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Abstract

Based on Guillemin’s work on gauged Lagrangian distributions, we will intro-

duce the notion of a gauged poly-log-homogeneous distribution as an approach to

ζ-functions for a class of Fourier Integral Operators which includes cases of am-

plitudes with asymptotic expansion ∑k∈N amk
where each amk

is log-homogeneous

with degree of homogeneity mk but violating R(mk) → −∞. We will calculate the

Laurent expansion for the ζ-function and give formulae for the coefficients in terms

of the phase function and amplitude, as well as investigate generalizations to the

Kontsevich-Vishik trace. Using stationary phase approximation, series representa-

tions for the Laurent coefficients and values of ζ-functions will be stated explicitly,

and the kernel singularity structure will be studied. This will yield algebras of

Fourier Integral Operators which purely consist of Hilbert-Schmidt operators and

whose ζ-functions are entire, as well as algebras in which the generalized Kontsevich-

Vishik trace is form-equivalent to the pseudo-differential operator case. Addition-

ally, we will introduce an approximation method (mollification) for ζ-functions of

Fourier Integral Operators whose amplitudes are poly-log-homogeneous at zero by

ζ-functions of Fourier Integral Operators with “regular” amplitudes.

In part II, we will study Bochner-, Lebesgue-, and Pettis integration in alge-

bras of Fourier Integral Operators. The integration theory will extend the notion

of parameter dependent Fourier Integral Operators and is compatible with the

Atiyah-Jänich index bundle as well as the ζ-function calculus developed in part

I. Furthermore, it allows one to emulate calculations using holomorphic functional

calculus in algebras without functional calculus, and to consider measurable families

of Fourier Integral Operators as they appear, for instance, in heat- and wave-traces

of manifolds whose metrics are subject to random (possibly singular) perturbations.
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Notations

(a, b) open interval {x ∈ X ; a < x ∧ x < b} for any partially ordered set X ;

similarly, [a, b] is the closed interval {x ∈X ; a ≤ x ∧ x ≤ b}, and [a, b) and

(a, b] are {x ∈ X ; a ≤ x ∧ x < b} and {x ∈X ; a < x ∧ x ≤ b} respectively

(aι)ι∈I ∈ XI family notation of a map I ∋ ι↦ aι ∈X

∗ Hodge-∗-operator

∗ convolution

0 zero-section, as in T ∗X ∖ 0

∶ definition as in f(x) ∶= 5 or an →∶ a (defining the limit of a sequence (an)n∈N
to be called a)

[A,B] commutator AB −BA

[A]f pre-set/pre-image of the set A under the relation f , i.e. for f ⊆ X × Y ,

[A]f = {x ∈X ; ∃y ∈ A ∶ (x, y) ∈ f}
#S cardinality of the set S

∣⋅∣ absolute value or modulus in R or C, resp.

⋂ι∈I Aι prefix notation of intersections ranging all ι ∈ I

⋃ι∈I Aι prefix notation of unions ranging all ι ∈ I

B(Ω) Borel σ-algebra of a topological space Ω

∩ infix notation for intersections of sets

⋅ place holder for the argument, as in f(x, ⋅)
○ composition of relations

C set of complex numbers
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Notations 9

≅ isomorphic

∂ Fréchet derivative

∂ boundary operators as in ∂A =closure of A minus the interior of A

∂α multi-index notation

∂j partial Fréchet derivative with respect to the jth argument

∂r radial derivative, that is ∂rf(x) = ⟨gradf(x), x
∥x∥⟩

∂∂B spherical derivative, that is, on ∂BV

⋅∪ disjoint union

∆(X) see diag(X)
δdiag δ-distribution along the diagonal

δx Dirac δ-distribution centered at x

∆∂B spherical Laplacian

det determinant

detfp regularized generalized determinant

detζ generalized ζ-determinant

diag(X ×X) diagonal in X2, i.e. {(x, y) ∈X2; x = y}
dim dimension operator

div divergence

ℓp(I) set of absolutely p-summable families in CI or RI

ℓp(I,X) set of absolutely p-summable families in XI

∅ empty set

≡ equality modulo some equivalence relation

∃ “there exists”

exp exponential function with base e

∀ “for all”

F Fourier transform - (2π)−N
2

´

RN convention
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fpz finite part at a point z

Γ Γ-function

Γ canonical relation

Γ′ twisted relation, for a relation Γ

γn Stieltjes constants limN→∞ (− (lnN)n+1n+1 +∑Nk=1
(lnk)n
k
)

γn(h) generalized Stieltjes constants limN→∞ (− (ln(N+h))n+1n+1 +∑Nk=1
(ln(k+h))n

k+h )
Γui upper incomplete Γ-function

⇔ biconditional

ilcz initial Laurent coefficient at a point z

I imaginary part of a complex number

∈ “is element of” as in a ∈ A

∈ function that maps singletons to their element, that is, ∈ ({x}) = x
inf infimum

´

X
dvolX integration with respect to volX

λ Lebesgue measure

⟨S⟩ algebra generated by elements of S

⟨⋅, ⋅⟩ dual pairing in X ⊕X ′

⟨⋅, ⋅⟩X scalar product in X

⟨⋅, ⋅⟩X⊕X′ dual pairing in X ⊕X ′

ln logarithm with base e

↦ “maps to” as in x↦ f(x)
max maximum

min minimum

M Mellin transform

MT upper Mellin transform

MT lower Mellin transform
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↗ convergence from below

N set of positive integers (without zero)

N0 set of non-negative integers (with zero)

∥⋅∥X norm in a normed space X

∥⋅∥Lip (canonical) operator norm, i.e. the norm in L(X,Y ) for an operator in

L(X,Y )
oilcz order of the initial Laurent coefficient at a point z

A
T

closure/completion of A in the topology T or with respect to the topology

induced by T

⊕ topological direct sum with product topology, i.e. for topological vector

spaces X ⊕ Y is X × Y and the semi-norms are generated by pij(x, y) =
∥(pXi (x), pYj (y))∥ with some norm ∥⋅∥ on R2

order order of an operator

⊗ tensor product

P power set

prj projection to the jth argument

prV orthoprojection to the space V

∏ι∈I aι prefix notation for products ranging over all ι in an ordered set I

ψDO(X) ring of pseudo-differential operators on X

R real part of a complex number

resα residue of a log-homogeneous distribution α

resz f residue of the meromorphic function f at z

trres residue trace

̺(A) residue form

̺(A) resolvent set of an operator A

R set of real numbers
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↘ convergence from above

∖ “set minus”, as in A ∖B = {a ∈ A; a ∉ B}
sgn sign function

σ(A) spectrum of an operator A

σ(A) symbol of an operator A

σd(A) discrete spectrum of an operator A

σp(A) point spectrum of an operator A

∼ asymptotic expansion

spt support of a function

⊆ subset, as in A ⊆ B - A is a subset of B

⊊ proper subset, as in A ⊊ B ⇔ A ⊆ B ∧ A ≠ B

s
→ strong convergence

∑ι∈I aι prefix notation for sums ranging over all ι in an ordered set I

sup supremum

sym symmetrization operator, symA = A+A
∗

2

⇒ implication

Θσ spectral Θ-function

→ convergence in standard topology

tr trace

∨ logical disjunction

volX Riemannian volume measure on an orientable Riemannian manifold X

∧ logical conjunction

∧ wedge-product on the exterior algebra

∗
⇀ weak-∗-convergence

⇀ weak convergence

ζ generic ζ-function
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ζσ(A) spectral ζ-function of an operator A

ζH Riemann-Hurwitz-ζ-function

ζR Riemann-ζ-function

Z set of integers

♭ musical isomorphism

A/B quotient space of A being factorized by B

A∗ adjoint relation of a relation A ⊆ X ⊕ Y , i.e. A∗ = (−A⊥)−1 (functional

minus, i.e. (x, y) ∈ A ⇔ (x,−y) ∈ −A)

A⊥ orthogonal complement or annihilator of A

A−1 inverse of A

ad−j log-homogeous amplitude with degree of homogeneity d − j

BA set of all left-total functions f ∶ A→ B

BV BV [0,1]
BV (a, r) open ball in V centered at a with radius r

BV [a, r] closed ball in V centerd at a with radius r

C(A) C(A,R) or C(A,C) depending on the context

C(A,B) set of continuous functions f ∈ BA

C∞(A,B) set of functions in C(A,B) which can be differentiated arbitrarily often

Cω(A,B) set of analytic functions in C(A,B)
Ck(A,B) set of k-times differentiable functions in C(A,B)
C0(A,B) closure of Cc(A,B) in C(A,B)
Cc(A,B) set of compactly supported elements of C(A,B)
d exterior derivative

dvolX Riemannian volume form on an orientable Riemannian manifold X

d∗ co-derivative on exterior algebra

f ′ Fréchet derivative of the function f
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f ∶ D(f) ⊆ A→ B; x↦ f(x) a function f defined on D(f) interpreted as a subset

of A mapping each x ∈D(f) to f(x) ∈ B
f[A] post-set/image of the set A under the relation f , i.e. for f ⊆X ×Y , f[A] =

{y ∈ Y ; ∃x ∈ A ∶ (x, y) ∈ f}
Hk

dR kth de Rham cohomology group

I(X,Λ) set of Lagrangian distributions on X with respect to Λ

Im(X,Λ) set of Lagrangian distributions of order m on X with respect to Λ

Icompact(X,Λ) set of compactly supported Lagrangian distributions on X with re-

spect to Λ

kKV Kontsevich-Vishik regularized kernel

L(V ) set of bounded linear functionals on a topological vector space V

Lp(X) Lebesgue space Lp on some measure space X

m multiplication operator with the argument

P t transpose of a pseudo-differential operator P

Sm Hörmander class

Sp the set {s ∈ S; p(s)} if S is a set and p a predicate

T ∗X co-tangent bundle of a manifold X

TX tangent bundle of a manifold X

V ′ topological dual space of a topological vector space V

W s
p Sobolev space of "s-times" weakly differentiable functions in Lp

z∗ complex conjugate of z

(r
k
) binomial coefficient ∏k−1j=0

r−j
j+1



Introduction

An important class of functionals on an algebra are traces, i.e. functionals

that vanish on commutators. Traces not only give insight into the structure of a

given algebra but also allow invariants of the algebra to be calculated and, hence,

the objects the algebra is associated with. In particular, exotic traces (non-trivial

traces which are not a multiple of the classical trace on trace-class operators) have

many applications in the theory of ideals in L(H) and non-commutative geometry.

In geometric analysis, on the other hand, algebras often are modules of semi-group

representations of some geometric or topological structure, e.g. a manifold, foli-

ation, a fractal, or quantum field theory. As such, traces give rise to geometric,

topological, spectral, or physical invariants which, in turn, can be used to classify

and characterize those structures. A generic application would look like

terms depending on an operator A = terms depending on a manifold M.

The Atiyah-Singer Index Theorem, for instance, is of this form and states that the

analytical index of an elliptic differential operator between smooth vector bundles

on an finite-dimensional compact manifold coincides with its topological index.

A very interesting class of traces and trace-like functionals arise from the

notion of (operator) ζ-functions which were introduced by Ray and Singer [59,60]

using Seeley’s work on complex powers of elliptic pseudo-differential operators [68].

In mathematical physics, Hawking [37] first used these ζ-functions as a tool of

regularization for path integrals, very much in the light of regularizing divergent

15
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series

∑
n∈N

1 “=” ζR(0) = −1
2

and ∑
n∈N

n “=” ζR(−1) = − 1

12

where ζR denotes Riemann’s ζ-function. Considering Lidskii’s theorem

trA = ∑
λ∈σ(A)∖{0}

µλλ

for a trace-class operator A (where σ(A) denotes the spectrum of A and µλ the

algebraic multiplicity of the eigenvalue λ), we obtain the spectral ζ-function on C

ζσ(A)(z) ∶= ∑
λ∈σ(A)∖{0}

µλλ
−z = trA−z

by meromorphic extension provided that A has purely discrete spectrum (in Hawk-

ing’s case A is a differential operator), the series ∑λ∈σ(A)∖{0} µλλ
−z converges un-

conditionally in some open set Ω ⊆ C (usually a half-space for R(z) sufficiently

large), and the resulting function extends meromorphically to C.

Very closely related are regularizations of infinite products

∏
n∈N

an =∏
n∈N

exp(lnan) = exp(∑
n∈N

lnan) = exp (tr lnA)
if (an)n∈N is the sequence of eigenvalues of an operator A such that lnA is well-

defined and of trace-class. This is why this product is also called the determinant

detA of A. Using the spectral ζ-function, we observe

detA = exp (tr lnA)
= exp ( tr (A−z lnA)∣z=0)
= exp (−∂ (z ↦ trA−z) (0))
= exp (−ζσ(A)′(0)) .

In other words, not just ζ-functions are important but also their derivatives. Such

ζ-determinants were introduced by Ray and Singer in [59,60].
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However, considering families z ↦ Az is very restrictive (especially since for

many algebras the term Az is not well-defined and even if it is possible to define

complex powers, it may not be possible for every A). It is common, therefore, to

study more general families like z ↦ G(z)A with G(0) = 1; in particular, G(z) = gz
for some suitable operator g is a viable choice in algebras that allow complex power

for some elements. These have important applications in the theory of pseudo-

differential operators and such ζ-functions have been widely studied (cf. e.g. [67]);

in fact, the entire Laurent expansion is known for ζ-functions of families of the type

z ↦ Agz (cf. [56]).

For pseudo-differential operators with polyhomogeneous amplitudes, the ζ-

function is a meromorphic function with isolated simple poles only and its Laurent

coefficients can be used to define traces. Of particular importance are the non-

commutative residue (cf. [33, 77, 78]), which corresponds to the pole, and the

Kontsevich-Vishik trace (cf. [47,48]) which corresponds to the constant Laurent

coefficient. In order to obtain the Laurent expansion, it is necessary to take deriva-

tives which produce logarithmic terms in the amplitude. ζ-functions for such oper-

ators are still meromorphic but may fail to have only simple poles. Generalizations

to the non-commutative residue and the Kontsevich-Vishik trace for such operators

with log-terms have also been studied (cf. e.g. [51]).

While the theory for pseudo-differential operators can solve many problems,

there is still a need to replace them by Fourier Integral Operators. A prime example

would be the case of wave trace invariants. Similarly, in the realm of mathematical

physics, Radzikowski [57,58] realized the importance of the wave front set in quan-

tum field theories on curved space-time which inherently means that Fourier Inte-

gral Operators take the role pseudo-differential operators played in more “classical”

settings. Even though the theory for pseudo-differential operators is well-developed,
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for Fourier Integral Operators very little is known. Guillemin [34] showed that ζ-

functions and the residue trace exist for gauged Lagrangian distributions with poly-

homogeneous amplitudes and, thus, certain algebras of Fourier Integral Operators,

Boutet de Monvel and Guillemin have considered the class of Toeplitz operators

and generalized Szegő projectors (cf. [7,8]), and especially wave traces and related

examples have been studied (cf. e.g. [36, 79]). Whether or not there exists a

suitable extension of the Kontsevich-Vishik trace, for instance, has been unknown.

Thus, one of the aims of this thesis is to study possible extensions of the

Kontsevich-Vishik trace to Fourier Integral Operators. Since calculating the con-

stant Laurent coefficient of a meromorphic function with simple poles requires us

to calculate at least one derivative, it is necessary to consider log-terms in the am-

plitude. As to be expected, being able to handle one derivative will be sufficient to

compute all derivatives and, thus, the entire Laurent expansion.

The thesis is structured in two parts. In part I, we will calculate the Laurent

expansion and study generalizations of the Kontsevich-Vishik trace while part II

will mostly focus on integration techniques in algebras of Fourier Integral Operators.

Chapter 1 contains a short overview of the most important definitions and

theorems about Fourier Integral Operators and their algebras. In chapters 2 and

3 we will not see any Fourier Integral Operators directly, but define the notion

of gauged poly-log-homogeneous distributions, their ζ-functions, and calculate the

Laurent expansion. The definition in chapter 2 will seem rather restrictive since we

will only allow affine-linear functions as degrees of homogeneity. However, we will

see in chapter 3 that any meromorphic family of poly-log-homogeneous distributions
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has a ζ-function which is germ-equivalent to a ζ-function of a gauged poly-log-

homogeneous distribution provided none of the degrees of homogeneity is germ-

equivalent to a critical constant.

In chapter 4, we will return to Fourier Integral Operators. In fact, we will see

that gauged poly-log-homogeneous distributions are a generalization of Guillemin’s

approach in [34]. Hence, Lagrangian distributions as considered in [34] and, in

particular, pseudo-differential operators are covered. Furthermore, it includes the

operators considered by Paycha and Scott [56], that is, those cases where the entire

Laurent expansion for pseudo-differential ζ-functions is known, as well as general-

ized Toeplitz operators and Szegő projectors as studied by Boutet de Monvel and

Guillemin [7,8]. In particular, we will obtain the Laurent expansion for ζ-functions

of gauged Fourier Integral Operators which can be extended to the case of mero-

morphic germs of Fourier Integral Operators using the results of chapter 3.

Chapter 5 will be all about examples. Here, we will consider the heat trace

tr e−t∣∆∣ =
volRN /Γ (RN /Γ)
(4πt)N

2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠
on the flat torus RN /Γ where ∆ is the Dirichlet Laplacian, as well as calculate all

the Laurent coefficients of ζ-functions of gauged fractional Laplacians

ζ (s↦√∣∆∣s+α) (z) = 2ζR(−z − α),
and gauged shifted fractional Laplacians

ζ (s ↦ (h +√∣∆∣)s+α)(z) = 2ζH(−z − α;h) − hz+α

on R/2πZ where ζR denotes the Riemann-ζ-function and ζH the Riemann-Hurwitz-

ζ-function. In particular, the case of gauged fractional Laplacians is highly interest-

ing since it violates the assumptions of our Laurent expansion quite strongly in the
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following sense. As of that point, we can only consider families of Fourier Integral

Operators whose amplitudes a(z)(x, y, ξ) satisfy a(z)(x, y, ⋅) ∈ C∞(RN) for every

x, y ∈X and z ∈ C where X is the underlying manifold. This is true for the gauged

shifted fractional Laplacians but not in the non-shifted case.

However, it turns out that the “non-shifted” ζ-function is the compact limit

of the “shifted” ζ-functions sending the shift to zero. This observation not only

validates the example but is largely generalizable.1 The generalization, which we

will call mollification, will be discussed in chapter 6 and is essentially a proce-

dure showing that any gauged poly-log-homogeneous distribution which is poly-

log-homogeneous everywhere on RN ∖{0} can be written as a limit of gauged poly-

log-homogeneous distribution with regular amplitudes such that the corresponding

ζ-functions are compactly convergent. In other words, the Laurent expansion holds

in that case, as well, and we have obtained a complete extension of the pseudo-

differential case. In particular, we will now turn our focus to the Kontsevich-Vishik

trace and other formulae related to the Laurent coefficients.

In chapter 7, we will study conditions to decide whether or not the ζ-function

is holomorphic in a neighborhood of zero. In particular, this will yield a generalized

Kontsevich-Vishik trace which is unique in the sense that any other extension of

the Kontsevich-Vishik trace must coincide with this generalization modulo terms

that vanish under ζ-regularization or cannot be given by a globally defined den-

sity (provided the kernel of the operator is defined as a globally defined density).

1It is also possible to use well-known facts about extensions of log-homogeneous distributions

on RN ∖{0} to RN if validating the Laurent expansion in this specific case were the only reason for

these considerations. However, generalizing that approach would only yield the Laurent expansion

for Fourier Integral Operators with log-homogeneous amplitudes up to a holomorphic function

which has to be added. Furthermore, it is not directly applicable to gauged poly-log-homogeneous

distributions in general.
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Other than giving a positive answer to the question of a generalized Kontsevich-

Vishik trace, the main consequence is that we can obtain Guillemin’s results on the

commutator structure [34,35] from this generalized approach.

In order to actually be able to calculate the Laurent coefficients (and, thus, the

generalized Kontsevich-Vishik trace) for a given gauged Fourier Integral Operator,

chapter 8 focuses on the stationary phase approximation of the Laurent coeffi-

cients and the kernel singularity structure of Fourier Integral Operators. Here,

we will calculate the kernel singularity structure explicitly and find two “polar op-

posites” in the set of Fourier Integral Operator algebras. One class of algebras,

that also contains the Toeplitz operators and generalized Szegő projectors [7], is

closest to the pseudo-differential operator case, in the sense that the generalized

Kontsevich-Vishik trace is form-equivalent to the Kontsevich-Vishik trace in the

pseudo-differential case. In fact, we will obtain (3) and (4) in [7] and extend the

results of [7] by calculating the Kontsevich-Vishik trace. For the other class of

algebras, every term that appears in the generalized Kontsevich-Vishik trace but

not in the pseudo-differential Kontsevich-Vishik trace is non-trivial. In particular,

splitting off finitely many terms in the expansion is not possible since every single

one of them will have a contribution, in general. This is closely related to the

interesting fact that every operator in such an algebra is Hilbert-Schmidt and has

continuous kernel; a property that is independent of the Hörmander class of the

amplitude. In particular, ζ-functions of families of Fourier Integral Operators in

such algebras have no poles.

At this point, we will have extended a number of pseudo-differential results2

to Fourier Integral Operators. However, there are many others that cannot be

2e.g. (2.21) in [47], (4.11), (5.19), Lemma 5.4, Proposition 5.5, and Theorem 5.6 (ii-v) in

[51], (9) in [55], and (0.12), (0.14), (0.17), (0.18), and (2.20) in [56]
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tackled. The major obstacle here is the fact that the algebra of pseudo-differential

operators is closed with respect to holomorphic functional calculus whereas most

algebras of Fourier Integral Operators are not. Hence, any result that requires the

holomorphic functional calculus cannot be extended directly unless one finds an

independent proof that does not make use of the functional calculus. Similarly,

the mere question of replacing the phase function in an integral using holomorphic

functional calculus for pseudo-differential operators means that we do not even know

whether the new integral is well-defined in a suitable algebra of Fourier Integral

Operators. Furthermore, if we consider variational formulae (e.g. the variational

formula for the multiplicative anomaly of ζ-determinants), then we would like to be

able to integrate a family f of gauged operators and their ζ-functions ζ ○f and have

the result be independent of the order of calculation, i.e.
´

ζ ○ f = ζ (´ f). In other

words, we need to make sense of
´

f for operators, kernels, and ζ-functions such

that all these notions can be used interchangeably. Hence, developing a suitable

integration theory in algebras of Fourier Integral Operators would be highly useful

and is the focus of part II of this thesis.

Another driving factor for considering integrals of measurable families of (gauged)

Fourier Integral Operators are stochastic Fourier Integral Operators, that is, mea-

surable functions of Fourier Integral Operators or, similarly, parameter dependent

Fourier Integral Operators as they appear in the treatment of linear partial dif-

ferential equations with discontinuous/stochastic coefficients [28]. Although the

approach considered in part II is still very technically involved, it does not require

Colombeau algebras [13,26,27] and is a natural extension of parameter dependent

Fourier Integral Operators in the sense of chapters 2.1.2 and 2.2 of [63] as well as

vertical Fourier Integral Operators associated with fibrations (cf. e.g. chapter 5
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in [67]). In other words, it is a direct connection between stochastic Fourier Inte-

gral Operators and “standard” Fourier Integral Operator techniques of geometric

analysis.

Part II starts with two chapters on various integrals in topological vector

spaces. In chapter 9, we will consider Bochner- and Lebesgue-integrals, i.e. integrals

in the strong topology of the algebra with respect to measurable functions (pre-

sets of measurable sets are measurable) and strongly measurable functions (almost

everywhere sequential limits of simple functions). Since the Lp-theory in locally

convex topological vector spaces is notoriously filled with subtleties, an exhaustive

account of the main theorems tailored to our applications is contained in chapter 9.

However, these integrals have a major drawback: a priori, they take values in the

completion of the algebra but there are canonical topologies on algebras of Fourier

Integral Operators which are only quasi-complete and not complete. Luckily, with

the notion of Pettis-integral, which is a weaker notion and the subject of chapter 10,

quasi-completeness is sufficient and we can prove that the Bochner- and Lebesgue-

integrals take values in the algebra.

Chapter 11 addresses an important side effect of having an integration theory;

namely, we have a theory of measurable functions with values in an algebra of

Fourier Integral Operators which extends the theory of continuous functions with

values in an algebra of Fourier Integral Operators, i.e. parameter dependent Fourier

Integral Operators [63] as well as the idea of families of operators such as they

appear in the index theorem for families. There, we have a fibration M → B and

an operator Db on each fiber Mb such that b ↦ Db is a continuous function. For

pseudo-differential operators this is deeply connected with the family index and

the Atiyah-Jänich index bundle. In chapter 11 we will, therefore, topologize the

set of index bundles and show that the Atiyah-Jänich index bundle construction
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is a continuous map with respect to the gap-topology on the operator side. In

other words, measurable families of Fourier Integral Operators in the sense of our

integration theory yield measurable “index bundles” such that the restriction to

continuous families is compatible with the Atiyah-Jänich case.

With this prelude, chapter 12 shows an example of how to emulate the holo-

morphic functional calculus in algebras in which holomorphic functional calculus is

not defined. More precisely, we consider an example calculation that makes heavy

use of the holomorphic functional calculus on the pseudo-differential operator side,

replace the phase function, show that these new integrals are well-defined within

the new algebra, and calculate them.

Finally, in chapter 13, we will return to ζ-functions of Fourier Integral Oper-

ators. In order for our integration theory to be applicable, we will need to show

that the ζ-function as an operator from the space of gauged Fourier Integral Op-

erators to the space of meromorphic functions, or a suitable other target space,

has a quasi-complete extension. Unfortunately, a suitable topology on the space of

meromorphic functions such that the ζ-function (as an operator from the space of

gauged Fourier Integral Operators with wave front set in a given cone to the space of

meromorphic functions) can be quasi-completed remains unknown. Instead, we can

consider many subspaces of ζ and we will introduce the space of ζ-functions with

a suitable topology that almost allows ζ to be quasi-completed. Though slightly

unsatisfactory, these results still allow us to effectively use the integration theory

in conjunction with the ζ-function calculus and prove results like “the integral of

a Laurent coefficient of a ζ-function of a family of gauged Fourier Integral Opera-

tors is equal to the Laurent coefficient of the ζ-function of the integrated family of
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gauged Fourier Integral Operators”, i.e.

ˆ

kth
−Laurent coefficient (ζ(f(x))) dx = kth

−Laurent coefficient(ζ (ˆ f)) .

This will yield the possibility of considering random manifolds, e.g. a manifold

whose metric is subject to random perturbations (for instance, a stochastic process

in the space of metrics). As such we have a measurable map Ω ∋ ω ↦ ∆(ω) where

each ∆(ω) is a Laplacian on a manifold. Then, we will obtain cases in which

the expected heat trace and wave trace coefficients of a random manifold can be

expressed as coefficients of the trace of ET (t) where E denotes the expectation

value (integration in Ω) and T the pointwise heat semi-group (T (t)(ω) = e−t∣∆(ω)∣)
or wave group (T (t)(ω) =W (t)(ω) = eit√∣∆(ω)∣), respectively. In other words, for

the heat semi-group we find

trEe−t∣∆∣ =
E vol(M)
(4πt) dimM

2

+
E total curvature(M)
3(4π) dimM

2 t
dimM

2
−1 + higher order terms

under certain conditions on the random manifold. In particular, we can show that

Ee−t∣∆∣ is a smoothing operator for t ∈ R>0 and

trEe−t∣∆∣ = E tr e−t∣∆∣

holds, for instance, if ω ↦ e−t∣∆(ω)∣ is Pettis integrable. Similarly, we obtain

E (ζ(W (t)g)(0)) = ζ (E(W (t))g) (0)
where g is a gauge (the result is independent of the particular choice of g), though

we will need stronger assumptions in this case.

Example Let Γ(ω) = ×Nj=1 fj(ω)Z ⊆ RN (that is, RN /Γ(ω) has fundamental domain

×
N
j=1[0, fj(ω)]) where the fj are positive and bounded measurable functions on a

probability space (not necessarily independent). Let ∆(ω) be the Laplacian on
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RN /Γ(ω) and (T (t)(ω))t∈R≥0 the heat-semigroup. Then, it can be shown (cf. e.g.

chapter 5)

trT (t)(ω) = vol (RN /Γ(ω))(4πt)N
2

∑
γ∈Γ(ω)

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠
which can also be written as

trT (t)(ω) = vol(RN /Γ(ω))(4πt)N
2

∑
ν∈ZN

exp
⎛⎝−
∥γν(ω)∥2ℓ2(N)

4t

⎞⎠
with γν(ω) = ∑Nj=1 νjfj(ω)ej where (ej)j∈N≤N is the canonical basis of RN . In other

words, Evol (RN /Γ) is given by the ν = 0 term of the series on the right hand side.

Furthermore, the kernel κET (t) of ET (t) parametrized over [0,1]N is

κET (t)(x, y) =E ⎛⎝ ∑ν∈ZN

ˆ

RN

ei⟨x−y−γν ,ξ⟩RN (2π)−Ne−t∥ξ∥2ℓ2(N)dξ N

∏
j=1

fj
⎞⎠

= ∑
ν∈ZN

ˆ

RN

ei⟨x−y,ξ⟩RN E
⎛⎝e−i⟨γν ,ξ⟩RN

N

∏
j=1

fj
⎞⎠(2π)−Ne−t∥ξ∥

2
ℓ2(N)dξ,

i.e.

trET (t) =ˆ
[0,1]N ∑ν∈ZN

ˆ

RN

E
⎛⎝e−i⟨γν ,ξ⟩RN

N

∏
j=1

fj
⎞⎠(2π)−Ne−t∥ξ∥

2
ℓ2(N)dξdx

= ∑
ν∈ZN

ˆ

RN

E
⎛⎝
N

∏
j=1

fje
−iνjξjfj⎞⎠(2π)−Ne−t∥ξ∥

2
ℓ2(N)dξ.

Here, the ν = 0 term yields

ˆ

RN

E
⎛⎝
N

∏
j=1

fj
⎞⎠(2π)−Ne−t∥ξ∥

2
ℓ2(N)dξ =

E (∏Nj=1 fj)(4πt)N
2

.

In other words,

Evol (RN /Γ) = E ⎛⎝
N

∏
j=1

fj
⎞⎠

which is fully consistent with the trivial calculation

Evol(RN /Γ) = Evol( N×
j=1
[0, fj]) = E ⎛⎝

N

∏
j=1

fj
⎞⎠ .

∎
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The thesis also contains three appendices. Appendices B and C are mainly

background information. Since we will be using the gap-topology on multiple oc-

casions, appendix B contains an overview of the gap-topology and results on the

perturbation of the spectrum with respect to the gap-topology. In appendix C, we

introduce and prove the necessary theorem to prove that perturbed eigenvalues of

an operator with respect to the gap-topology can be written as a Puiseux series.

Appendix A, on the other hand, covers the basic theorems of classical probabil-

ity theory in algebras of Fourier Integral Operators. This is particularly interesting

since the integration theory developed in part II and its application to ζ-functions

give rise to the idea of treating more geometrical stochastic Fourier Integral Op-

erator questions in this formalism rather than introducing the entire machinery of

Colombeau algebras. Hence, we would like to make sure that such a probability the-

ory in algebras of Fourier Integral Operators is sufficiently rich. In fact, appendix

A contains most major theorems one would expect to encounter in an introduction

to stochastics, including versions of the strong and weak law of large numbers and

a Lindeberg type central limit theorem.
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Part I

The Laurent expansion of Fourier

Integral Operator ζ-functions and a

generalized Kontsevich-Vishik trace



CHAPTER 1

Fourier Integral Operators of trace-class

We will begin this chapter with a short account on algebras of Fourier Integral

Operators associated with canonical relations. For details and proofs, please, refer

to chapter 25 in [38], chapters 2 and 4 in [20], as well as [39].

Unless explicitly stated otherwise, let X be an orientable, compact, connected,

finite dimensional Riemannian manifold without boundary and T ∗0X ∶= T
∗X ∖0 the

co-tangent bundle without the zero-section.

Definition 1.1. Let Γ ⊆ T ∗0X × T
∗
0X be a relation satisfying

(i) Γ is symmetric, i.e. ∀(p, q) ∈ Γ ∶ (q, p) ∈ Γ,

(ii) Γ is transitive, i.e. ∀(p, q), (q, r) ∈ Γ ∶ (p, r) ∈ Γ,

We will call any such Γ a canonical relation. Furthermore, we will assume that all

canonical relations satisfy

(iii) the composition Γ ○ Γ is clean, i.e. Γ × Γ intersects T ∗X × diag(T ∗X ×
T ∗X)×T ∗X in a manifold whose tangent plane is precisely the intersection

of the tangent planes of Γ ×Γ and T ∗X × diag(T ∗X × T ∗X)×T ∗X where

diag(T ∗X × T ∗X) ∶= {(x, y) ∈ T ∗X × T ∗X ; x = y},
(iv) the projection pr1 ∶ Γ → T ∗X ; (p, q) ↦ p is proper, i.e. pre-sets of

compacta are compact.

We will call the set

Γ′ ∶= {((x, ξ), (y, η)) ∈ T ∗0X × T ∗0X ; ((x, ξ), (y,−η)) ∈ Γ}
30
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a twisted canonical relation.

Remark The properties (iii) and (iv) will imply that the set of Fourier Integral

Operators we will associate with these canonical relations form an associative alge-

bra.

∎

Definition 1.2. Let N ∈ N. A function

ϑ ∈ C (X ×X ×RN) ∩C∞ (X ×X × (RN ∖ {0}))
is called a phase function if and only if it is positively homogeneous of degree 1 in

the third argument, i.e.

∀x, y ∈X ∀ξ ∈ RN ∀λ ∈ R>0 ∶ ϑ(x, y, λξ) = λϑ(x, yξ).
Definition 1.3. Let U ⊆ Rn be open, N ∈ N, and m ∈ R. The Hörmander class

Sm(U ×U ×RN) is defined as the set of all a ∈ C∞(U ×U ×RN) such that for every

K ⊆compact U
2 and all multi-indices α,β, γ there exists a constant c ∈ R>0 such that

∀(x, y) ∈K ∀ξ ∈ RN ∖BRN (0,1) ∶ ∣∂α1 ∂β2 ∂γ3 a(x, y, ξ)∣ ≤ c(1 + ∥ξ∥ℓ2(N))m−∥γ∥ℓ1(N)

holds.

Definition 1.4. A Fourier Integral Operator on X is a linear operator

A ∶ C∞c (X)→ C∞c (X)′

whose Schwartz kernel k ∈ C∞c (X×X)′ is a locally finite sum of local representations

of the form

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ,
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i.e.

∀ϕ,ψ ∈ C∞c (X) ∶ A(ϕ)ψ = n

∑
i=1

ˆ

X2

ki(x, y)ϕ(y)ψ(x)dvolX2(x, y),
where, for each localization U ⊆ X, ϑ is a phase function and a is an element of

some Hörmander class Sm(U ×U ×RN). a is also called an amplitude or symbol.

Definition 1.5. A Fourier Integral Operator A whose Schwartz kernel k ∈

C∞c (X ×X)′ can be written in the form

k(x, y) = ˆ
RdimX

ei⟨x−y,ξ⟩ℓ2(dimX)a(x, y, ξ)dξ
is called a pseudo-differential operator.

Remark It is also possible to consider (truly) globally defined Fourier Integral Op-

erators (cf. e.g. [49,50,62]). However, we will not only want to work with Fourier

Integral Operators, but specifically gauged1 Fourier Integral Operators. While

gauging locally is easy (by replacing the amplitude a with the family â(z)(x, y, ξ) =
∥ξ∥zℓ2(N) a(x, y, ξ), for instance) and can be very advantageous (cf. M-gauges; Def-

inition 2.10 and Corollary 2.11), finding and working with global gauges is much

more difficult (though the rewards may be worth it). Hence, we will assume the

more general stance and allow gauged Fourier Integral Operators to have kernels

which are not given by globally defined densities.

Incidentally, this also implies that most of our calculations can be performed

locally. In other words, all integrals over the underlying manifold X are to be

understood as locally finite sums of integrals with respect to the respective charts.

1The notion of gauged Fourier Integral Operators will be defined via the notion of gauged

poly-log-homogeneous distributions in chapter 2 and their application to gauged Lagrangian dis-

tributions in chapter 4. More precisely, a family of Fourier Integral Operators is gauged if and

only if it corresponds to a gauged poly-log-homogeneous distribution.
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In particular, since we will generally assume X to be compact, these locally finite

sums are, in fact, finite.

∎

Definition 1.6. Let ϑ ∈ C(X ×X ×RN)∩C∞(X ×X × (RN ∖{0})) be a phase

function. Then, we call

C(ϑ) ∶={(x, y, ξ) ∈ X ×X × (RN ∖ {0}) ; ∂3ϑ(x, y, ξ) = 0}
the critical set of ϑ.

ϑ is called non-degenerate if and only of the family of differentials

(d∂3,jϑ(x, y, ξ))j∈N≤N
is linearly independent for every (x, y, ξ) ∈ C(ϑ) where ∂3,j denotes the derivative

with respect to the jth component of the third argument.

Remark Note that the singular support, that is, the complement of the largest

open set on which a distribution is C∞, of

C∞c (X2) ∋ ϕ↦ ˆ
X2

ˆ

RN

eiϑ(x,y,ξ)a(x, y, ξ)ϕ(x, y)dξdvolX2(x, y) ∈ C
is contained in the image of C(ϑ) ∋ (x, y, ξ) ↦ (x, y) and the non-degeneracy con-

dition implies that C(ϑ) is a manifold of dimension 2dimX (cf. (2.3.11) in [20]).

∎

A closely related concept of “nice points” is the notion of regular directed points

(cf. page 92 in [61]) and the wave front set.

Definition 1.7. (i) Let u ∈ C∞c (Rn)′. A point (x, ξ) ∈ Rn×(Rn ∖ {0}) is

called a regular directed point for u if and only if there exist neighborhoods
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U of x and V of ξ, as well as g ∈ C∞c (Rn) with g∣U = 1, such that

∀m ∈ R>0 ∃c ∈ R>0 ∀p ∈ V ∀λ ∈ R≥0 ∶ ∣F (gu)(λp)∣ ≤ c(1 + ∥λ∥ℓ2(n))−m

where F denotes the Fourier transform.

(ii) Let u ∈ C∞c (X)′. A point (x, ξ) ∈ T ∗0X is called a regular directed point for

u if and only if (x, ξ) is a regular directed point with respect to a chart.

(iii) Let u ∈ C∞c (X)′. Then, we define the wave front set WF (u) of u as

WF (u) ∶= {(x, ξ) ∈ T ∗0X ; (x, ξ) is not a regular directed point for u} .
(iv) Let Γ ⊆ T ∗X × T ∗X be a closed cone. Then, we define the Hörmander

space

D ′Γ ∶= {v ∈ C∞c (X)′; WF (v) ⊆ Γ}.

Remark (i) In other words, a point (x, ξ) is a regular directed point if the

localization of the distribution near x has a Fourier transform which ap-

proaches zero faster than any polynomial in an open cone containing ξ.

(ii) Hörmander defined the spaces D ′Γ with a pseudo-topology, that is, he de-

fined what convergent sequences and their limits are in these spaces. In

general, this does not imply that there is an actual topology consistent

with a pseudo-topology. In this case, however, there are multiple “nat-

ural” topologies on the Hörmander spaces D ′Γ, i.e. the pseudo-topology

is generated by multiple different topologies. These have been studied in

[15–17].

We will have a brief look at these topologies in chapter 12 and 13;

though it should be noted that the “natural” topologies are at least quasi-

complete (cf. Proposition 29 in [17]), i.e. they are sufficiently nice for us
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to talk about Pettis-integrability and we do not need to dive into their

topological properties too deeply.

∎

Definition 1.8. Let Λ ⊆ T ∗(X2)∖0 be a Lagrangian manifold2 and A a Fourier

Integral Operator of the form A = ∑nj=1Aj where Aj has the kernel

ˆ

R
Nj

eiϑj(x,y,ξ)aj(x, y, ξ)dξ
such that each phase function ϑj is non-degenerate and defined in an open, conic

subset Uj ⊆open X ×X × (RNj ∖ {0}),
Uj ∩C(ϑ) ∋ (x, y, ξ) ↦ (x, y, ∂1ϑ(x, y, ξ), ∂2ϑ(x, y, ξ))

is a diffeomorphism onto an open subset UΛ
j ⊆open Λ,3 and aj ∈ S

m+dimX−Nj
2 (X ×

X ×RNj) with

sptaj ⊆ {(x, y, tξ) ∈X ×X ×RNj ; (x, y, ξ) ∈K ∧ t ∈ R>0}
for some K ⊆compact Uj. Then, we say A is an element of Im(X ×X,Λ) (or more

precisely, A has a kernel in Im(X ×X,Λ)).

Let Γ ⊆ T ∗0X ×T
∗
0X be a canonical relation such that Γ′ is a Lagrangian mani-

fold. Let σ be the canonical 2-form in T ∗X , then, Γ′ being a Lagrangian manifold

in T ∗X ×T ∗X with respect to σ⊗σ is equivalent to Γ being a Lagrangian manifold

2that is, Λ is a symplectic sub-manifold of dimension dimX which is, furthermore, isotropic,

i.e. the symplectic form restricts to zero. A manifold is called symplectic if it is equipped with a

closed non-degenerate 2-form. A bi-linear form w on a finite dimensional vector space V is called

non-degenerate if and only if V ∋ y ↦ (x↦ w(x, y)) ∈ V ′ is an isomorphism.
3Note that the image of C(ϑ) ∋ (x, y, ξ) ↦ (x, y,−∂1ϑ(x, y, ξ),−∂2ϑ(x, y, ξ)) contains the

wave front set of the kernel of A; cf. Theorem 24 in [9].
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in T ∗X × T ∗X with respect to σ ⊗ (−σ). If Γ is (the graph of) a C∞(T ∗X,T ∗X)-
function, Γ being conic means that Γ is homogeneous of degree one. (see also

chapter 4.2 in [20])

Definition 1.9. Let Γ ⊆ T ∗0X × T
∗
0X be a canonical relation. Γ is called

a homogeneous canonical relation if and only if Γ is a Lagrangian manifold with

respect to σ ⊗ (−σ).
Definition 1.10. Let Γ ⊆ T ∗0X × T

∗
0X be a homogeneous canonical relation.

Then, we call

AΓ ∶= ⋃
m∈R

Im(X ×X,Γ′)
the algebra of Fourier Integral Operators associated with Γ.

Remark Aside from the fact that one might relax the conditions from aj = 0

outside of {(x, y, tξ) ∈ X ×X × RNj ; (x, y, ξ) ∈ K ∧ t ∈ R>0} in Definition 1.8 to

aj ∈ S
−∞ = ⋂m∈R Sm, all the assumptions above are more or less necessary for AΓ

to form an associative algebra; cf. Theorem 2.4.1 in [20] and Example 1 in [35].

It should also be noted that A ∈ AΓ implies kA ∈ D
′
Γ if kA is the Schwartz

kernel of A (cf. Theorem 2.4.1 in [20]).

∎

Definition 1.11. Let Γ ⊆ T ∗0X × T
∗
0X be a homogeneous canonical relation.

Then, we call Γ canonically idempotent if and only if pr2 ∶ Γ → T ∗X ; (p, q) ↦ q

is proper (pre-sets of compacta are compact), pr2[Γ] ⊆ T ∗X is an embedded sub-

manifold, and pr2 ∶ Γ→ T ∗X is a fibration4 of Γ over pr2[Γ].
4A fibration is a continuous map π ∶ X → Y between topological spaces X and Y satisfying the

homotopy lifting property for every topological space Z, i.e. for any homotopy f ∶ Z × [0,1] → Y

and f0 ∶ Z → X such that f(⋅,0) = π ○ f0 there exists a homotopy f̃ ∶ Z × [0,1] → X such that

f = π ○ f̃ and f0 = f̃(⋅,0).
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Remark Note that Γ being canonically idempotent implies that AΓ is a ∗-algebra;

cf. Definition 3.1 in [35] and Theorem 4.2.1 in [39].

∎

Lemma 1.12. Let A be a Fourier Integral Operator with kernel k ∈ Im(X×X,Λ).
If m < −dimX, then A is of trace-class.

Proof. Theorem 1.1 in [19] states that A ∈ L(L2(X)) is of trace-class if k is

in the Sobolev space W s
2 (X ×X) for some s > dimX

2
. Furthermore, Theorem 4.4.7

in [20] implies Im(X×X,Λ) ⊆W s
2 (X×X) provided m < −dimX

2
−s (we assume that

X is compact). In other words, m < −dimX implies Im(X ×X,Λ) ⊆ W s
2 (X ×X)

for some s > dimX
2

and, hence, the assertion.

