Theorem IV §2.14 in [44].

THEOREM B.8. Let S,T € CLO(E,F) and A L(E,F). Then,

(S+AT+A)<2(1+|AlL (5 p)) 8(S,T).
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PRrROOF. Theorem IV §2.17 in [44].

(|
THEOREM B.9. Let S,T € CLO(E, F) be densely defined. Then,
5(S,T)=6(T",5)
and
5(8,T) =6(T*,8*).
PROOF. Theorem IV §2.18 in [44].
(]

THEOREM B.10. Let T € CLO(E, F). Then, the following are true.

(i) T is bounded in the sense Ic € R,y Vo € [F]T : |Tx|p < c|z| g if and
only if 6(T,0) < 1.

(i) Te L(E,F) < §(T,0)<1.

PROOF. Problem IV §2.19 in [44].

THEOREM B.11. Let S,T € CLO(E, F) be invertible. Then,

8(8,T)=6(S1, 771

and

5(S,T)=6(571,77Y).

PROOF. Problem IV §2.20 in [44].
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THEOREM B.12. Let S,T € CLO(E, F), T boundedly invertible, and

5(S=T) <1+ HT_lui(E,F)'

Then, S is boundedly invertible.

PRrROOF. Theorem IV §2.21 in [44].

THEOREM B.13. Let T e CLO(E, F) and (T),)nen € CLO(E, F)N.

(1)

(i)

(iii)

(iv)

Let T € L(E,F). Then, T,, > T in the generalized sense if and only if
INeNVneN,y: T, e L(E,F) and [Ty =T (g ) = 0.

Let T be invertible with T~' € L(F,E). Then, T,, - T in the generalized
sense if and only if IN e N Vn e N,y : T, is invertible with T,,* € L(F, E)

and HT,;l— 0.

-1
T ”L(F,E) -
Let T,, — T in the generalized sense and A € L(E,F). Then, T,,+A - T+A
in the generalized sense.

Let the T,, and T be densely defined. Then, T,, — T in the generalized

sense if and only if T — T* in the generalized sense.

PROOF. Theorem IV §2.23 in [44].

THEOREM B.14. Let T € CLO(E,F) and (An)nen € CLO(E, F)N such that

VneN:

[F]T c [F]A, and

VneN a,, b, eRg Vo e [F]T: |Apz|p <an |z g+bn|Tx| 5.

If a, - 0 and b, -0, then AN eNneN,y: T+ A, e CLO(E,F) and T+ A,, > T

in the generalized sense.
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PRrROOF. Theorem IV §2.24 in [44].

O

THEOREM B.15. Let T € CLO(E,E) and (T),)nen € CLO(E, E)N such that
T, = T in the generalized sense. If all T,, have compact resolvent and T has non-

empty resolvent set, then T has compact resolvent.

PROOF. Theorem IV §2.26 in [44].

O

THEOREM B.16. Let G be another Banach space, (Ty)nen, € CLO(E, F)Mo,
(Un)nen, € L(G,E)Y, and (Va)nen, € L(G, F)No, such that ¥n € Ny : Un|[GF]T" is
a bijection, Yn € Ny : T,,Un = Vi, [Un = Usl (g m) = 0, and [V = Vol g py = 0.

Then, T,, — Ty in the generalized sense.

PRrROOF. Theorem IV §2.29 in [44].

Having stated the most important properties of the gap topology and general-
ized convergence, we will now continue with the more important features regarding
this thesis. In chapter 11, the following result is very important (cf. Lemma 6.1.1

in [76)).

LEMMA B.17. Let H be Hilbert space, and A, B ¢ H non-empty closed linear

subspaces with §(A, B) < % Then,
PYA|?; tB—A
is an tsomorphism. Furthermore,
1 A 1 A\ 1L
B; (A, g) _ {c ¢ CLR(H, H); §(A,C) < 5} >C (prald) e L(AH)

is continuous in & and norm.
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PRrROOF. From

1-(prg—pry)(prg—prp.) =1 —prg+prgprg. +pryprg —pry pry.
=l -prp+pryprg—praprp.
=prp. +Pryprg —Pryprp.

=PIAL PIps +PIy PI'p,

Ipr =prplpoay = IPrp =(L=prp) | Ly < 2Bl Loy + 1 =3,
and
Ibrs - praln =04 B) < 3
we obtain (using the Neumann series) that
P(A,B) :=pr.prg. +pryprg: H—>H

is an isomorphism. Furthermore, H = A + A* = B+ B*, P(A,B)[B] ¢ A, and
P(A,B)[B*] ¢ A* show P(A,B)[B] = A and P(A, B)[B*] = A* because P(A, B)

is surjective. Hence,
pralp=P(A,B)3: B A
and
P(A,B)|4.: B> A*

are isomorphisms, as well.
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Since §-continuity and norm-continuity are equivalent, we can use both notions

interchangeably when showing continuity of

B; (A, %) - {C ¢ CLR(H, H); 3(A,C) < %} >C o (prald) e L(A.H).
First, we note that (Hy ® H1)? 3 (2,y) = (y,2) € (H, ® Hy)? is an isometry for
any two Hilbert spaces Ho and Hy, i.e. GL(Ho, H,)>T ~ T~' € GL(H;, Hy) is 6-
continuous. By assumption of 5—c0ntinuity, we have norm-continuity of Bj (A, %) E}
C w pry € L(H). Furthermore, since 6(A, B) = §(A*, B*) (Theorem B.4 (xiii)),
this implies norm-continuity of Bj (A, %) 5>C w prg. € L(H). Hence, B; (A, %) 5

Cw P(A,C) e L(H) is continuous, as well, and by continuity of the inversion
1 _
B; (A, g) 5 Cw P(A,C)" e L(H)

is continuous. Finally, for C, D € B; (A, %),

H(pl"A|é)_l _(prArg)_lHL(AH L(AH)

)

) |P(A,C) a - P(A,D) 4]
<|P(A, ) = P(AD)

shows continuity of

N -1
B; (A, %) - {C ¢ CLR(H, H); 3(A,C) < %} 5O (prald) e L(A, H).

in norm and, thus, in §.

We will also need the closely related Lemma B.19 which needs the following

lemma in preparation.
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LEMMA B.18. Let X,Y be Banach spaces, A€ L(X,Y), and B e L(Y,X) such
that AB is boundedly invertible in L(X) and BA is boundedly invertible in L(Y).

Then, A and B are isomorphisms.

PROOF. Note, A has the right-inverse B(AB)™ and the left-inverse (BA)™ B.
Similarly, B has the right-inverse A(BA)~! and the left-inverse (AB) 1A. Since
the existence of a left-inverse implies injectivity and the existence of a right-inverse
implies surjectivity, both A and B are bijective, i.e. the bounded inverse theorem

yields the assertion.

LEMMA B.19. Let P,Q € L(E) be projections with H(P— Q)2|| <1. Then,

L(E)

P: Q[E]~ P[E] and Q: P[E] ~ Q[E] are isomorphisms.
PROOF. Let S:= (P-Q)2=P+Q-PQ-QP. Then,
SP=P-PQP=PS
and
SR=Q-QPQ=QS

hold. Hence, P[E] and Q[F] are invariant under S. Since 1 - S is boundedly

invertible (Neumann series),
(1-9)|ge) =(1-P-Q + PQ+QP)l|g[s
=(Q-PQ-Q+PQ+QPQ)|gr
= QPlgr)

shows that QP is boundedly invertible on Q[E] and

(1-9)|pp =(1-P-Q+ PQ+QP)|p[x)
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=(P-P-QP+PQP+ QP)|p[E]
=PQ|pir

shows that PQ is boundedly invertible on P[E]. Hence, the assertion follows from

Lemma B.18 with A=P, B=Q, X = Q[E], and Y = P[E].

The other main application of the gap topology appears in chapter 6. There,

we are particularly interested in the perturbation of eigenvalues with respect to the

gap topology.

THEOREM B.20. Let T € CLO(E, E) and K a compact subset of the resolvent

set o(T). Then, 36 e R, VS € B5(T,0): K < o(S).

PROOF. Theorem IV §3.1 in [44].

THEOREM B.21. Let T ¢ CLO(E, E) such that the spectrum o(T) is separated
into o1 and oo by a rectifiable simple cycle! ~. Then, there are subspaces By, Ey € E
such that E = E1 + Ea, EynEy = {0}, E1 @ F3 5> (x1,22) » 21 +22 € F is a
homeomorphism, and TP 2 PT where P is the projection onto E1 along Es, that
is, P[E] = FEy1 and (1 - P)[E] = E2; more precisely, since every x € E is uniquely
decomposed as x1+xo with x; € B;, we have Px = x1 and (1-P)x = x5. Furthermore,

there are operators Ty : E; - E; with [E;|T; = [E]TnE;, T; = T|g,,* and o(T}) = 0;.

If o1 is bounded (that is, o1 is the part of the spectrum with winding number 1 with

respect to vy ), then Ty € L(Ey).

1A cycle is a finite collection of closed curves with disjoint images. It is called simple if and
only if every point that is not in the image of any of the curves has winding number in {0, 1}.

2In this case, we call (E1, F») reducing for 7.
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Furthermore, there exists 0 € R,y such that the following properties hold. -~y
separates the spectrum of any S € CLO(E, E) with S(S,T) <§. Let E=F & Iy
be the corresponding decomposition for S, S1 and Sa the corresponding operators,
and Ps the projection onto Fy along Fy. Then, Fy and Fy are isomorphic to F;
and Fs, respectively. In particular, dim Ey = dim F} and dim Ey = dim F5. Further-
more, o(S1) and o(S2) are non-empty if this is true for o(T1) and o(T3), and the
decomposition E = F\ @ F, is continuous with respect to S, that is, |Ps = P| gy ~

0 (6(S,T) - 0).

PrOOF. Theorem IV §3.16

(]
REMARK Using the holomorphic functional calculus, we obtain
1 -1
P=— [(A-T)""dX
2 J,
and
1 -1
Ti=— [ X(A=T)"d\.
2mi J,
[ ]

This last theorem is very interesting if we assume that o is a finite set of eigenvalues.
Then, dim Ey = ¥y, fa < 0o where p is the multiplicity of A € (7). In particular,
if T, > T in the generalized sense, then each T, has (eventually) a separated
spectrum and dim F4(T},) = dim By, i.e. (T,)1 is a matrix and o((7},)1) contains
only eigenvalues whose multiplicities add up to the total multiplicity of eigenvalues
of T in o7. Choosing a sequence of cycles (75, )nen such that the images converge to
01, i.e. the encirclement of oy is getting tighter and tighter, we obtain that systems
of finitely many eigenvalues behave continuously under small perturbations in 5

very similar to the behavior of perturbations of eigenvalues of matrices.
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For infinitely many eigenvalues, however, there is no uniform bound on the per-
turbation. Consider an operator 1" with unbounded and purely discrete spectrum.
Given § € R, it is possible to find e € R, such that §((1+&)T,T) < 8. However,
the eigenvalue A of T is perturbed by €\ in (1 +¢)T. Since o(T') is unbounded,

there is no uniform bound on the perturbation of infinite systems of eigenvalues.