�

In terms of the amplitude a ∈ Sm(X×X×RN), the valuem = −N is critical since

for m < −N the trace integral (cf. Lemma 1.15) is well-defined. This follows from

the fact that the kernel k is in Cl(X ×X) provided that m < −N − l; cf. equation

(2.6) in [34]. However, we will only need continuity here since k ∈ C(X×X) implies

k ∈ L2(X ×X) because X is compact. This is interesting in its own right because

integral operators in L(L2(X)) are Hilbert-Schmidt if and only if their kernels are

in L2(X ×X); cf. e.g. Example 11.12 in [18].

Lemma 1.13. Let

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
be a localization of the Schwartz kernel of an A ∈ AΓ with a ∈ Sm(U ×RN) for some

m < −N and U ⊆open X2. Then, k ∈ C(U).
Proof. Let ((xj , yj))j∈N ∈ UN , (xj , yj) →∶ (x, y) ∈ U , and ∀j ∈ N ∶ aj ∶=

eiϑ(xj,yj ,⋅)a(xj , yj , ⋅). By compactness of X and definition of Sm, there exists a
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measurable v ∶ RN → R such that

∀(x, y) ∈ U ∀ξ ∈ RN ∶ ∣a(x, y, ξ)∣ ≤ v(ξ)
and

∃c ∈ R>0 ∀ξ ∈ R
N
∖BRN (0,1) ∶ v(ξ) ≤ c(1 + ∥ξ∥ℓ2(N))m .

In other words, v ∈ L1(RN) and (aj)j∈N is bounded by v. Furthermore, (aj)j∈N
converges pointwise to eiϑ(x,y,⋅)a(x, y, ⋅) and (by Lp-dominated convergence; cf. e.g.

Theorem 12.9 in [65]) in L1, as well. Hence,

eiϑa ∈ C (U,L1 (RN)) .
Using the Fourier transform F and the Dirac distribution δ0 at zero, we obtain

k(x, y) =ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
=(2π)N

2 (2π)−N
2

ˆ

RN

e−i⟨0,ξ⟩RN eiϑ(x,y,ξ)a(x, y, ξ)dξ
=(2π)N

2 F (eiϑ(x,y,⋅)a(x, y, ⋅)) (0)
=(2π)N

2 (δ0 ○F ) (eiϑ(x,y,⋅)a(x, y, ⋅)) .
Since (2π)N

2 (δ0 ○F ) is a continuous linear functional on L1(RN) and eiϑa depends

continuously on (x, y) ∈ U , we obtain the assertion.

�

Definition 1.14. Let A be an algebra of Fourier Integral Operators on X.

Then, we call the sub-algebra

Aclassical
∶= {A ∈ A; A is of trace-class and has continuous Schwartz kernel}

the classical sub-algebra of A.
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Lemma 1.15. Let A be an algebra of Fourier Integral Operators and A ∈

Aclassical. Then,

trA =

ˆ

X

kA(x,x)dvolX(x).
Proof. The integral

´

X
kA(x,x)dvolX(x) is well-defined since kA is continu-

ous and X compact. Let (eι)ι∈I an orthonormal basis of L2(X). Then,

∀ι, i ∈ I ∶ ψι,i ∶ X
2 → C, (x, y) ↦ eι(x)ei(y)∗ volX2-almost everywhere

defines an orthonormal basis (ψι,i)ι,i∈I in L2(X2). In particular,

kA = ∑
ι,i∈I

αι,iψι,i

converges in L2(X2) and, using a Friedrichs’ mollifier5 ϕε → δdiag (ε ↘ 0) on X2

where

∀ϕ ∈ C∞c (X2) ∶ δdiag(ϕ) = ˆ
X

ϕ(x,x)dvolX(x),
we obtain

ˆ

X

kA(x,x)dvolX(x) = lim
ε↘0

ˆ

X2

kAϕεdvolX2

= lim
ε↘0

ˆ

X2

∑
i,j∈I

αi,jψi,jϕεdvolX2

= lim
ε↘0
∑
i,j∈I

αi,j

ˆ

X2

ψi,jϕεdvolX2

= ∑
i,j∈I

αi,j

ˆ

X

ei(x)ej(x)∗dvolX(x)
=∑
j∈I

αj,j

ˆ

X

ej(x)ej(x)∗dvolX(x)
=∑
j∈I

αj,j

5ϕε = χε ∗ δdiag in local trivializations for some family (χε)ε∈(0,1) satisfying that there exists

a χ ∈ C∞c (R2dimX) with
´

R2dimX χ(x)dx = 1, χε(x) = ε−nχ(ε−1x) and limε↘0 χε = δ0 in the sense

of distributions.
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= ∑
ι,i,j∈I

αι,i

ˆ

X

eι(x)ej(x)∗dvolX(x)ˆ
X

ej(y)ei(y)∗dvolX(x)
= ∑
ι,i,j∈I

ˆ

X2

αι,ieι(x)ei(y)∗ej(y)ej(x)∗dvolX2(x, y)
=∑
j∈I

ˆ

X2

kA(x, y)ej(y)ej(x)∗dvolX2(x, y)
=∑
j∈I

⟨ej,ˆ
X

kA(⋅, y)ej(y)dvolX(y)⟩
L2(X)

=∑
j∈I

⟨ej,Aej⟩L2(X)

= trA

since ∑j∈I ⟨ej ,Aej⟩L2(X) is absolutely convergent.

�

Hence, decreasing the order of a Fourier Integral Operator sufficiently yields a

trace-class operator. Thus, the idea is to replace a Fourier Integral Operator by a

holomorphic family of Fourier Integral Operators such that the family maps into

the trace-class operators for some open subset of the domain of holomorphy (which

is assumed to be connected). In chapter 2, however, we will consider a different

class of families of distributions which will turn out to be suitable to treat certain

algebras AΓ.



CHAPTER 2

Gauged poly-log-homogeneous distributions

In this chapter, we consider distributions of the form

ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ)

where M is an orientable,1 compact, finite dimensional manifold without boundary

and α is a holomorphic family given by an expansion2

α = α0 +∑
ι∈I

αι

where I ⊆ N, α0(z) ∈ L1(R≥1 ×M) in an open neighborhood of {z ∈ C; R(z) ≤ 0}
and each of the αι(z) is log-homogeneous with degree of homogeneity dι + z ∈ C

and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ C∞(C,CM) ∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι+z(ln r)lι α̃ι(z)(ν).
We will furthermore assume the following.

1Replacing α(z)(r, ξ)dvolR≥1×M (r, ξ) by some family dω(z)(r, ξ) allows us to also treat non-

orientable manifolds but we will not need this in the following and choose orientability for the

sake of simplicity.
2This is not meant to be an asymptotic expansion but an actual identity. However, for a

classical symbol a with asymptotic expansion ∑j∈N aj where aj is homogeneous of degree m − j

for some m ∈ C, it is possible to choose a finite set I = {0,1, . . . , J} and α0 will correspond to

a −∑J
j=0 am−j .

This is completely analogous to the Kontsevich-Vishik trace, i.e. splitting off finitely many

terms with large degrees of homogeneity while the rest is integrable. The only difference is that

those terms (that have been split off) might not regularize to zero anymore.

41
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● The family (R(dι))ι∈I is bounded from above. (Note, we do not require

R(dι)→ −∞. ∀ι ∈ I ∶ R(dι) = 42 is entirely possible.)

● The map I ∋ ι↦ (dι, lι) is injective.

● There are only finitely many ι satisfying dι = d for any given d ∈ C.

● The family ((dι − δ)−1)ι∈I is in ℓ2(I) for any δ ∈ C ∖ {dι; ι ∈ I}.
● Each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).3

Any such family α will be called a gauged poly-log-homogeneous distribution. Note

that the generic case (that is, applications to Fourier Integral Operators with am-

plitudes of the form a ∼ ∑j∈N
0
am−j) implies that I is a finite set and all these

conditions are, therefore, satisfied.

Example Let A(z) be a pseudo-differential operator on an N -dimensional man-

ifold X whose amplitude has an asymptotic expansion a(z) ∼ ∑j∈N aj(z) where

each aj(z) is homogeneous of degree m− j + z. Then, we may want to evaluate the

meromorphic extension of

trA(z) =ˆ
X

ˆ

RN

a(z)(x,x, ξ)dξdvolX(x)
=

ˆ

X

ˆ

R≥1×∂BRN

a(z)(x,x, ξ)dξdvolX(x)
+

ˆ

X

ˆ

B
RN
(0,1)

a(z)(x,x, ξ)dξdvolX(x)
at zero. The poly-log-homogeneous distribution here is

ˆ

X

ˆ

R≥1×∂BRN

a(z)(x,x, ξ)dξdvolX(x).(∗)

3Unconditional convergence of ∑ι∈I α̃ι(z) in L1(M) may also be replaced by the slightly

weaker, though more artificial, condition ∑ι∈I ∥α̃ι(z)∥2L1(M)
<∞.

However, we need at least conditional convergence or ∑ι∈I αι would not make sense, and

having only conditional convergence (rather than unconditional convergence) would give rise to

complications later on, as we will split off critical terms and treat them separately.
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At this point, we have many possibilities to write it (∗) in the form

ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ).

The easiest choice is M ∶= ∂BRN and I ∶= {j ∈ N; R(m) − j ≥ −N}. This ensures

that

ˆ

X

a(z)(x,x, ξ) −∑
j∈I

aj(z)(x,x, ξ)dvolX(x)

is integrable in R≥1 × ∂BRN . Furthermore, having a finite I ensures that all of the

conditions above are satisfied and α can be defined by

α0(z)(r, ν) ∶=ˆ
X

a(z)(x,x, rν) −∑
j∈I

aj(z)(x,x, rν)dvolX(x)

and

αj(z)(r, ν) ∶=ˆ
X

aj(z)(x,x, rν)dvolX(x) = rm−j+z ˆ
X

aj(z)(x,x, ν)dvolX(x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶α̃j(z)(ν)

for j ∈ I.

∎

Remark Note that these distributions are strongly connected to traces of Fourier

Integral Operators, as well. In fact, Guillemin’s argument in [34] relies heavily on

the fact that the inner products ⟨u(z), f⟩ at question are integrals of the form

ˆ

R≥1×∂BRN

α(z)(ξ)dvolR≥1×∂BRN
(ξ)

where α is a gauged polyhomogeneous distribution; cf. equation (2.15) in [34].

∎
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If the conditions above are satisfied, we obtain formally

ˆ

R≥1×M
α(z)dvolR≥1×M =

ˆ

R≥1×M
α0(z)dvolR≥1×M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶τ0(z)∈C

+∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

=τ0(z)+∑
ι∈I

ˆ

R≥1

ˆ

M

αι(z)(̺, ν)̺dimMdvolM(ν)d̺
=τ0(z)+∑

ι∈I

ˆ

R≥1

̺dimM+dι+z (ln̺)lι d̺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶cι(z)

ˆ

M

α̃ι(z)dvolM´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶resαι(z)∈C

=τ0(z)+∑
ι∈I

cι(z) resαι(z)
which now needs to be justified.

Lemma 2.1. cι(z) = (−1)lι+1lι! (dimM + dι + z + 1)−(lι+1)

Proof. Let Γui be the upper incomplete Γ-function given by the meromorphic

extension of

Γui(s, x) ∶= ˆ ∞
x

ts−1e−tdt (R(s) > 0, x ∈ R≥0).
Γui satisfies Γui(s,0) = Γ(s) where Γ denotes the (usual) Γ-function, Γ(s,∞) = 0,
and ∂2Γui(s, x) = −xs−1e−x. Then, we obtain

(R>0 ∋ y ↦ −Γui(l + 1,−(d + 1) lny)(−(d + 1))l+1 )′ (x) =−∂2Γui(l + 1,−(d + 1) lnx)−(d+1)x(−(d + 1))l+1
=
(−(d + 1) lnx)le(d+1) lnx(−(d + 1))lx
=
(lnx)lxd+1

x

=xd(lnx)l.
Hence, for d < −1,

ˆ

R≥1

xd(lnx)ldx = (−1)l+1l!(d + 1)l+1



2. GAUGED POLY-log-HOMOGENEOUS DISTRIBUTIONS 45

which yields

cι(z) =ˆ
R≥1

̺dimM+dι+z (ln ̺)lι d̺ = (−1)lι+1lι!(dimM + dι + z + 1)lι+1
in a neighborhood of R<−dimM−dι−1

(because any real analytic function can be

extended locally to a holomorphic function) and, thence, by meromorphic extension

everywhere in C ∖ {−dimM − dι − z − 1}.
�

Since the resαι are holomorphic functions, we now know that ∑ι∈I cι resαι

is a meromorphic function with isolated poles only (if it converges), because the

assumption ((dι + δ)−1)ι∈I ∈ ℓ2(I) implies that there may be at most finitely many

dι in any compact subset of C.

Lemma 2.2. For every z ∈ C ∖ {−dimM − dι − 1; ι ∈ I}, ∑ι∈I cι(z) resαι(z)
converges absolutely.

Proof. By assumption, (cι(z))ι∈I ∈ ℓ2(I) and ∑ι∈I α̃ι(z) converges uncondi-

tionally in L1(M). This allows us to utilize the following theorem.

Theorem (Theorem 4.2.1 in [43]) Let p ∈ R≥1, q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
2 , p ∈ [1,2]
p , p ∈ R>2

, and ∑j∈N xj

converges unconditionally in Lp. Then, ∑j∈N ∥xj∥qLp
converges.

Hence,

∑
ι∈I

∣cι(z) resαι(z)∣ ≤∑
ι∈I

∣cι(z)∣ ∥α̃ι(z)∥L1(M)

= ∥(∣cι(z)∣ ∥α̃ι(z)∥L1(M))ι∈I∥ℓ1(I)
= ∥(∣cι(z)∣)ι∈I∥ℓ2(I) ∥(∥α̃ι(z)∥L1(M))ι∈I∥ℓ2(I)
= ∥(cι(z))ι∈I∥ℓ2(I)

√
∑
ι∈I

∥α̃ι(z)∥2L1(M) <∞.

�
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Definition 2.3. Let α be a gauged poly-log-homogeneous distribution. Then,

we define the ζ-function of α to be the meromorphic extension of

ζ(α)(z) ∶= ˆ
R≥1×M

α(z)dvolR≥1×M ,

i.e.

ζ(α)(z) = τ0(z) +∑
ι∈I

(−1)lι+1lι! resαι(z)(dimM + dι + z + 1)lι+1 .

Now, that we know ζ(α) exists as a meromorphic function, we will calculate

its Laurent expansion.

Definition 2.4. Let f be a meromorphic function defined by its Laurent ex-

pansion ∑n∈Z an(z − z0)n at z0 ∈ C without essential singularity at z0, that is,

∃N ∈ Z ∀n ∈ Z≤N ∶ an = 0. Then, we define the order of the initial Laurent

coefficient oilcz0(f) of f at z0 to be

oilcz0(f) ∶=min{n ∈ Z; an ≠ 0}

and the initial Laurent coefficient ilcz0(f) of f at z0

ilcz0(f) ∶= aoilcz0(f).

Lemma 2.5. Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I′ βι be two gauged poly-log-

homogeneous distributions with α(0) = β(0) and resαj(0) ≠ 0 if lj is the maxi-

mal logarithmic order with dj = −dimM − 1. Then, oilc0(ζ(α)) = oilc0(ζ(β)) and

ilc0(ζ(α)) = ilc0(ζ(β)).
In other words, oilc0(ζ(α)) and ilc0(ζ(α)) depend on α(0) only and are, thus,

independent of the gauge.
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Proof. Since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)
z

is a gauged

poly-log-homogeneous distribution again. Furthermore,

oilc0(ζ(γ)) ≥min{oilc0(ζ(α)),oilc0(ζ(β))} =∶ −l = −lj − 1
holds because each pair (dι, lι) in the expansion of γ appears in at least one of the

expansions of α or β. This implies that z ↦ zlζ(γ)(z) = zl−1 (ζ(α)(z) − ζ(β)(z))
is holomorphic at zero (equality holds for R(z) sufficiently small and, thence, in

general by meromorphic extension). Hence, the highest order poles of ζ(α) and

ζ(β) at zero must cancel out which directly implies oilc0(ζ(α)) = oilc0(ζ(β)) and

ilc0(ζ(α)) = ilc0(ζ(β)).
�

Lemma 2.6. Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I′ βι be two gauged poly-log-

homogeneous distributions with α(0) = β(0) and ∀ι ∈ I ∪ I ′ ∶ dι ≠ −dimM − 1.

Then, ζ(α)(0) = ζ(β)(0).
Proof. Again, since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)

z
is a

gauged poly-log-homogeneous distribution and oilc0(ζ(γ)) ≥ 0. Hence

ζ(α)(0) − ζ(β)(0) = res0 (z ↦ ζ(α)(z) − ζ(β)(z)
z

) = res0 ζ(γ) = 0
where res0 denotes the residue of a meromorphic function at zero.

�

Definition 2.7. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distri-

bution and Iz0 ∶= {ι ∈ I; dι = −dimM − 1 − z0}. Then, we define

fpz0(α) ∶= α − ∑
ι∈Iz0

αι = α0 + ∑
ι∈I∖Iz0

αι.

Corollary 2.8. ζ(fp0α)(0) is independent of the chosen gauge.
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Definition 2.9. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distri-

bution and resαι ≠ 0 for some ι ∈ I0. Then, we say ζ(α) has a structural singularity

at zero.

Remark Note that the pole structure of ζ(α) does not only depend on the resαι

but also on derivatives of α. A structural singularity is a property of α(0) in the

sense that it cannot be removed under change of gauge. More precisely, choosing

β such that α(0) = β(0) does not imply that the principal part of the Laurent

expansion of ζ(α) − ζ(β) vanishes. However, if all resαι vanish (ι ∈ I0), then there

exists a β with α(0) = β(0) such that ζ(β) is holomorphic in a neighborhood of

zero (e.g. β being M-gauged; see below). Having a non-vanishing resαι for some

ι ∈ I0, on the other hand, implies that every ζ(β) with α(0) = β(0) has a pole at

zero.

∎

Definition 2.10. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution. If all α̃ι are independent of the complex argument, i.e. αι(z)(r, ν) =
rdι+z(ln r)lι α̃ι(0)(ν) = rzαι(0)(r, ν), then we call this choice of gauge an M-gauge

(or Mellin-gauge).

Remark TheM-gauge for Fourier Integral Operators can always be chosen locally.

∎

Corollary 2.11. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution.

(i) If α is M-gauged, then all resαι are constants.

(ii) If resαι(0) = 0 for some ι ∈ I, then the corresponding pole in ζ(α) can be

removed by re-gauging.
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(iii) If resαι(0) ≠ 0 for some ι ∈ I0, then the corresponding pole in ζ(α) in

independent from the gauge. In particular, resαι(0) does not depend on

the gauge.

Proof. (i) trivial.

(ii) The corresponding pole contributes the term (−1)lι+1lι! resαι(z)(dimM+dι+z+1)lι+1 to the ex-

pansion of ζ(α). Choosing anM-gauge yields

(−1)lι+1lι! resαι(z)(dimM + dι + z + 1)lι+1 =
(−1)lι+1lι! resαι(0)(dimM + dι + z + 1)lι+1 = 0

by holomorphic extension.

(iii) Lemma 2.5 shows that oilc0ζ(αι) and ilc0(ζ(αι)) are independent of the

gauge. Since, resαι(0) ≠ 0, we obtain oilc0ζ(αι) = −lι − 1 and

resαι(0) = ilc0ζ(αι)(−1)lι+1lι! .
�

Remark Suppose we have a gauged distribution α such that

∀z ∈ C ∀(r, ξ) ∈ R≥1 ×M ∶ α(z)(r, ξ) = rzα(0)(r, ξ)
is satisfied and we artificially continue α by zero to R>0 ×M . Then,

ˆ

R>0×M
α(z)(r, ξ)dvolR>0×M(r, ξ) =

ˆ

R>0

rdimM+z

ˆ

M

α(0)(r, ξ)dvolM(ξ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A(r)

dr

=M(A)(dimM + z + 1)
holds where Mf(z) = ´

R>0
tz−1f(t)dt for f ∶ R>0 → R measurable, whenever the

integral exists, denotes the Mellin transform. Hence, the name “M-gauge”.

∎
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Proposition 2.12 (Laurent expansion of ζ(fp0α)). Let α = α0 +∑ι∈I αι be a

gauged poly-log-homogeneous distribution with I0 = ∅. Then,

ζ(α)(z) = ∑
n∈N

0

ζ(∂nα)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Let β = β0 + ∑ι∈I′ βι be a gauged poly-log-homogeneous distribution without

structural singularities at zero, i.e. ∀ι ∈ I ′0 ∶ resβι = 0. Then, there exists a gauge

β̂ such that

ζ (β̂) (z) = ∑
n∈N

0

ζ(∂nfp0β)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Proof. The first assertion is a direct consequence of the facts that the nth

Laurent coefficient of a holomorphic function f is given by ∂nf(0)
n!

and

∂nζ(α) = ∂n ˆ
R≥1×M

α dvolR≥1×M =

ˆ

R≥1×M
∂nα dvolR≥1×M = ζ(∂nα).

Now,

ζ (β̂) (z) = ∑
n∈N

0

ζ(∂nfp0β)(0)
n!

zn

follows from the fact that we may choose anM-gauge for βι with ι ∈ I ′0 which yields

ζ (β̂) = ζ(fp0β).
�

M-gauging will, furthermore, yield the following theorem which can be very

handy with respect to actual computations. In particular, the fact that we can

remove the influence of higher order derivatives of αι with critical degree of homo-

geneity will imply that the generalized Kontsevich-Vishik density (which we will
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define in chapter 7) is globally defined, i.e. for M-gauged families with polyhomo-

geneous amplitudes the residue trace density and the generalized Kontsevich-Vishik

density both exist globally (provided the kernel patches together).

Theorem 2.13. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distri-

bution. Then, there exists a gauge α̂ such that

ζ (α̂) (z) = ∑
ι∈I0

(−1)lι+1lι! resαι(0)
zlι+1

+ ∑
n∈N

0

ζ(∂nfp0α)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

Proof. This follows directly from Proposition 2.12 using an M-gauge for αι

with ι ∈ I0.

�

Remark In general, there will be correction terms arising from the Laurent ex-

pansion of resαι. Incorporating these yields

ζ(α)(z) =∑
ι∈I0

((−1)lι+1lι! resαι(0)
zlι+1

+

lι

∑
n=1

(−1)lι+1lι!∂n resαι(0)
n!

zn−lι−1)
+ ∑
n∈N

0

⎛⎝ζ(∂
nfp0α)(0)
n!

+ ∑
ι∈I0

(−1)lι+1lι!∂n+lι+1 resαι(0)(n + lι + 1)!
⎞⎠ zn.

∎

Corollary 2.14. Let α = α0 + ∑ι∈I αι and β = β0 + ∑ι∈I βι be two gauged

poly-log-homogeneous distributions with α(0) = β(0) and such that the degrees of

homogeneity and logarithmic orders of αι and βι coincide. Then,

ζ(α)(z) − ζ(β)(z) =∑
ι∈I0

lι

∑
n=1

(−1)lι+1lι!∂n res (αι − βι) (0)
n!

zn−lι−1

+ ∑
n∈N

0

ζ(∂nfp0 (α − β))(0)
n!

zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι!∂n+lι+1 res (αι − βι) (0)(n + lι + 1)! zn

holds in a sufficiently small neighborhood of zero.
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In chapter 4, we will see that Corollary 2.14 applied to pseudo-differential

operators implies many well-known formulae, e.g. (2.21) in [47], (9) in [55], and

(2.20) in [56].

Example Let α = α0+∑ι∈I αι and β = β0+∑ι∈I βι be two gauged polyhomogeneous

distributions with α(0) = β(0) and such that the degrees of homogeneity of αι and

βι coincide. Then, #I0 ≤ 1 and (because) all lι are zero. Hence,

ζ(α)(z) =∑
ι∈I0

− resαι(0)
z

+ ∑
n∈N

0

⎛⎝ζ(∂
nfp0α)(0)
n!

− ∑
ι∈I0

∂n+1 resαι(0)(n + 1)! ⎞⎠ zn

and

ζ(α)(z) − ζ(β)(z) = ∑
n∈N

0

⎛⎝ζ(∂
nfp0 (α − β))(0)

n!
− ∑
ι∈I0

∂n+1 res (αι − βι) (0)(n + 1)! ⎞⎠ zn

holds in a sufficiently small neighborhood of zero. This shows that the residue trace

−∑ι∈I0 resαι(0) is well-defined and independent of the gauge for polyhomogeneous

distributions. Higher orders of the Laurent expansion depend on the gauge.

Furthermore, ζ(α) − ζ(β) is holomorphic in a neighborhood of zero and

(ζ(α) − ζ(β)) (0) =ζ(fp0 (α − β))(0) − ∑
ι∈I0

∂ res (αι − βι) (0)
= ζ(fp0α)(0) − ζ(fp0β)(0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−∑
ι∈I0

∂ res (αι − βι) (0)

= − ∑
ι∈I0

∂ res (αι − βι) (0).
Defining γι(z) ∶= αι(z)−βι(z)

z
and γ(z) ∶= α(z)−β(z)

z
we, thus, obtain

(ζ(α) − ζ(β)) (0) = − ∑
ι∈I0

∂ res (αι − βι) (0) = −∑
ι∈I0

resγι(0) = res0 ζ(γ).
Since resγι(0) ≠ 0 implies that it is independent of gauge, we obtain that res0 ζ(γ)
is independent of gauge which directly yields

(ζ(α) − ζ(β)) (0) = res0 ζ(γ) = res0 ζ (∂(α − β)) .
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In other words, (ζ(α) − ζ(β)) (0) is a trace residue.

∎

Theorem 2.15 (Laurent expansion of ζ(α)). Let α = α0 +∑ι∈I αι be a gauged

poly-log-homogeneous distribution. Then,

ζ(α)(z) =∑
ι∈I0

lι

∑
n=0

(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM
n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM
n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn

holds in a sufficiently small neighborhood of zero.

In particular, if α is polyhomogeneous, we obtain

ζ(α)(z) =∑
ι∈I0

−
´

M
αι(0)dvolM
z

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)j+1j! ´
M
∂n−jαι(0)dvolM

n!(dimM + dι + 1)j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

−
´

M
∂n+1αι(0)dvolM(n + 1)! zn

in a sufficiently small neighborhood of zero.

Proof. Note that having a gauged log-homogeneous distribution

β(z)(r, ξ) = rd+z(ln r)lβ̃(z)(ξ)
the residue resβ =

´

M
β̃ dvolM does not depend on the logarithmic order. Hence, we

may assume without loss of generality that l = 0 and we had a gauged homogeneous

distribution in the first place, i.e. replace β by

β̂(z)(r, ξ) = rd+z β̃(z)(ξ)
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Then, we observe

∂nβ(z)(r, ξ) = n

∑
j=0

(n
j
)rd+z(ln r)l+j∂n−jβ̃(z)(ξ)

and

∂nβ̃(z)(ξ) =∂n (x↦ r−d−xβ̂(x)(ξ)) (z) = n

∑
j=0

(n
j
)r−d−z(− ln r)j∂n−j β̂(z)(r, ξ)

for every n ∈ N0, r ∈ R≥1, and ξ ∈M . In particular, for r = 1, we deduce

∂nβ̃(z) =∂nβ̂(z)∣M ,
i.e.

∂n resβ = ∂n
ˆ

M

β̃ dvolM =

ˆ

M

∂nβ̃ dvolM =

ˆ

M

∂nβ̂ dvolM .

Especially, for β homogeneous, we have β̂ = β and, therefore,

∂n resβ =

ˆ

M

∂nβ̃ dvolM =

ˆ

M

∂nβ̂ dvolM =

ˆ

M

∂nβ dvolM .

Hence,

ζ(∂nfp0α)(z) =
ˆ

R≥1×M
∂nα0(z)dvolR≥1×M

+ ∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(z)dvolM(dimM + dι + z + 1)lι+j+1 .

This directly yields

ζ(α)(z) =∑
ι∈I0

((−1)lι+1lι!
´

M
α̃ι(0)dvolM

zlι+1
+

lι

∑
n=1

(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM
n! zlι+1−n

)
+ ∑
n∈N

0

⎛⎝ζ(∂
nfp0α)(0)
n!

+ ∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)!
⎞⎠ zn

=∑
ι∈I0

lι

∑
n=0

(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM
n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM
n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn



2. GAUGED POLY-log-HOMOGENEOUS DISTRIBUTIONS 55

=∑
ι∈I0

lι

∑
n=0

(−1)lι+1lι! ´M ∂nα̃ι(0)dvolM
n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jα̃ι(0)dvolM
n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1α̃ι(0)dvolM(n + lι + 1)! zn.

�

Definition 2.16. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution such that ζ(α) is holomorphic in a neighborhood of zero. Then, we define

the generalized ζ-determinant

detζ(α) ∶= exp (ζ(α)′(0)) .
Remark This generalized ζ-determinant reduces to the ζ-determinants as studied

by Kontsevich and Vishik in [47,48]. In other words, we do not expect it to be

multiplicative if α corresponds to a general Fourier Integral Operator. Though

an interesting question, we will not study classes of families of Fourier Integral

Operators satisfying the multiplicative property, here.

∎

Knowing the Laurent expansion of ζ(α) we know that

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+ ∑
ι∈I∖I0

1

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂1−jα̃ι(0)dvolM(dimM + dι + 1)lι+j+1
+ ∑
ι∈I0

(−1)lι+1lι! ´M ∂lι+2α̃ι(0)dvolM(lι + 1)!
holds. In particular, if I0 = ∅,

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+∑
ι∈I

1

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂1−jα̃ι(0)dvolM(dimM + dι + 1)lι+j+1 .
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If α were polyhomogeneous we obtained

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M
+ ∑
ι∈I∖I0

1

∑
j=0

(−1)j+1 ´
M
∂1−jαι(0)dvolM(dimM + dι + 1)j+1 − ∑

ι∈I0

ˆ

M

α′′ι (0)dvolM
=

ˆ

R≥1×M
α′0(0)dvolR≥1×M + ∑

ι∈I∖I0

− res (α′ι) (0)
dimM + dι + 1

+ ∑
ι∈I∖I0

resαι(0)(dimM + dι + 1)2 − ∑ι∈I0 res (α′′ι ) (0)
If we were to choose an M-gauge, we would find ∂α̃ι = 0 and may assume I0 = ∅

(ζ(α) cannot have a structural singularity and non-structural singularities do not

appear within the ζ-function of anM-gauged poly-log-homogeneous distribution),

i.e.

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M + ∑
ι∈I∖I0

(−1)lι(lι + 1)! ´M α̃ι(0)dvolM(dimM + dι + 1)lι+2
=

ˆ

R≥1×M
α′0(0)dvolR≥1×M +∑

ι∈I

(−1)lι(lι + 1)! resαι(0)(dimM + dι + 1)lι+2
and, for α additionally polyhomogeneous,

ζ(α)′(0) =ˆ
R≥1×M

α′0(0)dvolR≥1×M +∑
ι∈I

resαι(0)(dimM + dι + 1)2 .
Remark Note that ζ(α)′(0) depends on the first 1 + max ({lι + 1; ι ∈ I0} ∪ {0})
derivatives of α. Hence, the generalized ζ-determinant does so, too, and is, thus,

not independent of the gauge.

∎



CHAPTER 3

Remarks on more general gauged

poly-log-homogeneous distributions

The results obtained for gauged poly-log-homogeneous distributions can largely

be generalized. In fact, the degree of homogeneity dι(z) can be chosen arbitrarily

as long as it is not germ equivalent to a critical constant. In this chapter, we will

investigate these direct generalizations and consider distributions of the form

ˆ

R≥1×M
α(z)(ξ)dvolR≥1×M(ξ)

where M is an orientable, compact, finite dimensional manifold without boundary

and the holomorphic family α is given by an expansion

α = α0 +∑
ι∈I

αι

where I ⊆ N, α0(z) ∈ L1(R≥1 ×M) in an open neighborhood of {z ∈ C; R(z) ≤ 0}
and each of the αι(z) is log-homogeneous with degree of homogeneity dι(z) ∈ C
and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ CM ∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι(z)(ln r)lι α̃ι(z)(ν).
We will furthermore assume (for now) that every dι is an entire function,

∀z ∈ [−dimM − 1]dι ∶ d′ι(z) ≠ 0,
the family (R(dι(z)))ι∈I is bounded from above for every z ∈ C, supι∈IR(dι(z))→
−∞ (R(z) → −∞), the maps I ∋ ι↦ (dι(z), lι) are injective, there are only finitely

many ι satisfying dι(z) = d for any given d, z ∈ C, the families ((dι(z) + δ)−1)ι∈I
57
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are in ℓ2(I) for any z ∈ C and δ ∈ C ∖ {dι(z); ι ∈ I}, and each ∑ι∈I α̃ι(z) converges

unconditionally in L1(M). Any such family α will be called a gauged poly-log-

homogeneous distribution with holomorphic order.

If the conditions above are satisfied, we obtain

ˆ

R≥1×M
α(z)dvolR≥1×M =

ˆ

R≥1×M
α0(z)dvolR≥1×M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶τ0(z)∈C

+∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

=τ0(z)+∑
ι∈I

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1
which converges absolutely. For dι(0) ≠ −dimM − 1, we observe

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1 =
(−1)lι+1lι! res( (dimM+1+dι(0)+z)lι+1(dimM+1+dι(z))lι+1 αι) (z)

(dimM + 1 + dι(0) + z)lι+1
in a neighborhood of zero. Hence, let

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι (dimM + 1 + dι(0)+ z)lι+1(dimM + 1 + dι(z))lι+1 α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶β̃ι(z)(ξ)

.

For dι(0) = −dimM − 1, there exists an entire function δι such that

dimM + 1 + dι(z) = d′ι(0)z + δι(z)z2

and, since d′ι(0) ≠ 0, we obtain that z ↦ d′ι(0)+δι(z)z has no zeros in a neighborhood

of zero. Then, we observe

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1 = (−1)
lι+1lι! resαι(z)(d′ι(0)z + δι(z)z2)lι+1

=
(−1)lι+1lι! resαι(z)

zlι+1 (d′ι(0) + δι(z)z)lι+1
=
(−1)lι+1lι! res( αι(z)(d′ι(0)+δι(z)z)lι+1 )

zlι+1

=
(−1)lι+1lι! res( αι(z)(d′ι(0)+δι(z)z)lι+1 )(dimM + 1 + dι(0) + z)lι+1
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and define

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι α̃ι(z)(ξ)(d′ι(0) + δι(z)z)lι+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶β̃ι(z)(ξ)

.

Thus, we obtain the following observation.

Observation 3.1. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution with holomorphic order. Then, the ζ-function ζ(α) is germ equivalent to

ζ(β) with β as defined above. Thus, ζ(α) inherits all local properties from ζ(β),
i.e. all local properties of ζ-functions associated with gauged poly-log-homogeneous

distributions.

In particular, if resαι(0) ≠ 0 with dι(0) = −dimM − 1 and lι maximal, then

the initial Laurent coefficient of ζ(α) is

(−1)lι+1lι! resαι(0)
d′ι(0)lι+1

and the ζ(α) has the Laurent expansion

ζ(α)(z) =∑
ι∈I0

lι

∑
n=0

(−1)lι+1lι! ´M ∂nβ̃ι(0)dvolM
n! zlι+1−n

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jβ̃ι(0)dvolM
n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´M ∂n+lι+1β̃ι(0)dvolM(n + lι + 1)! zn

in a sufficiently small neighborhood of zero.

Proof. Note that zero is either a pole of ζ(α) or a regular value, that is, we

can choose a neighborhood uniformly for all ι with dι(0) ≠ −dimM −1. Since there

are only finitely many ι with dι(0) = −dimM − 1, we obtain germ equivalence of
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the series representations and, since the Laurent expansion was solely determined

from the series representation, the observation follows.

�

We may generalize this even further. Suppose α is meromorphic in C, that is,

holomorphic in Ω ⊆open C such that C ∖Ω is a set of isolated points in C. Let 0 ∈ Ω

and let α satisfy all properties of being a gauged poly-log-homogeneous distribution

with holomorphic order but on Ω instead of C. Then, we call α a meromorphic

gauged poly-log-homogeneous distribution with respect to zero. Since 0 ∈ Ω, we

directly obtain that α is locally a gauged poly-log-homogeneous distribution and

still all local properties are preserved just as they are in Observation 3.1.

Now, we can even drop the assumption

∀z ∈ [−dimM − 1]dι ∶ d′ι(z) ≠ 0
in the definition of a meromorphic gauged poly-log-homogeneous distribution with

respect to zero (in exchange for an increased logarithmic order). Instead, let

dι(z) = −dimM − 1 + δι(z)zmι

with δι(0) ≠ 0 and call any such α a generalized meromorphic gauged poly-log-

homogeneous distribution with respect to zero. Then,

(−1)lι+1lι! resαι(z)(dimM + 1 + dι(z))lι+1
=
(−1)lι+1lι! resαι(z)(δι(z)zmι)lι+1
=
(−1)lι+1lι! res (δ−lι−1ι αι) (z)

zmι(lι+1)

=
(−1)mι(lι+1)(mι(lι + 1) − 1)! res((−1)mι(lι+1)+lι+1 lι!(mι(lι+1)−1)!δ−lι−1ι αι) (z)

zmι(lι+1)

=
(−1)mι(lι+1)(mι(lι + 1) − 1)! res((−1)mι(lι+1)+lι+1 lι!(mι(lι+1)−1)!δ−lι−1ι αι) (z)

(dimM + 1 + dι(0) + z)mι(lι+1)
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shows that choosing

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)mι(lι+1)−1 (−1)mι(lι+1)+lι+1lι!(mι(lι + 1) − 1)! δι(z)−lι−1α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶β̃ι(z)(ξ)

for ι ∈ I with dι(0) = −dimM − 1 also yields germ equivalence and, again, all local

properties are preserved.

Hence, we can state the following Definition and Theorem.

Definition 3.2. Let Ω ⊆open C, Ω0 ⊆open Ω, 0 ∈ Ω, and α = (α(z))z∈Ω a

holomorphic family of the form

α = α0 +∑
ι∈I

αι

where

● I ⊆ N,

● ∀z ∈ Ω ∶ α0(z) ∈ L1(R≥1 ×M),
● ∀z ∈ Ω0 ∶ α(z) ∈ L1(R≥1 ×M),
● each of the αι(z) is log-homogeneous with degree of homogeneity dι(z) ∈ C

and logarithmic order lι ∈ N0, that is,

∃α̃ι ∈ C
M
∀r ∈ R≥1 ∀ν ∈M ∶ αι(z)(r, ν) = rdι(z)(ln r)lι α̃ι(z)(ν),

● each dι is holomorphic in Ω,

● none of the dι is germ equivalent to −dimM − 1 at zero (i.e. none of the

dι is the constant −dimM − 1),

● the maps I ∋ ι↦ (dι(z), lι) are injective,

● there are only finitely many ι satisfying dι(z) = d for any given d ∈ C and

z ∈ Ω,

● the families ((dι(z) + δ)−1)ι∈I are in ℓ2(I) for any z ∈ Ω and δ ∈ C ∖

{dι(z); ι ∈ I},
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● and each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).
If every connected component of Ω has non-empty intersection with Ω0, then we

call α a generalized gauged poly-log-homogeneous distribution and

ζ(α) ∶=ˆ
R≥1×M

α0dvolR≥1×M +∑
ι∈I

(−1)lι+1lι! resαι(dimM + 1 + dι)lι+1
the associated ζ-function of α.

Otherwise (in particular, if Ω0 = ∅), we call α an abstract generalized gauged

poly-log-homogeneous distribution and

ζ(α) ∶=ˆ
R≥1×M

α0dvolR≥1×M +∑
ι∈I

(−1)lι+1lι! resαι(dimM + 1 + dι)lι+1
the associated ζ-function of α.

Remark Because abstract generalized gauged poly-log-homogeneous distributions

have empty Ω0 on some connected component of Ω, we will still obtain the Laurent

expansion and all other local properties derived from the series expansion we used

to define the ζ-function here but applications to Fourier Integral Operators might

lose all properties that are obtained from meromorphic extension of the classical

trace, e.g. traciality.

∎

Theorem 3.3. Let α = α0+∑ι∈I αι and β = β0+∑ι∈I βι be (abstract) generalized

gauged poly-log-homogeneous distributions with β0 = α0,

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)lι (dimM + 1 + dι(0) + z)lι+1(dimM + 1 + dι(z))lι+1 α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=β̃ι(z)(ξ)
for ι ∈ I with dι(0) ≠ −dimM − 1, and

βι(z)(r, ξ) ∶= rdι(0)+z (ln r)mι(lι+1)−1 (−1)mι(lι+1)+lι+1lι!(mι(lι + 1) − 1)! δι(z)−lι−1α̃ι(z)(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=β̃ι(z)(ξ)
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for ι ∈ I with dι(z) = −dimM − 1 + δι(z)zmι in a neighborhood of zero and δι

holomorphic such that δι(0) ≠ 0.
Then, the ζ-function ζ(α) is germ equivalent to ζ(β) at zero. In particular,

ζ(α) has the Laurent expansion

ζ(α)(z) =∑
ι∈I0

mι(lι+1)−1
∑
n=0

(−1)mι(lι+1)(mι(lι + 1) − 1)! ´M ∂nβ̃ι(0)dvolM
n! zmι(lι+1)−n

+ ∑
n∈N

0

´

R≥1×M
∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´M ∂n−jβ̃ι(0)dvolM
n!(dimM + dι + 1)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)mι(lι+1)(mι(lι + 1) − 1)! ´M ∂n+mι(lι+1)β̃ι(0)dvolM(n +mι(lι + 1))! zn

in a sufficiently small neighborhood of zero.



CHAPTER 4

Application to gauged Lagrangian distributions

If we consider a dual pair ⟨u(z), f⟩ where u ∶ C → I(X,Λ) is a gauged La-

grangian distribution (I(X,Λ) is the space of lagrangian distributions with micro-

support in the closed conic Lagrangian sub-manifold Λ of T ∗X ∖{X ×{0}}; cf. [34]

and chapter 25 in [38]), then we obtain integrals of the form

⟨u(z), f⟩ = ˆ
X

ˆ

RN

eiϑ(x,ξ)a(z)(x, ξ) dξ dvolX(x).
In particular, we are considering distributions of the form

u1(x) = ˆ
RN

eiϑ(x,ξ)a(x, ξ)dξ.
If ϑ is non-degenerate, then Theorem 25.1.3 in [38] shows that the Fourier transform

of u1 satisfies (in local coordinates)

∀y ∈ RdimX
∖BRdimX ∶ Fu1(y) = e−iH(y)v(y)

with Λ = {(H ′(y), y); y ∈ RdimX
∖ {0}} where v ∈ Sm−

dimX
4 (RdimX) if u1 ∈

Imcompact (RdimX ,Λ) and BRdimX is the closed unit ball in RdimX . Furthermore,

Theorem 25.1.5’ in [38] shows that v is poly-log-homogeneous if and only if a is

and we obtain

u1(x) =ˆ
B

RdimX

ei⟨x,y⟩Fu1(y)dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶τ̂0(x)

+

ˆ

RdimX∖B
RdimX

ei⟨x,y⟩−iH(y)v(y)dy

=τ̂0(x) + ˆ
RdimX∖B

RdimX

ei⟨x,y⟩−i⟨H′(y),y⟩v(y)dy
=τ̂0(x) + ˆ

RdimX∖B
RdimX

ei⟨x−H′(y),y⟩v(y)dy.
64
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Changing coordinates locally from x to x −H ′(y) yields an integral of the form

ˆ

RdimX∖B
RdimX

ei⟨x,y⟩v(y) dy
which is paired with another Lagrangian distribution f . In particular, extending v

by zero on BRdimX yields the inverse Fourier transformF−1(v)(x) since, by Theorem

21.2.10 in [38], we may assume that X = RdimX (cf. also the proof of Theorem 2.1

in [34]).

Returning to

⟨u(z), f⟩ = ˆ
X

ˆ

RN

eiϑ(x,ξ)a(z)(x, ξ) dξ dvolX
we will split off the integral

τ0(z) ∶= ˆ
X

ˆ

B
RN
(0,1)

eiϑ(x,ξ)a(z)(x, ξ) dξ dvolX(x)
which defines a holomorphic function and we are left with

ˆ

R≥1×∂BRN

ˆ

X

eiϑ(x,ξ)a(z)(x, ξ) dvolX(x) dvolR≥1×∂BRN
(ξ)

which can be re-parametrized (choosing suitable coordinates in a conic neighbor-

hood of Λ) into the form

ˆ

R≥1×∂BRN

α(z)(ξ)dvolR≥1×∂BRN
(ξ).