For finitely many eigenvalues, on the other hand, we do know quite a lot about
their perturbations; in particular, if we consider holomorphic perturbations. We will
end this appendix with a theorem (Theorem B.24) on holomorphic perturbations

which is very interesting for the spectral mollification discussed in chapter 6.

DEFINITION B.22. Let Q ¢ C be open and T € CLO(E,E)®. T is called
resolvent-holomorphic if and only if for every zo € Q there are Ao € o(T(20)) and

an open neighborhood U of zy such that VzeU: Ao € o(T(2)) and
Usze (N-T(2) e L(E)
is holomorphic.

LEMMA B.23. Let Q ¢ C be open and T € L(E) holomorphic. Then, T is
resolvent-holomorphic. More precisely, for every zo € Q and X € o(T(20)), there
exists an open neighborhood U of zy such that Vz e U : Xe o(T(2)) and U 3 z —

(A-T(2))" € L(E) is holomorphic.
PROOF. Let zg € Q and A € o(T'(2)). Then, the Neumann series implies that

A=T(2) = (1= (T(2) = T(20)) A= T(20)) ™) (A= T(20))

is boundedly invertible for every

2l {05 IT(s) - Tl ooy < | A= TG )
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and

A-TE) ' = (A-T(¢0) " Y () -T(0) (A= T(z0)) )

JjeN,

converges uniformly on compact subsets of U since for every K Ccompact U there

exists an € € R, such that

SUp | T(5) = T(20) ey [(A-TC0)) ) <14

i.e.

sup [ =T

ssup - TG

anz TG ) |- TC) !

L(E)

o [ESEACH N I WD

JjeNg

|-G

L(E)

€

Hence, z — (A= T(z))"" is holomorphic.

THEOREM B.24. Let Q Copen C, T € CLO(E, E)% resolvent-holomorphic, zy €
Q, X € 04(T(20)) where o4(T(20)) is the discrete spectrum, i.e. the set of eigen-

values with finite multiplicity, and m the algebraic multiplicity of Ag.

(i) Then, there exist d,e € R,y such that o(T(z)) n B(Xo,¢e) € 0q(T(2)) for
every z € B(z9,0) and the total multiplicity of eigenvalues of T'(z) in
B(Xo,e) is m. Furthermore, for the projections P(z) corresponding to
T(z) and o(T(2))nB(Xo,€), we obtain that z — P(z2) and z = T(2)P(z2)

are holomorphic.
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(ii) There exist §,c € R, such that we can write the eigenvalues of T(z) in
B(\o,e) as a Puiseuz series® for z € B(zo,0). If m =1, then there emists

a “holomorphic eigenvector”.

PROOF. “(i)” Since T is resolvent-holomorphic, we obtain T'(z) - T'(z¢) in the
generalized sense by Theorem B.13 (ii). Hence, the assertion follows from Theorem
B.21 and the fact that

1 4
2z P(z)=— | (A=T(2)) "dA
2mi J,
and
1 -1
2> T(2)P(z)==— [ MA-T(2)) "dA
2mi J,

are holomorphic (where « is a suitable cycle).

“(ii)” Let m = 1 and z( an eigenvector of T'(zg) corresponding to Ag. Then,
x2(z) = P(2)xo is holomorphic and has no zero in a sufficiently small neighbor-
hood of zg. Furthermore, z(z) is an eigenvector of T'(z) since P(z) maps into the

eigenspace.

For m > 1 and dim FE < oo, i.e. E =C" for some n, we obtain the eigenvalues of
T(z) from the roots of the Weierstrass polynomial det(A—T(z)). Hence, Theorem

C.25 yields the assertion.

For m > 1 and dim E = oo, choose ¢ and € as in (i). For z € Bc(z,9), let
E1(z) = P(2)[E] and E3(2):= (1- P(z))[E]. Without loss of generality, let § and
¢ be sufficiently small such that |P(z) - P(z0)| gy < 1. Then, P(2): Ei(20) >
Ei(z) and 1 - P(z) : Es(20) - E2(2) are isomorphisms by Lemma B.19. Hence,

3 A Puiseux series is a “fractional power series”, i.e. an expression of the form Yjen, aj(z=z0)™
0

for some n € N.
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cach
U(z) = P(2)P(20) + (1 - P(2))(1 - P(20))
is an isomorphism of F and
U(2)P(z0) =P(2)P(20) = P(2)U(2).
Let S(2) := U(2)" T (2)U(2). Then,
P(20)U(2)' =U(2) ' P(2)
implies
S(2)P(z20) =U(2)*T(2)U(2)P(z0)
=U(2) ' (2)P(2)U(2)
2U (2) ' P(2)T(2)U(2)
=P(20)U(2)'T(2)U(2)
=P(20)5(2),
i.e. (E1(20), Ea(20)) is reducing for S. Furthermore,
S(2)P(z0) =U(2) T (2)P(2)U(2)
shows that

B(2075) 3z S(Z)|E1(z0) ¢ El(zo)

E1 (Z())

E1(20) sice

is holomorphic. Hence, we obtain the assertion for the eigenvalues of S|

dim F4(z9) < oo. However, the eigenvalues of S (z)@iigg and the eigenvalues of

T(z) in Bc (Mo, ¢€) coincide by definition of S.



APPENDIX C

Puiseux series

In order to prove part (ii) of Theorem B.24, we need the notion of Puiseux
series. In this appendix, we will, therefore, introduce all the necessary tools to prove
Theorem B.24 (ii). The results in this appendix (just like Theorem B.24) have been
introduced to me by Prof. Jiirgen Voigt during a lecture series on operator theory

in the fall term of 2011 at the Technische Universitat Dresden.

DEFINITION C.1. Let R be a commutative ring with 1 without zero divisors,

i.e. Ya,be R: (ab=0 = a=0 v b=0). Then, we call R an integral domain.

Furthermore, we will define the following for a,b e R.
(i) alb (a divides b) if and only if 3c€ R: ac=b.
(ii) a is called a unit if and only if a|l.
(i) a ~b (a and b are associated) if and only if there exists a unit u such that
a = ub.
(iv) a is called reducible if and only if a + 0 and there are non-units b,c € R
such that a = be.
(v) a is called irreducible if and only if a # 0, a is not a unit, and a is not
reducible.
(vi) a is called a prime element if and only if Vb,ce R: (albc = alb v alc).
(vil) J € R is called co-prime if and only if there is no non-unit a such that

VbeJ: alb.

DEFINITION C.2. Let R be an integral domain. Then, we call R a unique

factorization domain (UFD) if and only if every non-unit a # 0 there exist n € N

310



C. PUISEUX SERIES 311
and irreducible c1,...,c, € R such that the factorization a = ]'[;Ll ¢ exists uniquely;
that is, if a = H;-Zl d; is another such factorization, then m = n and there exists a

permutation o € Sy, such that Vj e N, : ¢j ~ dyjy-

LEMMA C.3. Let R be an integral domain. Then, every prime is irreducible. If
R is furthermore a unique factorization domain, then every irreducible element is

prime.

PROOF. Let p be prime and a,b € R such that p = ab. Then, plab implies
pla v plb. But we also have alp and b|p. Without loss of generality, let p|b. Hence,
there are u,v € R such that b = up and p = vb, i.e. b=wuvb and p = vup. Since p 0,
we obtain vu = 1, i.e. w and v are units and p ~b. Thus, p = ab = aup implies au = 1,

i.e. a is a unit and p irreducible.

Let R be a unique factorization domain, p irreducible, and ab € R such that
plab. Hence, there exists ¢ € R such that ab = pc. Factorizing a, b, and ¢ into
irreducibles implies that there must be an irreducible factor of a and b which is an

associate of p, i.e. pla or p|b. Hence, p is prime.

DEFINITION C.4. Let R be a commutative ring. Then, we call R[T] the ring of

polynomials in T over R.

More precisely, R[7] is isomorphic to c.(Ny, R) € RN (c.(Ny, R) is the set of

finite sequences with values in R) since

R[T] 3p= Z pjTj (=g (pj)jgNU € CC(NO,R)

JeNy
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is a bijection and we endow c.(Ny, R) with the component-wise addition and the

multiplication

(pj)jeNO(Qj)jeNO = (i pj—ka)
k=0

JjeNg
For p e R[7] we define degp := sup{n € Ny; p, # 0} where sup@ := —oco.

Let R be an integral domain and p € R[7]. Then, p is called primitive if and

only if {pj; je NO,sdcgp} 18 co-prime.
LEMMA C.5. Let R be an integral domain. Then, R[7] is an integral domain.

PROOF. It is easy to see that R[7] is a commutative ring with 1. Let p,q €
R[T]~{0}. Then, p= 3", p;7/ and ¢ = -0 q;77 with p,, # 0 and g, # 0. Hence,

the coefficient of 7"

in pq is given by p,, g, which is non-zero since R is an integral
domain. Hence, pg # 0 and R[7] is an integral domain.

O

From now on, let R be an integral domain and F' its field of fractions, i.e.

F:=(Rx (R~{0})) /s with
(a,b)*(c,d) = ad=cbh

is endowed with the addition (a,b) + (¢,d) := (ad + ¢b,bd) and the multiplication

(a,b) - (c,d) := (ac,bd). In other words, we interpret (a,b) € F' as .

LEMMA C.6. Let p,q € R[T] be primitive. Then, pq is primitive.

PrOOF. Let p = Z}"Iopjrj and ¢ = Y7, q;j7. Let a be a prime, k := min{j €

No<m; @ + pj}, and k == min{l € Ny _,.; a + ¢;}. Then, a + px and a + ¢, i-e.

k+l

a 4 prq;. However, the coefficient of 77" is given by

Po Qk+l t P1Qk+1-1+ -+ Pk—1 Q41 + Prql *Pk+1 Q-1 ... + Dk+1 G0 -
—~— —— —— ~—— — —~
al al al at- al al:
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k+l

Hence, the coefficient of 77" is not divisible by a, i.e. pq is primitive.

O

LEmMma C.7. (i) Let J € R be co-prime, a € F, and aJ € R. Then, a € R.

In particular, p € R[T] primitive, a € F, and ap € R[7] imply a € R.
(ii) Let {@,{0}} # J Sinite F'- Then, there exists a € F such that aJ € R is

co-prime. If b e F' such that bJ € R is co-prime as well, then § is a unit

n R.

(iii) Let p € F[7] ~ {0}. Then, there exists a € F such that ap € R[T] is
primitive. If b is another element of F such that bp € R[7] is primitive,
then ¢ is a unit in R. In other words, ap is unique up to multiplication

with units and we call ap the primitive polynomial associated with p.

PROOF. “(i)” Let b € R such that abe R and ¢ € R prime with ¢|b. Then, there
=(ba)d
(ba)
exists d € J such that ¢ + d. However, ¢|b (ad) implies c|ba and Lc’a € R. Dividing
——
eR
all prime factors of b implies a € R.

.
-5 i

“(ii)” Let J = {di,...,d,} and consider the factorization d; = o 7,
e

Let

ay = [, ]'[?;’1 fi; and ao the product of all common prime factors of all a;d;.

Then, a := Z—; satisfies the assertion.

Let b be as stated. Then, gaJ = bJ implies % € R by (i). Similarly, ¢ € R holds

and we obtain %% =1.

degp

“(iii)” Apply (ii) to J = {p;; j € No,gdcgp} where p = Y75 piT.