For f = P tδ0 with some pseudo-differential operator P whose symbol p is poly-log-

homogeneous, we obtain

ˆ

R≥1×∂BRN

α(z)(ξ)dvolR≥1×∂BRN
(ξ)

=⟨u(z), f⟩ − τ0(z)
=⟨x↦ ˆ

RN∖B
RN

eiϑ(x,ξ)a(z)(x, ξ) dvolRN∖B
RN
(ξ), P tδ0⟩

= ⟨F−1(v(z)), P tδ0⟩
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= ⟨PF−1(v(z)), δ0⟩
= ⟨x↦ ˆ

RdimX

ei⟨x,ξ⟩p(x, ξ)F (F−1(v(z))) (ξ)dξ, δ0⟩
= ⟨x↦ ˆ

RdimX

ei⟨x,ξ⟩p(x, ξ)v(z)(ξ)dξ, δ0⟩
=

ˆ

RdimX∖B
RdimX

p(0, ξ)v(z)(ξ) dvolRdimX∖B
RdimX

(ξ)
which is a distribution as considered in chapter 2.1 In other words, if A is a gauged

Fourier Integral Operator with phase function ϑ and amplitude a on X , then

ζ(A)(z) =ˆ
X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a(z)(x,x, ξ) dξ dvolX(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶τ0(A)(z)

+

ˆ

R≥1×∂BRN

ˆ

X

eiϑ(x,x,ξ)a(z)(x,x, ξ) dvolX(x) dvolR≥1×∂BRN
(ξ)

exists and inherits all properties described in chapter 2 because δdiag is of the form

P tδ0 for some pseudo-differential operator P with polyhomogeneous symbol.

Theorem 4.1. If a = a0 +∑ι∈I aι is the amplitude of a poly-log-homogeneous

Fourier Integral Operator A with phase function ϑ and Aι the gauged Fourier In-

tegral Operator with phase function ϑ and amplitude aι, then

resAι(z) ∶= ˆ
∂B

RN

ˆ

X

eiϑ(x,x,ξ)ãι(z)(x,x, ξ) dvolX(x) dvol∂B
RN
(ξ)

and

ζ(A)(z)
= ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
ι∈I0

lι

∑
n=0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑ∂nãι(0) dvol∆(X)×∂B

RN

n! zlι+1−n

1This parametrization was already observed by Duistermaat and Hörmander in the proof of

Theorem 5.4.1 in [21]. Furthermore, it is crucial for Guillemin’s work on the residue trace; cf.

(2.15) in [34].
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+ ∑
n∈N

0

´

R≥1×∂BRN

´

X
eiϑ(x,x,ξ)∂na0(0)(x,x, ξ) dvolX(x) dvolR≥1×∂BRN

(ξ)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j ãι(0) dvol∆(X)×∂B

RN

n!(N + dι)lι+j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑ∂n+lι+1ãι(0) dvol∆(X)×∂B

RN(n + lι + 1)! zn

holds in a neighborhood of zero where ∆(X) ∶= {(x, y) ∈X2; x = y}.

For a polyhomogeneous a this reduces to

ζ(A)(z) = ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

− ∑
ι∈I0

ˆ

∆(X)×∂B
RN

eiϑaι(0) dvol∆(X)×∂B
RN
z−1

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN

)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)j+1j! ´
∆(X)×∂B

RN
eiϑ∂n−jaι(0) dvol∆(X)×∂B

RN

n!(N + dι)j+1 zn

+ ∑
n∈N

0

∑
ι∈I0

−
´

∆(X)×∂B
RN
eiϑ∂n+1aι(0) dvol∆(X)×∂B

RN(n + 1)! zn,

i.e.

ζ(A)(z) = − ∑
ι∈I0

resAι(0)z−1 − ∑
n∈N

0

∑
ι∈I0

res∂n+1Aι(0)(n + 1)! zn

+ ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN

)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)j+1j! res∂n−jAι(0)
n!(N + dι)j+1 zn

where ∂nAι is the gauged Fourier Integral Operator with phase ϑ and amplitude

∂naι.
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From this last formula, and the knowledge that resAι(0) is independent of the

gauge, we obtain the following well-known result (cf. [34]).

Theorem 4.2. Let A and B be polyhomogeneous Fourier Integral Operators.

Let G1 and G2 be gauged Fourier Integral Operators with G1(0) = AB and G2(0) =
BA. Then,

res0 ζ(G1) = res0 ζ(G2),

i.e. the residue of the ζ-function is tracial and A↦ res0 ζ (Â) is a well-defined trace

where Â is any choice of gauge for A.

Proof. This is a direct consequence of the following two facts.

(i) res0 ζ(Gj) = −∑ι∈I0 res(Gj)ι(0) is independent of the gauge (j ∈ {1,2}).
(ii) ζ (ÂB) = ζ (BÂ) holds for any gauge Â of A because it is true for R(z)

sufficiently small.

Hence, res0 ζ(G1) = res0 ζ(ÂB) = res0 ζ(BÂ) = res0 ζ(G2).
�

Similarly, for I0(AB) = ∅, G1(0) = AB, and G2(0) = BA, we obtain that

ζ(G1)(0) = ζ(G2)(0) where we used that ζ(fp0α)(0) is independent of gauge. In

other words, we may also generalize the Kontsevich-Vishik trace to ζ(fp0A)(0)
where fp0A is the gauged Fourier Integral Operator with phase ϑ and amplitude

a −∑ι∈I0 aι.

Definition 4.3. Let A be a Fourier Integral Operator with phase function ϑ

and poly-log-homogeneous amplitude a = a0 +∑ι∈I aι. Let Â be a gauged poly-log-

homogeneous Fourier Integral Operator with Â(0) = A with phase function ϑ and

amplitude â = â0 +∑ι∈I âι, and fp0Â the part of Â corresponding to the amplitude
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a−∑ι∈I0 aι, that is, all but the terms with critical degree of homogeneity. Then, we

call

trKV A ∶= ζ(fp0Â)(0)
the generalized Kontsevich-Vishik trace of A.

In particular, we may also consider the regularized generalized determinant

detfp(A) ∶= exp (ζ(fp0A)′(0))
where

ζ(fp0A)(z)
= ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂na0(0) dvol∆(X)×(R≥1×∂BRN

)
n!

zn

+ ∑
n∈N

0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j ãι(0) dvol∆(X)×∂B

RN

n!(N + dι)lι+j+1 zn,

i.e.

ζ(fp0A)′(0) =
ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)

+ ∑
ι∈I∖I0

(−1)lι+1lι! ´∆(X)×∂B
RN
eiϑã′ι(0) dvol∆(X)×∂B

RN(N + dι)lι+1
+ ∑
ι∈I∖I0

(−1)lι+2(lι + 1)! ´∆(X)×∂B
RN
eiϑãι(0) dvol∆(X)×∂B

RN(N + dι)lι+2
which reduces to

ζ(fp0A)′(0) =
ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)
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− ∑
ι∈I∖I0

´

∆(X)×∂B
RN
eiϑã′ι(0) dvol∆(X)×∂B

RN

N + dι

+ ∑
ι∈I∖I0

´

∆(X)×∂B
RN
eiϑãι(0) dvol∆(X)×∂B

RN(N + dι)2
=τ0(∂A)(0) + ˆ

∆(X)×(R≥1×∂BRN
)
eiϑa′0(0) dvol∆(X)×(R≥1×∂BRN

)

− ∑
ι∈I∖I0

res(∂Aι)(0)
N + dι

+ ∑
ι∈I∖I0

resAι(0)(N + dι)2
for polyhomogeneous A. This will further reduce nicely if we choose an M-gauge

for the Aι on X × (RN ∖BRN (0,1)) and constant “gauge” (i.e. no gauge) for a0 on

X ×RN and for a on X ×BRN (0,1). In that case, we obtain

ζ(fp0A)′(0) = ∑
ι∈I∖I0

resAι(0)(N + dι)2 .
To be fair, this would be a gauge in a generalized sense for Fourier Integral Operators

because such a gauge may not yield C∞ (X ×X ×RN)-amplitudes a(z) though the

set of exceptions is the null set X × ∂BRN . If we wanted to avoid that, we would

have to gauge the X ×BRN (0,1) part, as well, and the correction term can easily

be estimated by

∣τ0(A)′(0)∣ = ∣ˆ
X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a′(0)(x,x, ξ) dξ dvolX(x)∣
≤volX(X) volRN (BRN (0,1)) ∥a′(0)∥L∞(∆(X)×BRN

(0,1))

≤volX(X) volRN (BRN (0,1)) ∥a′(0)∥L∞(X×X×BRN
) .

An important class of gauges (since they can be constructed fairly easily) are mul-

tiplicative gauges.

Definition 4.4. Let A be a Fourier Integral Operator and G a gauged Fourier

Integral Operator with G(0) = 1 such that each G(z) and all derivatives ∂nG(z) are

composable with A. Then, we call AG(⋅) a multiplicative gauge of A.
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A multiplicative gauge G is called exponential if and only if there exists a poly-

log-homogeneous Fourier Integral Operator operator G0 such that the derivative G′

of G satisfies

∀z ∈ C ∶ G′(z) = G(z)G0.

Note that the name “multiplicative” just means that we gauge the operator by

multiplication with a previously chosen family. This is analogous to “Q-weighted”

generalized ζ-functions ζ(A,Q, z) ∶= ζ(s ↦ AQs)(z) for pseudo-differential opera-

tors, i.e. G = (z ↦Qz).
Remark If we consider a canonical relation Γ and the corresponding algebra of

Fourier Integral Operators AΓ, then we may be inclined to search for multiplicative

gauges in AΓ. Unfortunately, the identity will not be an element of AΓ, in general.

An appropriate candidate of an algebra to consider if looking for a multiplicative

gauge, therefore, should be the unitalization AΓ⊕C of AΓ. If AΓ is unital already,

taking the direct sum with C will not change anything at all. Note that we interpret

the element (a,λ) ∈ AΓ⊕C to be a+λ which directly yields the following structure.

● (a,0) = a ∈ AΓ, (0,1) = 1
● ∀λ ∈ C ∶ λ(a,µ) + (b, ν) = (λa,λµ) + (b, ν) = (λa + b, λµ + ν)
● (a,λ)(b, µ) = (a + λ)(b + µ) = ab + aµ + λb + λµ = (ab + µa + λb,λµ)

Since derivatives should exists within the algebra and we might be interested in

using a functional calculus, it may be necessary to also include an L(L2(X))-closure

of AΓ ⊕C.

However, keeping the search for multiplicative gauges simple, we may gauge

with properly supported pseudo-differential operatorsG(z) (cf. section 18.4 in [69])

at the cost of potentially leaving the algebra even further, that is, AG(z) should
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not be expected to be in AΓ ⊕C
L(L2(X))

anymore. In other words, it is easy to

find gauges for A ∈ AΓ but the gauged operators may be “very far away from” AΓ.

∎

Let P be a gauged pseudo-differential operator. Then, we may also consider

⟨P (z)u, f⟩
as a gauge. This is due to Theorems 18.2.7 and 18.2.8 in [38]. In particular, if f is

a Lagrangian distribution, then it can be represented in the form
´

ei⟨x,ξ⟩af(x, ξ)dξ
which is nothing other than Pfδ0 where Pf is the pseudo-differential operator with

amplitude af . Hence,

⟨P (z)u, f⟩ = ⟨P ′fP (z)u, δ0⟩.
For traces, though, a multiplicative gauge yields

ζ(A)(z) = ⟨g(z) ○ kA, δdiag⟩
where g(z) ○ kA is the kernel of G(z)A and ∀ϕ ∈ C(X) ∶ δdiag(ϕ) = ´X ϕ(x,x)dx
(i.e. δdiag is the kernel of the identity).

Example Suppose u is an M-gauged log-homogeneous distribution. We, thus,

obtain

u(0)(x) =τ0(u(0))(x)+ ˆ
RN∖B

RN

ei⟨x,ξ⟩v(0)(ξ) = τ̃0(u(0))(x)+ (Puδ0)(x)
where Pu is a pseudo-differential operator with amplitude pu(x, ξ) = v(ξ) for ξ ∈

RN ∖ BRN . Furthermore, the complex power Hz with H ∶=
√∣∆∣ has the ampli-

tude pz(x, ξ) = (2π)−N ∥ξ∥zℓ2(N) where ∣∆∣ is the (non-negative) Dirichlet Laplacian.

This follows from ∣∆∣−1 = F−1 ∥m∥−2ℓ2(N)F where m is the maximal multiplication

operator with the argument on L2(RN)
D(m) ∶ = {f ∈ L2(RN); (Rn ∋ ξ ↦ ξf(ξ) ∈ CN) ∈ L2(RN ;CN)} ,
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m ∶ D(m) ⊆ L2(RN) → L2(RN ;CN); f ↦ (ξ ↦ ξf(ξ)) .

(−∆)−1 is well-known to be a compact operator. Hence, let r − 1 be its spectral

radius. Then, the holomorphic functional calculus yields

Hz = (∣∆∣−1)− z
2

=
1

2πi

ˆ

r∂BC

λ−
z
2 (λ − (−∆)−1)−1 dλ

=
1

2πi

ˆ

r∂BC

λ−
z
2 ∑
j∈N

0

λ−(j+1) ((−∆)−1)j dλ
=

1

2πi

ˆ

r∂BC

λ−
z
2 ∑
j∈N

0

λ−(j+1) (F−1 ∥m∥−2ℓ2(N)F )j dλ
=

1

2πi

ˆ

r∂BC

λ−
z
2 ∑
j∈N

0

λ−(j+1)F−1 (∥m∥−2ℓ2(N))j Fdλ
=F−1

1

2πi

ˆ

r∂BC

λ−
z
2 ∑
j∈N

0

λ−(j+1) (∥m∥−2ℓ2(N))j dλF
=F−1

1

2πi

ˆ

r∂BC

λ−
z
2 (λ − ∥m∥−2ℓ2(N))−1 dλF

=F−1 (∥m∥−2ℓ2(N))− z
2

F

=F−1 ∥m∥zℓ2(N)F .

Using the composition formula for pseudo-differential operators, we obtain that

(2π)NHzPu has the amplitude (for ∥ξ∥ℓ2(N) ≥ 1)

∑
α∈Nn

0

1

α!
∂α2 ((2π)Npz) (x, ξ) (−i∂1)αpu(x, ξ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 ⇐ α≠0

= ∥ξ∥zℓ2(N) v(0)(ξ) = v(z)(ξ).

In other words,

u(z) ≡ (2π)NHzu(0)

modulo whatever happens on BRN .

∎
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Example Let A be a poly-log-homogeneous Fourier Integral Operator and u a

poly-log-homogeneous distribution with I0(A) = I0(u) = ∅. Suppose G and P are

exponential multiplicative gauges, that is,

G′(z) = G(z)G0 and P ′(z) = P (z)P0,

for A and u, respectively. Then

ζ(GA)(z) = ∑
n∈N

0

∂nζ(GA)(0)
n!

zn = ∑
n∈N

0

ζ(∂nGA)(0)
n!

zn = ∑
n∈N

0

ζ(GGn0A)(0)
n!

zn

and

ζ(Pu)(z) = ∑
n∈N

0

∂nζ(Pu)(0)
n!

zn = ∑
n∈N

0

ζ(∂nPu)(0)
n!

zn = ∑
n∈N

0

ζ(PPn0 u)(0)
n!

zn

hold in sufficiently small neighborhoods of zero. Using

ζ(GGk0A)(z)
= ∑
n∈N

0

´

X

´

B
RN
(0,1) eiϑ(x,x,ξ)∂nσ(GGk0A)(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
n∈N

0

´

∆(X)×(R≥1×∂BRN
) eiϑ∂nσ(GGk0A)0(0) dvol∆(X)×(R≥1×∂BRN

)
n!

zn

+ ∑
n∈N

0

∑
ι∈I

n

∑
j=0

(−1)lι+j+1(lι + j)! ´∆(X)×∂B
RN
eiϑ∂n−j σ̃(GGk0A)ι(0) dvol∆(X)×∂BRN

n!(N + dι)lι+j+1 zn,

where σ(Gk0A) denotes the amplitude of Gk0A, we obtain

ζ(GA)(z) = ∑
k∈N

0

ζ(GGk0A)(0)
k!

zk

= ∑
k∈N

0

1

k!
(ˆ

∆(X)×B
RN

eiϑσ(Gk0A) dvol∆(X)×B
RN

+

ˆ

∆(X)×(R≥1×∂BRN
)
eiϑσ(Gk0A)0 dvol∆(X)×(R≥1×∂BRN

)

+∑
ι∈I

(−1)lι+1lι! res(Gk0A)ι(N + dι)lι+1 ) zk
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in a sufficiently small neighborhood of zero. For ζ(PPn0 u)(0), we will denote the

gauged poly-log-homogeneous distribution associated with PP k0 u by α (PP k0 u) and

use

ζ(PP k0 u)(z) = ∑
n∈N

0

1

n!

ˆ

B
RN
(0,1)

∂nα (PP k0 u) (0)dvolB
RN
(0,1)zn

+ ∑
n∈N

0

´

R≥1×∂BRN
∂nα (PP k0 u)0 (0)dvolR≥1×∂BRN

n!
zn

+ ∑
n∈N

0

∑
ι∈I

n

∑
j=0

(−1)lι+j+1(lι + j)! ´∂B
RN
∂n−jα̃ (PP k0 u)ι (0)dvol∂BRN

n!(N + dι)lι+j+1 zn

to obtain

ζ(Pu)(z) = ∑
k∈N

0

ζ(PP k0 u)(0)
k!

zk

= ∑
k∈N

0

1

k!
(ˆ

B
RN
(0,1)

α (P k0 u)dvolB
RN
(0,1)

+

ˆ

R≥1×∂BRN

α (P k0 u)0 dvolR≥1×∂BRN

+∑
ι∈I

(−1)lι+1lι! resα (P k0 u)ι(N + dι)lι+1
⎞⎠ zk.

∎

Example If we consider a multiplicatively gauged A(z) = BQz where Q may be

non-invertible but is an element of an admissible algebra of Fourier Integral Oper-

ators with holomorphic functional calculus, e.g. a pseudo-differential operator of

order 1 (order q > 0 can be obtained using the results of chapter 3) and spectral

cut (the following is to be interpreted in this setting), then Q0 = 1− 1{0}(Q) where

1{0}(Q) ∶= 1

2πi

ˆ

∂B(0,ε)
(λ −Q)−1 dλ

with ε sufficiently small such that B(0, ε) ∩ σ(Q) = {0}. In other words, 1{0}(Q)
is the projector onto the null space of Q. Thus, assuming I0 = ∅ (that is, the

Kontsevich-Vishik trace trKV (A(0)) is well-defined and coincides with ζ(A)(0)),
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we obtain

ζ(A)(0) = trKV (BQ0) = trKV (B) − trKV (B1{0}(Q))
and

∀k ∈ N ∶ ζ(∂kA)(0) = trKV (B(lnQ)kQ0)
= trKV (B(lnQ)k) − trKV (B(lnQ)k1{0}(Q))

where we note that there still is a dependence on the spectral cut used to define

the operators Qz and lnQ. These generalize the formulae (0.17) and (0.18) in [56]

(note that the factors (−1)k are due to sign convention Qz vs. Q−z).

∎

Proposition 4.5. Let A(z) = BQz be polyhomogeneous with Q as above, fpζ

the finite part of ζ, and trfp the finite part of the trace integral (that is, removing

the principal part from the Laurent expansion ζ(A) and evaluating at zero; cf. [47],

[48], [51], and [56]). Furthermore, let ck be the coefficient of zk

k!
in the Laurent

expansion of ζ(A) with k ∈ N0.

Then, we obtain

ck =ζ (∂kfp0A) (0)+ ∑
ι∈I0

ˆ

X

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)∂kaι(0)(x,x, ξ) dξ dvolX(x)
− ∑
ι∈I0

1

k + 1
res(∂k+1Aι) (0)

=fpζ (∂kA) (0) − 1

k + 1
res(∂k+1A) (0)

= trfp (B(lnQ)kQ0) − 1

k + 1
res(B(lnQ)k+1Q0) .

In particular,

c0 = trfp (B) − res (B lnQ) − trfp (B1{0}(Q))
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and

∀k ∈ N ∶ ck = trfp (B(lnQ)k) − 1

k + 1
res(B(lnQ)k+1) − trfp (B(lnQ)k1{0}(Q))

generalize equations (0.12) and (0.14) in [56] (keeping in mind the factors (−1)k
due to sign convention).

If Q is invertible, then 1{0}(Q) = 0, and for another admissible and invertible

operator Q′, we obtain

c0(Q) − c0(Q′) = − res (B (lnQ − lnQ′))(4.1)

which is a generalization of equation (2.21) in [47] and (9) in [55].

Furthermore, for A(z) = [B,CQz] with invertible Q (that is c0 = 0 since ζ(A) =
0), we obtain

trfp([B,C]) = res ([B,C lnQ])
a generalization of (2.20) in [56].

Example Applying our ζ-calculus and the considerations above to complex powers

also allows us to reproduce the variation formula for the multiplicative anomaly

(2.18) in [47] using effectively the same proof. However, it should be noted that

this approach now also works in algebras of Fourier Integral Operators provided they

contain complex powers (or, at least, such that the ζ-functions are still defined).

∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Azt ) (s) − ζ (z ↦ Bz) (s))
=∂s (∂tζ (z ↦ (AtB)z) (s) − ∂tζ (z ↦ Azt ) (s))

can be evaluated using a suitable contour Γ and C ∈ {B,1} which yields

∂tζ (z ↦ (AtC)z) =ζ (z ↦ ∂t
1

2πi

ˆ

Γ

λz(λ −AtC)−1dλ)
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=ζ (z ↦ 1

2πi

ˆ

Γ

λz(A′tC)(λ −AtC)−2dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

λz (−∂λ(λ −AtC)−1)dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

(∂λλz)(λ −AtC)−1dλ)
=ζ (z ↦ (A′tC) 1

2πi

ˆ

Γ

zλz−1(λ −AtC)−1dλ)
=ζ (z ↦ z(A′tC)(AtC)−1(AtC)z)
=ζ (z ↦ zA′tA

−1
t (AtC)z) .

Taking the other derivative, we obtain

∂s∂tζ (z ↦ (AtC)z) (s) =∂sζ (z ↦ zA′tA
−1
t (AtC)z) (s)

=ζ (z ↦ ∂z (zA′tA−1t (AtC)z)) (s)
=ζ (z ↦ A′tA

−1
t (AtC)z + z∂z (A′tA−1t (AtC)z)) (s)

=(1 + s∂s)ζ (z ↦ A′tA
−1
t (AtC)z) (s).

However, by assumption ζ (z ↦ A′tA
−1
t (AtC)z) is holomorphic near zero, i.e. its

derivative ζ (z ↦ A′tA
−1
t (AtC)z)′ is holomorphic near zero; hence,

s∂sζ (z ↦ A′tA
−1
t (AtC)z) (s)→ 0 (s→ 0).

In other words,

∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Azt ) (s) − ζ (z ↦ Bz) (s))
=ζ (z ↦ A′tA

−1
t (AtB)z) (s) − ζ (z ↦ A′tA

−1
t A

z
t ) (s)

which, according to equation (4.1), yields

∂t lnF (At,B) =∂t∂s (ζ (z ↦ (AtB)z) (s) − ζ (z ↦ Azt ) (s) − ζ (z ↦ Bz) (s))
=ζ (z ↦ A′tA

−1
t (AtB)z) (s) − ζ (z ↦ A′tA

−1
t A

z
t ) (s)
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= − res(A′tA−1t ( ln(AtB)
orderAtB

−
lnAt

orderAt
))

with the multiplicative anomaly

F (A,B) ∶= exp (ζ (z ↦ (AB)z)′ (0))
exp (ζ (z ↦ Az)′ (0)) exp (ζ (z ↦ Bz))′ (0) .

Choosing a multiplicative gauge G with G′ = GG0, we obtain a different vari-

ation formula of the multiplicative anomaly; namely,

∂t (ζ(AtBtG)′ − ζ(AtG)′ − ζ(BtG)′) =ζ(A′tBtG)′ + ζ(AtB′tG)′ − ζ(A′tG)′ − ζ(B′tG)′
=ζ(A′t(Bt − 1)G)′ + ζ((At − 1)B′tG)′
=ζ(A′t(Bt − 1)G′) + ζ((At − 1)B′tG′)
=ζ(A′t(Bt − 1)GG0) + ζ((At − 1)B′tGG0).

∎

Remark Note that the mechanism explored in this chapter works whenever there is

a representation
´

RN

´

X
eiϑ(x,x,ξ)a(x,x, ξ)dvolX(x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶α(ξ)
dξ with poly-log-homogeneous

α. In particular, we may consider algebras that do not have the form AΓ where

Γ intersects the co-normal bundle of the identity cleanly. Above, we used that

⟨k, δdiag⟩ can be written as ⟨Pk, δ0⟩ for some pseudo-differential operator P , i.e. we

used the clean intersection property to obtain the poly-log-homogeneous distribu-

tion form. However, for R(z) sufficiently small, the gauged k(z) is continuous, that

is, ⟨k(z), δdiag⟩ is well-defined and if we can show it extends meromorphically, the

clean intersection property won’t be necessary.

∎



CHAPTER 5

The heat trace, fractional, and shifted fractional

Laplacians on flat tori

In this chapter, we will apply Theorem 4.1 to some examples which are well-

known or can be easily checked through spectral considerations.

Example (the Heat Trace on the flat torus RN /Γ) Let Γ ⊆ RN be a dis-

crete group generated by a basis of RN , ∣∆∣ the Dirichlet Laplacian on RN , δ the

Dirichlet Laplacian on RN /Γ, and T the semi-group generated by −δ on RN /Γ. It

is well-known that

trT (t) = volRN /Γ (RN /Γ)(4πt)N
2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠
holds; cf. e.g. equation 3.2.3.28 in [67]. Furthermore, the kernel κδ of δ is given

by the kernel κ∣∆∣ via κδ(x, y) = ∑γ∈Γ κ∣∆∣(x, y + γ); cf. e.g. section 3.2.2 in [67]. In

other words,

κδ(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−y−γ,ξ⟩(2π)−N ∥ξ∥2ℓ2(N) dξ.
Hence, using functional calculus, we obtain

κT (t)(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−y−γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N)dξ.
Considering some gauge of T (t) we obtain from the Laurent expansion (Theorem

4.1)

ζ(T (t))(0)
=

ˆ

RN /Γ×BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvolRN /Γ×BRN
(x, ξ)

80
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+

ˆ

RN /Γ×(R≥1×∂BRN
)∑γ∈Γ

e−i⟨γ,ξ⟩(2π)−N (e−t∥⋅∥2ℓ2(N))
0
(ξ) dvol

RN /Γ×(R≥1×∂BRN
)(x, ξ)

+∑
ι∈I

(−1)lι+1lι! res(T (t))ι(N + dι)lι+1 .

Since (ξ ↦ e
−t∥ξ∥2ℓ2(N)) ∈ S(RN ), we can choose I = ∅ and (e−t∥⋅∥2ℓ2(N))

0
= e−t∥⋅∥2ℓ2(N)

which yields

ζ(T (t))(0)
=

ˆ

RN /Γ×BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvolRN /Γ×BRN
(x, ξ)

+

ˆ

RN /Γ×(R≥1×∂BRN
)∑γ∈Γ

e−i⟨γ,ξ⟩(2π)−Ne−t∥ξ∥2ℓ2(N) dvol
RN /Γ×(R≥1×∂BRN

)(x, ξ)
=
volRN /Γ (RN /Γ)(2π)N

ˆ

B
RN

∑
γ∈Γ

e−i⟨γ,ξ⟩e−t∥ξ∥2ℓ2(N) dvolB
RN
(ξ)

+
volRN /Γ (RN /Γ)(2π)N

ˆ

R≥1×∂BRN

∑
γ∈Γ

e−i⟨γ,ξ⟩e−t∥ξ∥2ℓ2(N) dvolR≥1×∂BRN
(ξ)

=
volRN /Γ (RN /Γ)(2π)N ∑

γ∈Γ

ˆ

RN

e−i⟨γ,ξ⟩e−t∥ξ∥2ℓ2(N) dξ

=
volRN /Γ (RN /Γ)(4π2)N

2

∑
γ∈Γ

π
N
2 t−

N
2 e−

∥γ∥2
ℓ2(N)
4t

=
volRN /Γ (RN /Γ)(4πt)N

2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠ ,

i.e. precisely what we wanted to obtain.

∎

Please note that the following example of fractional Laplacians exceeds the ap-

plicability of the ζ-function Laurent expansion as it is for now. However, we will

consider shifted versions of the fractional Laplacian afterwards (there applicabil-

ity is given) and show in chapter 6 that the Laurent expansion still holds in the

non-shifted version (the relationship between the shifted and non-shifted fractional

Laplacian are, in fact, the basis of the idea leading to the notion of mollification
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which will allow us to extend the ζ-function calculus to amplitudes that are poly-

log-homogeneous everywhere on RN ∖ {0}).
Example (fractional Laplacian on the flat torus R/2πZ) Let H ∶=

√∣∆∣
on T ∶= R/2πZ where ∣∆∣ denotes the (non-negative) Laplacian. It is well-known

that the spectrum σ(H) of H is discrete, satisfies σ(H) = N0, and each non-zero

eigenvalue has multiplicity 2. Furthermore, the symbol of Hz has the kernel

κHz(x, y) = ∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ ∣ξ∣z
2π

dξ.

The singular part is given for n = 0 and ∑n∈Z∖{0}
´

R
ei(x−y−2πn)ξ ∣ξ∣z

2π
dξ is regular.1

Let α ∈ (−1,0). Since ζ is the spectral ζ-function, we obtain (µλ denoting the

multiplicity of λ and R(z) < −1)
ζ (s ↦HsHα) (z) = ∑

λ∈σ(H)∖{0}
µλλ

z+α = 2∑
n∈N

nz+α = 2ζR(−z − α)
where ζR denotes Riemann’s ζ-function. In particular,

ζ (s ↦HsHα) (0) =2ζR(−α).
On the other hand, we have the Laurent expansion (Theorem 4.1)

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk,

i.e.

ζ (s↦HsHα) (0) =ˆ
∆(T)×BR

eiϑσ (Hα) dvol∆(T)×∂BR

1Here, we will assume this is well-known. However, it would also follow from the fact that

the kernel is C∞ in a neighborhood of the diagonal which we will prove independently from any

results of this chapter (beginning of chapter 8).
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+

ˆ

∆(T)×(R≥1×∂BR )
eiϑσ (Hα)0 dvol∆(T)×(R≥1×∂BR )

+∑
ι∈I

(−1)lι+1lι! res (Hα)ι(1 + dι)lι+1 .

Plugging in our kernel yields

ζ (s↦HsHα) (0) =∑
n∈Z

ˆ 2π

0

ˆ 1

−1

e−2πinξ
∣ξ∣α
2π

dξ dx

+ ∑
n∈Z∖{0}

ˆ 2π

0

ˆ

R≤1∪R≥1

e−2πinξ
∣ξ∣α
2π

dξ dx

−
1

1 + α

ˆ 2π

0

ˆ

∂BR

∣ξ∣α
2π

dvol∂BR
(ξ) dx

=

ˆ 1

−1

∣ξ∣α dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ
−

1

1 + α

ˆ

∂BR

∣ξ∣α dvol∂BR
(ξ).

Since α ∈ (−1,0) and vol∂BR
is the sum of point measures δ−1 + δ1, we obtain

ˆ 1

−1

∣ξ∣α dξ =2ˆ 1

0

ξαdξ =
2

α + 1
=

1

1 + α

ˆ

∂BR

∣ξ∣α dvol∂BR
(ξ),

i.e.

ζ (s ↦HsHα) (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ.
Using that the Fourier transform of ξ ↦ ∣ξ∣α is

ˆ

R

e−2πixξ ∣ξ∣α dξ = 2 sin (−απ
2
)Γ(α + 1)

∣2πx∣α+1
and Riemann’s functional equation

ζR(z) = 2(2π)z−1 sin(πz
2
)Γ(1 − z)ζR(1 − z),

we obtain (in the sense of meromorphic extensions)

ζ (s ↦HsHα) (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α dξ
= ∑
n∈Z∖{0}

2 sin (−απ
2
)Γ(α + 1)

∣2πn∣α+1
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=
2 sin (−απ

2
)Γ(α + 1)(2π)α+1 ⋅ 2∑

n∈N

1

nα+1

=2 2(2π)(−α)−1 sin(−απ
2
)Γ(1 − (−α))ζR(1 − (−α))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ζR(−α)

.

∎

Remark Using identification via meromorphic extension of

ζR(z) = ∑
n∈Z∖{0}

sin (−zπ
2
)Γ(z + 1)

∣2πn∣z+1
and, therefore,

∀z ∈ C ∖ {−1} ∶ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣z dξ = 2ζR(−z)
as well as

ˆ 1

−1

∣ξ∣z dξ = 1

1 + z

ˆ

∂BR

∣ξ∣z dvol∂BR
(ξ),

the example above extends to all α ∈ C ∖ {−1}, i.e.

ζR = (α ↦ 1

2
ζ (s ↦HsH−α) (0)) .

∎

Example (the generalized ζ-determinant of s ↦Hs+α) Let α ∈ C ∖ {−1}.
In order to calculate detζ (s↦HsHα) = exp (ζ (s↦HsHα)′ (0)), it suffices to

know the derivative ζ (s ↦HsHα)′ (0). From the spectral ζ-function we directly

obtain

ζ (s ↦HsHα)′ (0) = ∂ (z ↦ 2ζR(−z))(α) = −2ζ′R(−α).
On the other hand, we may invest

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)
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+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk,

(Theorem 4.1) again, and find

ζ (s ↦HsHα)′ (0) =ˆ
∆(T)×BR

eiϑσ (lnHHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ (lnHHα)0 dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res (lnHHα)ι(1 + dι)lι+1 .

Using the amplitude ln∣ξ∣
2π

of lnH on R, yields that

∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ ∣ξ∣α ln ∣ξ∣
2π

dξ

is the kernel of lnHHα on T. Again, the singular part is given for n = 0 yielding

#I = 1, dι = α, and lι = 1, as well as

ζ (s ↦HsHα)′ (0) =ˆ 2π

0

ˆ 1

−1

∑
n∈Z

e−2πinξ
∣ξ∣α ln ∣ξ∣

2π
dξ dx

+

ˆ 2π

0

ˆ

R<−1∪R>1
∑

n∈Z∖{0}
e−2πinξ

∣ξ∣α ln ∣ξ∣
2π

dξ dx

+
1(1 + α)2

ˆ 2π

0

ˆ

∂BR

∣ξ∣α ln ∣ξ∣
2π

dvol∂BR
(ξ) dx

=

ˆ 1

−1

∣ξ∣α ln ∣ξ∣ dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α ln ∣ξ∣ dξ + 2(1 + α)2 .
Note that

ˆ 1

−1

∣ξ∣α ln ∣ξ∣ dξ =2ˆ 1

0

ξα ln ξ dξ = −
2(α + 1)2

holds for R(α) > −1 and, hence, by meromorphic extension

ζ (s↦HsHα)′ (0) = ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α ln ∣ξ∣ dξ
= ∑
n∈Z∖{0}

ˆ

R

e−2πinξ∂ (β ↦ ∣ξ∣β) (α) dξ
=∂
⎛⎝β ↦ ∑

n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣β dξ
⎞⎠(α)
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=∂ (β ↦ 2ζR(−β)) (α)
= − 2ζ′R(−α).

∎

Similarly, we can take higher order derivatives.

Example (∂kζ (s ↦HsHα) (0) on R/2πZ) Regarding higher order derivatives the

spectral ζ-function yields

∂kζ (s ↦HsHα) (0) = ∂k (z ↦ 2ζR(−z))(α) = (−1)k ⋅ 2∂kζR(−α).
From

ζ (s ↦HsHα) (z) = ∑
k∈N

0

1

k!
(ˆ

∆(T)×BR

eiϑσ ((lnH)kHα) dvol∆(T)×∂BR

+

ˆ

∆(T)×(R≥1×∂BR)
eiϑσ ((lnH)kHα)

0
dvol∆(T)×(R≥1×∂BR)

+∑
ι∈I

(−1)lι+1lι! res((lnH)kHα)
ι(1 + dι)lι+1
⎞⎟⎠ zk

(Theorem 4.1) we obtain

∂kζ (s↦HsHα) (0) =ˆ 2π

0

ˆ 1

−1

∑
n∈Z

e−2πinξ
∣ξ∣α (ln ∣ξ∣)k

2π
dξ dx

+

ˆ 2π

0

ˆ

R∖BR

∑
n∈Z∖{0}

e−2πinξ
∣ξ∣α (ln ∣ξ∣)k

2π
dξ dx

+
(−1)k+1k!(1 + α)k+1

ˆ 2π

0

ˆ

∂BR

∣ξ∣α
2π

dvol∂BR
(ξ) dx

=2

ˆ 1

0

ξα (ln ξ)k dξ + ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣α (ln ∣ξ∣)k dξ
−
2 ⋅ (−1)kk!(1 + α)k+1

=2∂k (β ↦ ˆ 1

0

ξβdξ)(α) − 2 ⋅ (−1)kk!(1 + α)k+1
+ ∂k

⎛⎝β ↦ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ ∣ξ∣β dξ⎞⎠(α)
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=2∂k (β ↦ (1 + β)−1) (α)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(−1)kk!(1+α)−(k+1)

−
2 ⋅ (−1)kk!(1 + α)k+1 + ∂k (β ↦ 2ζR(−β)) (α)

=(−1)k ⋅ 2∂kζR(−α).
∎

Finally, let us calculate the residue of ζ (s ↦HsH−1).
Example (res0 ζ (s↦HsH−1) on R/2πZ) ζ (s↦HsH−1) (z) = 2ζR(1 − z) shows

that res0 ζ (s↦HsH−1) = −2 res1 ζR = −2. Also, using the Laurent expansion (The-

orem 4.1) of ζ(A) for A = (s ↦HsH−1), we obtain

res0 ζ (s↦HsH−1) = − ˆ 2π

0

ˆ

∂BR

∣ξ∣−1
2π

dvol∂BR
dx = −2.

∎

Furthermore, we can consider shifted fractional Laplacians which do not have singu-

lar amplitudes, that is, these are actually covered by the theory we have developed

so far. They will also lead to the crucial observation that will help incorporate the

case of singular amplitudes and, thus, justify the example of fractional Laplacians.

Example (shifted fractional Laplacians on R/2πZ) Again, let H ∶=
√∣∆∣

on R/2πZ . Furthermore, let h ∈ (0,1] and G ∶= h +H . Then,

ζ (s↦ Gs+α) (z) =∑
n∈Z

(h + ∣n∣)z+α = 2 ∑
n∈N

0

(h + n)z+α − hz+α = 2ζH(−z − α;h) − hz+α
where ζH(z;h) denotes the Riemann-Hurwitz-ζ-function. In order to use our for-

malism above (Theorem 4.1), we will need to write ξ ↦ (h + ∣ξ∣)α as a series of

poly-log-homogeneous functions. Using Newton’s binomial theorem

∀x, y ∈ R ∀r ∈ C ∶
⎛⎝∣x∣ > ∣y∣ ⇒ (x + y)r = ∑

k∈N
0

(r
k
)xr−kyk⎞⎠

where

(r
k
) ∶= 1

k!

k−1

∏
j=0

(r − j) = r(r − 1)⋯(r − k + 1)
k!

,
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we obtain

(h + ∣ξ∣)α = ∑
k∈N

0

(α
k
) ∣ξ∣α−k hk

for ∣ξ∣ ≥ 1, i.e. the kernel

kGz+α(x, y) = ∑
n∈Z

ˆ

R

ei(x−y−2πn)ξ 1

2π
(h + ∣ξ∣)z+αdξ

of Gz+α is, in fact, given by a poly-log-homogeneous amplitude. For α = −1, the

critical term in zero is given by the k = 0 term of ∑k∈N
0
(α
k
) ∣ξ∣α−k hk, i.e.

res0 ζ (s↦ Gs−1) = − ˆ
∂BR

∣ξ∣−1 dvol∂BR
(ξ) = −2.

On the other hand, the spectral calculation yields

res0 ζ (s↦ Gs−1) = res0 (z ↦ 2ζH(−z + 1;h) − hz+α) = 2 res0 (z ↦ ζH(−z + 1;h))
= − 2 res0 (z ↦ ζH(z − 1;h)) = −2 res1 ζH(⋅;h) = −2.

For α ≠ −1 and ∣ξ∣ ≥ 1,
(h + ∣ξ∣)α = ∑

k∈N
0

(α
k
)hk ∣ξ∣α−k

implies α − k = −1 if and only if k = α + 1 ∈ N0. However, since ( α
α+1
) = 0 for α ∈ N0,

we obtain I0 = ∅ and

ζ (s ↦ Gs+α) (0) =∑
n∈Z

ˆ 1

−1

e−2πinξ(h + ∣ξ∣)αdξ
+ ∑
n∈Z∖{0}

ˆ

R∖[−1,1]
e−2πinξ(h + ∣ξ∣)αdξ

+ ∑
k∈N

0

−1

1 + α − k

ˆ

∂BR

(α
k
)hk ∣ξ∣α−k dvol∂BR

(ξ)
=

ˆ 1

−1

(h + ∣ξ∣)αdξ − ∑
k∈N

0

2

1 + α − k
(α
k
)hk

+ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ.



5. HEAT TRACE AND (SHIFTED) FRACTIONAL LAPLACIANS ON FLAT TORI 89

Observing

ˆ 1

−1

(h + ∣ξ∣)αdξ =2ˆ 1

0

(h + ξ)αdξ
=2

ˆ 1+h

h

ξαdξ

=
2

α + 1
((1 + h)α+1 − hα+1)

=
−2hα+1

α + 1
+

2

α + 1
∑
k∈N

0

(α + 1
k
)hk

=
−2hα+1

α + 1
+ 2 ∑

k∈N
0

1

α − k + 1
(α
k
)hk

leaves us with

ζ (s↦ Gs+α) (0) =−2hα+1
α + 1

+ ∑
n∈Z∖{0}

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

non-singular

.

This is precisely what we expect since the principal part of ζH(z;h) near 1 is h1−z
z−1

(cf. equation 3.1.1.10 in [67]), i.e.

ζ (s ↦ Gs+α) (0) = 2ζH(−z − α;h) − hz+α

has principal part 2 h
1+α
−α−1

.

Unfortunately, evaluating ∑n∈Z∖{0}
´

R
e−2πinξ(h + ∣ξ∣)αdξ is a wee tricky. We

will use that

ˆ

R

(h + ∣ξ∣)αdξ =2ˆ
R≥0

(h + ξ)αdξ = 2ˆ
R≥h

ξαdξ = −
2hα+1

α + 1

holds for R(α) < −1 and note

ζ (s↦ Gs+α) (0) =∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
by meromorphic extension. Furthermore, we obtain

ζ (s↦ Gs+α) (0) =∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)αdξ
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=∑
n∈Z

ˆ

R≥0

e−2πinξ(h + ∣ξ∣)αdξ + ∑
n∈Z

ˆ

R<0

e−2πinξ(h + ∣ξ∣)αdξ
=∑
n∈Z

e2πinh
ˆ

R≥h

e−2πinξξαdξ + ∑
n∈Z

ˆ 0−

−∞

e−2πinξ(h − ξ)αdξ
=∑
n∈Z

e2πinh
ˆ

R≥h

e−2πinξξαdξ + ∑
n∈Z

(−ˆ h+

∞

e−2πin(h−ξ)ξαdξ)
=∑
n∈Z

e2πinh
ˆ

R≥h

e−2πinξξαdξ + ∑
n∈Z

e−2πinh
ˆ

R>h

e2πinξξαdξ

=∑
n∈Z

e2πinh
ˆ

R≥h

e−2πinξξαdξ + ∑
n∈Z

e2πinh
ˆ

R>h

e−2πinξξαdξ

=∑
n∈Z

e2πinh (ˆ
R

e−2πinξ1R≥h(ξ)ξαdξ +
ˆ

R

e−2πinξ1R>h(ξ)ξαdξ) .
For ε ∈ (0,1) let

ϕε(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x ∈ R≤h−ε

ε−1(x − h + ε) , x ∈ (h − ε, h)
1 , x ∈ R≥h

and

ψε(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x ∈ R≤h

ε−1(x − h) , x ∈ (h,h + ε)
1 , x ∈ R≥h+ε

.