O

ProposITION C.8. (i) Letr € R[7], p,qe F[r], r=pq, ac F, pe R[7]
primitive, and p = ap. Then, aq € R[] and r = (aq)p is a decomposition

of v in R[T]. If r is primitive, then so is aq.
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(ii) Let p € R[T] be non-constant and irreducible in R[7]. Then, p is irre-

ducible in F[T].

A primitive polynomial in R[7] is irreducible in R[T] if and only if
it is irreducible in F[T].
(iii) Let P < R[7]. Then, P is co-prime in F[1] if and only if the elements of

P have no common, non-constant divisor in R[T].

PROOF. “(i)” There exists b € F and a primitive § € R[7] such that ¢ = bq.
Hence, r = abpq and pq is primitive which implies (Lemma C.7 (i)) that ab € R and,

thus, aq = abg € R[7].

If r is primitive, then ab is a unit and ag = abq is primitive.

“(i1)” Suppose p were reducible in F[r]. Choose a decomposition of p = gr in
F[r] and (i) yields a decomposition of p in R[7]. (Note that constant polynomials

are always reducible in F[7] since there are no non-units in F.)

Let p is primitive and p = ¢r with g, € R[7]. Then, p = gr is also a factorization
in F[r]. Hence, one of them is a unit. Without loss of generality, let ¢ be the unit
in F, i.e. of degree zero. Then, we have p = ¢gr with ¢ € R and r € R[7]. But, since

p is primitive, ¢ has to be a unit in R, that is, p is irreducible.

“(iii)” “=" is trivial. For “«<” suppose P were not co-prime in F[7]. Then,
there exists p € F[7] with degp > 1 (all constants are units) such that Vr e P 3q, €
F[r]: r = pg-. Furthermore, let a € F and p € R[7] primitive such that p = ap.
Then, (i) implies that ag, € R[7] and r = (ag,)p, i.e. all r have the common and

non-constant divisor p.
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THEOREM C.9 (Euclidean Algorithm). (i) Let p,q € F[7] such that q
0. Then, there are r,s € F[7] such that degs < degq and p=rq+s.

(ii) Letp,q € F[7] be co-prime. Then, there arer,s € F[1] such that rp+sq = 1.

(iii) Let p € F[7] be irreducible. Then, p is prime.
PROOF. “(i)” Polynomial division.

“(ii)” Let ¢t € F[r] ~ {0} be any element of J := {vp + ¥q; ©,¢ € F[1]} of
minimal degree. Then, there are r,s € F[7] such that p = rt + s and deg s < degt.
Then, s =p-rt = (1 —r¢)p —ripq for some p,9 € F[7] shows s € J. Hence, s =0
and t|p. Similarly, t|g and {p,q} being co-prime implies that ¢ is a unit. Hence,

1=2p+ %q for some @, € F[1].

“(iii)” Let g,r € F[7], p | ¢r, and p + q. Then, {p,q} is co-prime since p is
irreducible. According to (ii), there are ¢, € F[7] such that pp + g = 1. Hence,

r = @ pr+1 qr implies that p is prime.
— —
pl Pl

PropPoOSITION C.10. F[7] is a unique factorization domain.

PROOF. Let p e F[7] ~ {0} not be a unit, i.e. not a constant. If p is reducible,
then we can write p = ¢gr with max{degq,degr} < degp. Inductively, we obtain
p = I1}-; q¢; where each g; is irreducible and degg; > 1. Then, Theorem C.9 (iii)

implies that the ¢; are prime.

Let p = [1j; ¢; = ITj-; rj be two factorization into primes. Then, each g;
divides [T7_; 7, i.e. n > m and there exists o : N, — N, injective such that
VjeN,, : g ~rqg). Similarly, m > n and there exists 8: N, - N_, injective

such that Vj e N_, : r; ~qg(;). In other words, the factorization is unique.
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THEOREM C.11 (Gauss). R[7] is a unique factorization domain.

PROOF. Let p € R[7]~ {0} not be a unit. Then, we can write p = ag with a € R
and ¢ € R[7] primitive. Note that at most one of @ and ¢ can be a unit and we
can factorize a and q separately into irreducibles. Since R is a unique factorization
domain, the factorization a = []7.; a; is unique and each a; is irreducible in R[7].
Furthermore, we can factorize ¢ = H;»lzl gj where each g; is a non-constant irreducible

and primitive since ¢ is primitive.

Let p =TI} aj [Ty ax = H}”:’l aj HZ;1 qy,- Then, the a; and a; are irreducibles
in R and the g; and ¢; are non-constant irreducibles in R[7]. In particular, the
g; and q;- are primitive. By Lemma C.6, we obtain that [;_; gr and HZ’:l q, are
primitive, as well, i.e. there exists a unit u such that [Tj_; qx = u HZ;1 q;.- Replacing

q1 by ug] implies

s

n n/ m/
[Tae-u[]q. and [Ta; - [Ta,
k=1 k=1 j=1

<
Il
=

Since R is a unique factorization domain, we directly obtain that m = m’ and there

exists a bijection o : N_, - N_ such that Vj e N : a; ~ a’a(j). Hence, it
remains to pair off the ¢; and ¢. Since they are non-constant irreducibles in R[7],
they are also irreducible in F[7] (Proposition C.8) which is a unique factorization
domain by Proposition C.10. Hence, n = n’ and there is a bijection 5: N_, - N_,
as well as units u; € I such that Vj € N, : ¢; = u;qj;). However, Lemma C.7 (i)

implies that Vj e N_, : u; € R and since the ¢; are primitive, the u; are units in R.

O

COROLLARY C.12. Let zg € C and H(zo) be the ring of holomorphic germs at

zo. Then, H(z0) and H(z0)[7] are unique factorization domains.