Then,

ζ (s ↦ Gs+α) (0) =∑
n∈Z

e2πinh (ˆ
R

e−2πinξ1R≥h(ξ)ξαdξ +
ˆ

R

e−2πinξ1R>h(ξ)ξαdξ)
=∑
n∈Z

e2πinh lim
ε↘0
(ˆ

R

e−2πinξϕε(ξ)ξαdξ + ˆ
R

e−2πinξψε(ξ)ξαdξ)
can be evaluated using the Poisson summation formula on a lattice Λ (cf. Chapter

VII.2 Theorem 2.4 in [71])

∑
λ∈Λ

f(x + λ) = ∑
λ∈Λ

F f(λ)e2πiλx
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which yields (we can move limε↘0 freely in and out of integrals and series due to

meromorphic extension, dominated convergence, and the series converging abso-

lutely for R(α) < −1)
ζ (s ↦ Gs+α) (0) = lim

ε↘0
∑
n∈Z

e2πinh (ˆ
R

e−2πinξϕε(ξ)ξαdξ + ˆ
R

e−2πinξψε(ξ)ξαdξ)
= lim
ε↘0
∑
n∈Z

(ϕε(h + n)(h + n)α +ψε(h + n)(h + n)α)
= lim
ε↘0

⎛⎝∑n∈N
0

ϕε(h + n)(h + n)α + ∑
n∈N

ψε(h + n)(h + n)α⎞⎠
= ∑
n∈N

0

(h + n)α + ∑
n∈N

(h + n)α

=2ζH(−α;h) − hα.
Considering derivatives, we obtain

∂mζ (s↦ GsGα) (0) = 2(−1)m∂mζH(−α;h) − hα(lnh)m

from the spectral ζ-function while the Laurent expansion (Theorem 4.1) yields

∂mζ (s↦ GsGα) (0)
=∑
n∈Z

ˆ 1

−1

e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∑
n∈Z∖{0}

ˆ

R∖[−1,1]
e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∑
k∈N

0

m

∑
j=0

(−1)j+1j! ´
∂BR

∂m−j (β ↦ (β
k
)hk ∣ξ∣β−k) (α) dvol∂BR

(ξ)
(α − k + 1)j+1

=∑
n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

− 2

ˆ

R≥1

(h + ∣ξ∣)α (ln(h + ∣ξ∣))m dξ

+ ∂m
⎛⎝β ↦ ∑k∈N

0

−
´

∂BR

(β
k
)hk ∣ξ∣β−k dvol∂BR

(ξ)
β − k + 1

⎞⎠(α)
=∂m (β ↦ ∑

n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)β dξ)(α)
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− 2∂m
⎛⎝β ↦

ˆ

R≥1

(h + ∣ξ∣)β dξ⎞⎠(α) + ∂m ⎛⎝β ↦ ∑k∈N
0

−2(β
k
)hk

β − k + 1

⎞⎠(α)
=∂m (β ↦ 2ζH(−β;h) − hβ) (α)
− 2∂m (β ↦ −(1 + h)β+1

β + 1
)(α) − 2∂m (β ↦ (1 + h)β+1

β + 1
)(α)

=2(−1)m∂mζH(−α;h) − hα(lnh)m.
∎



CHAPTER 6

Mollification of singular amplitudes

In this chapter we will address the fact that many applications consider am-

plitudes which are homogeneous on RN ∖ {0} rather than just RN ∖BRN (0,1). In

particular for pseudo-differential operators, this is the classical case. However, it

does not add too many problems because we can use a cut-off function near zero

and extend the symbol as a distribution to RN (which is uniquely possible up to

the critical degrees of homogeneity). Then, we are left with a Fourier transform

of a compactly supported distribution, i.e. the corresponding kernel is continuous

and we can take the trace. In the general Fourier Integral Operator case, on the

other hand, the situation is more complicated. Hence, in this chapter, we will

show that the Laurent expansion holds for such amplitudes, as well, and not just

modulo trace-class operators. We will prove this result by showing that we can

always find a sequence of “nice” families of operators (that is, the amplitudes are

C∞ in BRN (0,1)) such that their ζ-functions converge compactly (this process is

called “mollification”). Once compact convergence is shown, we know that all local

properties (in particular the Laurent expansion) are preserved taking the limit. In

other words, by the end of this chapter, the ζ-function calculus considered above

will fully contain the pseudo-differential case.

The idea of mollification is strongly intertwined with the examples of the

shifted and non-shifted fractional Laplacians in the previous chapter. Our cal-

culations of ζ (s↦HsHα) have been pushing the boundaries of our formulae in the

sense that the Laurent expansion of Fourier Integral Operators assumes integrability

93
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of all amplitudes a(z) on BRN . This is obviously not true for a(z)(x, y, ξ) = ∣ξ∣z+α
if R(z) < −1 − R(α) (recall H ∶=

√∣∆∣ on R/2πZ where ∣∆∣ is the non-negative

Laplacian on R/2πZ). Hence, we would have to consider the Laurent expansion in

a more general version where we also allowed

z ↦
ˆ

X

ˆ

B
RN

eiϑ(x,x,ξ)a(z)(x,x, ξ) dξ dvolX(x)
to have a non-vanishing principal part.

However, we may use ζ (s ↦ GsGα) to justify the calculations as they are by

taking the limit h ↘ 0 in ζ (s↦ GsGα) (recall G ∶= h +H with h ∈ (0,1]). Note

that

ζH(z;h) = 1

z − 1
+ ∑
n∈N

0

(−1)n
n!

γn(h)(z − 1)n
and

ζR(z) = 1

z − 1
+ ∑
n∈N

0

(−1)n
n!

γn(z − 1)n
hold with infinite radius of convergence where the Stieltjes constants γn and gen-

eralized Stieltjes constants γn(h) are given by

γn ∶= lim
N→∞

(−(lnN)n+1
n + 1

+

N

∑
k=1

(lnk)n
k
) ,

γn(h) ∶= lim
N→∞

(−(ln(N + h))n+1
n + 1

+

N

∑
k=1

(ln(k + h))n
k + h

) .
These imply γn(h)→ γn (h↘ 0) and, hence,

lim
h↘0

ζH(−z − α;h) =ζR(−z − α) compactly.

On the other hand,

ζH(z;h) − h−z =∑
n∈N

(h + n)−z
=∑
n∈N

∑
k∈N

0

(−z
k
)hkn−z−k
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= ∑
k∈N

0

(−z
k
)hkζR(z + k)

holds by meromorphic extension and, thus,

lim
h↘0

ζH(z;h) − h−z =ζR(z) compactly.

Finally, we obtain

lim
h↘0

ζ (s↦ GsGα) (z) = lim
h↘0
(ζH(−z − α;h) + ζH(−z − α;h) − hz+α)

=2ζR(−z − α)
=ζ (s↦HsHα) (z)

compactly. In fact, knowing a bit more about ζH we can get the result from the

fact that

∀n ∈ Z ∶ ζH(s;n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ζR(s) +∑nk=1 k−s , n ≤ 0

ζR(s) −∑n−1k=1 k
−s , n > 0

which directly implies ζH(s; 1) = ζH(s; 0) = ζR(s) and, hence,

2ζH(−z − α;h) − hz+α =ζH(−z − α;h) + ζH(−z − α; 1 + h)
→ζH(−z − α; 0) + ζH(−z − α; 1) (h→ 0)
=2ζR(−z − α)

where the limit is compact again using Vitali’s theorem (cf. Theorem 6.1 below).

In any case, the important observation is

lim
h↘0

ζ (s ↦ GsGα) =ζ (s↦HsHα) compactly.
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Let us have a closer look at what happens with respect to the amplitude when

we replace H by G. Here, we regularized the kernel a(z)(x, y, ξ) = ∣ξ∣z by adding

an h ∈ (0,1] yielding a perturbed amplitude ah(z)(x, y, ξ) = (h + ∣ξ∣)z which has

no singularities. Showing that the compact limit h ↘ 0 exists, then, justified our

calculations. Using Vitali’s theorem (cf. e.g. chapter 1 in [42]), we can largely

generalize this idea.

Theorem 6.1 (Vitali). Let Ω ⊆open,connected C, f ∈ Cω(Ω)N locally bounded1,

and let

{z ∈ Ω; (fn(z))n∈N converges}
have an accumulation point in Ω. Then, f is compactly convergent.

We will consider two approaches to mollification. First, we will discuss a spec-

tral approach in generalized convergence (cf. Chapter IV in [44], also known as gap

topology; the most important results can also be found in appendix B). Then, we

will generalize the shift H ↝ G to poly-log-homogeneous distributions.

Spectral mollification

Let (An)n∈N be a sequence of gauged Fourier Integral Operators with C∞-

amplitudes and A a gauged Fourier Integral Operator whose amplitudes may con-

tain singularities. Furthermore, let An(z) → A(z) for every z in gap topology (cf.

appendix B). Let d ∈ R such that

∀z ∈ C ∶ (R(z) < d ⇒ A(z) is of trace-class)
and Ω ∶= C

R(⋅)<d−1. Then, for every z ∈ Ω, (An(z))n∈N is eventually a sequence

of bounded operators and An∣Ω → A∣Ω converges pointwise in norm (cf. Theorem

1f ∈ Cω(Ω)N is called locally bounded if and only if for every z ∈ Ω there exists a neighborhood

of z such that f is uniformly bounded on that neighborhood.
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B.13). Furthermore, let (λk(z))k∈N be the sequence of eigenvalues of A(z) count-

ing multiplicities and (λk(z) + hnk(z))k∈N be the sequence of eigenvalues of An(z)
counting multiplicities. Suppose that hn(z) ∶= ∑k∈N ∣hnk(z)∣ exists and converges to

zero for z ∈ Ω.

Remark Note that An(z)→ A(z) in the gap topology implies that the hnk(z) exist

and for every k and z we have limn→∞ hnk(z) → 0. However, in general, we will

not have any uniform bound on them, let alone find an hn(z); cf. the discussion

following Theorem B.21.

∎

Then,

∣ζ(An)(z) − ζ(A)(z)∣ = ∣∑
k∈N

(λk(z)+ hnk(z)) − ∑
k∈N

λk(z)∣ = ∣∑
k∈N

hnk(z)∣ ≤ hn(z)→ 0

for z ∈ Ω shows

{z ∈ Ω; (ζ(An)(z))n∈N converges} = Ω.
Let Ω̃ ⊆ C be open and connected with Ω ⊆ Ω̃ such that all ζ(An)∣Ω̃ are holomorphic

and {ζ(An)∣Ω̃; n ∈ N} is locally bounded. Then,

lim
n→∞

ζ(An)∣Ω̃ = ζ(A)∣Ω̃ compactly.

In particular, if hn admits an analytic continuation to Ω̃, then limn→∞ ζ(An)∣Ω̃ =
ζ(A)∣Ω̃ compactly.

Definition 6.2. Let A be an operator with purely discrete spectrum. For every

λ ∈ σ(A) let µλ be the multiplicity of λ. Then, we define the spectral ζ-function

ζσ(A) to be the meromorphic extension of

ζσ(A)(s) ∶= ∑
λ∈σ(A)∖{0}

µλλ
−s
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and the spectral Θ-function Θσ(A)
∀t ∈ R>0 ∶ Θσ(A)(t) ∶= ∑

λ∈σ(A)
µλ exp (−tλ)

if they exist.

Definition 6.3. Let T ∈ R>0 and ϕ ∈ C(R>0). We define the upper Mellin

transform as

MT (ϕ)(s) ∶= ˆ
(0,T )

ϕ(t)ts−1dt
and the lower Mellin transform

MT (ϕ)(s) ∶=
ˆ

R≥T

ϕ(t)ts−1dt
(if the integrals exist). If both integrals exist and have non-empty intersection Ω of

domains of holomorphy (that is, the maximal connected and open subset admitting

an analytic continuation of the function), then we define the generalized Mellin

transform of ϕ to be the meromorphic extension of

M(ϕ) ∶=MT (ϕ)∣Ω +MT (ϕ)∣Ω.
Example Let ϕ(t) ∶= tα for some α ∈ C. Then

MT (ϕ)(s) =ˆ
(0,T )

ts+α−1dt =
T s+α

s + α

for R(s) > α extending to C ∖ {−α} and

MT (ϕ)(s) =
ˆ

R≥T

ts+α−1dt = −
T s+α

s + α

for R(s) < α extending to C ∖ {−α}. Hence,M(ϕ) exists with

M(ϕ)(s) = T s+α
s + α

−
T s+α

s + α
= 0

on C ∖ {−α}, i.e. M(ϕ) = 0.
∎
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Remark The example above is very important for pseudo-differential operators

or, more generally, Fourier Integral Operators whose phase function ϑ satisfies

∀x ∶ ϑ(x,x, ⋅) = 0. It means that homogeneous terms in the asymptotic expansion,

which are not of critical degree, vanish under regularization in the Kontsevich-

Vishik trace, i.e. it is the reason why we can split off finitely many terms in the

Kontsevich-Vishik density.

∎

Example Let λ ∈ R>0 and s ∈ C with R(s) > 0. Then

ˆ

R>0

e−λtts−1dt =

ˆ

R>0

e−ττs−1λ−sdt = λ−sΓ(s)
shows that λ↦

´

R>0
e−λtts−1dt extends analytically to C ∖R≤0.

∎

Example Let A be an operator with purely discrete spectrum. For every λ ∈ σ(A)
let µλ be the multiplicity of λ and R(λ) ≥ 0. M(1) = 0, then, implies

M (Θσ(A)) (s) = ∑
λ∈σ(A)

µλM (t ↦ exp(−tλ)) (s)
= ∑
λ∈σ(A)∖{0}

µλM (t↦ exp(−tλ)) (s)
= ∑
λ∈σ(A)∖{0}

µλλ
−sΓ(s)

=ζσ(A)(s)Γ(s).

∎

Lemma 6.4. limh↘0M (t↦ exp(−th)) =M(1) = 0 compactly.

Proof. For R(s) > 1, we obtain

1

Γ(s)M (t↦ exp(−th))(s) = 1

Γ(s)
ˆ

R>0

e−thts−1dt
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=h−s

= ∑
k∈N

0

(k + h)−s − ∑
k∈N

0

(k + 1 + h)−s

=ζH(s;h) − ζH(s; 1 + h).

Hence,

M (t↦ exp(−th))(s) =Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h)

holds on C ∖ Z≤1. Furthermore, Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h) is locally bounded

on C ∖Z≤1 for h↘ 0 which implies

lim
h↘0
M (t↦ exp(−th))(s) = lim

h↘0
(Γ(s)ζH(s;h) − Γ(s)ζH(s; 1 + h))

=Γ(s)ζH(s; 0) − Γ(s)ζH(s; 1)
=Γ(s)ζR(s) − Γ(s)ζR(s)
=0

compactly, i.e. the compact limit limh↘0M (t↦ exp(−th)) exists and vanishes on

C ∖ Z≤1.

�

Corollary 6.5. Let A and Ah be operators with spectral ζ-functions. Let

ζσ(A) be the meromorphic extension of ∑k∈N λ
−s
k for some N ⊆ N and ζσ(Ah) the

meromorphic extension of ∑nj=1 h̃
−s
j +∑k∈N (λk+hk)−s where all h̃j ∈ R>0 (the h̃j are

the perturbations of the eigenvalue zero and n is the multiplicity of the zero in σ(A)).
Suppose Ah converges to A in the gap topology and the meromorphic extension fh

of ∑k∈N(λk + hk)−s is locally bounded and converges to ζσ(A) pointwise.
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Then, ζσ(Ah) converges to ζσ(A) compactly.

Proof. The assertion is a direct consequence of ∑nj=1 h̃
−s
j → 0 compactly

(Lemma 6.4) and fh → ζσ(A) compactly (Vitali’s theorem).

�

Mollification of poly-log-homogeneous distributions

The considerations regarding the spectral ζ-function have given us useful in-

sights on the spectral level of the operator and contain some nice properties, e.g.

that mollification will be essentially the generalized Mellin transform. However,

it did not provide us with existence of a mollifying sequence of operators (and

even if it did, it would only contain a rather restrictive sub-class of operators). In

this section, we will consider gauged poly-log-homogeneous distributions which are

poly-log-homogeneous everywhere on R>0×M and show that they can be mollified.

Proposition 6.6. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution on R>0 ×M with I finite and α0 regular. Then, ζ(α) can be mollified.

In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

for hι ∈ R>0, hι ↘ 0.
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Proof. The part

ˆ

R>0×M
α0(z)dvolR>0×M +∑

ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

creates no problems in the formalism used to obtain the Laurent expansion. Hence,

we only need to consider

∑
ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

=∑
ι∈I

ˆ

(0,1)
∂lι (s ↦ rdimM+dι+s) (z)dr resαι(z)

=∑
ι∈I

∂lι (s↦ ˆ
(0,1)

rdimM+dι+sdr) (z) resαι(z)
=∑
ι∈I

∂lι (s↦ 1

dimM + dι + s + 1
)(z) resαι(z)

=∑
ι∈I

(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z).
Introducing hι ∈ R>0 we obtain

∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

ˆ

(0,1)
∂lι (s↦ (hι + r)dimM+dι+s) (z)dr resαι(z)

=∑
ι∈I

∂lι (s ↦ ˆ
(0,1)
(hι + r)dimM+dι+sdr)(z) resαι(z)

=∑
ι∈I

∂lι (s ↦ (1 + hι)dimM+dι+s+1 − hdimM+dι+s+1
ι

dimM + dι + s + 1
)(z) resαι(z)

=∑
ι∈I

lι

∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
−∑
ι∈I

lι

∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−j resαι(z).

Since each of the (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j is locally bounded for hι → 0

(taking derivatives in Lemma 6.4) and

(1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j →
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 j ≠ lι

1 j = lι
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for hι → 0, we obtain

lim
hι↘0
∑
ι∈I

lι

∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
=∑
ι∈I

(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z)
compactly. Furthermore,

hdimM+dι+z+1
ι (lnhι)lι−j =hdimM+dι+z+1+j−lι

ι (hι lnhι)lι−j

being locally bounded for hι → 0 and converging to zero compactly (in z) (recall

limh↘0 h
z = limh↘0 ζH(−z;h) − ζR(−z) = 0 compactly) shows

ζ(αh)(z)
=

ˆ

R>0×M
α0(z)dvolR>0×M +∑

ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

lι

∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j resαι(z)
−∑
ι∈I

lι

∑
j=0

(−1)jj!(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j resαι(z)

→
ˆ

R>0×M
α0(z)dvolR>0×M +∑

ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

(−1)lιlι!(dimM + dι + z + 1)lι+1 resαι(z)
=ζ(α)(z)

where the convergence is compact by Vitali’s theorem.

�

Example (re-visiting ζ (s↦HsHα)) Let Γ ⊆ RN be a discrete group generated

by a basis of RN , ∣∆∣ the Dirichlet Laplacian on RN , δ the Dirichlet Laplacian on

RN /Γ, and H ∶=
√
δ. Then,

ζ (s ↦Hs) (z) =volRN /Γ (RN /Γ)∑
γ∈Γ

ˆ

RN

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N) dξ
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where

∑
γ∈Γ∖{0}

ˆ

RN

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N) dξ
is regular, i.e.

α0(z)(ξ) = volRN /Γ (RN /Γ) ∑
γ∈Γ∖{0}

e−i⟨γ,ξ⟩ℓ2(N)(2π)−N ∥ξ∥zℓ2(N)
and

∑
ι∈I

αι(z)(ξ) = volRN /Γ (RN/Γ) (2π)−N ∥ξ∥zℓ2(N) .
Hence, Proposition 6.6 is applicable.

∎

In the following proposition, we will use Abel’s summation.

Lemma 6.7 (Abel’s summation). Let G be a group, a, b ∈ GN , and

∀n ∈ N ∶ Bn ∶=
n

∑
k=1

bk.

Then,

∀n ∈ N ∶
n

∑
k=1

akbk = an+1Bn +
n

∑
k=1

(ak − ak+1)Bk.
Proof.

an+1Bn +
n

∑
k=1

(ak − ak+1)Bk =an+1Bn + n

∑
k=1

akBk −
n

∑
k=1

ak+1Bk

=
n

∑
k=1

akBk −
n−1

∑
k=1

ak+1Bk

=
n

∑
k=1

k

∑
j=1

akbj −
n−1

∑
k=1

k

∑
j=1

ak+1bj

=a1b1 +
n

∑
k=2

k

∑
j=1

akbj −
n−1

∑
k=1

k

∑
j=1

ak+1bj

=a1b1 +
n−1

∑
k=1

k+1

∑
j=1

ak+1bj −
n−1

∑
k=1

k

∑
j=1

ak+1bj
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=a1b1 +
n−1

∑
k=1

ak+1bk+1

=
n

∑
k=1

akbk

�

Proposition 6.8. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous dis-

tribution on R>0 ×M with I ⊆ N, α0 regular on (0,1) ×M ,

αι(z)(r, ξ) =rdι+z(ln r)lι α̃ι(z)(ξ),
where (R(dι))ι∈I is bounded from above, each ( 1

dimM+dι+z+1
)
ι∈I
∈ ℓ2(I), (lι)ι∈I ∈

ℓ∞(I), l ∶= ∥(lι)ι∈I∥ℓ∞(I), and each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).
Then, ζ(α) can be mollified.

In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

for h ∶= (hι)ι∈I ∈ ℓ∞(I;R>0) and h↘ 0 in ℓ∞(I) such that

Zι(z) ∶= ∣ζH(l − dι − z;hι) − ζH(l − dι − z; 1 + hι)∣
defines (Zι(z))ι∈I ∈ ℓ∞(I) which is uniformly bounded on an exhausting family

of compacta as h ↘ 0,2 i.e. there exists a family (Ωn)n∈N such that ∀n ∈ N ∶

2Note, this is a restraining property on the choice of h ∈ ℓ∞(I). It is possible to find such

sequences because each Zι converges compactly to zero as hι ↘ 0.
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Ωn ⊆compact C, ∀n ∈ N ∶ Ωn ⊆ Ωn+1, ⋃n∈N Ωn = C, and

∀n ∈ N ∶ lim sup
h↘0

∥(∥Zι∥L∞(Ωn))ι∈I∥ℓ∞(I) <∞.

Proof. Proposition 6.6 yields the assertion for finite I. Hence, we may assume

I = N without loss of generality. Furthermore, we only need to consider the part

A(h) ∶=∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j

−∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j ,

i.e. show that it converges compactly to zero. Recall that ∑ι∈I
resαι(z)

dimM+dι+z+1
con-

verges absolutely and ∣dimM + dι + z + 1∣ → ∞ (ι → ∞). Hence, we will assume,

without loss of generality, ∀ι ∈ I ∶ ∣dimM + dι + z + 1∣ ≥ 1 (as there can only be

finitely many with ∣dimM + dι + z + 1∣ < 1 which is handled by Proposition 6.6).

Then, we observe (for h0 ∶= ∥h∥ℓ∞(I) < e − 1)
RRRRRRRRRRR∑ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−jRRRRRRRRRRR
≤∑
ι∈I

lι

∑
j=0

j! ∣resαι(z)∣∣dimM + dι + z + 1∣j+1 ∣(1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j ∣
≤l!∑

ι∈I

lι

∑
j=0

∣resαι(z)∣∣dimM + dι + z + 1∣ ∣(1 + hι)dimM+dι+z+1∣ (ln(1 + h0))lι−j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1 (h0<e−1)

≤l! ⋅ l∑
ι∈I

∣resαι(z)∣∣dimM + dι + z + 1∣ (1 + h0)dimM+R(dι+z)+1

≤l! ⋅ l (1 + h0)max{dimM+R(z)+1+supι∈I R(dι),0}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1 (h↘0)

∑
ι∈I

∣resαι(z)∣∣dimM + dι + z + 1∣
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which is locally bounded by absolute convergence of ∑ι∈I
resαι(z)

dimM+dι+z+1
and compact

convergence of (1 + hι)dimM+dι+z+1. Furthermore, we obtain (for h0 ≤ e−1)

RRRRRRRRRRR∑ι∈I
lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

≤∑
ι∈I

lι

∑
j=0

l! ∣resαι(z)hdι+z−lι (hι lnhι)l∣
∣dimM + dι + z + 1∣ hdimM+1

ι

≤l ⋅ l!hdimM+1
0 ∑

ι∈I

∣resαι(z)hdι+z−lι (hι lnhι)l∣
∣dimM + dι + z + 1∣ .

Note that

∣hι lnhι∣l →
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 , l = 0

0 , l ≠ 0

for hι → 0, i.e. it suffices to show that

∑
ι∈I

resαι(z)hdι+z−lι

dimM + dι + z + 1

converges absolutely. Since

∣hdι+z−lι ∣ = ∣ζH(l − dι − z;hι) − ζH(l − dι − z; 1 + hι)∣ = Zι(z)
holds (we can choose (Zι(z))ι∈I locally bounded because z ↦ ζH(l − dι − z;hι) −
ζH(l − dι − z; 1 + hι) converges to zero compactly as hι ↘ 0)3, we observe

∑
ι∈I

∣ resαι(z)hdι+z−lι

dimM + dι + z + 1
∣ ≤ ∑

ι∈I

∣ resαι(z)
dimM + dι + z + 1

∣Zι(z)
which is bounded by absolute convergence of ∑ι∈I ∣ resαι(z)

dimM+dι+z+1
∣ and the assumed

boundedness of (Zι(z))ι∈I . Furthermore, local boundedness (with respect to z)

3Since we have to construct a sequence H ∈ ℓ∞(I;R>0)N where each element Hn is of the

form h, it suffices to have uniform boundedness of (Zι)ι∈I on some compact set Ωn for Hn and

choose (Ωn)n∈N to satisfy ∀n ∈ N Ωn ⊆ Ωn+1 and ⋃n∈N Ωn = C.
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follows from local boundedness of ∑ι∈I ∣ resαι(z)
dimM+dι+z+1

∣ and Zι. Observing

∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1 (ln(1 + hι))lι−j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→δj,lι

→∑
ι∈I

(−1)lιlι! resαι(z)(dimM + dι + z + 1)lι+1
and

RRRRRRRRRRR∑ι∈I
lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

=

RRRRRRRRRRR∑ι∈I
lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+2+j−lι
ι (hι lnhι)lι−jhιRRRRRRRRRRR

≤h
RRRRRRRRRRR∑ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+2+j−lι
ι (hι lnhι)lι−jRRRRRRRRRRR

→0

for R (dimM + dι + z + 2 − l) > 0 and h↘ 0 shows

A(h) =∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)

=∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j

−∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1hdimM+dι+z+1
ι (lnhι)lι−j

→∑
ι∈I

(−1)lιlι! resαι(z)(dimM + dι + z + 1)lι+1
compactly and, thus,

ζ(αh)→ ζ(α)
compactly.

�

Remark Note that

ζH(z;h) = 1

z − 1
+ ∑
n∈N

0

(−1)n
n!

γn(h)(z − 1)n
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with

γn(h) ∶= lim
N→∞

(−(ln(N + h))n+1
n + 1

+

N

∑
k=1

(ln(k + h))n
k + h

)
implies that

z ↦ ζH(z, h0) − ζH(z, h1)
is an entire function for every h0, h1 ∈ R>0. Hence, each Zι is everywhere defined

on C.

∎

Finally, we may also drop the assumption (lι)ι∈I ∈ ℓ∞(I).

Theorem 6.9. Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribu-

tion on R>0 ×M with I ⊆ N, α0 regular on (0,1) ×M ,

αι(z)(r, ξ) =rdι+z(ln r)lι α̃ι(z)(ξ),
where (R(dι))ι∈I is bounded from above, each ( 1

dimM+dι+z+1
)
ι∈I
∈ ℓ2(I), and each

∑ι∈I α̃ι(z) converges unconditionally in L1(M). Then, ζ(α) can be mollified.

In particular,

ζ(α)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
rdimM+dι+z(ln r)lιdr resαι(z)

is the compact limit of

ζ(αh)(z) =ˆ
R>0×M

α0(z)dvolR>0×M +∑
ι∈I

ˆ

R≥1×M
αι(z)dvolR≥1×M

+∑
ι∈I

ˆ

(0,1)
(hι + r)dimM+dι+z(ln(hι + r))lιdr resαι(z)
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for h ∶= (hι)ι∈I ∈ ℓ∞(I;R>0) and h↘ 0 in ℓ∞(I) such that

Zι(z) ∶= lι lι

∑
j=0

∣ζH(lι − j − dι − z;hι) − ζH(lι − j − dι − z; 1 + hι)∣
is uniformly bounded on an exhausting family of compacta as h↘ 0.

Proof. The proof works precisely as the proof of Proposition 6.8. The only

difference is that we have to show local boundedness of

∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j

and

∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−j

since the estimates do not hold anymore. Since

∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1
is a well-defined meromorphic function, it is locally bounded. Furthermore, (1 +
hι)dimM+dι+z+1(ln(1 + hι))lι−j can be chosen uniformly bounded on any half plane

{z ∈ C; R(z) < r} for any r ∈ R, i.e. we can construct a sequence that is eventually

uniformly convergent on any given compactum. Hence,

∑
ι∈I

lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 (1 + hι)dimM+dι+z+1(ln(1 + hι))lι−j

is fine. Thus, choosing ∣hι lnhι∣ < 1 and ∣dimM + dι + z + 1∣ ≥ 1 without loss of

generality, we observe

RRRRRRRRRRR∑ι∈I
lι

∑
j=0

(−1)jj! resαι(z)(dimM + dι + z + 1)j+1 hdimM+dι+z+1
ι (lnhι)lι−jRRRRRRRRRRR

≤∑
ι∈I

∣ resαι(z)
dimM + dι + z + 1

∣ lι! lι∑
j=0

∣hdimM+dι+z+1+j−lι
ι ∣ ∣(hι lnhι)lι−j ∣

≤∑
ι∈I

∣ resαι(z)
dimM + dι + z + 1

∣ lι! ∥h∥dimM+1
ℓ∞(I)

lι

∑
j=0

∣hdι+z+j−lιι ∣
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≤ ∥h∥dimM+1
ℓ∞(I) ∑

ι∈I

∣ resαι(z)
dimM + dι + z + 1

∣Zι(z)
which completes the proof.

�

Remark Note that the application to Fourier Integral Operators is not as triv-

ial as for pseudo-differential operators because, even though we have an ampli-

tude that is poly-log-homogeneous everywhere on RN ∖ {0}, going to the gauged

poly-log-homogeneous distribution form means we do not know how the poly-log-

homogeneous distributions look like on BRN . In fact, we already know that homoge-

neous distributions regularize to zero by virtue of the generalized Mellin transform

while we will see later (end of chapter 8), that there are Fourier Integral Opera-

tors with homogeneous amplitudes whose Kontsevich-Vishik traces don’t vanish.

In other words, we still owe an argument there.

The ζ-function of a gauged Fourier Integral Operator with an amplitude that

is poly-log-homogeneous everywhere on RN ∖ {0} can be written in the form

z ↦ ⟨x↦ ˆ
RN

ei⟨x,ξ⟩ℓ2(N)v(z)(x, ξ)dξ, δ0⟩
where v = v0+∑ι∈I vι and each vι is log-homogeneous on RN∖BRN . Re-parametrizing

ξ ↝ −ξ yields

z ↦ ⟨x↦ ˆ
RN

e−i⟨x,ξ⟩ℓ2(N)w(z)(x, ξ)dξ, δ0⟩
where w = w0 +∑ι∈I wι and each wι is log-homogeneous on RN ∖BRN .

Let ŵ ∶= w0 + ∑ι∈I ŵι where each ŵι is log-homogeneous on RN ∖ {0} and

coincides with wι on RN ∖BRN . Then,

z ↦ ⟨x↦ ˆ
RN

e−i⟨x,ξ⟩ℓ2(N)ŵ(z)(x, ξ)dξ, δ0⟩
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is a ζ-function of a gauged poly-log-homogeneous distribution and can, thus, be

mollified. Furthermore,

∀z ∈ C ∀x ∈X ∀ξ ∈ RN ∖BRN ∶ w(z)(x, ξ) − ŵ(z)(x, ξ) = 0
shows that

ˆ

RN

e−i⟨y,ξ⟩ℓ2(N) (w(z)(x, ξ) − ŵ(z)(x, ξ))dξ
is the Fourier transform of a compactly supported distribution (for every x), i.e.

z ↦ ⟨x↦ ˆ
RN

e−i⟨x,ξ⟩ℓ2(N) (w(z)(x, ξ) − ŵ(z)(x, ξ))dξ, δ0⟩
is a holomorphic function. In other words,

z ↦ ⟨x↦ ˆ
RN

ei⟨x,ξ⟩ℓ2(N)v(z)(x, ξ)dξ, δ0⟩
is of the form “holomorphic function + mollifiable” and, hence, mollifiable itself

since, by construction, the holomorphic function precisely accounts for the difference

in the limit (of the mollification).

∎



CHAPTER 7

On structural singularities and the generalized

Kontsevich-Vishik trace

In this chapter, we will discuss the integrals appearing in the Laurent coeffi-

cients. Most importantly, this will yield the generalized Kontsevich-Vishik density

ˆ

B
RN
(0,1)

eiϑ(x,x,ξ)a(0)(x,x, ξ) dξ dvolX(x)
+

ˆ

R≥1×∂BRN

eiϑ(x,x,ξ)a0(0)(x,x, ξ) dvolR≥1×∂BRN
(ξ) dvolX(x)

+ ∑
ι∈I∖I0

−
´

∂B
RN
eiϑ(x,x,ξ)aι(0)(x,x, ξ) dvol∂B

RN
(ξ)

N + dι
dvolX(x),

as well as the fact that this density is globally defined in the I0 = ∅ case, that is, in

the absence of terms with critical degree of homogeneity, provided that the kernel

is globally defined in the first place (rather than considering any locally finite sum

of local representations in the form of oscillatory integrals); whenever we will talk

about densities being globally defined, we will tacitly assume that the kernel is

globally defined since the entire discourse would make no sense otherwise. We will

be able to calculate interesting examples by the end of chapter 8 leading up to (and

including) Theorem 8.5.

Considering classical pseudo-differential operators, it is common to construct

the Kontsevich-Vishik trace by removing those terms from the asymptotic expan-

sion which have degree of homogeneity with real part greater than or equal to

−dimX where X denotes the underlying manifold, i.e. if k is the kernel of the

113
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pseudo-differential operator, then the regularized kernel is given by

kreg ∶= k −
N

∑
j=0

kd−j

where d−j is the degree of homogeneity of the corresponding term in the expansion

of the amplitude a ∼ ∑j∈N
0
ad−j and N sufficiently large. Then, kreg ∈ C(X ×X),

i.e.
´

X
kreg(x,x)dvolX(x) is well-defined. In other words, kreg and α0 play the

same role and we would like to interpret ζ(α0)(0) as a generalized version of the

Kontsevich-Vishik trace. The term ∑Nj=0
´

X
kd−j(x,x)dvolX(x) would, hence, be

analogous to spinning off ∑ι∈I ζ(αι)(0). Unfortunately, we have to issue a couple

of caveats.

(i) The observation above is fine if we are in local coordinates. However,

when patching things together some of the terms in our Laurent expansion

will not patch to global densities on X . This is no problem for Fourier

Integral Operators, per se, as they are simply defined as a sum of local

representations and in each of these representations the Laurent expansion

holds. It will become a problem if we want to write down formulae in terms

of kernels, though (especially if we require local terms to patch together

defining densities globally).

(ii) Since F (ad−j(x, y, ⋅))(z) is homogeneous of degree −dimX−d+j (where F

denotes the Fourier transform), we obtain F (ad−j(x, y, ⋅))(0) = 0 for d−j <

−dimX , i.e. kd−j(x,x) = limy→x kd−j(x, y) = limy→xF (ad−j(x, y, ⋅))(y −
x) = F (ad−j(x,x, ⋅))(0) = 0. Thus, kreg(x,x) is independent of N .

However, this property does not extend to Fourier Integral Operators

as we can easily construct a counter-example. Let a(x, y, ξ) be homoge-

neous of degree d < −n in the third argument and the phase function
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ϑ(x, y, ξ) = −⟨Θ(x, y), ξ⟩ℓ2(n) such that Θ(x,x) has no zeros. Then,

k(x, y) =ˆ
Rn

e−i⟨Θ(x,y),ξ⟩ℓ2(n)a(x, y, ξ)dξ = F (a(x, y, ⋅))(Θ(x, y))

shows that k(x,x) is well-defined and continuous. Furthermore, since

F (a(x, y, ⋅)) is homogeneous, vanishing k(x,x) implies F (a(x,x, ⋅)) = 0

on {rΘ(x,x); r ∈ R>0}.
On the other hand, for pseudo-differential operators the terms ad−j with d − j =

−dimX define a global density on the manifold giving rise to the residue trace.

If this extends to poly-log-homogeneous distributions, then we obtain the residue

trace globally from ∑ι∈I0 αι. Furthermore, this would imply that

fp0α = α − ∑
ι∈I0

αι

induces a global density, if α does and the contributions of the αι for ι ∈ I0 to the

constant term Laurent coefficient vanish (in particular if I0 = ∅), which allows us

to interpret ζ(fp0α)(0) as the generalization of the Kontsevich-Vishik trace.

This, of course, needs to be interpreted in a gauged sense. ζ(fp0α)(0) corre-

sponds to the kernel k(x, y) − kd−j(x, y) where d − j = −dimX . Hence, all terms

kd−j with j ∈ N0,<d+dimX still appear in fp0α but not in kreg. Since ζ(fp0α)(0) is

but constructed by gauging, we should do the same for kd−j , i.e. consider kd−j+z

which is continuous for R(z) sufficiently small and vanishes along the diagonal.

Therefore,

ζ(fp0α)(0) =
ˆ

X

kreg(x,x)dvolX(x).

holds in the regularized sense for pseudo-differential operators; particularly so since

Corollary 2.8 guarantees that ζ(fp0α)(0) is independent of the gauge. In other
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words, the objective is to show that

∑
χ

resαχ(0) =∑
χ

⟨ˆ
∂B

RN

α̃χ(0)dvol∂B
RN
, f⟩

=∑
χ

⟨P ˆ
∂B

RN

α̃χ(0)dvol∂B
RN
, δ0⟩

=∑
χ

⟨ˆ
∂B

RN

eiϑ(x,y,ξ)ãχ(0)(x, y, ξ) dvol∂B
RN
(ξ), δ0⟩

is globally well-defined (∑χ denotes a partition of unity and P is a suitable pseudo-

differential operator) if the aχ are log-homogeneous with degree of homogeneity

−N .

At this point, we return to the fact that we can find a representation

ˆ

R2dimX∖B
R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX) â((x, y), ξ) dvolR2dimX∖B
R2dimX

(ξ)
of

ˆ

RN∖B
RN

eiϑ(x,y,ξ)a(x, y, ξ) dvolRN∖B
RN
(ξ)

where â is poly-log-homogeneous with degree of homogeneity −2dimX and loga-

rithmic order l if a has degree of homogeneity −N and logarithmic order l. Thus,

we want to show that the locally defined

ˆ

∂B
R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX) ãχ((x, y), ξ) dvol∂B
R2dimX

(ξ)
patch together if aχ is log-homogeneous with degree of homogeneity −2dimX .

Let ϕ be a suitable test function, and

ˆ

X2

ˆ

R2dimX

ei⟨(x,y),ξ⟩ℓ2(2dimX)a(x, y, ξ)ϕ(x, y) dξ dvolX2(x, y)
and

ˆ

X2

ˆ

R2dimX

eiϑ(x,y,ξ)aχ(x, y, ξ)ϕ(x, y) dξ dvolX2(x, y)
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be two representations of ⟨u, f⟩ where ϑ is another linear phase function.1 Propo-

sition 2.4.1 in [39] warrants the existence of a C∞-map Θ taking values Θ(x, y) ∈
GL(R2dimX) such that

ϑ(x, y, ξ) = ⟨(x, y),Θ(x, y)ξ⟩ℓ2(2dimX)

holds. Hence,

ˆ

X2

ˆ

R2dimX

eiϑ(x,ξ)aχ(x, ξ)ϕ(x) dξ dvolX2(x)
=

ˆ

X2

ˆ

R2dimX

ei⟨x,Θ(x)ξ⟩ℓ2(2dimX)aχ(x, ξ)ϕ(x) dξ dvolX2(x)
=

ˆ

X2

ˆ

R2dimX

ei⟨x,ξ⟩ℓ2(2dimX)aχ(x,Θ(x)−1ξ)ϕ(x) ∣detΘ(x)−1∣ dξ dvolX2(x).
In other words, the amplitude a transforms into aχ(x,Θ(x)−1ξ) ∣detΘ(x)−1∣ for

some C∞-function Θ taking values in GL(R2dimX), more precisely

a(x, y, ξ) = aχ(χ(x, y),Θ(x, y)−1ξ) ∣detΘ(x, y)−1∣ ∣detχ′(x, y)∣
for some diffeomorphism χ, and we need to show

resα(0) =ˆ
∂B

R2dimX

â(ξ)dvol∂B
R2dimX

(ξ)
=

ˆ

∂B
R2dimX

âχ(Θ−1ξ) ∣detΘ−1∣dvol∂B
R2dimX

(ξ)
?
=

ˆ

∂B
R2dimX

âχ(ξ)dvol∂B
R2dimX

(ξ)
= resαχ(0)

where α and αχ are the corresponding log-homogeneous distributions, and â and

âχ are the restrictions to the homogeneous part of α and αχ, i.e. â(rξ) = rdι α̃(ξ).
1Since we are considering representations with phase function ⟨(x, y), ξ⟩ℓ2(2dimX), changing

charts yields a phase function ⟨χ(x, y), ξ⟩ℓ2(2dimX). Hence, it suffices to consider replacements

by linear phase functions only.



7. ON STRUCTURAL SINGULARITIES AND THE GENERALIZED KV TRACE 118

Lemma 7.1. Let a ∈ C (Rn ∖ {0}) be homogeneous of degree d, k ∈ N0, z ∈ C,

and T ∈ GL(Rn). Then

ˆ

∂BRn

a(Tξ) ∥Tξ∥z (ln ∥Tξ∥)k dvol∂BRn
(ξ)

=
(−1)k∣detT ∣

ˆ

∂BRn

a(ξ) ∥T −1ξ∥−n−d−z (ln ∥T −1ξ∥)k dvol∂BRn
(ξ).

Proof. Let D ∶= (2BRn) ∖ BRn(0,1) = {ξ ∈ Rn; ∥ξ∥ℓ2(n) ∈ [1,2]}. Then, we

observe for z ≠ −n − d

ˆ

D

a(Tξ) ∥Tξ∥z dξ =ˆ
[1,2]

rn−1
ˆ

∂BRn

a(rT ξ) ∥rT ξ∥z dvol∂BRn
(ξ)dr

=

ˆ

[1,2]
rn+d+z−1dr

ˆ

∂BRn

a(Tξ) ∥Tξ∥z dvol∂BRn
(ξ)

=
2n+d+z − 1

n + d + z

ˆ

∂BRn

a(Tξ) ∥Tξ∥z dvol∂BRn
(ξ),

as well as,

ˆ

D

a(Tξ) ∥Tξ∥z dξ =ˆ
T [D]

a(ξ) ∥ξ∥z ∣detT −1∣dξ
=

1∣detT ∣
ˆ

{ξ∈Rn; ∥T−1ξ∥∈[1,2]}
a(ξ) ∥ξ∥z dξ

=
1∣detT ∣
ˆ

∂BRn

ˆ

[ 1

∥T−1ξ∥ ,
2

∥T−1ξ∥ ]
a(rξ) ∥rξ∥z rn−1 dr dvol∂BRn

(ξ)
=

1∣detT ∣
ˆ

∂BRn

a(ξ)ˆ
[ 1

∥T−1ξ∥ ,
2

∥T−1ξ∥ ]
rn+d+z−1 dr dvol∂BRn

(ξ)
=

1∣detT ∣
ˆ

∂BRn

a(ξ) 1

n + d + z

2n+d+z − 1

∥T −1ξ∥n+d+z dvol∂BRn
(ξ).

In other words,

ˆ

∂BRn

a(Tξ) ∥Tξ∥z dvol∂BRn
(ξ) = 1∣detT ∣

ˆ

∂BRn

a(ξ) ∥T −1ξ∥−n−d−z dvol∂BRn
(ξ)

holds for z ∈ C ∖ {−n − d} and by holomorphic extension for every z ∈ C.
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For k ∈ N we, thus, obtain

ˆ

∂BRn

a(Tξ) ∥Tξ∥z (ln ∥Tξ∥)k dvol∂BRn
(ξ)

=∂k (s↦ ˆ
∂BRn

a(Tξ) ∥Tξ∥s dvol∂BRn
(ξ))(z)

=∂k (s↦ 1∣detT −1∣
ˆ

∂BRn

a(ξ) ∥T −1ξ∥−n−d−s dvol∂BRn
(ξ)) (z)

=
(−1)k∣detT ∣

ˆ

∂BRn

a(ξ) ∥T −1ξ∥−n−d−z (ln ∥T −1ξ∥)k dvol∂BRn
(ξ)

which completes the proof.

�

Lemma 7.1 (first observed by Lesch; equation (2.13) in [51]), and the fact that ã

is a homogeneous function with degree of homogeneity −N if a is log-homogeneous

with degree of homogeneity −N , yield (using N = 2dimX , a suitable U ⊆open RN ,

a diffeomorphism χ ∶ U → χ[U], and a ϕ ∈ C∞c (χ[U]))
ˆ

U

ˆ

∂B
RN

â(x, ξ)ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

ˆ

∂B
RN

âχ(χ(x),Θ(x)−1ξ) ∣detΘ(x)−1∣ ∣detχ′(x)∣ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

ˆ

∂B
RN

âχ(χ(x),Θ(x)−1ξ) ∣detΘ(x)−1∣ ∣detχ′(x)∣ϕ(χ(x))dvol∂B
RN
(ξ)dx

=

ˆ

U

∣detΘ(x)−1∣ˆ
∂B

RN

âχ(χ(x),Θ(x)−1ξ)dvol∂B
RN
(ξ) ∣detχ′(x)∣ϕ(χ(x))dx

=

ˆ

U

ˆ

∂B
RN

âχ(χ(x), ξ)dvol∂B
RN
(ξ) ∣detχ′(x)∣ϕ(χ(x))dx

=

ˆ

χ[U]

ˆ

∂B
RN

âχ(x, ξ)ϕ(x)dvol∂B
RN
(ξ)dx,

i.e. the following theorem.

Theorem 7.2. res⟨u, f⟩ = resα(0) = ´
∂B

RN
α̃(0)dvol∂B

RN
is form-invariant

under change of coordinates if α(0) has degree of homogeneity −N .
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In particular, ∑χ∑ι∈Iχ
0
resαχι (0) and ∑χ ζ (fp0αχ) (0) + ∑χ∑ι∈Iχ0 ∂ resαχι (0)

induce globally defined densities provided that ∀ι ∈ I0 ∶ lι = 0.

Proof. Note that ζ(α) induces a globally defined density through the im-

plicit assumption of the kernel being globally defined and, given ∀ι ∈ I0 ∶ lι = 0,

∑χ∑ι∈Iχ
0
resαχι (0) being form-invariant implies that the principal part of ζ(α) in-

duces a globally defined density. Hence, their difference (here evaluated at zero)

∑χ ζ (fp0αχ) (0) + ∑χ∑ι∈Iχ0 ∂ resαχι (0) must induce a globally defined density, as

well.

�

Remark Note that this means that if a is polyhomogeneous and ι0 is the index

such that aι0 is homogeneous of degree −N , then

∑
ι∈I0

ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι(x,x, ξ)dvol∂B
RN
(ξ)dvolX(x)

=

ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι0(x,x, ξ)dvol∂BRN
(ξ)dvolX(x).

This, of course, extends to higher order residues

ˆ

X

ˆ

∂B
RN

eiϑ(x,x,ξ)aι(x,x, ξ)dvol∂B
RN
(ξ)dvolX(x)

with ι ∈ I0 and lι > 0; this generalizes Corollary 4.8 in [51] on the residue traces for

log-polyhomogeneous pseudo-differential operators; that is, the kth residues (Lau-

rent coefficients of order −k − 1) are well-defined and induce globally defined densi-

ties.

∎

Uniqueness of the residue trace, then, directly implies the following proposition.

Proposition 7.3. Let a ∼ ∑j∈N
0
am−j be the amplitude of a Fourier Integral

Operator where m ∈ Z and am−j is homogeneous of degree m − j. If the residue
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trace is the (projectively) unique non-trivial continuous trace, then none of the

´

∂B
RN
eiϑ(x,ξ)am−j(x, ξ)dvol∂B

RN
(ξ) with m−j ≠ −N can define a global density, in

general, unless they are trivial (i.e. vanish constantly).

In particular, removing non-trivial terms from ζ(fp0α) will, in general, destroy

global well-definedness of the induced density.

Proof. Let j ∈ Z ∖ {−N} and suppose
´

∂B
RN
eiϑ(x,ξ)aj(x, ξ)dvol∂B

RN
(ξ) de-

fines a global density. Then, it defines a continuous trace functional τ . On the other

hand, we know that
´

∂B
RN
eiϑ(x,ξ)a−N(x, ξ)dvol∂B

RN
(ξ) defines a continuous trace

functional res tr. Since res tr is the unique trace, τ must be a constant multiple of

res tr, i.e. ∃t ∈ C ∶ τ = t res tr. Hence, there are two cases; t = 0 or t ≠ 0.

If t = 0, then τ = 0, i.e. τ is trivial. If t ≠ 0, we might replace aj by zero and

leave a−N unchanged. Let A be the unchanged Fourier Integral Operator and B

the changed. Then,

0 =
1

t
τ(B) = res tr(B) = res tr(A) = ˆ

∂B
RN

eiϑ(x,ξ)a−N(x, ξ)dvol∂B
RN
(ξ)

holds independently of the choice of a−N , i.e. res tr = 0, contradicting the assump-

tion that res tr is non-trivial.

�

The proposition above can be extended to the formulation

Proposition 7.3’. Let A be an algebra of polyhomogeneous Fourier Integral Op-

erators such that the residue trace is the unique non-trivial continuous trace. Let

a = a0 +∑ι∈I aι be the amplitude of a Fourier Integral Operator A ∈ A. Then, none

of the
´

∂B
RN
eiϑ(x,ξ)aι(x, ξ)dvol∂B

RN
(ξ) with dι ≠ −N can define a global density,

in general, unless they are trivial.
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In particular, removing non-trivial terms from ζ(fp0α) will, in general, destroy

global well-definedness of the induced density.

using the same proof.

Now, we may ask when the residue vanishes. As a first result we obtain the

well-known fact that the residue trace vanishes for odd-class operators on odd-

dimensional manifolds.

Observation 7.4. Let α(−ξ) = −α(ξ). Then,

resα =

ˆ

∂B
RN

α(ξ)dvol∂B
RN
(ξ) = 0.

Proof. Using Lemma 7.1, we obtain

resα =

ˆ

∂B
RN

α(ξ)dvol∂B
RN
(ξ)

= −

ˆ

∂B
RN

α(−ξ)dvol∂B
RN
(ξ)

= −

ˆ

∂B
RN

α
⎛⎝ −ξ∥−ξ∥ℓ2(N)

⎞⎠∥−ξ∥ℓ2(N) dvol∂BRN
(ξ)

= −

ˆ

∂B
RN

α
⎛⎝ ξ∥ξ∥ℓ2(N)

⎞⎠∥ξ∥−N−1ℓ2(N) dvol∂BRN
(ξ)

= −

ˆ

∂B
RN

α(ξ)dvol∂B
RN
(ξ)

= − resα,

i.e. the assertion.

�

Note that the property α(−ξ) = −α(ξ) is invariant under change of linear phase

functions with the same “N ”. Choosing non-linear phase functions or changing N

might destroy this property. In fact, having phase functions with ϑ(−ξ) = −ϑ(ξ)
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will only yield

res(a,ϑ) ∶=ˆ
∂B

RN

eiϑ(ξ)a(ξ)dvol∂B
RN
(ξ)

= −

ˆ

∂B
RN

eiϑ(ξ)a(−ξ)dvol∂B
RN
(ξ)

= − (ˆ
∂B

RN

eiϑ(−ξ)a(−ξ)dvol∂B
RN
(ξ))∗

= −
⎛⎝
ˆ

∂B
RN

e
iϑ( −ξ

∥−ξ∥ℓ2(N)
)
a
⎛⎝ −ξ∥−ξ∥ℓ2(N)

⎞⎠∥−ξ∥ℓ2(N) dvol∂BRN
(ξ)⎞⎠

∗

= −
⎛⎝
ˆ

∂B
RN

e
iϑ( ξ

∥ξ∥ℓ2(N)
)
a
⎛⎝ ξ∥ξ∥ℓ2(N)

⎞⎠∥ξ∥−N−1ℓ2(N) dvol∂BRN
(ξ)⎞⎠

∗

= − (ˆ
∂B

RN

eiϑ(ξ)a(ξ)dvol∂B
RN
(ξ))∗

= − (res(a,ϑ))∗ ,
i.e. R (res(a,ϑ)) = 0 but not necessarily I (res(a,ϑ)) = 0.

On the other hand, if N = 1, then

ˆ

∂BR

α(ξ)dvol∂BR
(ξ) = α(1) + α(−1)

shows that resα vanishes if and only if α is odd. Equivalently, we obtain

ˆ

∂BR

eiϑ(x,ξ)a(x, ξ)dvol∂BR
(ξ) = eiϑ(x,1)a(x,1) + eiϑ(x,−1)a(x,−1).

Note, this implies there are two residue traces for N = 1; namely, α−1(1) and

α−1(−1).
Remark Boutet de Monvel [7] considers Fourier Integral Operators on the half-

line bundle only, since for N = 1 the residue trace is not unique. Hence, in his case,

the amplitude and phase function are defined on X ×X ×R>0 which can easily be

modeled using ∀(x, y, ξ) ∈ X ×X ×R<0 ∶ a(x, y, ξ) = 0. However, using the gauged

poly-log-homogeneous distributions, no such trick is necessary since we can simply

choose M to be a single point, i.e. R>0 ×M ≅ R>0.
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In chapter 8, following Proposition 8.4, we will have a closer look at the case

Boutet de Monvel studied in [7]. In particular, we will re-obtain the kernel singular-

ity structure and the residue trace as the logarithmic coefficient, as well as, calculate

the generalized Kontsevich-Vishik trace which will turn out to be form-equivalent

to the pseudo-differential case.

∎

For N > 1, the de Rham co-homology of ∂BRN is given by

∀k ∈ N0 ∶ H
k
dR (∂BRN ) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
R , k ∈ {0,N − 1}
0 , k ∈ N ∖ {N − 1}

(cf. Example 9.29 in [52]). Let d be the exterior derivative and dk ∶= d∣Ωk+1(∂B
RN
)

Ωk(∂B
RN
) .

Then,

∀ω ∈ ΩN−1(∂BRN ) ∶ dω = dN−1ω = 0
implies

R ≅HN−1
dR (∂BRN ) = [{0}]dN−1/dN−2[ΩN−2(∂B

RN
)] = ΩN−1(∂BRN )/dN−2[ΩN−2(∂B

RN
)].

Hence, for every (N − 1)-form ω there exists an r ∈ R and an (N − 2)-form ω̃ such

that ω = rω0 + dω̃ where2 ω0 ∶= vol∂B
RN
(∂BRN )−1 dvol∂B

RN
, i.e.

ˆ

∂B
RN

ω = r

ˆ

∂B
RN

ω0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+

ˆ

∂B
RN

dω̃ = r +

ˆ

∂∂B
RN´ ¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=∅

ω̃ = r.

If ω is complex valued, then there are r, s ∈ R and ωr, ωs such that R○ω = rω0+dωr

and I ○ ω = sω0 + dωs hold and, therefore,

ˆ

∂B
RN

ω =

ˆ

∂B
RN

R ○ ω + i

ˆ

∂B
RN

I ○ ω = r + is.

2Note that ω0 ∉ dN−2[ΩN−2(∂B
RN )] since

´

∂B
RN

ω0 = 1 and ∀ω ∈ ΩN−2(∂B
RN ) ∶

´

∂B
RN

dω =
´

∂∂B
RN

´ ¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∅

ω = 0.
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In other words, HN−1
dR (∂BRN ,C) ≅ C or

∀ω ∈ ΩN−1 (∂BRN ,C) ∃c ∈ C ∃ω̃ ∈ ΩN−2 (∂BRN ,C) ∶ ω = cω0 + dω̃.

Thus, we obtain the following statements.

(i)
´

∂B
RN
eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B

RN
(ξ) = 0 if and only if the differential form

eiϑ(x,y,⋅)a(x, y, ⋅)dvol∂B
RN

is exact.

(ii) R(´
∂B

RN
eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B

RN
(ξ)) = 0 if and only if the differential

form cos (ϑ(x, y, ⋅))a(x, y, ⋅)dvol∂B
RN

is exact.

(iii) I(´
∂B

RN
eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B

RN
(ξ)) = 0 if and only if the differential

form sin (ϑ(x, y, ⋅))a(x, y, ⋅)dvol∂B
RN

is exact.

Remark Since we are integrating dimM -forms over a manifold M , we assume

that all manifolds are orientable as we can only integrate pseudo-dimM -forms if

M is non-orientable. So far everything can be re-formulated for pseudo-forms and,

thus, on non-orientable manifolds. From this point onwards (until the end of the

chapter), though, statements will need orientability; in particular with respect to

uniqueness of residue traces and the commutator structure since

HdimM
dR (M) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
R , M orientable, connected

0 , M non-orientable, connected

(cf. Theorem 10.13 and Corollary 10.14 in [52] for the orientable case, that is the

case we are going to use).

∎

The case above allows us to treat Laurent coefficients of the form
´

∂B
RN
α̃dvol∂B

RN
.

However, considering more general poly-log-homogeneous distributions means we

will want to replace ∂BRN by some other manifold M . Similarly, if we want to

choose more suitable coordinates, then our Laurent coefficients are integrals over
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X ×M where X is the underlying manifold and M = ∂BRN in the canonical Fourier

Integral Operator case.

Using the fact that the de Rham co-homology is additive on disjoint unions,

i.e. ∀k ∈ N0 ∶ Hk
dR(M ⋅∪M ′) = Hk

dR(M) ⊕ Hk
dR(M ′), and splitting in real and

imaginary parts again, we obtain for a smooth, compact, orientable manifold M

HdimM
dR (M,C) ≅ Ck

where k is number of connected components of M .

Definition 7.5. Let A be a polyhomogeneous Fourier Integral Operator on a

compact manifold X and res0 ζ(A) be locally given by

ˆ

X

ˆ

∂B
RN

eiϑ(x,ξ)a(x, ξ) dvol∂B
RN
(ξ) dvolX(x).

Then, we call the (N − 1 + dimX)-form ̺(A) on X × ∂BRN locally defined as

̺(A) ∶= exp○(iϑ) ⋅ a dvolX×∂B
RN

the residue form of A (in other words, ∗̺(A) = eiϑa where ∗ denotes the Hodge-∗-

operator).

Proposition 7.6. Let Y ⊆ X be a connected component and ̺(A) a residue

form. Then,
´

Y ×∂B
RN
̺(A) = 0 if and only if ̺(A) is exact on Y × ∂BRN .

More precisely, let X = Y1 ⋅∪ . . . ⋅∪Yk be composed of finitely many connected

components ( ⋅∪ denotes the disjoint union) and let ̺(A)∣Yj×∂BRN
= cjωj +dω̃j be the

corresponding decomposition of ̺(A) with

ωj = volYj×∂BRN
(Yj × ∂BRN )−1dvolYj×∂BRN

.
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Then,

ˆ

X×∂B
RN

̺(A) = k

∑
j=1

cj .

Using the Hodge-∗-operator ∗, the co-derivative d∗ ∶= (−1)NX(NX−1)+1
∗d∗ with

NX ∶= N + dimX − 1, as well as

̺(A) = dω ⇔ eiϑa = ∗ dω

= ∗ d ∗ (−1)NX−1 ∗ ω

=d∗(−1)NX(NX−1)+1(−1)NX−1 ∗ ω

=d∗ ((−1)N2
X ∗ ω) ,

and the divergence divF = ∗d∗F ♭ = (−1)NX(NX−1)+1d∗F ♭ with the musical isomor-

phism

⋅
♭
∶ T (X × ∂BRN )→ T ∗ (X × ∂BRN ) ; ∑

i

Fi∂i ↦∑
i

Fidxi,

we can re-formulate Proposition 7.6.

Theorem 7.7. Let X ×M be connected and orientable. Then, the following

are equivalent.

(i)
´

x×M
eiϑ(x,ξ)a(x, ξ) dvolx×M(x, ξ) = 0.

(ii) There exists an (dimM + dimX − 1)-form ω on X ×M such that dω =

eiϑa dvolX×M locally.

(iii) There exists a 1-form ω on X ×M such that d∗ω = eiϑa locally.

(iv) There exists a vector field F on X ×M such that divF = eiϑa locally.

Corollary 7.8. Let α be a poly-log-homogeneous distribution and resα =

´

M
α̂dvolM . Then, resα = 0 if and only if there exists a vector field F on M

such that α̂ = divF .
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Remark Condition (iv) can be extended to X × (RN ∖ {0}). Let M̂ ∶= X ×M ,

(gi)i the local frame in which eiϑa is given by α, and (gi)i the dual frame. Let

M̃ ∶= R>0 × M̂ such that the metric tensor is of the form

g̃(r, ξ) =
⎛⎜⎜⎜⎝
1 0

0 r2dimM̂g(ξ)
⎞⎟⎟⎟⎠ ,

i.e. dvolM̃(r, ξ) =√det g̃(r, ξ)dr∧dξ = rdimM̂
√
detg(ξ)dr∧dξ = rdimM̂dr∧dvolM̂(ξ).

Let F be a vector field on M̂ and F̃ be a vector field on M̃ . Then,

divF (ξ) = tr gradF (ξ) = tr dimM̂

∑
j=1

dimM̂

∑
i=1

∂jFi(ξ)gj(ξ)⊗ gi(ξ)
=
dimM̂

∑
j=1

dimM̂

∑
i=1

∂jFi(ξ)gji(ξ)
and

div F̃ (r, ξ) = tr dimM̂

∑
j=0

dimM̂

∑
i=0

∂jF̃i(r, ξ)g̃j ⊗ g̃i

=∂0F̃0(r, ξ) + r2dimM̂
dimM̂

∑
j=1

dimM̂

∑
i=1

∂jF̃i(r, ξ)gji(ξ).
In other words, we obtain div F̃ (1, ξ) = divF (ξ) if ∂0F̃0(1, ξ) = 0 and ∂jF̃i(1, ξ) =
∂jFi(ξ). On the other hand, we want divF (ξ) = α̃(ξ) and div F̃ (r, ξ) = f(r)α̃(ξ)
with f(1) = 1. Choosing F̃0 = 0 and F̃i(r, ξ) = f(r)Fi(ξ) implies div F̃ (r, ξ) =
f(r)α̃(ξ) and div F̃ (1, ξ) = divF (ξ).

Thus, knowing (iv) we can construct a vector field F̃ such that eiϑ = div F̃

on X × (R>0 ×M) and F̃ satisfies the conditions above. Conversely, if F̃ has the

described properties, then F̃ ∣X×M satisfies (iv).

∎

At this point, using the framework of gauged poly-log-homogeneous distributions,

we can follow the lines of Theorem 1.1 in [34] to obtain the following theorem

(Theorem 1.2 in [34]).
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Theorem 7.9. Let AΓ be an algebra of classical Fourier Integral Operators

associated with the canonical relation Γ such that the twisted relation Γ′ (A ∈ AΓ ⇔

kA ∈ I(X2,Γ′)) has clean and connected intersection with the co-normal bundle of

diagonal in X2. Then, the residue-trace of A ∈ AΓ vanishes if and only if A is a

smoothing operator plus a sum of commutators [Pi,Ai] where the Pi are pseudo-

differential operators and the Ai ∈ AΓ.

Proof. If A = S+∑ki=1[Pi,Ai] ∈ AΓ where S is a smoothing operator, Ai ∈ AΓ,

and the Pi are pseudo-differential operators, then ζ(A) = ζ(S) which is an entire

function choosing any appropriate gauge, i.e. res0 ζ(A) = 0. The interesting direc-

tion is, therefore, the other implication. Let Icompact(X,Λ) be the set of compactly

supported Lagrangian distributions on X with micro-support in a closed conic La-

grangian sub-manifold Λ of T ∗X ∖ {X × {0}}. Let f ∈ Icompact(X, Λ̃) such that the

intersection of Λ and Λ̃ is clean and connected. Furthermore, let f be non-vanishing

on Λ∩ Λ̃. Let ψDO(X) be the ring of properly supported pseudo-differential oper-

ators on X , that is, pseudo-differential operators mapping C∞c (X) into itself. We

will define the transposed annihilator of f to be

ann(f)t ∶= {P ∈ ψDO(X); P tf ∈ C∞(X)}

and we say u1, u2 ∈ Icompact(X,Λ) are equivalent (u1 ∼ u2) if and only if there are

k ∈ N, vi ∈ Icompact(X,Λ), and Pi ∈ ann(f)t such that

u1 − u2 ≡
k

∑
i=1

Pivi

modulo smoothing terms.

● As we are interested in traces, we will need to consider f = δdiag and, since

ann(δdiag)t is generated by operators of the form P (x,Dx) − P (y,Dy)t,
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we obtain that two kernels K and K ′ are equivalent if and only if

K(x, y) −K ′(x, y) ≡ k

∑
i=1

(Pi(x,Dx) − Pi(y,Dy)t)Ki(x, y)
(modulo smoothing terms) which implies that the corresponding Fourier

Integral Operators are a smoothing operator plus a sum of commutators

[Pi,Ai] (Ki is the kernel of Ai) as

ˆ

X

(Pi(x,Dx) − Pi(y,Dy)t)Ki(x, y)f(y)dvolX(y)
=PiAif(x) − ⟨P tiKi(x, ⋅), f⟩
=PiAif(x) − ⟨Ki(x, ⋅), Pif⟩
=(PiAi −AiPi)f.

Since A ∈ AΓ and the Lagrangian sub-manifold associated with pseudo-

differential operators is the co-normal bundle of the diagonal in X2, we

need to assume that Γ′ has clean and connected intersection with the

co-normal bundle of the diagonal in X2 for this calculation to be senseful.

● Let p ∈ Λ ∩ Λ̃. By assumption f does not vanish at p, hence, there is

a gauged distribution u ∈ C∞(C, Icompact(X,Λ)) such that res0⟨u, f⟩ = 1
(we can freely choose the amplitude of critical degree of homogeneity) and

we will have to show

∀u′ ∈ C∞(C, Icompact(X,Λ))gauged ∶ u′ ∼ (res0⟨u′, f⟩)u.
We may assume that u has micro-support in a very small conic neighbor-

hood U of p. Now, we may localize. Suppose the assertion holds and let u′

have micro-support in a small conic neighborhood U ′ of a point p′ ∈ Λ∩ Λ̃.

(i) If U ∩U ′ ≠ ∅, then we may assume that u has micro-support in U ∩U ′

and we have the assertion on U ′.
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(ii) If U ∩U ′ = ∅, then we can find a sequence of points p1, . . . , pk ∈ Λ∩ Λ̃

and sufficiently small neighborhoods U1, . . . , Uk such that p1 = p, pk =

p′, each pi ∈ Ui∩Ui+1, and there are ui ∈ C
∞(C, Icompact(X,Λ))gauged

with res0⟨ui, f⟩ = 1 and micro-support in Ui.

If the local version of the assertion holds, then we directly obtain u′ ∼

(res0⟨u′, f⟩)u in case (i) and u ∼ u1 ∼ . . . ∼ uk and u′ ∼ (res0⟨u′, f⟩)uk
in case (ii). Using this localization, we may introduce charts to obtain

X = Rn and f = Pδ0. Hence, it suffices to show that res0⟨u, δ0⟩ = 0 implies

∃Pi ∈ ann(δ0)t ∃vi ∈ C∞(C, Icompact(X,Λ))gauged ∶ u = w + k

∑
i=1

Pivi

where w ∈ C∞(C,C∞c (X)) and ann(δ0)t is generated by smoothing oper-

ators and multiplications with the argument xi. Furthermore, u is given

by an expression of the form

u(z)(x) ≡ ˆ
RN∖B

RN

ei⟨x,ξ⟩α(z)(ξ)dξ
modulo smooth functions. Thus, we will have to find distributions

us(z)(x) = ˆ
RN∖B

RN

ei⟨x,ξ⟩αs(z)(ξ)dξ
such that ∑Ns=1 xsus(x) ≡ u(x) modulo smooth functions.

● Let χ ∈ C∞c (RN) with χ = 1 in a open neighborhood of zero and αεs(ξ) ∶=
αs(ξ)χ(εξ) for ε ∈ (0,1). Then, Proposition 1.1.11 in [39] yields that

αεs → αs in every Hörmander class Sm
′
with m′ >m if αs ∈ Sm, i.e.

ˆ

RN∖B
RN

ei⟨x,ξ⟩αs(ξ)dξ = lim
ε↘0

ˆ

RN∖B
RN

ei⟨x,ξ⟩αεs(ξ)dξ.
Let Rε ∈ R>0 be such that αεs∣RN∖RεBRN

= 0. Then,

xs

ˆ

RN∖B
RN

ei⟨x,ξ⟩αs(ξ)dξ
= lim
ε↘0

ˆ

RN∖B
RN

xse
i⟨x,ξ⟩αεs(ξ)dξ
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= lim
ε↘0

ˆ

RN∖B
RN

−i∂2,se
i⟨x,ξ⟩αεs(ξ)dξ

= lim
ε↘0

ˆ

RεBRN
∖B

RN

−i∂2,se
i⟨x,ξ⟩αεs(ξ)dξ

=i lim
ε↘0

ˆ

RεBRN
∖B

RN

ei⟨x,ξ⟩∂sαεs(ξ)dξ + i lim
ε↘0

ˆ

∂B
RN

ei⟨x,ξ⟩αεs(ξ)ξsdξ
=i

ˆ

RN∖B
RN

ei⟨x,ξ⟩∂sαs(ξ)dξ + i lim
ε↘0

ˆ

RN∖B
RN

ei⟨x,ξ⟩αs(ξ)ε (∂sχ) (εξ)dξ
+ i

ˆ

∂B
RN

ei⟨x,ξ⟩αs(ξ)ξsdξ
=i

ˆ

RN∖B
RN

ei⟨x,ξ⟩∂sαs(ξ)dξ + iˆ
∂B

RN

ei⟨x,ξ⟩αs(ξ)ξsdξ.
As i
´

∂B
RN
ei⟨x,ξ⟩αs(ξ)ξsdξ is smooth again, we are looking for αs such that

(modulo smooth functions) ∑Ni=1 i∂sαs ≡ α. Since α has an asymptotic

expansion (and the smoothing terms are irrelevant), we may also assume

that α is homogeneous of degree d (in a neighborhood of ξ). For d ≠ −N ,

we observe

N

∑
s=1

i∂s (−iξsα(ξ)
N + d

) = 1

N + d

N

∑
s=1

∂s (ξsα(ξ))
=

1

N + d

N

∑
s=1

ξs∂sα(ξ) + 1

N + d

N

∑
s=1

α(ξ)
=

1

N + d
⟨ξ,gradα(ξ)⟩ + Nα(ξ)

N + d

=
dα(ξ)
N + d

+
Nα(ξ)
N + d

=α(ξ).
For d = −N we actually have a residue to consider. However, the remark

above warrants the existence of a vector field F on RN ∖BRN such that

divF = α if the residue vanishes and, thus, the assertion follows from

α = divF =
N

∑
s=1

∂sFs =
N

∑
s=1

i∂s (−iFs) .
�
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Example Considering G ∶= (h +√∣∆∣)α on R/2πZ we are interested in integrals

ˆ 2π

0

∑
n∈Z

ˆ

R

e−2πinξ
(h + ∣ξ∣)α

2π
dξ dx =∑

n∈Z

ˆ

R

e−2πinξ(h + ∣ξ∣)α dξ
=∑
n∈Z

⟨x↦ ˆ
R

ei(x−2πn)ξ(h + ∣ξ∣)α dξ, δ0⟩ .
Hence, we are looking for v(x) = ´

R
ei(x−2πn)ξa(ξ) dξ such that

un,h(x) ∶= ˆ
R

ei(x−2πn)ξ(h + ∣ξ∣)α dξ
is equivalent to xv(x) modulo smoothing terms. Now,

xv(x) =ˆ
R

xeixξe−2πinξa(ξ) dξ
=

ˆ

R

(−i)∂ξ (eixξ)e−2πinξa(ξ) dξ
=

ˆ

R

eixξi∂ξ (e−2πinξa(ξ)) dξ
shows that we are looking for a such that i∂ (e−2πin⋅a) ≡ e−2πin⋅(h + ∣⋅∣)α.

Let Γui be the upper incomplete Γ-function given by the meromorphic exten-

sion of

Γui(s, x) ∶= ˆ ∞
x

ts−1e−tdt (R(s) > 0, x ∈ R≥0).
Recall that Γui satisfies Γui(s,0) = Γ(s) where Γ denotes the (usual) Γ-function,

Γ(s,∞) = 0, and ∂2Γui(s, x) = −xs−1e−x. For ξ > 0 and n ≠ 0, we obtain

i∂ (η ↦ ie2πinhΓui(1 + α,2πin(h + η))(2πin)1+α )(ξ) =e2πinh (2πin(h + ξ))α e−2πin(h+ξ)(2πin)α
= (h + ξ)α e−2πinξ,

i.e.

i∂ (η ↦ e−2πinη
ie2πin(h+η)Γui(1 + α,2πin(h + ∣η∣))(2πin)1+α )(ξ) = (h + ∣ξ∣)α e−2πinξ,
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that is,

a∣R>0(ξ) = ie2πin(h+ξ)Γui(1 + α,2πin(h + ∣ξ∣))(2πin)1+α .

For ξ < 0 we obtain

i∂ (η ↦ ie−2πinhΓui(1 + α,−2πin(h − η))(2πin)(−2πin)α )(ξ) =e−2πinh (−2πin(h − ξ))α e2πin(h−ξ)(−2πin)α
=(h − ξ)αe−2πinξ,

i.e.

i∂ (η ↦ e−2πinη
ie−2πin(h−η)Γui(1 + α,−2πin(h − η))(2πin)(−2πin)α )(ξ) = (h + ∣ξ∣)α e−2πinξ,

that is,

a∣R<0(ξ) = ie−2πin(h−ξ)Γui(1 + α,−2πin(h + ∣ξ∣))(2πin)(−2πin)α .

In other words,

a(ξ) = ie2πin sgn(ξ)(h+∣ξ∣)Γui(1 + α,2πin sgn(ξ)(h + ∣ξ∣))(2πin)(2πin sgn(ξ))α
for large values of ∣ξ∣ where sgn denotes the sign-function.

Let χn ∈ C
∞
c (R) with χn = 1 in a neighborhood of zero. Let vn,h

R
(x) be given

by

ˆ

R

ei(x−2πn)ξ(1 − χn(ξ))R( ie2πin sgn(ξ)(h+∣ξ∣)Γui(1 + α,2πin sgn(ξ)(h + ∣ξ∣))(2πin)(2πin sgn(ξ))α ) dξ
and vn,h

I
(x) be given by

ˆ

R

ei(x−2πn)ξ(1 − χn(ξ))I( ie2πin sgn(ξ)(h+∣ξ∣)Γui(1 + α,2πin sgn(ξ)(h + ∣ξ∣))(2πin)(2πin sgn(ξ))α ) dξ.
For n = 0, we obtain

u0,h(x) = ˆ
R

eixξ(h + ∣ξ∣)αdξ
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and

xv(x) =ˆ
R

(−i)∂ξ (eixξ)a(ξ)dξ = ˆ
R

eixξia′(ξ)dξ,
i.e. we are looking for a such that ia′(ξ) = (h + ∣ξ∣)α which is

a(ξ) = (h + ∣ξ∣)1+α−i sgn(ξ)
1 + α

and, hence,

v
0,h
R
(x) =ˆ

R

eixξ(1 − χ0(ξ))R((h + ∣ξ∣)1+α−i sgn(ξ)
1 + α

)dξ,
as well as,

v
0,h
I
(x) = ˆ

R

eixξ(1 − χ0(ξ))I((h + ∣ξ∣)1+α−i sgn(ξ)
1 + α

)dξ.
Then,

un,h(x) ≡ xvn,hR
(x) + ixvn,h

I
(x)

modulo smoothing terms; in fact,

un,h(x) − x(vn,hR (x) + ivn,hI (x)) =
ˆ

R

ei(x−2πn)ξan,h(ξ)dξ
with an,h ∈ C

∞
c (R) and

ζR(−α) =1
2
lim
h↘0
∑
n∈Z

⟨un,h, δ0⟩
=
1

2
lim
h↘0
∑
n∈Z

⟨x↦ (un,h(x) − xvn,hR
(x) − ixvn,h

I
(x)) , δ0⟩

=
1

2
lim
h↘0
∑
n∈Z

ˆ

R

e−2πinξan,h(ξ)dξ
=
1

2
lim
h↘0
∑
n∈Z

F (an,h) (n).
∎

Guillemin also proved the following (more general) version of Theorem 7.9 (cf.

Proposition 4.11 in [35]).
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Proposition 7.10. Let Γ be connected. Then, the commutator of AΓ is of

co-dimension one in AΓ modulo smoothing operators.

Hence, res0 ○ζ is either zero or the unique continuous trace on AΓ up to a

constant factor provided that Γ is connected. Regarding the trace of smoothing op-

erators, Theorems A.1 and A.2 in [35] yield the commutator structure of smoothing

operators (the following two definitions, the theorem, and the remark can all be

found in the appendix of [35]).

Definition 7.11. Let H be a separable Hilbert space and e ∶= (ei)i∈N an or-

thonormal basis of H. An operator A ∈ L(H) is called smoothing with respect to e

if and only if

∀n ∈ N ∃c ∈ R ∶ ∣⟨Aei, ej⟩H ∣ ≤ c(i + j)−n.
Definition 7.12. Let H be a separable Hilbert space, e an orthonormal basis,

Ω ⊆open Kn with K ∈ {R,C} and A ∈ L(H)Ω such that each A(s) is smoothing with

respect to e. Then, A is said to be (scalarly) smooth/holomorphic if and only if all

s↦ ⟨A(s)ei, ej⟩H are C∞(Ω).
Theorem 7.13. (i) If A is smoothing with respect to e and trA = 0, then

A can be written as a finite sum of commutators [Bi,Ci] where the Bi

and Ci are smoothing with respect to e.

(ii) If a family A ∈ L(H)Ω of smoothing operators is smooth/holomorphic,

then A can be written as a finite sum of commutators s ↦ [Bi(s),Ci] on

every compact K ⊆ Ω where the Bi(s) and Ci are smoothing, and the Bi

are smooth/holomorphic.

Remark (i) Let X be a compact Riemannian manifold, H = L2(X), and

e the family of eigenfunctions of the Laplacian on X . An operator A ∈



7. ON STRUCTURAL SINGULARITIES AND THE GENERALIZED KV TRACE 137

L (L2(X)) is smoothing with respect to e if it is smoothing with respect

to the Sobolev norms.

(ii) Let H = L2(Rn) and e the family of Hermite functions. An operator

A ∈ L(H) is e-smoothing if it is smoothing with respect to the Schwartz

semi-norms.

∎

These theorems yield the following table assuming that the residue trace res0 ○ζ

is non-trivial and unique, and AΓ = ⟨A⟩ + ⟨[AΓ,AΓ]⟩ + {smoothing operators} for

some A ∈ AΓ with res0 ζ(A) ≠ 0.
I0 ≠ ∅ I0 = ∅

res0 ζ(A) ≠ 0 res0 ζ(A) = 0 ζ(A)(0) ≠ 0 ζ(A)(0) = 0
A = αA + S +∑ki=1Ci

Ci ∈ [AΓ,AΓ]
α = (res0 ζ(A))−1 res0 ζ(A)
S smoothing

A = S +∑ki=1Ci

Ci ∈ [AΓ,AΓ]
S smoothing

A = ∑ki=1Ci

Ci commutators

Remark Note that the obstruction to the generalized Kontsevich-Vishik trace is

given by the derivatives of the aι for ι ∈ I0. Using the example above Theorem 2.15,

we obtain that these are residue traces themselves if the operator is polyhomoge-

neous. These residues are explicitly calculated for gauged families A(z) = BQz in

Proposition 4.5.

∎

Remark Recall that ζR(α) = 1
2
ζ (s ↦HsH−α) (0) holds. Since I0 = ∅ for R(α) ∈

(0,1), we obtain H−α = Sα+∑ki=1[Bi,Ci] where Sα is a smoothing operator. Hence,

the following are equivalent.

(i) Riemann’s Hypothesis

(ii) R(α) ∈ (0,1) ∧ H−α ∈ ⟨[AΓ,AΓ]⟩ ⇒ R(α) = 1
2
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(iii) R(α) ∈ (0,1) ∧ Sα = 0 is possible ⇒ R(α) = 1
2

(iv) R(α) ∈ (0,1) ∧ trSα = 0 ⇒ R(α) = 1
2

∎



CHAPTER 8

Stationary phase approximation

In this chapter, we would like to get to know a little more about the singularity

structure of

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ,
primarily to calculate the integrals

ˆ

∂B
RN

eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ).

We will prove the following theorem.

Theorem 8.3 Let k(x, y) = ´
RN e

iϑ(x,y,ξ)a(x, y, ξ)dξ be the kernel of a Fourier In-

tegral Operator with poly-log-homogeneous amplitude a = a0+∑ι∈I aι and phase func-

tion satisfying ∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0.

Let Ĩ ∶= I ∪ {0} and choose a decomposition a = a0 + ∑Ss=1 a
s such that there is

no stationary point1 in the support of a0(x, y, ⋅) and exactly one stationary point

ξ̂s(x, y) ∈ ∂BRN of ϑ(x, y, ⋅) in the support of each as(x, y, ⋅).
Let ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), sgnΘs(x, y)

the number of positive eigenvalues minus the number of negative eigenvalues of

Θs(x, y), grad∂B
RN
= ∂∂B and div∂B

RN
are the gradient and divergence operators

on the (N − 1)-sphere ∂BRN , and

∆∂B,Θs(x,y) = ⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B
RN

Θs(x, y)−1 grad∂B
RN
.

1A point ξ ∈ RN is called a stationary point of ϑ(x, y, ⋅) if and only if ∂3ϑ(x, y, ξ) = 0.
139
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Furthermore, let

hsj,ι(x, y) ∶= (2π)
N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)
j!(2i)j ∆

j

∂B,Θs(x,y)asι (x, y, ξ̂s(x, y))

and

gsj,ι(x, y) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0) , q ∈ C ∖ (−N0)
∂lι (z ↦ −Γ(z+1)

2πi (−q)!
´

c+iR

(−σ)−q(cln+lnσ)
(−iϑ̂s(x,y)+0−σ)z+1dσ)(0) , q ∈ −N0

with q ∶= dι +
N+1
2
− j, c ∈ R>0, and some constant cln ∈ C.

Then,

k(x, y) =ˆ
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dξ +∑
ι∈Ĩ

S

∑
s=1

∑
j∈N

0

hsj,ι(x, y)gsj,ι(x, y)

holds in a neighborhood of the diagonal in X2.

This will yield the following theorems.

Theorem 8.5 Let A be a Fourier Integral Operator with kernel

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ

whose phase function ϑ satisfies ∀x ∈ X ∀ξ ∈ RN ∶ ϑ(x,x, ξ) = 0, and whose ampli-

tude has an asymptotic expansion a ∼ ∑ι∈N aι where each aι is log-homogeneous with

degree of homogeneity dι and logarithmic order lι, and R(dι) → −∞. Let N0 ∈ N

such that ∀ι ∈ N>N0
∶ R(dι) < −N and let

ksing(x, y) = ˆ
RN

eiϑ(x,y,ξ)
N0

∑
ι=1

aι(x, y, ξ)dξ

denote the singular part of the kernel.
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Then, the regularized kernel k − ksing is continuous along the diagonal and

independent of the particular choice of N0 (along the diagonal). Furthermore, the

generalized Kontsevich-Vishik density is given by

(k − ksing) (x,x)dvolX(x) =ˆ
RN

a(x,x, ξ) − N0

∑
ι=1

aι(x,x, ξ)dξdvolX(x).
Theorem 8.7 Let A be a Fourier Integral Operator with phase function ϑ satisfying

∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0 and ξ̂s (s ∈ N≤S)

the stationary points. Furthermore, let

∀x ∈ X ∀s ∈ N≤S ∶ ϑ (x,x, ξ̂s(x,x)) ≠ 0.
Then,

( X ∋ x↦ k(x,x) ∈ C ) ∈ C(X)
and

trA =

ˆ

X

k(x,x)dvolX(x)
is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, ζ-functions of

families of such operators have no poles.

For the remainder of the chapter, let a be log-homogeneous. Then, we obtain

k(x, y) ∶=ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
=

ˆ

R>0

ˆ

∂B
RN

rN−1eirϑ(x,y,η)a(x, y, rη)dvol∂B
RN
(η)dr

=

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,η)a(x, y, η)dvol∂B
RN
(η)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶I(x,y,r)

dr.

Let (x, y) be off the critical manifold, i.e. ∀η ∈ ∂BRN ∶ ∂3ϑ(x, y, η) ≠ 0. Then, we

observe

∂3e
irϑ(x,y,η) = ireirϑ(x,y,η)∂3ϑ(x, y, η),
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i.e.

eirϑ(x,y,η) =⟨∂3eirϑ(x,y,η), ∂3ϑ(x, y, η)⟩RN

ir ∥∂3ϑ(x, y, η)∥2ℓ2(N) ,

and

∣I(x, y, r)∣ = ∣ˆ
∂B

RN

eirϑ(x,y,η)a(x, y, η)dvol∂B
RN
(η)∣

=

RRRRRRRRRRRR
ˆ

∂B
RN

⟨∂3eirϑ(x,y,η), ∂3ϑ(x, y, η)⟩
RN

ir ∥∂3ϑ(x, y, η)∥2ℓ2(N) a(x, y, η)dvol∂B
RN
(η)RRRRRRRRRRRR

=

RRRRRRRRRRRR
ˆ

∂B
RN

eirϑ(x,y,η)∂∗3
a(x, y, η)∂3ϑ(x, y, η)
ir ∥∂3ϑ(x, y, η)∥2ℓ2(N) dvol∂BRN

(η)RRRRRRRRRRRR
=
1

r

RRRRRRRRRRRR
ˆ

∂B
RN

eirϑ(x,y,η)∂∗3
a(x, y, η)∂3ϑ(x, y, η)∥∂3ϑ(x, y, η)∥2ℓ2(N) dvol∂BRN

(η)RRRRRRRRRRRR .

Using

Da(x, y, η) ∶= ∂∗3 a(x, y, η)∂3ϑ(x, y, η)∥∂3ϑ(x, y, η)∥2ℓ2(N) ,

we conclude

∀n ∈ N ∶ ∣I(x, y, r)∣ =1
r
∣ˆ
∂B

RN

eirϑ(x,y,η)Da(x, y, η)dvol∂B
RN
(η)∣

=
1

rn
∣ˆ
∂B

RN

eirϑ(x,y,η)Dna(x, y, η)dvol∂B
RN
(η)∣

≤
1

rn
∥Dna∥L∞(X×X×∂BRN

) ,

i.e.

∀n ∈ N ∃c ∈ R>0 ∶ ∣I(x, y, r)∣ ≤ cr−n

which proves that k is C∞ away from the critical manifold.
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On the critical manifold, we will assume that

∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1)

if ∂3ϑ(x, y, ξ) = 0.
Example For pseudo-differential operators

ϑ(x, y, ξ) = ⟨x − y, ξ⟩RN−1.

Let spta(x, y, ⋅) ⊆ ∂BRN ∖ {B0} uniformly (x, y) in some sufficiently small open

set and σ ∶ RN−1 → ∂BRN ∖ {B0} the stereographic projection (or any other nice

diffeomorphism). Let

ϑσ(x, y, ξ) ∶= ⟨x − y, σ(ξ)⟩RN .

Then,

0 = ∂3ϑσ(x, y, ξ) = (x − y)Tσ′(ξ) ⇐⇒ x − y is normal to ∂BRN at σ(ξ)
⇐⇒ x − y ∈ lin {σ(ξ)}
x≠y
⇐⇒ σ(ξ) ∈ ⎧⎪⎪⎨⎪⎪⎩

x − y∥x − y∥ℓ2(N) ,−
x − y∥x − y∥ℓ2(N)

⎫⎪⎪⎬⎪⎪⎭ ,
as well as,

∂23ϑσ(x, y, ξ) = (x − y)Tσ′′(ξ)
which is a multiple of the second fundamental form II if x−y is normal to ∂BRN in

σ(ξ). Using the first fundamental form I and the fact that the Gaussian curvature

κ of ∂BRN is 1, we obtain

1 = κ =
det II

det I
,

i.e.

∂3ϑσ(x, y, ξ) = 0 ⇒ ∂23ϑσ(x, y, ξ) ∈ GL (RN−1) .
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In other words, pseudo-differential operators can be treated with the stationary

phase approximation considered in this chapter.

∎

Lemma 8.1 (Morse’ Lemma). Let (x0, y0, ξ0) ∈ X × X × ∂BRN be stationary

(in particular, ∂∂Bϑ(x0, y0, ξ0) = 0) and ∂2∂Bϑ(x0, y0, ξ0) ∈ GL (RN−1) where ∂∂B

denotes the spherical derivative, i.e. the derivative in ∂BRN .