PRrOOF. By Theorem C.11, it suffices to prove the assertion for H(zo).
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Let f,g € H(20) and U ¢ C an open neighborhood of zg such that both f and g

are defined on U. Let fg =0and f # 0. Then, the [{0}]f has no accumulation point
in U. Since C is an integral domain, this implies that [{0}]g has the accumulation

point zg, i.e. g =0. Hence, H(zg) is an integral domain.

Let f € #(20) \ {0} have the representation f =¥ ay_ a;j(z-20)’ with a, # 0.
Then, f is invertible (i.e. a unit) if and only if n = 0. Furthermore, f is reducible if
and only if n > 2. Hence, H(zp) is a unique factorization domain with only prime

(2 - 20) and f has the unique factorization f =3 oy ajn(2 - 20)7 (2 - 20)™.

unit
DEFINITION C.13. Let p,q € R[7], degp < m, degq < n, p = Xjop;7, and
q=Yj0qm. Then, we call

A (P, q) = det (Ap Aq)

the (m,n)-resultant of p and q where A, € L(R™,R™™") and Ay € L(R™,R™*™)

such that
Po qo
b1 Do g1 9o
P Poq
A= P i po and Ay = P Qo
Pm T D1 qdn " q1
Pm dn

If m=n=0, then we define Agg :=1.

LEMMA C.14. Let m,n € Ny, p,q € R[7], degp < m, and degq < n. Then, the

following are equivalent.
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(i) There are r,s € R[T] with (r,s) # (0,0), degr < m, and degs < n such
that sp = rq.

(ii) Amn(p,q) =0.

PRrOOF. Without loss of generality, R = F. Then, sp = rq for r,s € F[7] with

(r,s) #(0,0), degr < m, and deg s < n is equivalent to

J
VJ € N$m+n—l : Z SkDj-k — Tkdj-k = 0.
k=0

Hence, there is a non-trivial solution (s,-r) if and only if the matrix of coefficients

Po do
b1 Do 41 qo
po Pq
Pm i1 ™ Po Gn i v Qo
Pm D1 n "~ Q1
Pm an

has vanishing determinant, i.e. A, =0.

LeEMMA C.15. Let m,n € Ny, p,q € R[7], degp < m, and degq < n. Then, the

following are equivalent.

(i) (Pm,an) #(0,0) and p and q have no common, non-constant divisor.

(ii) Amn(psq) #0.

PRrROOF. “(i)=-(ii)” Without loss of generality, let p,, # 0. Suppose A, (p,q) =
0. Then, there are r,s € R[7] with (r,s) # (0,0), degr < m, and deg s < n such that
sp =rq. Since degp = m > degr, there exists a non-constant prime factor of p which

is not a prime factor of r. Hence, p and ¢ have a common factor 4.
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“(i1)=(1)" If (pm,qn) = (0,0), then A,,, =0 is trivial. Let (pm,qn) # (0,0) and

t € R[] with degt > 1 be a common divisor of p and ¢. Then, there are r,s € R[7]
with (r,s) # (0,0) such that p = ¢r and ¢ = ts. In particular, degr < degp —1 < m,

degs<degq—1<n, and sp = str = qr, i.e. Ay =0.

DEFINITION C.16. Let n € N, p € R[7] with degp < n, and q = ¥}, gp;Ti7L.

Then, we call

An(p) = An,n—l(pu Q)
the n-discriminant of p. If degp =n, then we will also write A(p) = A, (p).
For po,...,pn € R, we define Ay (po,--.,0n) = An(p) where p:= Z?:opjTj-

COROLLARY C.17. Let n e N, p € R[7] with degp <n, and q = X7, gp;i7L.

Then, the following are equivalent.

(i) degp =n and p and q have no common, non-constant divisor.

(ii) An(p) 0.

DEFINITION C.18. Let U ¢ C be open, neN, and a;: U — C holomorphic for
every j € Ny . A function

n-1 .
p: UxC—>C; (2,A) = A"+ ) a;(2)N
j=0

is called Weierstrass polynomial.

LEMMA C.19. Let p be a Weierstrass polynomial on U x C, zg € U, and X\
a simple zero of p(zo,-). Then, there exist 0,& € Ry, such that every every p(z,-)
with z € Bc(20,0) € U has exactly one zero M\(z) € Be(Xo,e) and z — X(z) is

holomorphic.
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PROOF. Follows directly from the analytic implicit function theorem since

02p(20,Xo0) # 0.

2mi

LEMMA C.20. LeteeR y, neN, y=en , ¢: Bc(0,e) = C holomorphic, and
n—-1 o
VzeBe(0,e") VAeC: p(z,A) =[] (/\ - w(yjzﬁ))
3=0
where z — 27 is a holomorphic root. Note that this is independent of the explicit
choice of 2% since all choices are contained in {”yjz%; j€N07<n}. Then, p is a

Weierstrass polynomial on Bc(0,e™) x C and has the zeros cp(vjz%) Jor jeNy ,

including multiplicities.

PROOF. Let (~1)"7a;(z) be the (n - j)' elementary symmetric polynomial

with variables ¢ (z%), % (*yz%), e P (7”’125), ie.

n—

a;(z) = (-1)"7 > [Te(v=7),

1<ki<ka<...<kp_j<n-1 l=1

<

and for z; € Be(0,e™) ~ {0} choose a holomorphic root z — z* in a neighborhood
U of z1. Then, all a; are holomorphic in U. Since z; and the holomorphic root
were arbitrary, all a; are holomorphic in B¢ (0,e™) \ {0}. Since ¢ is continuous in
zero, so are all a; and Riemann’s removable singularity theorem for holomorphic
functions implies that all a; are holomorphic in B¢ (0,e™). This shows that p is a

Weierstrass polynomial and the assertion about the zeros is trivial.