Then, there are neighborhoods U ⊆open X ×X of (x0, y0) and V ⊆open ∂BRN of

ξ0 and a function ξ̂ ∈ C∞(U,V ) such that

∀(x, y, ξ) ∈ U × V ∶ ∂∂Bϑ(x, y, ξ) = 0 ⇔ ξ = ξ̂(x, y).
Furthermore, there is a function η ∈ C∞ (U × V,RN) such that

∀(x, y, ξ) ∈ U × V ∶ η(x, y, ξ) − (ξ − ξ̂(x, y)) ∈ O (∥ξ − ξ̂(x, y)∥2
ℓ2(N))

and

∂3η (x, y, ξ̂(x, y)) = 1.
Proof. The existence of U , V , and ξ̂ is a direct consequence of the (analytic)

implicit function theorem. From now on, we may suppress the first two arguments

(that is, “x” and “y”) for reasons of brevity. Then, using Taylor’s theorem with

A ∶= {α ∈ NN0 ; ∥α∥ℓ1(N) = 2}, we obtain for all ξ ∈ V

ϑ(ξ) =ϑ (ξ̂) + ∂3ϑ (ξ̂)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0

(ξ − ξ̂) + ∑
α∈A

2

α!

ˆ 1

0

(1 − t)∂α3 ϑ (ξ̂ + t (ξ − ξ̂))dt (ξ − ξ̂)α

=ϑ (ξ̂) + 1

2
⟨B(ξ) (ξ − ξ̂) , (ξ − ξ̂)⟩

RN

with some appropriate function B ∈ C∞ (U × V,L (RN)). According to Taylor’s

theorem, we have

∀(x, y) ∈ U ∶ B (x, y, ξ̂(x, y)) = ∂23ϑ (x, y, ξ̂(x, y)) .
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We are, therefore, looking for a function R ∈ C∞ (U × V,L (RN)) with

∀(x, y) ∈ U ∶ R (x, y, ξ̂(x, y)) = 1

and

∀(x, y, ξ) ∈ U × V ∶ B (x, y, ξ) = R(x, y, ξ)∗∂23ϑ (x, y, ξ̂(x, y))R(x, y, ξ).

Since the radial derivative ∂rϑ(ξ) is constant, we obtain

∀(x, y, ξ) ∈ U × V ∶ ∂23ϑ(x, y, ξ) =
⎛⎜⎜⎜⎝

∂2rϑ(x, y, ξ) ∂r∂∂Bϑ(x, y, ξ)
∂∂B∂rϑ(x, y, ξ) ∂2∂Bϑ(x, y, ξ)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 0

0 ∂2∂Bϑ(x, y, ξ)
⎞⎟⎟⎟⎠ ,

where ∂∂B is the spherical derivative ∂∂Bϑ = ∂3ϑ∣∂B
RN

, which shows that we may

assume, without loss of generality,

∀(x, y, ξ) ∈ U × V ∶ B(x, y, ξ) = ⎛⎜⎜⎜⎝
0 0

0 C(x, y, ξ)
⎞⎟⎟⎟⎠

and

∀(x, y, ξ) ∈ U × V ∶ R(x, y, ξ) =
⎛⎜⎜⎜⎝
1 0

0 S(x, y, ξ)
⎞⎟⎟⎟⎠ .

This reduces the problem to showing that a solution of

S(x, y, ξ)∗∂2∂Bϑ (x, y, ξ̂(x, y))S(x, y, ξ) =C(x, y, ξ)
S (x, y, ξ̂(x, y)) =1

exists in U × V (reducing U and V if necessary).
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Note that (using the symmetrization operator sym ∶ L(H)→ L(H); h↦ h+h∗
2

)

T ∶ L (RN−1)→ sym [L (RN−1)] ; s↦ s∗∂2∂Bϑ (x, y, ξ̂(x, y)) s
has surjective Fréchet derivative

T ′(1) ∶ L (RN−1)→sym [L (RN−1)] ;
s ↦s∗∂2∂Bϑ (x, y, ξ̂(x, y)) + ∂2∂Bϑ (x, y, ξ̂(x, y)) s

since s ∶= 1
2
∂2∂Bϑ (x, y, ξ̂(x, y))−1 t solves

s∗∂2∂Bϑ (x, y, ξ̂(x, y)) + ∂2∂Bϑ (x, y, ξ̂(x, y)) s = t
for t ∈ sym [L (RN−1)]. Let Lϑ ∶= L (RN−1) /[{0}]T ′(1). Then,

(T ∣Lϑ
)′ (1) ∶ Lϑ → sym [L (RN−1)]

is an isomorphism and the implicit function theorem yields a C∞-solution of

s∗∂2∂Bϑ (x, y, ξ̂(x, y)) s =C ∈ Lϑ
s (x, y, ξ̂(x, y)) =1

in a neighborhood of (x, y, ξ̂(x, y)). Let S be a C∞-representative in L (RN−1) of

the solution. Thence,

∀ξ ∈ V ∶ ϑ(ξ) =ϑ (ξ̂) + 1

2
⟨∂23ϑ (ξ̂)R(ξ) (ξ − ξ̂) ,R(ξ) (ξ − ξ̂)⟩RN .

Letting

η(x, y, ξ) ∶= R(x, y, ξ) (ξ − ξ̂(x, y))
and observing

R(x, y, ξ) − 1 ∈ O (∥ξ − ξ̂(x, y)∥
ℓ2(N))
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shows

η(x, y, ξ) − (ξ − ξ̂(x, y)) ∈ O (∥ξ − ξ̂(x, y)∥2
ℓ2(N)) .

Finally,

∂3η (x, y, ξ) =∂3R (x, y, ξ) (ξ − ξ̂(x, y)) +R (x, y, ξ)

implies

∂3η (x, y, ξ̂(x, y)) =R (x, y, ξ̂(x, y)) = 1

which completes the proof.

�

Corollary 8.2. Let ϑ be as in Morse’ Lemma (Lemma 8.1). Then, stationary

points of ϑ(x, y, ⋅) are isolated in ∂BRN . In particular, there are only finitely many.

Proof. For given stationary (x, y, ξ) we can find a neighborhood V ⊆open

∂BRN such that ξ = ξ̂(x, y); thus, stationary points are locally unique. By com-

pactness of ∂BRN they are isolated and at most finitely many.

�

Hence, we may assume that

k(x, y) = S

∑
s=0

ˆ

RN

eiϑ(x,y,ξ)as(x, y, ξ)dξ

where a0 has no stationary points in its support and each of the as has exactly one

branch (x, y, ξ̂s(x, y)) in its support. As we have already treated the a0 case, we

will assume, without loss of generality, that a is of the form of one of the as.



8. STATIONARY PHASE APPROXIMATION 148

Let η∂B be defined as the spherical part of η and

Θ(x, y) ∶= ∂2∂Bϑ (x, y, ξ̂(x, y)) .
Then,

⟨∂23ϑ (x, y, ξ̂(x, y)) η(x, y, ξ), η(x, y, ξ)⟩RN
= ⟨Θ(x, y)η∂B(x, y, ξ), η∂B(x, y, ξ)⟩RN−1

and, defining ϑ̂ ∶= ϑ (x, y, ξ̂(x, y)),
I(x, y, r) =ˆ

∂B
RN

eirϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ)

=eirϑ̂
ˆ

∂B
RN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩RN−1a(x, y, ξ)dvol∂B

RN
(ξ).

Let σ ∶ RN−1 → ∂BRN be a stereographic projection with pole −ξ̂(x, y) (which is

assumed to be outside of spta(x, y, ⋅)),
ησ(x, y, ξ) ∶= η∂B(x, y, σ(ξ)),

and

aσ(x, y, ξ) ∶= a(x, y, σ(ξ))√det (σ′(ξ)∗σ′(ξ)).
Then,

I(x, y, r) =eirϑ̂ ˆ
∂B

RN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩RN−1a(x, y, ξ)dvol∂B

RN
(ξ)

=eirϑ̂
ˆ

RN−1
ei

r
2
⟨Θ(x,y)ησ(x,y,ξ),ησ(x,y,ξ)⟩RN−1aσ(x, y, ξ)dξ

and

∂3ησ(x, y, ξ) = ∂3η∂B(x, y, σ(ξ))σ′(ξ)
combined with the fact that ∂3η (x, y, ξ̂(x, y)) = 1 yields that ησ(x, y, ⋅) is invertible

in a neighborhood of σ−1 (ξ̂(x, y)) = 0 (we will also use ησ(x, y)(⋅) for ησ(x, y, ⋅)).
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Without loss of generality, let aσ(x, y, ⋅) have support in such a neighborhood and

ã(x, y, ξ) ∶= aσ(x, y, ησ(x, y)−1(ξ))√det ((ησ(x, y)−1)′ (ξ)∗ (ησ(x, y)−1)′ (ξ)).

This yields

I(x, y, r) =eirϑ̂ ˆ
RN−1

ei
r
2
⟨Θ(x,y)ησ(x,y,ξ),ησ(x,y,ξ)⟩RN−1aσ(x, y, ξ)dξ

=eirϑ̂
ˆ

RN−1
ei

r
2
⟨Θ(x,y)ξ,ξ⟩

RN−1 ã(x, y, ξ)dξ.

Using

F (z ↦ ei
1
2
⟨rΘ(x,y)ξ,ξ⟩

RN−1) (ξ)
= ∣det(rΘ(x, y))∣− 1

2 e
iπ
4

sgn(rΘ(x,y))e−i 12 ⟨(rΘ(x,y))−1ξ,ξ⟩RN−1

=
1

r
N−1
2

∣detΘ(x, y)∣− 1
2 e

iπ
4

sgn(Θ(x,y))e−i 12 ⟨(rΘ(x,y))−1ξ,ξ⟩RN−1

where sgn(Θ(x, y)) is the number of positive eigenvalues minus the number of neg-

ative eigenvalues of Θ(x, y) (cf. Lemma 1.2.3 in [20] and noting that Duistermaat

uses “F =
´

RN ” whereas we are using “F = (2π)−N
2

´

RN ”), we obtain

ˆ

RN−1
ei

1
2
⟨rΘξ,ξ⟩

RN−1 ã(ξ)dξ
=

1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ

ˆ

RN−1
F−13 (e−i 12 ⟨(rΘ)−1ξ,ξ⟩RN−1) ã(ξ)dξ

=
1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ

ˆ

RN−1
F∗3 (e−i 12 ⟨(rΘ)−1ξ,ξ⟩RN−1) ã(ξ)dξ

=
1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ

ˆ

RN−1
e−i

1
2
⟨(rΘ)−1ξ,ξ⟩

RN−1F3ã(ξ)dξ
=

1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ ∑
j∈N

0

r−j

j!

ˆ

RN−1
(−i
2
⟨Θ−1ξ, ξ⟩

RN−1)j F3ã(ξ)dξ
=

1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ ∑
j∈N

0

r−j

j!

ˆ

RN−1
(−i
2
⟨Θ−1iξ, iξ⟩

RN−1)j F3ã(ξ)dξ
=

1

r
N−1
2

∣detΘ∣− 1
2 e

iπ
4

sgnΘ ∑
j∈N

0

r−j

j!

ˆ

RN−1
F3 ((−i2 ⟨Θ−1∂3, ∂3⟩RN−1)j ã)(ξ)dξ
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and investing

ˆ

Rn

F f(ξ)dξ =ˆ
Rn

ei⟨0,ξ⟩RnF f(ξ)dξ = (2π)n
2 F−1 (F f) (0) = (2π)n

2 f(0)
yields

ˆ

RN−1
ei

1
2
⟨rΘ(x,y)ξ,ξ⟩

RN−1 ã(x, y, ξ)dξ
=(2π

r
)N−1

2 ∣detΘ(x, y)∣− 1
2 e

iπ
4

sgnΘ(x,y) ∑
j∈N

0

(−i)jr−j
j!2j

⟨Θ(x, y)−1∂3, ∂3⟩j
RN−1 ã(x, y,0).

Remark The evaluation of ⟨Θ(x, y)−1∂3, ∂3⟩j
RN−1 ã(x, y, ⋅) at zero yields an evalu-

ation at ξ̂(x, y) undoing all the changes of variables.

∎

Hence, defining

hj(x, y) ∶=(2π)N−1
2 ∣detΘ(x, y)∣− 1

2 e
iπ
4

sgnΘ(x,y)
j!(2i)j ⟨Θ(x, y)−1∂3, ∂3⟩j

RN−1 ã(x, y,0)
we obtain

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ) dr

=

ˆ

R>0

rN+d−1(ln r)leirϑ̂(x,y) ˆ
RN−1

ei
1
2
⟨rΘ(x,y)ξ,ξ⟩

RN−1 ã(x, y, ξ)dξ dr
=

ˆ

R>0

rN+d−1(ln r)leirϑ̂(x,y)r−N−1
2 ∑

j∈N
0

r−jhj(x, y) dr
= ∑
j∈N

0

hj(x, y)ˆ
R>0

rd+
N−1
2
−j(ln r)leirϑ̂(x,y) dr,

i.e.

k(x, y) = S

∑
s=0

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,ξ)as(x, y, ξ)dvol∂B
RN
(ξ) dr

=

ˆ

R>0

rN+d−1(ln r)l ˆ
∂B

RN

eirϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ) dr

+

S

∑
s=1

∑
j∈N

0

hsj(x, y)
ˆ

R>0

rd+
N−1
2
−j(ln r)leirϑ̂s(x,y) dr.
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For l = 0 we may invest the well-known fact

∀q ∈ CR(⋅)>−1 ∀s ∈ CR(⋅)>0 ∶
ˆ

R>0

tqe−stdt = Γ(q + 1)s−q−1

about the Laplace transform to obtain

ˆ

R>0

rd+
N−1
2
−jeirϑ̂

s(x,y)dr =Γ(d + N + 1
2
− j)(−iϑ̂s(x, y) + 0)−d−N+1

2
+j

=Γ(d + N + 1
2
− j) id+N+1

2
−j (ϑ̂s(x, y) + i0)−d−N+1

2
+j

if R (d + N+1
2
− j) > 0 where f(t+i0) ∶= limε↘0 f(t+iε). By meromorphic extension,

we obtain

ˆ

R>0

rd+
N−1
2
−jeirϑ̂

s(x,y)dr =Γ(d + N + 1
2
− j) id+N+1

2
−j (ϑ̂s(x, y) + i0)−d−N+1

2
+j

whenever d + N+1
2
− j ∈ C ∖ (−N0) and, for l ∈ N0,

ˆ

R>0

rq (ln r)l eirϑ̂s(x,y)dr =∂l (z ↦ ˆ
R>0

rq+zeirϑ̂
s(x,y)dr)(0)

=∂l (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0).
If d + N+1

2
− j ∈ −N0, i.e. d + N−1

2
− j ∈ −N, then we can use the following property

ˆ

R>0

ˆ t

0

f(τ)dτe−stdt = 1

s

ˆ

R>0

f(t)e−stdt
to obtain

∀q, s ∈ CR(⋅)>0 ∶
ˆ

R>0

tqe−stdt =

ˆ

R>0

ˆ t

0

qτq−1dτe−stdt =
q

s

ˆ

R>0

tq−1e−stdt

and, hence,

ˆ

R>0

tqe−stdt =
s

q + 1

ˆ

R>0

tq+1e−stdt =
sn

∏np=1(q + p)
ˆ

R>0

tq+ne−stdt

by meromorphic extension. Thus, for q ∈ −N and n = −q − 1, we have

ˆ

R>0

tqe−stdt =
(−s)−q−1(−q − 1)!

ˆ

R>0

t−1e−stdt
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reducing the problem to finding
´

R>0
t−1e−stdt. Consider the Borel measure

µq,s ∶ B (R>0) → C; A↦
ˆ

A

tq−1e−stdt

on R>0 for q, s ∈ C
R(⋅)>0. Then,

∂ (σ ↦ ˆ
R>0

f(t)e−σtdt)(s) = −ˆ
R>0

tf(t)e−stdt
implies

∂ (σ ↦ µq,σ) (s) = −µq+1,s
and, hence,

∂ (σ ↦ µq,σ) (s) (R>0) = −µq+1,s (R>0) = −Γ(q + 2)
sq+2

→ −
1

s
(q → −1).

In other words,
´

R>0
t−1e−stdt is logarithmic (up to a constant) and

´

R>0
tqe−stdt for

q ∈ −N is log-homogeneous; namely,

ˆ

R>0

rqeirϑ̂
s(x,y) dr = −(iϑ̂s(x, y) − 0)−q−1(−q − 1)! (cln + ln (−iϑ̂s(x, y) + 0))

with some constant cln. Finally, we can add the ln r terms for q ∈ −N by investing

the the multiplication property of the Laplace transform

L(fg)(s) = 1

2πi

ˆ

c+iR

L(f)(σ)L(g)(s − σ)dσ
where c ∈ R such that c + iR is a subset of the region of convergence for L(f) =
(s↦ ´

R>0
f(t)e−stdt). Thence, for c ∈ R>0, q ∈ −N, and l ∈ N0, we obtain

ˆ

R>0

rq (ln r)l e−srdr∣
s=−iϑ̂s(x,y)+0

= (z ↦ ˆ
R>0

rqrz (ln r)l e−srdr) (0)∣
s=−iϑ̂s(x,y)+0

= ∂l (z ↦ ˆ
R>0

rqrze−srdr) (0)∣
s=−iϑ̂s(x,y)+0

= ∂l (z ↦ 1

2πi

ˆ

c+iR

ˆ

R>0

rqe−σrdr

ˆ

R>0

rze−(s−σ)rdrdσ) (0)∣
s=−iϑ̂s(x,y)+0
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= ∂l (z ↦ −Γ(z + 1)
2πi(−q − 1)!

ˆ

c+iR

(−σ)−q−1 (cln + lnσ) (s − σ)−z−1 dσ) (0)∣
s=−iϑ̂s(x,y)+0

.

Thus, we have proven the following Theorem.

Theorem 8.3. Let k(x, y) = ´
RN e

iϑ(x,y,ξ)a(x, y, ξ)dξ be the kernel of a Fourier

Integral Operator with poly-log-homogeneous amplitude a = a0+∑ι∈I aι whose phase

function satisfies ∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0.

Let Ĩ ∶= I ∪ {0} and choose a decomposition a = a0 + ∑Ss=1 a
s such that there is

no stationary point in the support of a0(x, y, ⋅) and exactly one stationary point

ξ̂s(x, y) ∈ ∂BRN of ϑ(x, y, ⋅) in the support of each as(x, y, ⋅).
Let ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), sgnΘs(x, y)

the number of positive eigenvalues minus the number of negative eigenvalues of

Θs(x, y), and ∆∂B,Θs(x,y) = ⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B
RN

Θs(x, y)−1 grad∂B
RN

.

Furthermore, let

hsj,ι(x, y) ∶= (2π)
N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)
j!(2i)j ∆

j
∂B,Θsa

s
ι (x, y, ξ̂s(x, y))

and

gsj,ι(x, y) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)−q−1−z) (0) , q ∈ C ∖ (−N0)
∂lι (z ↦ −Γ(z+1)

2πi (−q)!
´

c+iR

(−σ)−q(cln+lnσ)
(−iϑ̂s(x,y)+0−σ)z+1dσ)(0) , q ∈ −N0

with q ∶= dι +
N+1
2
− j, c ∈ R>0, and some constant cln ∈ C.

Then,

k(x, y) =ˆ
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dξ +∑
ι∈Ĩ

S

∑
s=1

∑
j∈N

0

hsj,ι(x, y)gsj,ι(x, y)
holds in a neighborhood of the diagonal in X2.

Remark Suppose ∂2∂Bϑ is not invertible at some stationary point but we can split

the third variable in a pair (ξ, ζ) such that ∂24ϑ(x0, y0, ξ0, ζ0) is invertible at the
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stationary point. Then, we can find open neighborhoods U of ξ0 and V of ζ0 as well

as a function ζ̂ such that ∂4ϑ(x, y, ξ, ζ) = 0 if and only if ζ = ζ̂(ξ). In particular,

since U × V is open in the compact set ∂BRN , we can use a partition of unity to

reduce I(x, y, r) into a sum of integrals of the form

ˆ

U

ˆ

V

eirϑ(x,y,ξ,ζ)a(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ).
Using stationary phase with respect to ζ, then, yields

ˆ

U

ˆ

V

eirϑ(x,y,ξ,ζ)a(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ)
=

ˆ

U

eirϑ(x,y,ξ,ζ̂(ξ))
ˆ

V

eir⟨∂2
4ϑ(x,y,ξ,ζ̂(ξ))η(ζ),η(ζ)⟩Rna(x, y, ξ, ζ)dvolV (ζ)dvolU(ξ)

which, again, yields an expansion of the form above but where the coefficients need

to be integrated once more.

∎

Example For a pseudo-differential operator, we have

ϑ(x, y, ξ) = (x − y)Tσ(ξ).
Choosing coordinates such that (x − y) = − ∥x − y∥ℓ2(N) eN and letting eN be the

pole of the stereographic projection, we obtain

σ(ξ) = ⎛⎜⎜⎜⎝
2ξ

1+∥ξ∥ℓ2(N−1)
∥ξ∥ℓ2(N−1)−1∥ξ∥ℓ2(N−1)+1

⎞⎟⎟⎟⎠
and

ϑ̃(ξ) ∶= ϑ(x, y, ξ)∥x − y∥ℓ2(N) =
1 − ∥ξ∥ℓ2(N−1)
1 + ∥ξ∥ℓ2(N−1) .

Then, we observe

∂iϑ̃(ξ) = −2ξi

1 + ∥ξ∥ℓ2(N−1) − 2ξi
1 − ∥ξ∥ℓ2(N−1)
(1 + ∥ξ∥ℓ2(N−1))2

,
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as well as,

∂j∂iϑ̃(ξ) = −2δij

1 + ∥ξ∥ℓ2(N−1) +
4ξiξj

(1 + ∥ξ∥ℓ2(N−1))2
− 2δij

1 − ∥ξ∥ℓ2(N−1)
(1 + ∥ξ∥ℓ2(N−1))2

− 2ξi

⎛⎜⎜⎝
−2ξj

1 + ∥ξ∥ℓ2(N−1) − 2ξj
1 − ∥ξ∥ℓ2(N−1)
(1 + ∥ξ∥ℓ2(N−1))2

⎞⎟⎟⎠
=

−4δij

(1 + ∥ξ∥ℓ2(N−1))2
+

12ξiξj

(1 + ∥ξ∥ℓ2(N−1))2
.

From Θ(x, y) ∶= ∂2∂Bϑ (x, y, ξ̂(x, y)) and ξ̂(x, y) = x−y∥x−y∥ℓ2(N) = σ(0) in these coordi-

nates, we obtain

Θ(x, y) = ∥x − y∥ℓ2(N) ϑ̃′′(0) = −4 ∥x − y∥ℓ2(N) .
Hence, using z ∶= x − y,

hj(x, y) =(2π)N−1
2 ∣detΘ(x, y)∣− 1

2 e
iπ
4

sgnΘ(x,y)
j!(2i)j ⟨Θ(x, y)−1∂3, ∂3⟩j

RN−1 ã(x, y,0)

=
(2π)N−1

2 (4 ∥z∥ℓ2(N))−N−1
2

e−
iπ
4
(N−1)

j!(−8i ∥z∥ℓ2(N))j ⟨∂3, ∂3⟩jRN−1 ã(x, y,0)

=
(π
2
)N−1

2 ∥z∥−N−1
2
−j

ℓ2(N) e−
iπ
4
(N−1)

j!(−8i)j ∆
j
∂Ba
⎛⎝x, y, z∥z∥ℓ2(N)

⎞⎠ .
Let

h̃j(x, y) ∶=(π2 )
N−1
2 e−

iπ
4
(N−1)

j!(−8i)j ∆
j
∂Ba
⎛⎝x, y, z∥z∥ℓ2(N)

⎞⎠ .
Then,

hj(x, y) = h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N)

and

∑
j∈N

0

hj(x, y)ˆ
R>0

rd+
N−1
2
−j(ln r)leirϑ̂(x,y) dr

= ∑
j∈N

0

h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N)
ˆ

R>0

rd+
N−1
2
−j(ln r)leir∥z∥ℓ2(N) dr.
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In particular, for l = 0 and d + N−1
2
− j ∈ C ∖ (−N),

∑
j∈N

0

hj(x, y)ˆ
R>0

rd+
N−1
2
−jeirϑ̂(x,y) dr

= ∑
j∈N

0

h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N)
ˆ

R>0

rd+
N−1
2
−je

ir∥z∥ℓ2(N) dr

= ∑
j∈N

0

h̃j(x, y) ∥z∥−N−1
2
−j

ℓ2(N) Γ(d + N + 1
2
− j)(−i ∥z∥ℓ2(N) + 0)−d−N+1

2
+j

= ∑
j∈N

0

h̃j(x, y)Γ(d + N + 1
2
− j) (−i)−d−N+1

2
+j (∥z∥ℓ2(N) + i0)−d−N

yields the following proposition since, for k = δdiag, we have ϑ(x, y, ξ) = ⟨x − y, ξ⟩
and a(x, y, ξ) = 1

2π
, i.e. d = 0 and

h̃j(x, y) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2π
(π
2
)N−1

2 e−
iπ
4
(N−1) , j = 0

0 , j ∈ N

.

Proposition 8.4.

δdiag(x, y) = 1

2π
(π
2
)N−1

2

e−
iπ
4
(N−1)Γ(N + 1

2
) (−i)−N+1

2 (∥x − y∥ℓ2(N) + i0)−N

+
1

2π
(π
2
)N−1

2

e−
iπ
4
(N−1)Γ(N + 1

2
) (−i)−N+1

2 (− ∥x − y∥ℓ2(N) + i0)−N .

In particular, for N = 1, we obtain

δdiag(x, y) = i
2π
((∥x − y∥ℓ2(N) + i0)−1 − (∥x − y∥ℓ2(N) − i0)−1) .

This is precisely what we expect; cf. end of section 4.4.3.1 in [67].

∎

Remark Note that in the N = 1 case everything collapses as there are no spherical

derivatives. We will simply obtain

kd(x, y) =ˆ
R>0

rdeirϑ(x,y,1)ad(x, y,1)dr + ˆ
R>0

rdeirϑ(x,y,−1)ad(x, y,−1)dr
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and

ˆ

R>0

rdeirϑ(x,y,±1)ad(x, y,±1)dr

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
cdad(x, y,±1) (ϑ(x, y,±1) + i0)−d−1 , d ∉ −N

ad(x, y,±1) (iϑ(x,y,±1)−0)−d−1(−d−1)! (cd + ln (−iϑ(x, y,±1) + 0)) , d ∈ −N

with some constants cd. Hence, for

k(x, y) ∼ ∑
j∈N

0

ˆ

R

eiϑ(x,y,ξ)ad−j(x, y, ξ)dξ
with d ∈ Z and ad−j homogeneous of degree d − j, the coefficient of the logarithmic

terms are

∑
j∈N≥d+1

ad−j(x, y,±1)(iϑ(x, y,±1) − 0)j−d−1(j − d − 1)! .

In particular, in the critical case where ϑ(x, y,±1) = 0 (in fact, we are only interested

in ϑ(x,x,±1)) we are reduced to the known fact (cf. formulae (3) and (4) in [7])

that the densities of the residue traces at x (that is, a−1(x,x,±1)) coincide with the

coefficients of the logarithmic terms (that is, ln (−iϑ(x,x,±1) + 0)) in the singularity

structure of k.

Furthermore, we can calculate the generalized Kontsevich-Vishik trace for a =

a0 +∑ι∈I aι if ∀ι ∈ I ∶ dι ∈ R ∖ {−1} ∧ lι = 0. Then, the kernel k satisfies (note

ϑ(x,x, r) = 0 by assumption)

k(x,x) =ˆ
R>0

a0(x,x, r)dr +∑
ι∈I

ˆ

R>0

aι(x,x, r)dr.
Since 1R>0aι(x,x, ⋅) is homogeneous of degree dι, we obtain that

´

R>0
aι(x,x, r)dr

vanishes for dι < −1 since the Fourier transform F (1R>0aι(x,x, ⋅)) over R is a ho-

mogeneous distribution of degree −1 − dι. For dι > −1, we obtain

ˆ

R>0

eiϑ(x,y,r)aι(x,x, r)dr = cιaι(x, y,1) (ϑ(x, y,1) + i0)−dι−1
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which is precisely the other singular contribution (that is the f(x, y)(ϕ+0)−N term

in equation (3) of [7]) to the kernel singularity. In other words, the difference of

k(x, y) and its singular part ksing(x, y) satisfies

(k − ksing) (x,x) =ˆ
R>0

a0(x,x, r)dr.
In order to use Theorem 4.1, we will have to show that the regularized singular

terms vanish. This follows directly from the Laurent expansion with mollification.

For dι > −1, we have the two terms

∑
n∈N

0

´

X

´ 1

0
eiϑ(x,x,ξ)∂naι(0)(x,x, ξ)dξdvolX(x)

n!
zn

+ ∑
n∈N

0

n

∑
j=0

(−1)j+1j! ´
X
eiϑ(x,x,1)∂naι(0)(x,x,1)dvolX(x)

n!(1 + dι)j+1 zn

to evaluate at z = 0, i.e.

lim
h↘0

ˆ

X

ˆ 1

0

(h + r)dιaι(x,x,1)drdvolX(x)
=

ˆ

X

aι(x,x,1) lim
h↘0

ˆ 1+h

h

rdιdrdvolX(x)
=

ˆ

X

aι(x,x,1) lim
h↘0

(1 + h)dι+1 − hdι+1
dι + 1

dvolX(x)
=

ˆ

X

aι(x,x,1)
dι + 1

dvolX(x)
and

−
´

X
aι(x,x,1)dvolX(x)

1 + dι
.

Hence, the generalized Kontsevich-Vishik trace reduces to the pseudo-differential

form. Let a ∼ ∑j∈N
0
ad−j and N be sufficiently large, then

trKV A =

ˆ

X

ˆ

R>0

a(x,x, r) − N

∑
j=0

ad−j(x,x, r) dr dvolX(x)
which is independent of N .

∎
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In fact, we can generalize the case above.

Theorem 8.5. Let A be a Fourier Integral Operator with kernel

k(x, y) = ˆ
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ
whose phase function ϑ satisfies ∀x ∈ X ∀ξ ∈ RN ∶ ϑ(x,x, ξ) = 0 and whose ampli-

tude has an asymptotic expansion a ∼ ∑ι∈N aι where each aι is log-homogeneous with

degree of homogeneity dι and logarithmic order lι, and R(dι) → −∞. Let N0 ∈ N

such that ∀ι ∈ N>N0
∶ R(dι) < −N and let

ksing(x, y) = ˆ
RN

eiϑ(x,y,ξ)
N0

∑
ι=1

aι(x, y, ξ)dξ
denote the singular part of the kernel.

Then, the regularized kernel k − ksing is continuous along the diagonal and

independent of the particular choice of N0 (along the diagonal). Furthermore, the

generalized Kontsevich-Vishik density2 is given by

(k − ksing) (x,x)dvolX(x) =ˆ
RN

a(x,x, ξ) − N0

∑
ι=1

aι(x,x, ξ)dξdvolX(x).
Proof. Note that k − ksing is regular because it has an amplitude in the Hör-

mander class Sm(X ×X ×RN) for some m ∈ R<−N . Hence, it suffices to show that

the ζ-regularized singular contributions of aι vanish for dι ≠ −N . Let ι ∈ N such

that dι ≠ −N . Then, we need to show that

ˆ

X

ˆ

B
RN
(0,1)

aι(0)(x,x, ξ) dξ dvolX(x)
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
2Mind that this density is only locally defined. It only patches together (modulo pathologies)

if we assume the kernel patched together in the first place and the derivatives of terms of critical

dimension dι = −N regularize to zero, i.e. if ζ(fp0A)(0) is tracial and independent of gauge.
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vanishes. Mollifying

ˆ

B
RN
(0,1)

aι(0)(x,x, ξ)dξ =ˆ 1

0

ˆ

∂B
RN

rN−1aι(0)(x,x, rν)dvol∂B
RN
(ν)dr

=

ˆ 1

0

ˆ

∂B
RN

rN+dι−1(ln r)lι ãι(0)(x,x, ν)dvol∂B
RN
(ν)dr

yields (note that fn → f compactly implies f ′n → f ′ compactly for holomorphic

functions)

lim
h↘0

ˆ 1

0

(h + r)N+dι−1(ln(h + r))lιdr = lim
h↘0

ˆ 1+h

h

rN+dι−1(ln r)lιdr
= lim
h↘0

ˆ 1+h

h

∂lι (z ↦ rN+dι−1+z) (0)dr
= lim
h↘0

∂lι (z ↦ (1 + h)N+dι+z − hN+dι+z
N + dι + z

)(0)
=∂lι (z ↦ (N + dι + z)−1) (0)
=(z ↦ (−1)lιlι!(N + dι + z)lι+1 )(0),

i.e.

ˆ

X

ˆ

B
RN
(0,1)

aι(0)(x,x, ξ) dξ dvolX(x)
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
=
(−1)lιlι! ´X×∂B

RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
+

(−1)lι+1lι! ´X×∂B
RN
ãι(0)(x,x, ξ) dvolX×∂B

RN
(x, ξ)

(N + dι)lι+1
=0.

�

Remark (i) Reduction to the pseudo-differential form is highly non-trivial

and, in general, false. Consider, for instance,

ˆ

X

ˆ

R

eiΘ(x,x)rr−ndrdvolX(x) =ˆ
X

−iπ(−2πiΘ(x,x))n−1 sgn(Θ(x,x))(n − 1)! dvolX(x).
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If Θ(x,x) = 1 and n = 4, then this term reduces to 4π4
vol(X)
3

. In other

words, such a term would violate independence of N .

(ii) Instead of using mollification directly, we could have used the generalized

Mellin transform which yields

ˆ

R>0

rαdr =M (r ↦ rα) (1) = 0
where

´

R>0
rαdr is understood in the regularized sense. However, this

does not apply to the critical case dι = −N because the coefficients in the

Laurent expansion are integrals over ãι(0) on BRN and over ∂lι+1ãι(0)
outside BRN . Hence, we cannot re-write those integrals such that the

generalized Mellin transform appears as a factor and the critical terms

will not vanish, in general.

∎

At this point, we can return to Proposition 4.5 where we had the formula

fp0ζ(z ↦ BQz) = ˆ
X

trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q))

with B and Q polyhomogeneous, Q admitting holomorphic functional calculus and

the logarithm, and with finite dimensional kernel (e.g. an elliptic classical pseudo-

differential operator on a closed manifold with spectral cut), and q is the order of

Q. In [56] (equation (2.14)) it was shown that

fp0ζ(z ↦ BQz) = −1
q
res (B lnQ) − tr (B1{0}(Q))

holds if (x↦ trx (fp0B)) = 0 (e.g. if B is a differential operator) and Sylvie

Paycha conjectured that this formula should hold more generally. (Note that

we are using a different notation as we might want to assume a global point

of view rather than just considering everything a sum of local patches without

patching properties. Under these stronger conditions, we cannot simply write
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´

X
trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) = trKV (B) − 1

q
res (B lnQ) since they are

not separately globally defined densities.) The following corollary shows an equiv-

alent characterization of Paycha’s conjecture for Fourier Integral Operators as in

Theorem 8.5 (in particular for pseudo-differential operators) in terms of the regular

part of B.

Corollary 8.6. Let Q be as above and B be a Fourier Integral Operator whose

phase function ϑ satisfies ∀x ∈X ∀ξ ∈ RN ∶ ϑ(x,x, ξ) = 0 and whose amplitude has

an asymptotic expansion b ∼ ∑ι∈N bι where each bι is homogeneous (on RN ∖ {0})
with degree of homogeneity dι and R(dι) → −∞. Furthermore, let I ⊆ N be such

that the amplitude b decomposes into the form b0 +∑ι∈I bι where b0 is integrable in

RN (i.e. of Hörmander class Sm(X ×X ×RN) with m < −N), and let B0 the part

of B corresponding to b0. Then,

fp0ζ(z ↦ BQz) =ˆ
X

trx (fp0B) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q))

=

ˆ

X

trx (B0) − 1

q
res (B lnQ)x dvolX(x) − tr (B1{0}(Q)) .

In particular, the following are equivalent.

(i) Paycha’s conjecture: fp0ζ(z ↦ BQz) = − 1
q
res (B lnQ) − tr (B1{0}(Q)).

(ii) x↦
´

RN b0(x,x, ξ)dξdvolX(x) is a globally defined density on X and

tr (B0) = ˆ
X

ˆ

RN

b0(x,x, ξ)dξdvolX(x) = 0.
Remark If we remove the question of global patching and simply consider sums

of local representations, then we obtain

fp0ζ(z ↦ BQz) = trKV (B) − 1

q
res (B lnQ) − tr (B1{0}(Q))

= tr (B0) − 1

q
res (B lnQ) − tr (B1{0}(Q))

by default. In particular,
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(i) Paycha’s conjecture: fp0ζ(z ↦ BQz) = − 1
q
res (B lnQ) − tr (B1{0}(Q)).

and

(ii’) tr (B0) = ´X ´RN b0(x,x, ξ)dξdvolX(x) = 0.
are equivalent.

∎

Finally, we will consider an example of linear phase functions which will be

generalized to find algebras of Fourier Integral Operators which are Hilbert-Schmidt

and whose trace-integrals are regular.

Example Let ϑ(x, y, ξ) ∶= ⟨Θ(x, y), ξ⟩
RN and Θ(x0, y0) ≠ 0. Then,

k(x, y) =ˆ
RN

ei⟨Θ(x,y),ξ⟩RN a(x, y, ξ)dξ = F (a(x, y, ⋅)) (−Θ(x, y))
is continuous in a sufficiently small neighborhood of (x0, y0) for homogeneous a

because F (a(x, y, ⋅)) is homogeneous and Θ(x, y) non-zero. Hence, if Θ does not

vanish on the diagonal, then X ∋ x↦ k(x,x) ∈ C is continuous and, by compactness

of X ,
´

X
k(x,x)dvolX(x) well-defined.

∎

The stationary phase approximation above generalizes this observation (here,

ξ̂(x, y) = ± Θ(x,y)∥Θ(x,y)∥ℓ2(N) , i.e. ϑ̂s(x, y) = (−1)s ∥Θ(x, y)∥ℓ2(N) with s ∈ {0,1}).
Theorem 8.7. Let A be a Fourier Integral Operator with phase function ϑ

satisfying ∂23 (ϑ∣X×X×∂BRN
) (x, y, ξ) ∈ GL (RN−1) whenever ∂3ϑ(x, y, ξ) = 0 and

{ξ̂s; s ∈ N≤n} the set of stationary points. Furthermore, let

∀x ∈X ∀s ∈ N≤n ∶ ϑ (x,x, ξ̂s(x,x)) ≠ 0.
Then,

( X ∋ x↦ k(x,x) ∈ C ) ∈ C(X)
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and

trA =

ˆ

X

k(x,x)dvolX(x)
is well-defined, i.e. A is a Hilbert-Schmidt operator. Furthermore, ζ-functions of

families of such operators have no poles.

This yields many algebras A in which the generalized Kontsevich-Vishik trace

is everywhere defined.

Example An example for such non-trivial Hilbert-Schmidt operators occurs on

quotient manifolds. Let Γ be a co-compact discrete group on M acting continu-

ously3 and freely4 on M/Γ, k̃ a Γ × Γ-invariant5 Schwartz kernel on M , and k its

projection to M/Γ. Then, k(x, y) = ∑γ∈Γ k̃(x, γy) (cf. e.g. equation (3.2.1.3) in

[67]). Suppose k̃ is pseudo-differential, i.e.

k̃(x, y) = ˆ
RN

ei⟨x−y,ξ⟩RN a(x, y, ξ)dξ.
Then,

k(x, y) = ∑
γ∈Γ

ˆ

RN

ei⟨x−γy,ξ⟩RN a(x, γy, ξ)dξ.
Hence, for γ = id we have a pseudo-differential part and for γ ≠ id the phase

function ϑγ(x, y, ξ) = ⟨x − γy, ξ⟩RN has stationary points ± x−γy∥x−γy∥ℓ2(N) , that is,

ϑγ (x, y, ξ̂s(x, y)) = (−1)s ∥x − γy∥ℓ2(N) does not vanish in a neighborhood of the

diagonal.

∎

Remark Note that we may use the stationary phase approximation results to get

insights into the Laurent coefficients of the ζ-function without having to consider

3Γ ×M/Γ ∋ (γ, x)↦ γx ∈M/Γ is continuous

4∀γ ∈ Γ ∶ (∃x ∈M/Γ ∶ γx = x) ⇒ γ = id

5∀γ ∈ Γ ∀x, y ∈M ∶ k̃(x, y) = k̃(γx, γy)
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all these Laplace transforms because those coefficients are of the form c ⋅ I(x, y,1)
with some constant c ∈ C, i.e. we do not need the radial integration and obtain an

asymptotic expansion

ˆ

∂B
RN

eiϑ(x,y,ξ)a(x, y, ξ)dvol∂B
RN
(ξ)

=

ˆ

∂B
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ) + S

∑
s=1

∑
j∈N

0

e
iϑ(x,y,ξ̂(x,y))

hsj(x, y)
=

ˆ

∂B
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dvol∂B
RN
(ξ)

+

S

∑
s=1

eiϑ̂
s(x,y) ∑

j∈N
0

(2π)N−1
2 ∣detΘs(x, y)∣− 1

2 e
iπ
4

sgnΘs(x,y)
j!(2i)j ∆

j
∂B,Θsa

s (x, y, ξ̂s(x, y))

with ϑ̂s(x, y) = ϑ (x, y, ξ̂s(x, y)), Θs(x, y) = ∂2∂Bϑ (x, y, ξ̂s(x, y)), ∆∂B,Θs(x,y) =

⟨Θs(x, y)−1∂∂B, ∂∂B⟩ = −div∂B
RN

Θs(x, y)−1 grad∂B
RN

, and ξ̂s(x, y) is the unique

stationary point of ϑ(x, y, ⋅) in ∂BRN ∩ sptas(x, y, ⋅) while a0 has no such point in

its support.

∎

We will close this chapter by considering two examples of wave traces.

Example Let us consider manifolds with diagonal metric, that is, the metric tensor

is given by

gij(x) = g(x)2δij

with some function g. An example of these are hyperbolic manifolds. Let

HN ∶= {x ∈ RN ; xN > 0}

with the metric

gij(x) = g(x)−2δij = x−2N δij .
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Then,
√∣det g(x)∣ = g(x)−N . The Laplace-Beltrami operator on HN is given by

∆HN = g(x)2 n

∑
i=1

∂2i

and the wave operator exp(it√∣∆HN ∣) has the kernel

κHN (x, y) = (2π)−N ˆ
RN

ei⟨x−y,ξ⟩RN eitg(x)∥ξ∥ℓ2(N)dξ.

Let Γ be a co-compact, discrete, torsion-free sub-group of the isometries of HN such

that Γ is a lattice and X ∶= HN /Γ can be identified with a fundamental domain in

HN under action of Γ. Then, we call X a hyperbolic manifold. Since Γ is a subset of

the isometries, the metric onX is given by the metric on HN taking a representative

of the orbit and the wave-operator exp(it√∣∆∣) factors through with the kernel

κ(x, y) = ∑
γ∈Γ

(2π)−N ˆ
RN

ei⟨x−γy,ξ⟩RN eitg(x)∥ξ∥ℓ2(N)dξ.

Let At be a gauged Fourier Integral Operator with At(0) = exp(it√∣∆∣). Then,

At(0) has the phase function

ϑγ(x, y, ξ) = ⟨x − γy, ξ⟩RN + tg(x) ∥ξ∥ℓ2(N)
and amplitude (x, y, ξ) ↦ 1, i.e. each term in the sum ∑γ∈Γ yields a ζ(Atγ) which

is holomorphic in a neighborhood of zero. Thus, Lemma 2.6 yields that ζ(Atγ) is

independent of the gauge and we obtain

ζ(At)(0) =∑
γ∈Γ

ζ(Atγ)(0) = ∑
γ∈Γ

(2π)−N ˆ
X

ˆ

RN

ei⟨x−γx,ξ⟩RN eitg(x)∥ξ∥ℓ2(N)dξdx.

For γ = 1 we will use the property

∀q ∈ CR(⋅)>−1 ∶ L (r ↦ rq) (s) = ˆ
R>0

rqe−srdr = Γ(q + 1)s−q−1
of the Laplace transform (where Γ is the Γ-function) and obtain

ζ(At1)(0) =(2π)−N
ˆ

X

ˆ

RN

e
itg(x)∥ξ∥ℓ2(N)dξdx
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=(2π)−N ˆ
X

ˆ

R>0

ˆ

∂B
RN

rN−1eitg(x)rdvol∂B
RN
(η)drdx

=
vol∂B

RN
(∂BRN )(2π)N

ˆ

X

ˆ

R>0

rN−1eitg(x)rdrdx

=
vol∂B

RN
(∂BRN )(2π)N

ˆ

X

L (r ↦ rN−1) (−itg(x))dx
=
vol∂B

RN
(∂BRN ) (N − 1)!(2π)N

ˆ

X

(−itg(x))−Ndx
=
vol∂B

RN
(∂BRN ) (N − 1)!(−2πit)N

ˆ

X

dvolX

=
(N − 1)!vol∂B

RN
(∂BRN )volX(X)(−2πit)N .

For γ ∈ Γ ∖ {1} we know x − γx ≠ 0 and stationary points of ϑγ(x,x, ⋅) are

ξ±(x) ∶= ± x−γx∥x−γx∥ℓ2(N) (since the term tg(x) ∥ξ∥ℓ2(N) vanishes taking derivatives with

respect to ξ ∈ ∂BRN ) with

ϑγ (x,x, ξ±(x)) =⟨x − γx,± x − γx∥x − γx∥ℓ2(N) ⟩RN

+ tg(x)XXXXXXXXXXX±
x − γx∥x − γx∥ℓ2(N)

XXXXXXXXXXXℓ2(N)
=tg(x) ± ∥x − γx∥ℓ2(N) .

Since g is a positive continuous function and X compact, we obtain that g is

bounded away from zero and x ↦ ∥x − γx∥ℓ2(N) is bounded, i.e. ϑγ (x,x, ξ±(x))
has no zeros for t sufficiently large (similarly for sufficiently small t). By Theorem

8.7, we obtain that each ζ(Atγ)(0) exists for sufficiently large t (and sufficiently

large −t, as well).

Hence, we want to evaluate

ζ(Atγ)(0) =(2π)−N
ˆ

X

ˆ

RN

ei⟨x−γx,ξ⟩RN eitg(x)∥ξ∥ℓ2(N)dξdx

=(2π)−N ˆ
X

ˆ

R>0

rN−1eitg(x)r
ˆ

∂B
RN

eir⟨x−γx,η⟩RN dvol∂B
RN
(η)drdx.
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´

∂B
RN
eir⟨x−γx,η⟩RN dvol∂B

RN
(η) can be evaluated using stationary phase approxi-

mation. The stationary points are

η±(x) ∶= ± x − γx∥x − γx∥ℓ2(N)
and the corresponding phase function ϑ̂(x, η) ∶= r ⟨x − γx, η⟩

RN satisfies

ϑ̂(x, η±(x)) = ±r ∥x − γx∥ℓ2(N) .
Since the amplitude is the constant function 1, all higher order derivatives in the

stationary phase approximation yield zero and we obtain

ˆ

∂B
RN

eir⟨x−γx,η⟩RN dvol∂B
RN
(η) = ∥x − γx∥−N−1

2

ℓ2(N) (π2 )
N−1
2

e−
iπ
4
(N−1)eir∥x−γx∥ℓ2(N)

+ ∥x − γx∥−N−1
2

ℓ2(N) (π2 )
N−1
2

e−
iπ
4
(N−1)e−ir∥x−γx∥ℓ2(N)

which, in turn, yields

ζ(Atγ)(0)
=(2π)−N ˆ

X

ˆ

RN

ei⟨x−γx,ξ⟩RN eitg(x)∥ξ∥ℓ2(N)dξdx

=
(π
2
)N−1

2 e−
iπ
4
(N−1)

(2π)N
ˆ

X

∥x − γx∥−N−1
2

ℓ2(N)
ˆ

R>0

rN−1eitg(x)reir∥x−γx∥ℓ2(N)drdx

+
(π
2
)N−1

2 e−
iπ
4
(N−1)

(2π)N
ˆ

X

∥x − γx∥−N−1
2

ℓ2(N)
ˆ

R>0

rN−1eitg(x)re−ir∥x−γx∥ℓ2(N)drdx

=
(π
2
)N−1

2 e−
iπ
4
(N−1)(N − 1)!(−2πi)N

ˆ

X

∥x − γx∥−N−1
2

ℓ2(N) (tg(x) + ∥x − γx∥ℓ2(N))−N dx
+
(π
2
)N−1

2 e−
iπ
4
(N−1)(N − 1)!(−2πi)N

ˆ

X

∥x − γx∥−N−1
2

ℓ2(N) (tg(x) − ∥x − γx∥ℓ2(N))−N dx.
Let us consider the special case of a flat torus, that is, g = 1 and γx = γ + x. Then,

the formula collapses to

ζ(Atγ)(0) =(π2 )
N−1
2 e−

iπ
4
(N−1)(N − 1)!(−2πi)N

ˆ

X

∥γ∥−N−1
2

ℓ2(N) (t + ∥γ∥ℓ2(N))−N dx
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+
(π
2
)N−1

2 e−
iπ
4
(N−1)(N − 1)!(−2πi)N

ˆ

X

∥γ∥−N−1
2

ℓ2(N) (t − ∥γ∥ℓ2(N))−N dx
=∑
±

(π
2
)N−1

2 e−
iπ
4
(N−1)(N − 1)!volX(X)(−2πi)N ∥γ∥−N−1

2

ℓ2(N) (t ± ∥γ∥ℓ2(N))−N .
This shows the well-known result that the ζ-regularized wave trace has a pole if t

is equal to the length of a closed geodesic ∥γ∥ℓ2(N) and for all other t, we obtain

ζ(At)(0) = (N − 1)!volX(X)(−2πi)N
⋅
⎛⎝
vol∂B

RN
(∂BRN )
tN

+∑
γ∈Γ

∑
±

(π
2
)N−1

2

e−
iπ
4
(N−1) ∥γ∥−N−1

2

ℓ2(N) (t ± ∥γ∥ℓ2(N))−N⎞⎠
∎

Example In light of the last example, we can even go a step further and consider

manifolds where the Laplacian has the symbol gij(x)ξiξj , i.e.

ζ(At)(0) =∑
γ∈Γ

(2π)−N ˆ
X

ˆ

RN

e
it∥G− 1

2 (x)ξ∥
ℓ2(N)ei⟨x−γx,ξ⟩RN dξdx.

Using Fubini’s theorem

Theorem (Fubini) Let Ω ⊆ Rn be open, ϕ ∈ Cc(Ω), f ∈ C1(Ω,R), ∀x ∈ Ω ∶

gradf(x) ≠ 0, and Mr ∶= [{r}]f = {x ∈ Ω; f(x) = r}. Then,

ˆ

Ω

ϕ(x)dx = ˆ
R

ˆ

Mr

ϕ(ξ) ∥gradf(ξ)∥−1ℓ2(n) dvolMr
(ξ)dr.

with f(ξ) = ∥G− 1
2 (x)ξ∥

ℓ2(N) on RN ∖ {0}, i.e. gradf(ξ) = G−1(x)ξ
∥G− 1

2 (x)ξ∥
ℓ2(N)

, gives rise

to the definition

∀x ∈X ∶ Mx ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ∥G− 1

2 (x)ξ∥
ℓ2(N)

∈ RN ; ξ ∈ ∂BRN

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and, thus,

(2π)−N ˆ
X

ˆ

RN

e
it∥G− 1

2 (x)ξ∥
ℓ2(N)ei⟨x−γx,ξ⟩RN dξdx

=

ˆ

X

ˆ

R>0

ˆ

rMx

e
it∥G− 1

2 (x)µ̃∥
ℓ2(N)

+i⟨x−γx,µ̃⟩
RN ∥G− 1

2 (x)µ̃∥
ℓ2(N)(2π)N ∥G−1(x)µ̃∥ℓ2(N) dvolrMx

(µ̃)drdx
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=(2π)−N ˆ
X

ˆ

R>0

ˆ

Mx

eir(t+⟨x−γx,µ⟩RN )
∥G− 1

2 (x)µ∥
ℓ2(N)∥G−1(x)µ∥ℓ2(N) r

N−1dvolMx
(µ)drdx

=(2π)−N ˆ
X

ˆ

R>0

eirtrN−1
ˆ

Mx

eir⟨x−γx,µ⟩RN ∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)drdx.
Note that integrals similar to

´

Mx
eir⟨x−γx,µ⟩RN ∥G−1(x)µ∥−1

ℓ2(N) dvolMx
(µ) also ap-

pear if we choose such a decomposition of RN and want to calculate Laurent co-

efficients. Furthermore, note that we can re-write those integrals over Mx into

integrals over the sphere6; namely,

ˆ

Mx

fdvolMx
=

ˆ

∂B
RN

f ○Ψ
√
det (dΨTx dΨx)dvol∂BRN

with

Ψx(ξ) ∶= ξ∥G− 1
2 (x)ξ∥

ℓ2(N)
.

For γ = id, these integrals simply reduce to

(2π)−N ˆ
X

ˆ

R>0

eirtrN−1
ˆ

Mx

∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)drdx
=
(N − 1)!(−2πit)N

ˆ

X

ˆ

Mx

∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)dx
=
(N − 1)!(−2πit)N

ˆ

X

ˆ

∂B
RN

XXXXXXXXXXXXX
G−1(x)ξ∥G− 1
2 (x)ξ∥

ℓ2(N)

XXXXXXXXXXXXX
−1

ℓ2(N)
ðΨx(ξ)dvol∂B

RN
(ξ)dx

6Let M1,M2 be manifolds, Φ ∶ T →M1 a parametrization, Ψ ∶ M1 →M2 a diffeomorphism,

and f ∈ Cc(M2). Then,

ˆ

M2

fdvolM2
=

ˆ

T

(f ○Ψ ○Φ)(t)√det ((Ψ ○Φ)′(t)T (Ψ ○Φ)′(t))dt

=

ˆ

T

(f ○Ψ ○Φ)(t)√det (Φ′(t)T (dΨ ○Φ)(t)T (dΨ ○Φ)(t)Φ′(t))dt

=

ˆ

T

(f ○Ψ ○Φ)(t)√det ((dΨ ○Φ)(t)T (dΨ ○Φ)(t))√det (Φ′(t)TΦ′(t))dt

=

ˆ

M1

f ○Ψ
√
det (dΨT dΨ)dvolM1

.
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=
(N − 1)!(−2πit)N

ˆ

X

ˆ

∂B
RN

∥G− 1
2 (x)ξ∥

ℓ2(N)∥G−1(x)ξ∥ℓ2(N) ðΨx(ξ)dvol∂BRN
(ξ)dx

where ðΨx(ξ) ∶=√det (dΨx(ξ)TdΨx(ξ)).
For γ ≠ id, we want to evaluate

(2π)−N ˆ
R>0

eirtrN−1
ˆ

X

ˆ

Mx

eir⟨x−γx,µ⟩RN ∥G−1(x)µ∥−1
ℓ2(N) dvolMx

(µ)dxdr.
The stationary points are obviously characterized by x − γx ⊥ TµMx and there is

always the possibility to change coordinates in the Mx integral to obtain

ˆ

X

ˆ

∂B
RN

eir⟨x−γx,Ψx(ξ)⟩RN ∥G−1(x)Ψx(ξ)∥−1ℓ2(N) ðΨx(ξ)dvol∂BRN
(ξ)dx.

In particular, for the torus, we have γx = γ + x and

ˆ

X

ˆ

∂B
RN

e−ir⟨γ,Ψx(ξ)⟩RN ∥G−1(x)Ψx(ξ)∥−1ℓ2(N) ðΨx(ξ)dvol∂BRN
(ξ)dx

can be evaluated applying the stationary phase approximation to

ˆ

∂B
RN

e−ir⟨γ,Ψx(ξ)⟩RN ∥G−1(x)Ψx(ξ)∥−1ℓ2(N) ðΨx(ξ)dvol∂BRN
(ξ).

∎

Remark Replacing ∂BRN by Mx becomes even more interesting if we want to

calculate the Laurent coefficients

ˆ

∆(X)×∂B
RN

eiϑ(x,x,ξ)∂n+lι+1ãι(0)(x,x, ξ) dvol∆(X)×∂B
RN
(x, ξ)

which are now integrals

ˆ

X

ˆ

Mx

eiϑ(x,x,ξ)∂n+lι+1ãι(0)(x,x, ξ) dvolMx
(ξ)dvolX(x).

In cases such as the example above, the integration over Mx is now without a phase

function because Mx ∋ ξ ↦ ϑ(x,x, ξ) is a constant ϑx, leaving us with integrals of
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the form

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ)

where ax is homogeneous of some degree d. For Mx = Tx [∂BRn] with Tx ∈ GL(Rn),
this is equivalent to

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ) =eiϑx

ˆ

∂BRn

ax(ξ) ∥T −1x ξ∥−n−d dvol∂BRn
(ξ).

In particular, for the case of the residue trace, we have d = −n, i.e.

eiϑx

ˆ

Mx

ax(ξ) dvolMx
(ξ) =eiϑx

ˆ

∂BRn

ax(ξ)dvol∂BRn
(ξ),

which shows that we have reduced the pointwise residue of the Fourier Integral Op-

erator to the pointwise residue of a suitably chosen pseudo-differential operator and

a rotation in the complex plane ϑx. In fact, the symbol of that pseudo-differential

operator can be chosen to be the amplitude of the Fourier Integral Operator itself.

∎



Part II

Integration in algebras of Fourier

Integral Operators



CHAPTER 9

Bochner/Lebesgue integrals in algebras of Fourier

Integral Operators

In this chapter, we will lay out the fundamental theorems of integration in

topological vector spaces and algebras from our point of view directed to integration

of families of Fourier Integral Operators. In particular, we will distinguish between

two notions of measurability - those functions that are limits of simple functions

and those whose pre-images of measurable sets are measurable. Note that for most

Hörmander spaces D ′Γ (the set of distributions whose wave-front set is in the closed

cone Γ) those will be different notions.

Definition 9.1. Let (Ω,Σ, µ) be a measure space and E a topological vector

space.

(i) A function f ∈ EΩ is called simple if and only if f[Ω] ⊆finite E and ∀ω ∈

f[Ω] ∖ {0} ∶ [{ω}]f ∈ Σ ∧ µ([{ω}]f) < ∞ where [A]f denotes the pre-

set of A under f . We will use S(µ;E) to denote the set of all simple

functions.

(ii) Let f ∶= ∑ω∈f[Ω]∖{0} ω1[{ω}]f ∈ S(µ;E). Then, we define the Bochner

integral

ˆ

Ω

fdµ ∶= ∑
ω∈f[Ω]∖{0}

ωµ([{ω}]f).
(iii) A function f ∈ EΩ is called measurable if and only if ∀S ⊆open E ∶ [S]f ∈

Σ. We will use M(µ;E) to denote the set of all measurable functions.1

1f ∈M(µ;E) is also called Lebesgue measurable.

174
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f ∈ EΩ is called strongly measurable if and only if there exists a se-

quence (sn)n∈N of simple functions such that sn → f µ-almost everywhere.

We will use SM(µ;E) to denote the set of all strongly measurable func-

tions.2

(iv) Let f ∈M(µ,E) such that ∀x′ ∈ E′ ∶ x′ ○ f ∈ L1(µ) and I ∈ (E′)∗ defined

by

∀x′ ∈ E′ ∶ I(x′) = ˆ
Ω

x′ ○ fdµ.

Here E′ denotes the topological dual of E and (E′)∗ the algebraic dual of

E′. If I is unique, then we will also use the notation
´

Ω
fdµ ∶= I.

f is called µ-Pettis-integrable if and only if I is unique and an element

of E. In that case, we call I the Pettis integral of f .3

(v) Let E be locally convex with semi-norms (pι)ι∈I . For p ∈ R≥1 ∪ {∞}, we

define

Lp(µ;E) ∶={f ∈M(µ;E); ∀ι ∈ I ∶ pι ○ f ∈ Lp(µ)},
Np(µ;E) ∶={f ∈ Lp(µ;E); ∀ι ∈ I ∶ ∥pι ○ f∥Lp(µ) = 0} ,

and

Lp(µ;E) ∶= Lp(µ;E)/Np(µ;E),

as well as the semi-norms

pLp(µ;E)
ι ∶ Lp(µ;E)→ R≥0;f ↦ ∥pι ○ f∥Lp(µ) .

We call f ∈ Lp(µ;E) p-integrable or just integrable if p = 1.

2f ∈ SM(µ;E) is also called Bochner measurable.
3f is called µ-Dunford-integrable if and only if I is unique in (E′)∗. In that case, we call I

the Dunford integral of f .
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Remark Note that this notion extends the idea of parameter dependent Fourier

Integral Operators in the sense of chapters 2.1.2 and 2.2 of [63], as well as families of

operators as in the index theorem for families. In both cases, we have a continuous

function of operators b↦Db where b ranges over some interval in the case of [63],

and for the family index we have a fibration4 M → B and an operator Db in each

fiber Mb. Replacing the manifold/interval B by some more general measure space

(Ω,Σ, µ) and relaxing the continuity assumption of b ↦ Db to mere measurability

(here we will only consider measurability with respect to the Borel σ-algebra in the

target space/algebra), we can see that the formalism we are about to develop is

a proper extension and we can think of a stochastic version of the index theorem

for families, for instance. Furthermore, a stochastic version of the index theorem

itself may be interesting because (as we will see) the pointwise index of a mea-

surable functions is only locally constant on a dense set (at best) which does not

imply that the function is continuous, let alone constant; in fact, the expectation

of the pointwise index might not even be an integer (here, we may think of random

manifolds allowing singular deformations like turning a sphere into a torus).

∎

It is obvious that a simple function is Pettis integrable if points in E are separated

which itself is a direct consequence of Hahn-Banach’s theorem given that E is locally

convex (cf. Theorem 2.2 in [74] for part (i) and §20.7(2) in [45] for part (ii)).

Theorem 9.2 (Hahn-Banach). Let E be a topological vector space over K ∈

{R,C}, A,B ⊆ E both convex and non-empty, as well as A ∩B = ∅.

4A fibration is a continuous map π ∶ X → Y between topological spaces X and Y satisfying the

homotopy lifting property for every topological space Z, i.e. for any homotopy f ∶ Z × [0,1] → Y

and f0 ∶ Z → X such that f(⋅,0) = π ○ f0 there exists a homotopy f̃ ∶ Z × [0,1] → X such that

f = π ○ f̃ and f0 = f̃(⋅,0).
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(i) If A is open, then there exists an x′ ∈ E′ such that

∀x ∈ A ∶ Rx′(x) < inf{Rx′(y); y ∈ B} =∶ γ,
i.e. the hyperplane {x ∈ E; Rx′(x) = γ} separates A and B.

(ii) Additionally, let E be locally convex, A compact, and B closed. Then,

there exists an x′ ∈ E′ such that

sup{Rx′(x); x ∈ A} < inf{Rx′(y); y ∈ B}.
Since separation of points is a highly important property, we will assume from

now on that E is a locally convex topological vector space which is also a Hausdorff

space. In other words, the main issue is existence of the Pettis integral (which we

will address in chapter 10) since it is the weaker notion of integrability, i.e. the

minimum requirement for us to talk about integrals in algebras of Fourier Integral

Operators. First, however, we will investigate the Lp spaces and (strong) integrals

taking values in the completion of E; existence of the Pettis integral or suitable

completeness assumptions on E will, thus, ensure that those (strong) integrals, in

fact, take values in E.

Before we can start working with the Lebesgue integrals we should investigate

which measurable functions are strongly measurable as many of the proofs for

Lebesgue integrals will only work with strongly measurable functions.

Lemma 9.3. Let f ∈ EΩ and s ∈ S(µ;E)N such that sn → f µ-almost every-

where. Then, ∀S ⊆open E ∶ [S]f ∈ Σ. In other words, SM(µ;E) ⊆M(µ;E).
Proof. We observe

sn → f µ-almost everywhere⇔ ∀ι ∈ I ∶ pι ○ sn → pι ○ f µ-almost everywhere

⇒ ∀ι ∈ I ∶ pι ○ f ∈M(µ;R)
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⇔ ∀ι ∈ I ∀S ⊆open R ∶ [[S]pι]f = [S](pι ○ f) ∈ Σ.
And since {[S]pι; S ⊆open R} generates the topology in E, the last line is equivalent

to

∀S ⊆open E ∶ [S]f ∈ Σ.
�

With the same proof, simply replacing sn ∈ S(µ;E) by sn ∈M(µ;E), we obtain

the following corollary.

Corollary 9.4. M(µ;E) is sequentially closed with respect to µ-almost ev-

erywhere convergence. In other words, let f ∈ EΩ and s ∈ M(µ;E)N such that

sn → f µ-almost everywhere. Then, f ∈ M(µ;E).
Lemma 9.5 (Sombrero Lemma). Let E be metrizable, Ω compact, Σ the Borel

σ-algebra, and µ a measure on (Ω,Σ).
Let f ∈ C(Ω,E). Then, there exists s ∈ S(µ;E)N such that sn → f pointwise,

i.e. C(Ω,E) ⊆ SM(µ;E).
Proof. Let d be a metric on E which generates the topology. For ε ∈ R>0,

the open balls B(E,d)(f(ω), ε) (ω ∈ Ω) are an open cover of f[Ω] which is a

compact subset of E. Hence, there exists a finite set Ωε ⊆finite Ω such that

f[Ω] ⊆ ⋃ω∈Ωε
B(E,d)(f(ω), ε). Let nε ∶= #Ωε be the cardinality of Ωε, (ωε,j)j∈N≤nε

an enumeration of Ωε, Aε,j ∶= [B(E,d)(f(ωε,j), ε)] f ∖⋃j−1i=1 Aε,i, and

sε ∶=
nε

∑
j=1

f(ωε,j)1Aε,j
.

Then, we obtain

∀ω ∈ Ω ∃j ∈ N≤nε
∶ sε(ω), f(ω) ∈ B(E,d)(f(ωε,j), ε).
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In other words,

∀ω ∈ Ω ∶ d (sε(ω), f(ω)) < 2ε
implies that (s 1

n
)
n∈N

converges µ-almost everywhere to f .

�

Remark Note that a Hausdorff topological vector space is metrizable if and only if

it is first-countable5 (cf. §15.11(1) in [45]), i.e. replacing the balls B(E,d) (f(ω), 1n)
by a countable local base will not generalize the lemma.

∎

Definition 9.6. Let (Ω,Σ, µ) be a measure space and E a topological vector

space. Then, (Ω,Σ, µ;E) is called a Sombrero space if and only if SM(µ;E) =
M(µ;E).
Example If E = R, then the usual Sombrero Lemma (cf. e.g. Theorem 8.8 in [65])

shows that (Ω,Σ, µ;E) is a Sombrero space (independent of the choice of (Ω,Σ, µ)).
∎

Lusin’s measurability theorem (cf [53] and Theorem 2B in [24]) yields a useful

extension of the Sombrero Lemma.

Theorem 9.7 (Lusin). Let (Ω,Σ, µ) be a Radon measure6 space, E a second-

countable7 topological space, f ∶ Ω → E measurable, ε ∈ R>0, and S ∈ Σ with

µ(S) <∞.

5Every point has a countable neighborhood basis, that is, for every point x there exists a

countable set U of open neighborhoods of x such that for every neighborhood V of x there exists

U0 ∈ U satisfying U0 ⊆ V .
6Radon measures are locally finite (every point has a neighborhood of finite measure) and reg-

ular (every Borel sets B satisfies µ(B) = supK⊆compactB
µ(K) = infO⊇openB µ(O)) Borel measures.

7The topology has a countable base, i.e. there exists a countable set U of open subsets of E

such that U contains a neighborhood basis for every point in E.



9. BOCHNER/LEBESGUE INTEGRALS IN ALGEBRAS OF FIOS 180

Then, there exists a closed set Cε ⊆ Ω such that µ (S ∖Cε) < ε and f ∣Cε
is

continuous.

If E is a topological vector space (thus, separable8 and metrizable), then we

can choose Cε to be compact.

Lemma 9.8 (Generalized Sombrero Lemma). Let (Ω,Σ, µ) be a Radon measure

space and E a separable metric space. Then, (Ω,Σ, µ;E) is a Sombrero space.

Proof. Let f ∈M(µ;E). For n ∈ N, Lusin’s measurability theorem warrants

the existence of compact sets Ωn ⊆ Ω such that f ∣Ωn
is continuous and µ (Ω ∖Ωn) <

1
n
. Furthermore, we may assume that Ωm ⊆ Ωn for m ≤ n. The Sombrero Lemma,

then, implies that there exists an sn ∈ S(µ;E) with (d ○ (sn, f))∣Ωn
< 1
n

where d

denotes a metric on E generating the topology. In other words, sn(ω) → f(ω) for

every ω ∈ ⋃n∈N Ωn and

∀n ∈ N ∶ µ(Ω ∖ ⋃
m∈N

Ωm) ≤ µ (Ω ∖Ωn) < 1

n

shows that sn → f µ-almost everywhere.

�

Lemma 9.9. Lp(µ;E) is a Hausdorff space.

Proof. Let x, y ∈ Lp(µ;E), x ≠ y. Then, there exists ι ∈ I such that

pLp(µ;E)
ι (x − y) =∶ 2δ > 0.

8For metric spaces separability and second-countability are equivalent. Note that every

second-countable space is separable since choosing a countable base {Un; n ∈ N} of the topology

and xn ∈ Un yields a dense sequence, i.e. proves separability of the space. The other implication

follows since {B (xn,
1
n
) ; n ∈ N} is a countable base of the topology given that (xn)n∈N is dense;

cf. chapter I.5 in [70].
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Hence, the neighborhoods

U ∶= {z ∈ Lp(µ;E); pLp(µ;E)
ι (x − z) < δ}

of x and

V ∶= {z ∈ Lp(µ;E); pLp(µ;E)
ι (y − z) < δ}

of y are open and disjoint.

�

Definition 9.10. Let E and F be locally convex topological vector spaces with

semi-norms (pEι )ι∈IE and (pFι )ι∈IF , respectively, and A ∶ E → F a linear operator.

A is said to be continuous if and only if

∀ι ∈ IF ∃κ ∈ IE ∃c ∈ R≥0∀x ∈ E ∶ p
F
ι (Ax) ≤ cpEκ (x).

We will denote the set of all continuous linear operators mapping E to F by L(E,F )
and the minimal c satisfying the condition by ∥A∥ικ.

In an algebra A, we will assume that the composition is a continuous operator,

i.e.

∀ι ∈ I ∃κ,λ ∈ I ∃c ∈ R≥0 ∀A,B ∈ A ∶ pι(A ○B) ≤ cpκ(A)pλ(B).

The minimal constant c will also be denoted by ∥○∥ι,κ,λ.

Theorem 9.11 (Hölder’s inequality). Let Ai ∈ Lpi(µ;A) for i ∈ N≤n and

∑ni=1
1
pi
= 1
r
. Then, A1 ○A2 ○ . . . ○An ∈ Lr(µ;A) and

∀ι ∈ I ∃κ ∈ In ∃c ∈ R≥0 ∶ p
Lr(µ;A)
ι (A1 ○A2 ○ . . . ○An) ≤ c n

∏
j=1

p
Lpj
(µ;A)

κj
(Aj).
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Proof. First, let n = 2. We need to prove

∀ι ∈ I ∶ pι ○A1 ○A2 ∈ Lr(µ).
However, we know that ∀ι ∈ I ∶ pι ○A1 ∈ Lp1(µ) ∧ pι ○A2 ∈ Lp2(µ).

For p1 =∞ or p2 =∞, the usual Hölder inequality yields

pι ○A1 ○A2 ≤ ∥○∥ι,κ,λ (pκ ○A1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Lp1

(µ)
(pλ ○A2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Lp2

(µ)
∈ Lr(µ)

for some κ,λ ∈ I.

Let p1, p2 < ∞, p ∶= p2
p2−r

, and q ∶= p2
r

. Then, 1
rp
= p2−r

p2r
= 1

r
−

1
p2
= 1

p1
, i.e.

(pι ○A1)r ∈ Lp(µ) and (pι ○A2)r ∈ Lq(µ), and we obtain

∥pι ○A1 ○A2∥Lr(µ) = ∥(pι ○A1 ○A2)r∥ 1
r

L1(µ)

≤ ∥○∥ι,κ,λ ∥(pκ ○A1)r (pλ ○A2)r∥ 1
r

L1(µ)

≤ ∥○∥ι,κ,λ ∥(pκ ○A1)r∥ 1
r

Lp(µ) ∥(pλ ○A2)r∥ 1
r

Lq(µ)

= ∥○∥ι,κ,λ ∥pκ ○A1∥Lp1
(µ) ∥pλ ○A2∥Lp2

(µ)

for some κ,λ ∈ I. Hence, A1 ○A2 ∈ Lr(µ;A).
For more general n, we assume that the assertion holds for n − 1. Let B1 ∶=

A1 ○ . . . ○An−1 and B2 ∶= An. Let q2 ∶= pn and 1
q1
= ∑n−1i=1

1
pi

. Then, B1 ∈ Lq1(µ;A)
by the inductive assumption and

A1 ○ . . . ○An = B1 ○B2 ∈ Lr(µ;A)
since we have proven the assertion for the n = 2 case.

�

Lemma 9.12.

ˆ

∶ S(µ;E) ⊆ L1(µ;E)→ E; f ↦
ˆ

Ω

fdµ



9. BOCHNER/LEBESGUE INTEGRALS IN ALGEBRAS OF FIOS 183

is a continuous linear operator; more precisely, we have the triangle-inequalities

∀ι ∈ I ∀f ∈ S(µ;E) ∶ pι (ˆ
Ω

fdµ) ≤ ˆ
Ω

pι ○ fdµ.

Furthermore, if E is separable, (Ω,Σ, µ) is σ-finite, and p < ∞, then S(µ;E) is

dense in Lp(µ;E). The same holds for p = ∞ and µ(Ω) < ∞. In particular, the

integral extends uniquely to a continuous linear operator

ˆ

∶ L1(µ;E) → Ẽ

where Ẽ is the completion of E.

Proof. Linearity of
´

and

∀ι ∈ I ∀f ∈ S(µ;E) ∶ pι (ˆ
Ω

fdµ) ≤ ˆ
Ω

pι ○ fdµ

are trivial.

Now, let Ω be σ-finite and f ∈ Lp(µ;E). We can find Ω1 ⊆ Ω2 ⊆ . . . ⊆ Ω such

that Ω = ⋃n∈N Ωn and ∀n ∈ N ∶ µ(Ωn) < ∞ and we obtain 1Ωn
f → f in Lp(µ;E)

for p <∞, i.e. we may assume without loss of generality that Ω is finite.

Let (xn)n∈N ∈ EN be a dense sequence and U0 the neighborhood filter of zero

in E. For n ∈ N and U ∈ U0 let

V Un ∶= [xn +U]f ∖ (n−1⋃
k=1

V Uk ) .
Then, we define

fU ∶= ∑
n∈N

xn1V U
n
.

fU is obviously measurable and the net (fU(ω))U∈U
0

converges to f(ω) for µ-almost

every ω ∈ Ω.
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Let ι ∈ I and ε ∈ R>0. Then, Uει ∶= {x ∈ E; pEι (x) < ε} is in U0 and for every

U ∈ U0 with U ⊆ Uει

pEι (fU(ω) − f(ω)) ≤ ε
holds for µ-almost every ω ∈ Ω. In particular, pEι ○ (fU − f) ∈ Lp(µ) and

pLp(µ;E)
ι (fU − f) ≤ εmax{1, µ(Ω) 1

p }
where 1 is the p =∞ case. Hence, (fU)U∈U

0
converges to f in Lp(µ;E). Finally,

pLp(µ;E)
ι (fU − n

∑
k=1

xk1V U
k
) ≤ ∑

k∈N>n

pEι (xk)µ (V Uk ) 1
p → 0 (n →∞)

for p <∞ and

pLp(µ;E)
ι (fU − n

∑
k=1

xk1V U
k
) ≤ ∑

k∈N>n

pEι (xk)→ 0 (n→∞)

for p =∞ show fU ∈ S(µ;E)Lp(µ;E)
and, hence, f ∈ S(µ;E)Lp(µ;E)

.

The existence of the unique extension of
´

follows directly from the fact that

any uniformly continuous9 function f ∶ Y0 ⊆ Y →H has a unique uniformly contin-

uous extension to the closure of Y0 in Y , where Y is any topological vector space

and Y0 any subset and H is any complete Hausdorffian topological vector space (cf.

Theorem 2.6 in [1]). Linearity follows from taking two nets xα →∶ x and yβ →∶ y,

as well as λ ∈ K, and observing

f(x + λy) ← f(xα + λyβ) = f(xα) + λf(yβ)→ f(x) + λf(y).
�

9Let E and F be topological vector spaces. f ∶ E0 ⊆ E → F is called uniformly continuous if

and only if for every open neighborhood V of zero in F there exists an open neighborhood U of

zero in E such that ∀x, y ∈ E0 ∶ (x − y ∈ U ⇒ f(x) − f(y) ∈ V ).
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Remark If L1(µ;E) ⊆ SM(µ;E) (in particular, if (Ω,Σ, µ) a Sombrero space),

then we do not need the separability assumption on E because f[Ω] is contained

in a separable subspace of E.

∎

Definition 9.13. The subspace

SLp(µ;E) ∶= SM(µ;E) ∩Lp(µ;E) ⊆ Lp(µ;E)
is called the strong Lp(µ;E). Furthermore, we define

SM(µ;E) ∶=SM(µ;E)M(µ;E) µ-almost everywhere

= {f ∈ M(µ;E); ∃ (fα)α net ∶ fα → f µ-almost everywhere}
and

SLp(µ;E) ∶= SLp(µ;E)Lp(µ;E)
.

In other words, SLp(µ;E) is the sequential closure of the set of simple functions

in Lp(µ;E) and SLp(µ;E) is the closure of set of simple functions in Lp(µ;E).
Example Let Ω be a compact space, Σ the induced Borel σ-algebra, and µ a finite

measure. Since Σ is the Borel σ-algebra, we obtain C(Ω;E) ⊆ M(µ;E) and Ω

being compact implies C(Ω;E) ⊆ L∞(µ;E). Furthermore, µ being finite implies

L∞(µ;E) ⊆ L1(µ;E). In other words,

C(Ω;E) ⊆ L1(µ;E).
If E is metrizable or separable, then C(Ω;E) ⊆ SL1(µ;E).

∎

Theorem 9.14 (Fischer-Riesz). Let E be a Fréchet space, (Ω,Σ, µ) be σ-finite,

and p < ∞. Then, Lp(µ;E) is complete, i.e. a Fréchet space, and every Cauchy-

sequence contains a µ-almost everywhere convergent sub-sequence.
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Proof. Let (fn)n∈N ∈ Lp(µ;E)N be a Cauchy-sequence and ι ∈ I. Choose a

sub-sequence (fnj
)j∈N such that

∀j ∈ N ∶ pLp(µ;E)
ι (fnj+1 − fnj

) ≤ 2−j

and let fn0
∶= 0. For j ∈ N, let gj ∶= fnj

− fnj−1 . Then, we obtain for n ∈ N

(ˆ
Ω

( n

∑
k=1

pEι ○ gk)
p

dµ)
1
p

=∥ n

∑
k=1

pEι ○ gk∥
Lp(µ)

≤
n

∑
k=1

∥pEι ○ gk∥Lp(µ)

=
n

∑
k=1

pLp(µ;E)
ι (gk)

<1

and

( n

∑
k=1

pEι ○ gk)
p

↗ (∑
k∈N

pEι ○ gk)
p

.

Hence,

ˆ

Ω

(∑
k∈N

pEι ○ gk)
p

dµ <∞.

In particular, g(ω) ∶= ∑k∈N pEι (gk(ω)) < ∞ for µ-almost every ω ∈ Ω and fι ∶=

∑k∈N gk converges absolutely with respect to pEι for these ω. Then,

pEι (fι(ω) − n

∑
k=1

gk(ω))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

≤ ∑
k∈N>n

pEι (gk(ω)) ≤ g(ω)

wherever g(ω) <∞ and the theorem of dominated convergence implies

pLp(µ;E)
ι (fι − fn) = pLp(µ;E)

ι (fι − n

∑
k=1

gk)→ 0 (n→∞).
Finally, let κ ∈ I. The same argument with pκ applied to the sub-sequence con-

structed with pι, then, shows that fι = fκ µ-almost everywhere and fn → fι in
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with respect to p
Lp(µ;E)
ι and p

Lp(µ;E)
κ . Inductively, we continue thinning the sub-

sequences such that the diagonal sequence converges µ-almost everywhere to some

f with respect to all pEι and fn → f in Lp(µ;E).
�

The following lemma aims at the composition of Fourier Integral Operators,

i.e. if we have an algebra A, A ∈ A, and f ∶ Ω→ A, then we would like to obtain

A

ˆ

Ω

fdµ =

ˆ

Ω

Afdµ.

However, we only know that
´

Ω
fdµ is in the closure of A (which might be quite

bad). Since we assumed that the composition is continuous though, we can extend

the operator A○ to the completion Ã of A. The lemma also shows that the Bochner

and Lebesgue integrals
´

Ω
fdµ coincides with the Pettis integral if f is µ-Pettis

integrable; thus, legitimizing the clash of notation and ensuring that the integral

itself is an element of the algebra, again.

Lemma 9.15. Let (Ω,Σ, µ) be σ-finite, F another Hausdorffian locally convex

topological vector space, and f ∈ SL1(µ;E).
(i) Let B ∈ L(Ẽ, F̃ ). Then, B ○ f ∈ SL1(µ;F ) and

B

ˆ

Ω

fdµ =

ˆ

Ω

B ○ fdµ.

(ii) Let E0 ⊆ E be a closed subspace and f(ω) ∈ E0 for µ-almost every ω ∈ Ω.

Then,
´

Ω
fdµ ∈ E0.

Proof. (i) For f ∈ S(µ;E),

B

ˆ

Ω

fdµ =

ˆ

Ω

B ○ fdµ
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is trivial. Furthermore, the functions

L1(µ;E) ∋ f ↦ B

ˆ

Ω

fdµ ∈ F̃

and

L1(µ;E) ∋ f ↦ ˆ
Ω

B ○ fdµ ∈ F̃

are linear and continuous because of

pFκ (B
ˆ

Ω

fdµ) ≤ ∥B∥κ,ι pEι (
ˆ

Ω

fdµ) ≤ ∥B∥κ,ι pL1(µ;E)
ι (f)

and

pFκ (
ˆ

Ω

B ○ fdµ) ≤ˆ
Ω

pFκ (Bf(ω))dµ(ω)
≤
ˆ

Ω

∥B∥κ,ι pEι ○ fdµ
= ∥B∥κ,ι pL1(µ;E)

ι (f)
for some ι depending on κ. Hence, we obtain

B

ˆ

Ω

fdµ =

ˆ

Ω

B ○ fdµ

on L1(µ;E) by the unique extension property.

(ii) Let ϕ ∈ E′ with ϕ∣E0
= 0. Then,

ϕ(ˆ
Ω

fdµ) = ˆ
Ω

ϕ ○ f²
=0

dµ = 0.

Hence,
´

Ω
fdµ ∈ E0 by Hahn-Banach’s theorem (otherwise there exists a

ϕ ∈ E′ with ϕ (´
Ω
fdµ) = 1).

�

Theorem 9.16 (Hille). Let f ∈ SL1(µ;E), F another Hausdorffian locally

convex topological vector space, and A ∶ D(A) ⊆ E → F a closed linear operator
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(that is, A ⊆ E×F is a closed subspace). Let f(ω) ∈D(A) for µ-almost every ω ∈ Ω

and A ○ f ∈ SL1(µ;F ). Then, we obtain
´

Ω
fdµ ∈D(A) and A

´

Ω
fdµ =

´

Ω
A ○ fdµ.

Proof. Since the injections

iE ∶ E → E ×F ; x↦ (x,0)
and

iF ∶ F → E × F ; y ↦ (0, y)
are continuous, it follows that Ω ∋ ω ↦ (f(ω),Af(ω)) = iE(f(ω)) + iF (Af(ω)) is

in SL1(µ;E ×F ) and, since A is a closed linear subspace and µ-almost every ω ∈ Ω

satisfies (f(ω),Af(ω)) ∈ A, we obtain

ˆ

Ω

(f(ω),Af(ω))dµ(ω) ∈ A.
Let

prE ∶ E × F → E; (x, y)↦ x

and

prF ∶ E ×F → F ; (x, y) ↦ y.

Then,

prE

ˆ

Ω

(f(ω),Af(ω))dµ(ω) = ˆ
Ω

prE(f(ω),Af(ω))dµ(ω) =
ˆ

Ω

fdµ

and

prF

ˆ

Ω

(f(ω),Af(ω))dµ(ω) = ˆ
Ω

prF (f(ω),Af(ω))dµ(ω) =
ˆ

Ω

A ○ fdµ

yield

(ˆ
Ω

fdµ,

ˆ

Ω

A ○ fdµ) = ˆ
Ω

(f(ω),Af(ω))dµ(ω) ∈ A,



9. BOCHNER/LEBESGUE INTEGRALS IN ALGEBRAS OF FIOS 190

i.e.

ˆ

Ω

fdµ ∈D(A) ∧ A

ˆ

Ω

fdµ =

ˆ

Ω

A ○ fdµ.

�

Corollary 9.17. Let f ∈ SL1(µ;E), F another Hausdorffian locally convex

topological vector space, and A ∶ D(A) ⊆ E → F a sequentially closed linear operator

(that is, A ⊆ E × F is a sequentially closed subspace). Let f(ω) ∈ D(A) for µ-

almost every ω ∈ Ω and (sn)n∈N ∈ S(µ;D(A))N a sequence of simple functions

approximating f µ-almost everywhere such that A○sn → A○f µ-almost everywhere.

Then, we obtain
´

Ω
fdµ ∈D(A) and A

´

Ω
fdµ =

´

Ω
A ○ fdµ.

Proof. From Hille’s theorem, we directly obtain (´
Ω
fdµ,

´

Ω
A ○ fdµ) ∈ A.

However, (´
Ω
fdµ,

´

Ω
A ○ fdµ) is the limit of the sequence (´

Ω
sndµ,

´

Ω
A ○ sndµ)n∈N

in A and A being sequentially closed yields the assertion.

�

For the rest of this chapter, we will develop some fundamental theorems al-

lowing us to actually use this integral.

Theorem 9.18 (Fundamental Theorem of Calculus). Let J ⊆ R be an interval.

(i) Let f ∈ C1(J ;E), a, b ∈ J , a < b, and λ the Lebesgue measure. Then,

ˆ

[a,b]
f ′dλ = f(b)− f(a).

(ii) Let f ∈ C(J ;E) and x ∈ J such that g ∶ J → E; t ↦
´ t

x
f(s)dλ(s). Then,

g is differentiable and g′ = f .
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Proof. (i) Let ϕ ∈ E′. Then, ϕ ○ f ∈ C1(J) and (ϕ ○ f)′ = ϕ ○ f ′. Hence,

the classical fundamental theorem of calculus yields

ϕ(ˆ
[a,b]

f ′dλ − (f(b)− f(a))) = ˆ
[a,b]
(ϕ ○ f)′dλ − (ϕ ○ f(b)− ϕ ○ f(a)) = 0.

(ii) Let x ∈ J and h ∈ R ∖ {0} such that BR[x, ∣h∣] ⊆ J , as well as ι ∈ I. Then,

we obtain

pι (g(x + h) − g(x)
h

− f(x)) =pι ( 1
h

ˆ x+h

x

f(t)dt − f(x))
=pι ( 1

h

ˆ x+h

x

f(t) − f(x)dt)
≤
1∣h∣pι (

ˆ x+h

x

f(t) − f(x)dt)
≤
1∣h∣ ∣h∣ sup{pι (f(t) − f(x)) ; t ∈ BR[x, ∣h∣]}

→0 (h↘ 0)
since f is continuous.

�

Proposition 9.19 (Dominated Convergence). Let u ∈ EΩ be the pointwise

limit (µ-almost everywhere) of (uj)j∈N ∈ L1(µ;E)N and

∀ι ∈ I ∃vι ∈ L1(µ;E) ∀j ∈ N ∶ pι ○ uj ≤ pι ○ vι.
Then, u ∈M(µ;E), and

lim
j→∞

ˆ

Ω

pι ○ (uj − u)dµ =0(∗)

and

lim
j→∞

ˆ

Ω

pι ○ ujdµ =

ˆ

Ω

pι ○ udµ(∗∗)

hold. In particular, u ∈ L1(µ;E).
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Proof. Since u is the pointwise limit (µ-almost everywhere) of a sequence of

measurable functions, it is measurable, as well. Then, (∗) and (∗∗) follow directly

from the usual dominated convergence theorem and (∗∗) implies that u ∈ L1(µ;E).
�

Lemma 9.20 (Lp-Dominated Convergence). Let u ∈ EΩ be the pointwise limit

(µ-almost everywhere) of (uj)j∈N ∈ Lp(µ;E)N with p ∈ R≥1 and

∀ι ∈ I ∃vι ∈ L1(µ;E) ∀j ∈ N ∶ pι ○ uj ≤ pι ○ vι.
Then, u ∈ Lp(µ;E), uj → u in Lp(µ;E), and ∀ι ∈ I ∶ pLp(µ;E)

ι (uj)→ p
Lp(µ;E)
ι (u).