O

REMARK If ¢ is given by the power series ¢(2) = ¥jay, cjz? near zero, then all
roots of p(z,-) are of the form Ap(2) = Xy, cjvka%. Such a series is called a
Puiseux series. Similarly, if we take the expansion near zp, then the roots of p(2o,-)

are given by Ag(z) = ZjéNo Cj”ij(Z - ZO)%-
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DEFINITION C.21. A functional element is a holomorphic function f: D(f)c

C - C such that D(f) = Be(z,r) for some z€C and r e R,,.

Let zg € C, fo a functional element with D(fo) = Bc(z0,70), 7 € C([0,1],C),
and v(0) = 20. A family (ft)iefo,1] of functional elements is called an analytic

continuation of fo along v if and only if
(i) Vte[0,1] Fr,eR 5: D(ft) = Be(v(t),r:) and
(ii) V£ e[0,1] 30 € R,y Vs € Bpo11(t,0) = v(s) € Bc(v(t),7¢) A fslp(rynp(s) =

felpronn(r -

Note, condition (ii) implies that all analytic continuations of fy along ~ are

germ-equivalent along ~.

COROLLARY C.22. Let 29 € C, fo a functional element with D(fo) = Bc (20,70),
v € C([0,1],C), and v(0) = z9. Furthermore, let there be 0 =ty < t1 < ... <ty =
1 and functional elements f; for j € N_, such that Vj € N_, : ~(t;) € D(f;),
Y[[tj-1,t51]1 € D(fj-1) n D(f;), and fi-ilp(s,)nnis;) = filponnpes,)- Then,

there exists an analytic continuation of fo along .

Proor. For ¢ € [0,1] choose 7; € R,y and j € Ny ,, such that Bc(y(t),7:) €

D(fj) Then, we define ft = fj|Bc CIOEDE

LEMMA C.23. Let Q ¢ C be open, p: Q2 xC — C a Weierstrass polynomial
of degree n, Yz € Q: A(p(z,-)) #£0, 20 € Q, fo: Bc(z0,70) = C holomorphic,

Vz € Be(zo,70) 0 p(z, fo(2)) =0, 7€ C([0,1],9Q), and v(0) = 2.

Then, there exists an analytic continuation of fo along v and every analytic

continuation (fi)ie[o,1] satisfies Vt € [0,1] Vz e D(f;): p(z, fi(2)) =0.
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PROOF. Since Vz € Q: A(p(z,-)) # 0, p(z,-) and 92p(z,-) have no common,
non-constant divisor, i.e. all zeros of p(z,-) are simple. In particular, p(z,-) has
n “holomorphic zeros” (Lemma C.19); more precisely, there exists r : [0,1] —

R., such that Bc(y(t),r(t)) € Q and there are holomorphic functions \j,... AL :

n

Be (y(t),r(t)) - C such that ¥z € Be(y(t),7(t)) VjeNg, : p(z,A5(2)) =0.

Furthermore, for each ¢ € [0,1] let &; € R, such that v [({ —&¢,t +;) N [0,1]] €
Be(y(t),r(t)) and for t € (0,1) let (t—e¢,t+e¢) € (0,1). Then, ((t—e¢,t+¢&¢) )se[0,1] I8
an open cover of [0, 1] and we can choose a minimal subcover ((¢;—&;,tj+e;))jen_,
for some k € N. By definition of the ¢, there are jo,j1 € N, such that ¢;, = 0 and
tj, = 1. Without loss of generality, let 0 =% <t; <... <ty =1 and set §; := g, for
J €N_,. Note that t; —6; <t;_1 + ;-1 has to hold (otherwise, ¢; - d; is contained in
another interval with index > j or < j—1, i.e. either the interval with index j or the
interval with index j — 1 is fully contained in another interval, thus, contradicting

the assumption of a minimal cover).

Since

v [(t1 = d1,t0 +d0)] € Be(7(0),70) 0 Be (v(t1),74, ),

we obtain that B¢ (7(0),70) n Be(y(t1),74, ) is non-empty and simply connected?.

Hence, there exists j € N, such that

t
A7 Be (4(0),m0)nBe (4(t1),7ey) = fol Be (4(0),ro)nBe (v (1)1, ) -

Let fi, := )\21. Inductively, we can define f;,, := /\21’; for m € N, and some
Jm € N, depending on f; _,. Thence, Corollary C.22 yields that there exists an

analytic continuation (f3)o,1] of fo along ~.

A space is simply connected if and only if it is path connected and every two paths with the

same endpoints are homotopic relative to {0,1}.
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Finally, Vt € [0,1] Yz € D(f:) : p(z, f:(z)) = 0 follows since

(D(ft) 2z p(za ft(z)) € (C)té[O,l]

is an analytic continuation of D(fy) 3 z = p(z, fo(z)) € C which vanishes identically.

O

PROPOSITION C.24. Let H(0) be the set of holomorphic germs in zero, n € N,

U c C an open neighborhood of zero, and
n-1 .
p(z,A) = A"+ Z a; ()N
j=0
a Weierstrass polynomial on U x C drreducible in H(0)[\].

Then, p(0,-) has only one root Ao of multiplicity n. Furthermore, there exists
e € Ry, with Bc(0,e) € U and a holomorphic function ¢ : Bg (0,5%) — C such
that Yu € B¢ (O,E%) : p(u™, p(u)) =0 and this contains all roots. In other words,

the zeros of p(z,-) are given by the Puiseuz series M\(z) = ¢ (z%)

PROOF. Since p is irreducible in H(0)[A] it has no non-constant divisor of
strictly lesser degree. In particular, p and dop cannot have a common, non-constant

divisor. Hence,
0+ A(p) =An(ao,a1,...,0n-2,a,-1,1) € H(0).

Thus, there exists € € R, such that A(p) is defined on B¢ (0,¢), Vz € Be(0,2)N{0}:
A(p)(z) # 0, and M := sup{|a;(2)|; z € Bc(0,¢), j € Ny_,} < oo. Note that we
can choose a smaller € if A(p)(z2) =0 for z # 0 and zero cannot be an accumulation

point of zeros since that would imply A(p) = 0. Furthermore, note that

A(p(zv)) :An(aO(z)ual(z)v i -aan—2(2)aan—1(z)7 1)

=A,(ap,a1,...,an-2,an-1,1)(2)
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=A(p)(2).

Then,

n-1 M
VzeBe(0,6) YA€CN Be(0,M+1): [p(z, M2\ [1- W)
7=0

n n-1 M
-y ———
o) (M + 1)

gl 1_M§:1(M1+1)j)

J

1
1 M+1

1- ()"
=]\ 1_MM)

n 1 \"
=1 (M+1)

>1

n+1
A 1_MMl+1_(Ml+1) ' )

shows that all zeros of p(z,-) are in B¢ (0, M + 1) provided that z € B¢ (0,¢).

Let Q := Be(0,6) ~ Ry and Q := Be(0,6) ~ Ry,. Since  and Q are simply
connected and A(p)(z) # 0 for every z € Bc(0,¢) ~ {0}, that is, all zeros are simple,
there are holomorphic functions 5\1, .. ,5\” : 0> C and Mooy At Q= C such
that each \j(z) and \j(z) is a zero of p(z,-) for z € Q or z € Q, respectively
(n “holomorphic zeros”; Lemma C.19). Without loss of generality, let ;\j = 5\j on
Be(0,e) n (Cj(_)>0 for every j € N_,. Then, there exists a permutation 7 € S,, such
that S\F(j) =\j on Be(0,6) N C5(y<o for every j e Ng,. Let ng be the length of the

trajectory of 1 under the action of m; without loss of generality, let the trajectory

be (1,2,...,n0), i.e. ™ 1(1)=k+1- {%Jno
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Let ¢ : Bc (0,8"_10) ~ {0} - C be holomorphic and defined as follows.

. o (¢70) | fargz- 22 < 2
Vz € B (0,8"0 ) ~{0} s o(u) =
Nji1 (z™0) 2;—: <argz < —2(3;1)77

Since
VieN,, V2eQVzeQ: [\;(A)|<M+1 A [N (2)|<M+1
holds, we obtain
£i£1(1)2<p(2) =0.

In other words, Riemann’s removable singularity theorem for holomorphic functions
implies that ¢ admits a holomorphic extension to B¢ (O,E"LU ) By Lemma C.20,
nofl .1
po(z )= [T (A= (+'=7))

=0

27
with v :=emo is a Weierstrass polynomial on Bg (0,e) x C with the roots

{gp(»yjzﬁ); jéNsno}: {)\j(z); jeNSnD} , z€8)
{Xj(z); jeNSnO} , zeQ

Let

H?=n0+1 ()\ - ;\7(2)) , %€ Q
Vze Bc(o,f) AN {O} : Lj(zv)\) =

H;}:noﬁ—l ()\_;\J(z)) ) ZGQ
Then, ¢ is well-defined and a Weierstrass polynomial on (B¢ (0,¢) \ {0}) x C with
bounded coeflicients, i.e. ¢ can be extended to a Weierstrass polynomial ¢ on

Be(0,¢) x C. Since

Vz e Bc(0,e) N {0} : p(z,-) =po(z,)q(z,-)

holds, we obtain p = pgq.



C. PUISEUX SERIES 326
However, p was assumed irreducible, i.e. p = pg, n = ng, and Ag = p(0) is an

n-fold zero of p(0,-).

THEOREM C.25. Let U € C be open, zg € U, p: U xC — C a Weierstrass
polynomial of degree m, and Ao a zero of p(2o,-) of algebraic multiplicity n. Then,
there are §,e € R, such that Be(z0,e) CU and p(z,-) has exactly n roots (including
multiplicities) in Bc(MAo,d) provided that z € Be(zo,e). Furthermore, there are
ni,...,ng € N with Z§=1 nj =n and ¢;: Bc (20,5%) — C holomorphic (j € Nsk)

such that the zeros of p(z,-) in Bc(Xo,d) for z € Be(zo,€) are given by

: 1
VieNg VjeNg_,, = M j(2) =@ (%J(Z — 20) ™ )

27i

where vy :=e ™ .

PRrOOF. Without loss of generality, let zp = 0 and consider p as an element of
H(0)[A]. Since H(0)[A] is a unique factorization domain (Corollary C.12), we can
factorize p into p = H§;1 p; where each p; is prime. Without loss of generality, let all
p; be normalized, that is, they have leading coefficient 1, i.e. they are Weierstrass
polynomials. For [ € N_,,, let n; := degp;. Then, each p;(0,-) has a zero \; of
multiplicity n; according to Proposition C.24. Without loss of generality, let k € N
be such that VI e N, : A\ = Ao and VI e N, .+ Ay # Ag. Then, Proposition C.24
yields holomorphic functions ¢; and ¢; € R, as in the statement of Proposition
C.24 for every I € N_,,. Let 0 := 2min{|\ = Ao|; [ € N, pr}- Then, there exists
e € (0,min{e;; I € N, }) such that |¢;(2) = \| < d for every z € Bc (0,5%) and
l e N_;,. Furthermore, the roots of p(z,-) in B¢ (Xo,d) for z € Bc(0,¢) are precisely

the roots of the p;(z,-) (1€ N_,).
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