Proof. The assertion uj → u µ-almost everywhere implies u ∈ M(µ;E).
Then, Lp-dominated convergence theorem in R yields u ∈ Lp(µ;E), ∀ι ∈ I ∶
p
Lp(µ;E)
ι (uj)→ p

Lp(µ;E)
ι (u), and ∀ι ∈ I ∶ pEι ○ uj → pEι ○ u in Lp(µ). Finally,

pLp(µ;E)
ι (uj − u) = ∥pEι ○ (uj − u)∥Lp(µ) = ∥(pEι ○ (uj − u))p∥

1
p

L1(µ)

converges to zero because (pEι ○ (uj − u))p → 0 µ-almost everywhere and the con-

vergence is dominated by (2pι ○ vι)p. �

Theorem 9.21 (Riesz). Let (uj)j∈N ∈ Lp(µ;E)N , u ∈ Lp(µ;E), and uj → u µ-

almost everywhere. Then,

uj → u in Lp(µ;E) ⇔ ∀ι ∈ I ∶ pLp(µ;E)
ι (uj) → pLp(µ;E)

ι (u).

Proof. We have uj → u in Lp(µ;E) if and only if ∀ι ∈ I ∶ p
Lp(µ;E)
ι (uj−u)→ 0.

Thus, “⇒” holds by reversed triangle inequality

∣pLp(µ;E)
ι (uj) − pLp(µ;E)

ι (u)∣ ≤ pLp(µ;E)
ι (uj − u)→ 0.
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“⇐” Since x↦ xp is convex for p ≥ 1 on R≥0, we obtain

∀a, b ∈ R≥0 ∶ (a + b
2
)p ≤ ap + bp

2

and, hence,

(pEι ○ (uj − u))p ≤ (pEι ○ uj + pEι ○ u)p ≤ 2p−1 ((pEι ○ uj)p + (pEι ○ u)p)
which implies

2p−1 ((pEι ○ uj)p + (pEι ○ u)p) − (pEι ○ (uj − u))p ≥ 0.
Thus, using Fatou’s lemma, we obtain

2ppLp(µ;E)
ι (u)p

=

ˆ

Ω

lim inf
j→∞

2p−1 ((pEι ○ uj)p + (pEι ○ u)p) − (pEι ○ (uj − u))p dµ
≤ lim inf

j→∞
(ˆ

Ω

2p−1 (pEι ○ uj)p dµ +
ˆ

Ω

2p−1 (pEι ○ u)p dµ −
ˆ

Ω

(pEι ○ (uj − u))p dµ)
= lim inf

j→∞
(2p−1pLp(µ;E)

ι (uj)p + 2p−1pLp(µ;E)
ι (u)p − pLp(µ;E)

ι (uj − u)p)
=2p−1pLp(µ;E)

ι (u)p + 2p−1pLp(µ;E)
ι (u)p − lim sup

j→∞
pLp(µ;E)
ι (uj − u)p

=2ppLp(µ;E)
ι (u)p − lim sup

j→∞
pLp(µ;E)
ι (uj − u)p,

i.e.

0 ≤ lim sup
j→∞

pLp(µ;E)
ι (uj − u)p ≤ 0

and, thus, the limj→∞ p
Lp(µ;E)
ι (uj − u)p = 0.

�

Lemma 9.22 (Continuity Lemma). Let J ⊆ R an open interval, and u ∶ J ×Ω →

E satisfying

(i) ∀t ∈ J ∶ u(t, ⋅) ∈ L1(µ;E),
(ii) ∀ω ∈ Ω ∶ u(⋅, ω) ∈ C(J,E),
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(iii) ∀ι ∈ I ∃vι ∈ L1(µ;E) ∀t ∈ J ∶ pι ○ u(t, ⋅) ≤ pι ○ vι.
Then,

t↦ V (t) ∶= ˆ
Ω

u(t, ⋅)dµ
is continuous.

Proof. Since J is an interval, continuity of V is equivalent to sequential con-

tinuity. In other words, if t0 ∈ J and (tj)j∈N ∈ JN with tj → t0, then we need to

show that V (tj) → V (t0) in E.

Let uj ∶= u(tj, ⋅) for j ∈ N0. Then, we have uj ∈ L1(µ,E) by (i) for all j ∈ N,

uj → u0 pointwise by (ii), and

∀ι ∈ I ∃vι ∈ L1(µ;E) ∀j ∈ N ∶ pι ○ uj ≤ pι ○ vι.
by (iii). Hence, dominated convergence yields

V (tj) = ˆ
Ω

ujdµ →
ˆ

Ω

u0dµ = V (t0) (j →∞).
�

Lemma 9.23 (Differentiability Lemma). Let J ⊆ R an open interval, and u ∶

J ×Ω→ E satisfying

(i) ∀t ∈ J ∶ u(t, ⋅) ∈ L1(µ;E),
(ii) ∀ω ∈ Ω ∶ u(⋅, ω) differentiable,

(iii) ∀ι ∈ I ∃vι ∈ L1(µ;E) ∀(s, t, ω) ∈ J × J ×Ω ∶ pι (u(s,ω)−u(t,ω)s−t
) ≤ pι(vι(ω)).

Then,

V (t) ∶= ˆ
Ω

u(t, ⋅)dµ
is differentiable and

V ′(t) = ˆ
Ω

∂1u(t, ⋅)dµ
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holds.

Proof. Let t0 ∈ J , and (tj)j∈N ∈ (J ∖ {t0})N with tj → t0 and define

uj ∶=
u(tj, ⋅) − u(t0, ⋅)

tj − t0
.

Then, assumption (ii) implies uj → ∂1u(t0, ⋅) pointwise. In particular, ∂1u(t0, ⋅)
is measurable. Furthermore, (iii) implies ∀j ∈ N ∶ uj ∈ L1(µ;E) and dominated

convergence yields

V (tj) − V (t0)
tj − t0

=

ˆ

Ω

u(tj , ⋅) − u(t0, ⋅)
tj − t0

dµ =

ˆ

Ω

ujdµ →
ˆ

Ω

∂1u(t0, ⋅)dµ (j →∞).

�

Theorem 9.24 (Fubini). Let (Ω,Σ, µ) and (Ω̃, Σ̃, µ̃) be σ-finite. Let u ∈M(µ×
µ̃;E) satisfy at least one of the following conditions.

(a) ∀ι ∈ I ∶
´

Ω

´

Ω̃
pι ○ u dµ̃ dµ <∞

(b) ∀ι ∈ I ∶
´

Ω̃

´

Ω
pι ○ u dµ dµ̃ <∞

(c) ∀ι ∈ I ∶
´

Ω×Ω̃
pι ○ u d(µ × µ̃) <∞

Then, all of the above are true and we obtain

(i) u ∈ L1(µ × µ̃;E)
(ii) u(⋅, ω) ∈ L1(µ;E) for µ̃-almost every ω ∈ Ω̃

(iii) u(ω, ⋅) ∈ L1(µ̃;E) for µ-almost every ω ∈ Ω

(iv)
´

Ω
u(ω, ⋅)dµ(ω) ∈ L1(µ̃;E)

(v)
´

Ω̃
u(⋅, ω)dµ̃(ω) ∈ L1(µ;E)

Furthermore, if u ∈ SL1(µ;E), then

(vi)
´

Ω×Ω̃
u d(µ × µ̃) = ´

Ω

´

Ω̃
u dµ̃ dµ =

´

Ω̃

´

Ω
u dµ dµ̃

holds, as well.
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Proof. Everything but (vi) follows directly from Fubini’s theorem in R using

composition with pι. Then, (vi) follows by approximation with a net of simple

functions.

ˆ

Ω×Ω̃

ud(µ × µ̃) ←ˆ
Ω×Ω̃

sνd(µ × µ̃)
=
m

∑
i=1

yi(µ × µ̃)(Si)
=
m

∑
i=1

yi

ˆ

Ω×Ω̃

1Si
d(µ × µ̃)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
usual Fubini

=
m

∑
i=1

yi

ˆ

Ω̃

ˆ

Ω

1Si
dµdµ̃

=

ˆ

Ω̃

ˆ

Ω

sνdµdµ̃

→
ˆ

Ω̃

ˆ

Ω

udµdµ̃

where the sν =∑
m
i=1 yi1Si

are simple functions approximating u in L1.

�

Proposition 9.25 (push-forward measures). Let f ∈ M(µ;E). Then,

∀S ⊆ B(E) ∶ ν(S) ∶= µ ([S]f)
defines a Borel measure ν on E where B(E) denotes the Borel σ-algebra on E.

Let F be another Hausdorffian locally convex topological vector space and u ∈

M(ν;F ). Then, u ∈ L1(ν;F ) if and only if u ○ f ∈ L1(µ;F ). Furthermore, for

u ∈ SL1(ν;F ) we obtain

ˆ

Ω

u ○ fdµ =

ˆ

E

udν.

Proof. The equivalence “u ∈ L1(ν;F ) if and only if u ○ f ∈ L1(µ;F )” follows

directly from “pFι ○ u ∈ L1(ν) if and only if pFι ○ u ○ f ∈ L1(µ)” for every semi-norm
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pFι of F . The assertion
´

Ω
u ○ fdµ =

´

E
udν then follows by approximation with a

net of simple functions

ˆ

Ω

u ○ fdµ←ˆ
Ω

sν ○ fdµ =
m

∑
i=1

yi

ˆ

Ω

1Si
○ fdµ =

m

∑
i=1

yi

ˆ

E

1Si
dν =

ˆ

E

sνdν →
ˆ

E

udν

where the sν =∑
m
i=1 yi1Si

are simple functions approximating u in L1(ν;F ).
�

Definition 9.26. Let (un)n∈N ∈M(µ;E)N and u ∈M(µ;E). We say (un)n∈N
converges to u (globally) in measure if and only if

∀ι ∈ I ∀ε ∈ R>0 ∶ µ ([R>ε] pι ○ (un − u))→ 0 (n→∞).
If I ⊆ N is countable, then we define the metric

d ∶ E ×E → R; (x, y)↦∑
ι∈I

2−ι
pι(x − y)

1 + pι(x − y)
and say that (un)n∈N converges metrically to A (globally) in measure if and only if

∀ε ∈ R>0 ∶ µ ([R>ε]d ○ (un, u))→ 0 (n→∞).
Corollary 9.27. Global metric convergence in measure implies global conver-

gence in measure.

Proof. Let I ⊆ N and un → u (globally) metrically in measure. Then, for ι ∈ I

and ε ∈ R>0,

µ ([R>ε]d ○ (un, u)) =µ({ω ∈ Ω; ∑
κ∈I

2−κ
pκ(un(ω)− u(ω))

1 + pκ(un(ω) − u(ω)) > ε})
≥µ({ω ∈ Ω; 2−ι

pι(un(ω) − u(ω))
1 + pι(un(ω) − u(ω)) > ε})

=µ({ω ∈ Ω; pι(un(ω)− u(ω)) > 2ιε

1 − 2ιε
})

shows

∀ι ∈ I ∀ε ∈ R>0 ∶ µ ([R>ε] pι ○ (un − u)) ≤µ([R> ε
2ι(1+ε)

]d ○ (un, u))
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which converges to zero.

�

Corollary 9.28. Let (un)n∈N ∈M(µ;E)N converge to u ∈M(µ;E) µ-almost

everywhere. Then, (un)n∈N converges to u (globally) in measure.

If E is metrizable, then (un)n∈N converges metrically to u (globally) in mea-

sure.

Proof. un → u µ-almost everywhere implies ∀ι ∈ I ∶ pι ○(un−u)→ 0 µ-almost

everywhere. Since the assertion is known for real random variables (cf. Lemma

16.4 in [65]), we directly obtain

∀ε ∈ R>0 ∶ µ ([R>ε] pι ○ (un − u))→ 0 (n→∞)
for each of the semi-norms; thus, the assertion. Similarly, the “metrizable” assertion

follows from the fact that d ○ (un, u)→ 0 µ-almost everywhere for the real random

variables d ○ (un, u).
�

Corollary 9.29. Let (un)n∈N ∈ Lp(µ;E)N converge to u ∈ Lp(µ;E) µ-almost

everywhere. Then, (un)n∈N converges to u (globally) in measure.

If E is metrizable, then (un)n∈N converges metrically to u (globally) in mea-

sure.

Proof. un → u in Lp(µ;E) implies ∀ι ∈ I ∶ pι○(un−u)→ 0 in Lp(µ). Since the

assertion is known for real random variables (cf. Lemma 16.4 in [65]), we directly

obtain

∀ε ∈ R>0 ∶ µ ([R>ε] pι ○ (un − u))→ 0 (n→∞)
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for each of the semi-norms; thus, the assertion. Similarly, the assertion follows from

the fact that d ○ (un, u)→ 0 in Lp(µ) for the real random variables d ○ (un, u).
�

Theorem 9.30. Let E be a Fréchet space and (un)n∈N ∈M(µ;E)N . Then, the

following are equivalent.

(i) ∃u ∈M(µ;E) ∶ un → u (globally) metrically in measure.

(ii) ∃u ∈M(µ;E) ∶ un → u (globally) in measure.

(iii) ∀ι ∈ I ∀ε ∈ R>0 ∶ limn→∞ supm∈N≥n µ ([R>ε]pι ○ (un − um)) = 0
(iv) There exists u ∈ M(µ;E) such that every sub-sequence of (un)n∈N contains

a sub-sequence which converges µ-almost everywhere to u.

If E is not a Fréchet space, then we still obtain (iv)⇒(ii)⇒(iii).

Proof. “(i)⇒(ii)” Corollary 9.27.

“(ii)⇒(iii)” un → u (globally) in measure means that

∀ι ∈ I ∀δ, ε ∈ R>0 ∃Nε(δ) ∈ N ∀n ∈ N≥Nε(δ) ∶ µ ([R>ε] pι ○ (un − u)) < δ.

Let δ, ε ∈ R>0. Then, we obtain for m,n ∈ N≥Nε(δ)

µ ([R>2ε] pι ○ (un − um)) ≤µ ([R>2ε] (pι ○ (un − u) + pι ○ (um − u)))
≤µ ([R>ε]pι ○ (un − u)) + µ ([R>ε]pι ○ (um − u))
≤2δ,

i.e.

lim
n→∞

sup
m∈N≥n

µ ([R>2ε] pι ○ (un − um)) ≤ 2δ
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for every δ ∈ R>0. Hence,

lim
n→∞

sup
m∈N≥n

µ ([R>2ε]pι ○ (un − um)) = 0.

“(iii)⇒(iv)” Let (u′n)n∈N be a sub-sequence of (un)n∈N . For every k ∈ N there

exists nk ∈ N such that

∀m,n ∈ N≥nk
∶ µ ([R>2−k] pι ○ (un − um)) < 2−k.

Without loss of generality, let ∀k,m ∈ N ∶ ( k <m ⇒ nk < nm ). Let

uιk ∶= u
′
nk

and

Ωιk ∶= [R>2−k] pι ○ (uιk+1 − uιk).
Then, µ (Ωιk) < 1

2k
, i.e. ∑k∈N µ (Ωιk) <∞. Borel-Cantelli10, thus, implies

µ
⎛⎝⋂n∈N ⋃k∈N≥n Ω

ι
k

⎞⎠ = 0,
that is, for µ-almost every ω ∈ Ω there exists kιω ∈ N such that for every k ∈ N≥kιω

pι (uιk+1(ω) − uιk(ω)) ≤ 1

2k
.

Thus, for n ∈ N≥kιω ,

sup
m∈N≥n

pι (uιm(ω)− uιn(ω)) ≤ ∑
k∈N≥n

pι (uιk+1(ω) − uιk(ω)) ≤ ∑
k∈N≥n

1

2k
→ 0 (n →∞).

10cf. Theorem 18.9 in [65]

Theorem (Borel-Cantelli). Let (Ω,Σ, µ) be a probability space and (Sj)j∈N ∈ ΣN . Then,

∑
j∈N

µ(Sj) <∞ ⇒ µ
⎛⎜⎝⋂k∈N ⋃

j∈N≥k
Sj

⎞⎟⎠ = 0.

If the sets Sj are pairwise independent, i.e. ∀j, k ∈ N ∶ µ(Sj ∩ Sk) = µ(Sj)µ(Sk), then

∑
j∈N

µ(Sj) =∞ ⇒ µ
⎛⎜⎝⋂k∈N ⋃

j∈N≥k
Sj

⎞⎟⎠ = 1.
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Furthermore, uι(ω) ∶= uι1 +∑k∈N (uιk+1 − uιk) converges µ-almost everywhere abso-

lutely with respect to pι. Now, we can find a pκ-pointwise limit uκ of a sub-sequence

of (uιk)k∈N so that the resulting sub-sequence converges µ-almost everywhere to

some uκ with respect to pκ and pι. Inductively, reducing to sub-sequences, the

diagonal sequence converges µ-almost everywhere with respect to all pι.

“(iv)⇒(i)” If (un)n∈N does not converge (globally) metrically in measure, then

there is a sub-sequence (u′n)n∈N , as well as δ, ε ∈ R>0, such that

µ ([R>ε]d ○ (u′n, u)) > δ.
However, this sub-sequence has no sub-sequence (u′′n)n∈N which converges µ-almost

everywhere to u. This is a contradiction.

If E is not metrizable, then the same contradiction holds for at least one of

the µ ([R>ε] pι ○ (u′n − u)) > δ.
�

Remark Note that this theorem implies that, in general, there exists no topology

of µ-almost everywhere convergence in a Fréchet space because convergence of a

sequence in a topological space is equivalent to the face that every sub-sequence

has a convergent sub-sub-sequence. In other words, if there were a topology of

µ-almost everywhere convergence, then condition (iv) would show equivalence of

µ-almost everywhere convergence and convergence in measure. However, we know

this to be false in R.

∎



CHAPTER 10

The Pettis integral

Now we shall be interested in the existence of Pettis integrals. Often the natural

assumption is to require that E is quasi-complete, i.e. all bounded and closed sets

are complete. For topological vector spaces, quasi-completeness is (usually) the

appropriate general completeness notion and, as such, Hilbert, Banach, Fréchet, and

LF-spaces are all quasi-complete, as well as their weak-∗-duals and many spaces of

operators, e.g. the bounded linear operators on a Hilbert space with the weak and

strong operator topologies. In particular, the fact that weak-∗-duals of LF spaces

(e.g. C∞c ) are quasi-complete is of prime importance for the integration theory

of distribution valued functions. Another very compelling argument for assuming

quasi-completeness is

( ∀ϕ ∈ E′ ∶ ϕ ○ f ∈ Cm(Ω,C) ) ⇒ f ∈ Cm−1(Ω,E)
where Ω ⊆open Rn.1

However, as we are interested in algebras of Fourier Integral Operators we

might not have the luxury of working in a quasi-complete algebra. Luckily, the

Hörmander space D ′Γ, the set of distributions with wave front set in the closed cone

Γ, is a nuclear, semi-reflexive, semi-Montel, complete normal space of distributions

in its normal topology and quasi-complete in the Hörmander topology (cf. [17]), i.e.

the canonical examples are still “nice”. It should also be noted that the topological

properties of Hörmander spaces and generalized Hörmander spaces2 are still actively

1cf. Theorem 3.7 in [11]

2cf. [15]; we are not going to discuss them here.

202
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under investigation (cf. [15–17]). Especially the topological properties of subspaces

of Hörmander spaces are interesting, keeping in mind that considering subspaces

of nice spaces can mean that we lose a lot of nice properties even if the spaces are

reasonable. For instance, if we look at the space of compact operators between

two Banach spaces with the strong operator topology, then we have a space that

is not even sequentially complete (in particular, not quasi-complete). However, the

technical condition we need for Pettis integration, the convex compactness property,

is still satisfied (cf. [75]).

Definition 10.1. Let E be a locally convex topological vector space and a Haus-

dorff space. Then, E has the convex compactness property if and only if

∀C ⊆compact E ∶ convC ⊆compact E.

Here, convC denotes the convex hull of C.

Furthermore, E has the metric convex compactness property if and only if

∀C ⊆compact,metrizable E ∶ convC ⊆compact E.

The following observation by Pfister (1981) is stated as Theorem 0.1 in [75].

Theorem 10.2. Let E be a locally convex topological vector space and a Haus-

dorff space. Then, the following are equivalent.

(i) E has the (metric) convex compactness property.

(ii) Let Ω be a compact (metric) space, µ a (positive) Borel measure on Ω,

and f ∈ C(Ω,E). Then, f is µ-Pettis integrable.

In [75], we can also find the following remarks.

● The metric convex compactness property is equivalent to the fact that

every continuous function f ∶ [0,1]→ E is Pettis-integrable with respect
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to the Lebesgue measure. In other words, the metric convex compactness

property is a natural property to consider if we want to extend ideas from

algebras with a continuous functional calculus to those without.

● All the implications are strict:

complete

⇓

quasi-complete

⇙ ⇘

sequentially convex compactness

complete property

⇘ ⇙

metric convex

compactness property

⇓

Mackey complete

(=locally complete)

where we note (as in [75]) that Mackey completeness is equivalent to

compactness of the closed convex hull of any convergent sequence.

At this point, we would also like to remark that condition (ii) can be applied to

measurable functions, as well, by virtue of Lusin’s measurability theorem.

Theorem 10.3 (Lusin). Let (Ω,Σ, µ) be a Radon measure space, E a second-

countable topological space, f ∶ Ω → E measurable, ε ∈ R>0, and S ∈ Σ.

Then, there exists a closed set Cε ⊆ Ω such that µ (S ∖Cε) < ε and f ∣Cε
is

continuous.

If E is a topological vector space, then we can choose Cε to be compact.
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In the light of the Schwartz kernel theorem, we are considering algebras which

are endowed with the weak-∗-topology (or finer topologies). If we integrate a func-

tion A with pointwise kernel κ, then
´

Ω
Adµ should satisfy for ϕ,ψ ∈ C∞c (X) with

sufficiently small support

⟨ˆ
Ω

A(ω)dµ(ω) ϕ,ψ⟩ =ˆ
X

ψ(x)ˆ
Ω

(A(ω)ϕ) (x)dµ(ω)dvolX(x)
=

ˆ

X

ˆ

Ω

ˆ

X

κ(ω)(x, y)ϕ(y)ψ(x) dvolX(y) dµ(ω) dvolX(x)
=

ˆ

X2

ˆ

Ω

κ(ω)(x, y)dµ(ω) ϕ(y)ψ(x) dvolX2(x, y),
i.e.
´

Ω
Adµ ought to be the operator with the kernel

´

Ω
κdµ. If we assume that

´

Ω
Adµ is a Pettis integral, then we need to find conditions relating it to the integral

´

Ω
κdµ which itself can be defined as a Pettis integral in a subspace D ′A of C∞c (X2)′.

In particular, if D ′A has a convex compactness property, then Theorem 10.2 tells

us about the existence of the integral
´

Ω
κdµ.

Proposition 10.4. Let D ′A be sequentially complete and with convex com-

pactness property, (Ω,Σ, µ) a Radon measure space, and κ ∈ SL1(µ;D ′A). Then,

´

Ω
κdµ ∈ D ′A .

Proof. Since κ is strongly measurable, there is a separable subspace E ⊆ D ′A

such that κ(ω) ∈ E for µ-almost every ω ∈ Ω. For ε ∈ R>0, Lusin’s measurability

theorem implies the existence of an Ωε ⊆compact Ω such that µ (Ω ∖Ωε) < ε and κ∣Ωε

is continuous. Thus, by the convex compactness property,

ˆ

Ωε

κdµ ∈ D ′A .

Since κ ∈ L1(µ;D ′A),
⎛⎜⎝
ˆ

Ω 1
n

κdµ
⎞⎟⎠
n∈N

∈ (D ′A)N
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is a Cauchy sequence and we obtain

ˆ

Ω 1
n

κdµ →
ˆ

Ω

κdµ ∈ D ′A

by sequential completeness of D ′A .

�

For applications of Cauchy’s Integral Theorem (from complex analysis), we

only need to integrate with respect to metric spaces. Hence, we can choose slightly

weaker assumptions which yields the following version of the proposition above

(using the same proof because now we only need the metric convex compactness

property which follows from sequential completeness).

Proposition 10.5. Let D ′A be sequentially complete, Ω a metric space, µ a

positive Radon measure, and κ ∈ SL1(µ;D ′A). Then,
´

Ω
κdµ ∈ D ′A .

Remark Note that all closed and bounded sets in a Hörmander space D ′Γ are com-

pact, complete, and metrizable (cf. Proposition 1 in [17]). Hence every bounded

continuous function on a compact space with values in D ′Γ is strongly measurable

by the Sombrero lemma.

∎

Remark If we want to consider the algebra A directly, then there are a couple of

interesting topologies. For instance, we may want to consider the integrals
´

Ω
Adµ

with respect to the strong operator topology, that is,
´

Ω
Adµ is defined by

ˆ

Ω

Adµ ϕ ∶=

ˆ

Ω

Aϕdµ

where
´

Ω
Aϕdµ is a Pettis integral in C∞c (X)′, i.e.

∀ϕ,ψ ∈ C∞c (X) ∶ ⟨
ˆ

Ω

Adµ ϕ,ψ⟩ = ˆ
Ω

⟨Aϕ,ψ⟩dµ.
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Another interesting topology would be the gap topology (cf. appendix B). A

particularly interesting case arises if the algebraA is a closed (in the norm topology)

subspace of L(B,C) where B is a separable Banach space and C any Banach space.

Then, as pointed out in Remark 3.1 in [75], the convex compactness property and

the metric convex compactness property are equivalent even with respect to the

strong operator topology.

∎

The Pettis integral also allows generalizations of some of the theorems in the pre-

vious chapter.

Lemma 10.6. Let (Ω,Σ, µ) be σ-finite, F a Hausdorffian locally convex topo-

logical vector space with separating dual and f ∈ L1(µ;E).
(i) Let B ∈ L(E,F ). Then, B ○ f is µ-Pettis integrable and

B

ˆ

Ω

fdµ =

ˆ

Ω

B ○ fdµ.

(ii) Let E0 ⊆ E be a closed subspace and f(ω) ∈ E0 for µ-almost every ω ∈ Ω.

Then,
´

Ω
fdµ ∈ E0.

Proof. The assertion (i) follows directly from the fact that for every ϕ ∈ F ′,

ϕ ○B ∈ E′ and

ϕB

ˆ

Ω

fdµ =

ˆ

Ω

ϕ ○B ○ fdµ = ϕ

ˆ

Ω

B ○ fdµ.

The proof of assertion (ii) is unchanged; namely, for ϕ ∈ E′ with ϕ∣E0
= 0, we obtain

ϕ(ˆ
Ω

fdµ) = ˆ
Ω

ϕ ○ f²
=0

dµ = 0.

�

This extends to Hille’s theorem (same proof as in Theorem 9.16).
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Theorem 10.7 (Hille). Let f ∈ L1(µ;E) be µ-Pettis integrable, F a Hausdorf-

fian locally convex topological vector space with separating dual, and A ∶ D(A) ⊆
E → F a closed linear operator (that is, A ⊆ E × F is a closed subspace). Let

f(ω) ∈ D(A) for µ-almost every ω ∈ Ω and A ○ f ∈ L1(µ;F ) µ-Pettis integrable.

Then, we obtain
´

Ω
fdµ ∈D(A) and A

´

Ω
fdµ =

´

Ω
A ○ fdµ.

Furthermore, we obtain Fubini’s theorem and the theorem of push-forward

measures.

Theorem 10.8 (Fubini). Let (Ω,Σ, µ) and (Ω̃, Σ̃, µ̃) be σ-finite. Let u ∈M(µ×
µ̃;E) be µ-Pettis integrable and satisfy at least one of the following conditions.

(a) ∀ι ∈ I ∶
´

Ω

´

Ω̃
pι ○ u dµ̃ dµ <∞

(b) ∀ι ∈ I ∶
´

Ω̃

´

Ω
pι ○ u dµ dµ̃ <∞

(c) ∀ι ∈ I ∶
´

Ω×Ω̃
pι ○ u d(µ × µ̃) <∞

Then, all of the above are true and we obtain

(i) u ∈ L1(µ × µ̃;E)
(ii) u(⋅, ω) ∈ L1(µ;E) for µ̃-almost every ω ∈ Ω̃

(iii) u(ω, ⋅) ∈ L1(µ̃;E) for µ-almost every ω ∈ Ω

(iv)
´

Ω
u(ω, ⋅)dµ(ω) ∈ L1(µ̃;E)

(v)
´

Ω̃
u(⋅, ω)dµ̃(ω) ∈ L1(µ;E)

(vi)
´

Ω×Ω̃
u d(µ × µ̃) = ´

Ω

´

Ω̃
u dµ̃ dµ =

´

Ω̃

´

Ω
u dµ dµ̃

holds, as well.

Proof. (i-v) are unchanged. (vi) follows from Fubini’s theorem in R since

∀ϕ ∈ E′ ∶

ˆ

Ω×Ω̃

ϕ ○ u d(µ × µ̃) = ˆ
Ω

ˆ

Ω̃

ϕ ○ u dµ̃ dµ =

ˆ

Ω̃

ˆ

Ω

ϕ ○ u dµ dµ̃

�
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Proposition 10.9 (push-forward measures). Let F another Hausdorffian lo-

cally convex topological vector space and f ∈M(µ;E) µ-Pettis integrable. Then,

∀S ⊆ B(E) ∶ ν(S) ∶= µ ([S]f)
defines a Borel measure ν on E where B(E) denotes the Borel σ-algebra on E.

Let u ∈ M(ν;F ). Then, u ∈ L1(ν;F ) if and only if u ○ f ∈ L1(µ;F ). In that

case we obtain

ˆ

Ω

u ○ fdµ =

ˆ

E

udν.

Proof. Here, the only change is that we lost a restriction on u in

ˆ

Ω

u ○ fdµ =

ˆ

E

udν.

However, since we are using Pettis integrals, we observe

∀ϕ ∈ F ′ ∶

ˆ

Ω

ϕ ○ u ○ fdµ =

ˆ

E

ϕ ○ udν.

�



CHAPTER 11

The index bundle

In this chapter, we want to consider measurable index bundles, i.e. we want

to show that the theory above extends the continuous case of the Atiyah-Jänich

index bundles (cf. e.g. [4]). In order to do that, we will have to define a topology

in a suitable space the index bundle maps into. Then, we can define Borel sets

and, thus, measurability of the index bundle. Similar considerations for continuous

families can be found in [6] and (very extensively) in chapter 6 of [76].

The index bundle of a family of operators (f(ω))ω∈Ω is given by

IND(f)(ω) = kerf(ω)− kerf(ω)∗
as interpreted in the K-theory of vector bundles with the direct sum where

kerf(ω) = N(f(ω)) = [{0}]f(ω)
is the kernel (null space) of f(ω).

Here, we will consider the following construction. Let S be an abelian monoid.

Then, we define

K(S) ∶= S2/{(x,y)∈S2; x=y}

with the canonical injection S ∋ s↦ (s,0) ∈K(S) and ∀s ∈ S ∶ −s = (0, s).
Hence,

IND(f)(ω) =kerf(ω) − kerf(ω)∗
=(kerf(ω),0)− (kerf(ω)∗,0)

210
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=(kerf(ω),0)+ (0,kerf(ω)∗)
= (kerf(ω),kerf(ω)∗)

can be interpreted as kerf(ω) ⊕ kerf(ω)∗ and, if each f(ω) is a closed linear

operator between Hilbert spaces H0 and H1, we obtain

IND(f)(ω) = kerf(ω)⊕ ker f(ω)∗ ⊆H0 ⊕H1.

In particular, IND(f)(ω) is a closed linear relation in H0 ⊕H1. Since the space

of non-empty closed linear relations CLR(H0,H1) in H0 ⊕H1 is a complete metric

space, we have found a space and topology we could consider; namely the gap-

topology δ̂ (cf. appendix B). However, we cannot use this topology directly because

the function

CLR(H0,H1) ∋ f ↦ kerf ⊕ kerf∗ ∈ CLR(H0,H1)
is not continuous. If we assume that f, g ∈ CLR(H0,H1) are Fredholm opera-

tors and g a small perturbation of f (in the gap-topology), then it is well known

that dimkerg < dimkerf and dimkerg∗ < dimkerf∗ are possible1 which implies

dimkerg ⊕ ker g∗ < dimkerf ⊕ kerf∗, i.e.

δ̂ (kerg ⊕ kerg∗,ker f ⊕ kerf∗) = 1
no matter how small δ̂(f, g) is (cf. Theorem B.21 and the following discussion).

Luckily, the index of Fredholm operators is locally constant in the gap-topology (cf.

Theorem IV.5.17 in [44]), i.e. for δ̂(f, g) sufficiently small

dimker f − dimkerf∗ = dimkerg − dimkerg∗

1Theorems IV.5.17 and IV.5.22 in [44] and the fact that [0,1] ∋ t↦ A(t) ∶=
⎛⎜⎜⎜⎝
1 0

0 t

⎞⎟⎟⎟⎠
satisfies

∀t ∈ (0,1) ∶ 1 = dimkerA(0) > dimkerA(t) = 0.
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or equivalently

dimkerf − dimkerg = dimkerf∗ − dimkerg∗,

and, since we are interested in the K-theory, we are allowed to consider

(kerg + V0)⊕ (kerg∗ + V1)
with V0 ⊆ (kerg)⊥, V1 ⊆ (kerg∗)⊥ and

dimV0 = dimV1 ∈ N0

instead of ker g ⊕ kerg∗. Similarly, we may add finite dimensional subspaces of

(kerf)⊥ and (kerf∗)⊥ of the same dimension to ker f ⊕ kerf∗.

The following is close to Atiyah’s construction in [3]. For Hilbert spaces H0

and H1, we define the set of Fredholm operators

F (H0,H1) ∶= {f ∈ CLR(H0,H1); f Fredholm operator}
endowed with the metric δ̂ (cf. appendix B). Let Ω be a topological space, F ∈

C(Ω, F (H0,H1)), and ω0 ∈ Ω.

Let (eij)j∈N
0

be an orthonormal basis of Hi such that (e0j)j∈N
0,<dimkerF (ω0)

is

an orthonormal basis of kerF (ω0) and (e1j)j∈N
0,<dimkerF (ω0)∗

is an orthonormal basis

of kerF (ω0)∗. Furthermore, for n ∈ N, let

Hin ∶= lin{eij ; j ∈ N≥n}Hi

and prHin
∶ Hi →Hi the orthoprojection onto Hin. Then, all prHin

are self-adjoint

Fredholm operators, i.e. they have vanishing index, and the operators

Fn(ω) ∶= prH1n
○F (ω)
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satisfy

indFn(ω) = indprH1n
+ indF (ω) = indF (ω).

For n ≥ dimkerF (ω0)∗, we obtain F (ω0)[H0]⊥ = kerF (ω0)∗ ⊆ H⊥1n, i.e. H1n ⊆

F (ω0)[H0]. In other words, Fn(ω0)[H0] =H1n and kerFn(ω0)∗ =H⊥1n. Let

G(ω) ∶ Fn(ω0)→H1n ⊕ kerFn(ω0);
x↦(prH1

(prFn(ω0)∣Fn(ω0)
Fn(ω) )

−1

x , prkerFn(ω0) prH0
x) .

Then, G is well-defined and continuous in ω (cf. Lemma B.17) and we observe for

(x, y) ∈ Fn(ω0)
G(ω0)(x, y) =(prH1

(prFn(ω0)∣Fn(ω0)
Fn(ω0))

−1 (x, y) , prkerFn(ω0) prH0
(x, y))

= (prH1
(x, y) , prkerFn(ω0) x)

= (y,prkerFn(ω0) x)
= (Fn(ω0)x,prkerFn(ω0) x) .

Hence, G(ω0) is an isomorphism and there exists and open neighborhood Ω0 ⊆ Ω

of ω0 such that each G(ω) is an isomorphism for ω ∈ Ω0. This also implies that

G̃(ω) ∶= G(ω) prFn(ω0)∣Fn(ω0)
Fn(ω) ∶ Fn(ω)→H1n ⊕ kerFn(ω0)

is an isomorphism for every ω ∈ Ω0. Let (ej)j∈N≤d0 be a basis of kerFn(ω0). Then,

G̃(ω)(x, y) =G(ω) prFn(ω0)∣Fn(ω0)
Fn(ω) (x, y)

=(prH1
(x, y) , prkerFn(ω0) prH0

prFn(ω0)∣Fn(ω0)
Fn(ω) (x, y))

=(y , prkerFn(ω0) prH0
prFn(ω0)∣Fn(ω0)

Fn(ω) (x, y))
=(Fn(ω)x , prkerFn(ω0) prH0

prFn(ω0)∣Fn(ω0)
Fn(ω) (x, y))
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for (x, y) ∈ Fn(ω) shows that

∀j ∈ N≤d0 ∶ sj(ω) ∶= prH0
G̃(ω)−1 (0, ej)

defines a basis of kerFn(ω) and

∀j ∈ N≤d0 ∶ sj ∈ C(Ω0,H0).
In [3], Atiyah defined the index bundle for bounded Fredholm operators on a Hilbert

spaceH as kerFn−kerF
∗
n = kerFn−Ω×H

⊥
1n. If we use this representative of IND(F ),

then it suffices to show that continuity of the sj implies gap-continuity of kerFn.

However, for m ≥ dimkerF (ω0) we can define

F ∗m(ω) ∶= prH0m
○F (ω)∗

and the same construction yields tj ∈ C(Ω1,H1) for j ∈ N≤d1 such that each

(tj(ω))j∈N≤d1 is a basis of kerF ∗m(ω). Furthermore, we have

∀ω ∈ Ω1 ∶ kerF (ω)∗ ⊆ kerF ∗m(ω).
Let Ω̂ ∶= Ω0 ∩Ω1. Then, we have

∀ω ∈ Ω̂ ∶ kerF (ω) ⊆ kerFn(ω) ∧ kerF (ω)∗ ⊆ kerF ∗m(ω).
Furthermore, the co-dimension ofH1n increases by one if n is replaced by n+1. Since

the index of Fn(ω) is constant with respect to n, this means that the dimension

of kerFn(ω) must increase by one, as well. Hence, it is possible to choose m ≥

dimkerF (ω0) and n ≥ dimkerF (ω0)∗ such that

dimkerFn(ω) − dimkerF (ω) = dimkerF ∗m(ω) − dimkerF (ω)∗,
i.e.

dimkerFn(ω) − dimkerF ∗m(ω) =dimkerF (ω) − dimkerF (ω)∗
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= indF (ω)
= indF (ω0),

e.g. by setting

m =dimkerF (ω0)
n =dimkerF (ω0)∗ + indF (ω0) + dimkerF ∗dimkerF (ω0)(ω)
− dimkerFdimkerF (ω0)∗(ω)

for dimkerFdimkerF (ω0)∗(ω) − dimkerF ∗
dimkerF (ω0)(ω) ≤ indF (ω0) and

m =dimkerF (ω0) + dimkerFdimkerF (ω0)∗(ω)− dimkerF ∗dimkerF (ω0)(ω)
− indF (ω0)

n =dimkerF (ω0)∗
for dimkerFdimkerF (ω0)∗(ω) − dimkerF ∗dimkerF (ω0)(ω) > indF (ω0).

Definition 11.1. Let P (CLR(H0,H1)) ∶= {A;A ⊆ CLR(H0,H1)} be the power

set of CLR(H0,H1) and let

IND ∶ F (H0,H1) → P (CLR(H0,H1))
be defined such that, for f ∈ F (H0,H1), IND(f) is the set of all kerfn ⊕ kerf∗m

satisfying m ∈ N≥dimkerf , n ∈ N≥dimkerf∗ , and dimker fn − dimkerf∗m = ind f .

Furthermore, the sets

BIND(f, ε) ∶={g ∈ IND[F (H0,H1)]; ∃x ∈ f ∃y ∈ g ∶ δ̂(x, y) < ε
∧ (dimx =min

x′∈f
dimx′ ∨ dim y =min

y′∈g
dim y′)}

for ε ∈ R>0 and f ∈ IND[F (H0,H1)] define a subbasis of the topology TIND in

IND[F (H0,H1)].
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This topologizes “(kerg + V0)⊕ (kerg∗ + V1)” in H0⊕H1 with minimal dimV0

and still it suffices to show that continuity of the sj implies gap-continuity of kerFn

in order to show that “g ↦ (kerg + V0)⊕ (kerg∗ + V1)” is continuous.

Proposition 11.2. Let H0 and H1 be Hilbert spaces. Then,

IND ∈ C(F (H0,H1), IND[F (H0,H1)]).
Proof. Let ε ∈ R>0 and A ∈ F (H0,H1). Then, we define for B ∈ B

δ̂
(A, 1

3
)

G(B) ∶ An →H1n ⊕ kerAn;

x↦(prH1
(prAn

∣An

Bn
)−1 x , prkerAn

prH0
x)

and

G̃(B) ∶= G(B) prAn
∣An

Bn
∶ Bn →H1n ⊕ kerAn

similar to G(ω) and G̃(ω) above where A takes the role of F (ω0) and B the role

of F (ω), and the constructions of An and Bn are as above. Then, G(An) is an

isomorphism, again. Let ε0 ∈ R>0 such that for all B ∈ B
δ̂
(A,ε0) the map G̃(B) is

an isomorphism. Since the same holds for the similar construction with respect to

A∗, let ε0 be sufficiently small such that G̃(B∗) is an isomorphism, as well.

Let sAj ∶= prH0
G̃(A)−1(0, ej) and sBj ∶= prH0

G̃(B)−1(0, ej) for an orthonormal

basis (ej)j of kerAn, and tAj ∶= prH1
G̃(A∗)−1(0, e′j) and tBj ∶= prH1

G̃(B∗)−1(0, e′j)
for an orthonormal basis (e′j)j of kerA∗m accordingly. Without loss of generality,

let ε0 ∈ (0, ε) be sufficiently small such that each of the following conditions holds

for every B ∈ Bδ̂(A,ε0).2
● supαj∈C {∑j ∣αj ∣ ∥G̃(A) − G̃(B)∥Lip ; ∑j αjsAj ∈ ∂BH0

} < ε√
2

2Note that the first and third point are merely a matter of choosing ε0 sufficiently small.

However, we can also satisfy the second and fourth point since sBj → sAj and tBj → tAj as B → A.
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● supαj∈C {∑j ∣αj ∣ ∥G̃(A) − G̃(B)∥Lip ; ∑j αjsBj ∈ ∂BH0
} < ε√

2

● supαj∈C {∑j ∣αj ∣ ∥G̃(A∗) − G̃(B∗)∥Lip ; ∑j αjtAj ∈ ∂BH1
} < ε√

2

● supαj∈C {∑j ∣αj ∣ ∥G̃(A∗) − G̃(B∗)∥Lip ; ∑j αjtBj ∈ ∂BH1
} < ε√

2

Then,

XXXXXXXXXXX
⎛⎝∑j αj(sAj − sBj ),∑j βj(tAj − tBj )

⎞⎠
XXXXXXXXXXXH0⊕H1

≤
√
2max

⎧⎪⎪⎨⎪⎪⎩
XXXXXXXXXXX∑j αj(s

A
j − s

B
j )XXXXXXXXXXXH0

,

XXXXXXXXXXX∑j βj(t
A
j − t

B
j )XXXXXXXXXXXH1

⎫⎪⎪⎬⎪⎪⎭
≤
√
2max

⎧⎪⎪⎨⎪⎪⎩∑j ∣αj ∣ ∥G̃(A) − G̃(B)∥Lip ,∑j ∣βj ∣ ∥G̃(A
∗) − G̃(B∗)∥

Lip

⎫⎪⎪⎬⎪⎪⎭
<ε

implies IND(B) ∈ BIND(IND(A), ε) whenever B ∈ Bδ̂(A,ε0).
�

Corollary 11.3. Let H0 and H1 be Hilbert spaces, Ω a topological space, µ a

Borel measure on Ω, F ∈ C(Ω, F (H0,H1)), and G ∈M(µ,F (H0,H1)). Then,

IND ○F ∈ C(Ω, IND[F (H0,H1)])
and

IND ○G ∈M(µ, IND[F (H0,H1)]).
Note that the function DIM ∶ IND[F (H0,H1)]→ Z defined as

DIM(f) = dimkerfn − dimkerf∗m

for any kerfn ⊕ kerf∗m ∈ f is locally constant with respect to TIND; in particular, it

is continuous, i.e.

ind = DIM ○ IND ∈ C(F (H0,H1),Z).
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Similarly, we may consider other functions than DIM, e.g. the odd first Chern

character c1 to obtain a measurable version of the spectral flow (cf. Proposition

7.3.1 in [76]).

Hence, we are able to consider measurable index bundles, that is, the integra-

tion theory extends. The next chapter will consider an example of “holomorphic

functional calculus” in algebras, that do not have a holomorphic functional calculus,

by means of a replaced phase function. Afterwards, we shall apply the integration

theory to ζ-functions.



CHAPTER 12

“Holomorphic functional calculus” in algebras

without holomorphic functional calculus via

replacement of phase functions

As an example, we are now able to calculate the spectral invariants of the heat

trace from this generalized point of view. Luckily, the algebra of pseudo-differential

operators allows us to use the functional calculus which makes the calculations a

lot easier. A more in-depth account of the calculations in the pseudo-differential

case can be found in chapter 3 and the appendices A and B of [31]. For the purpose

of this chapter, however, the extension to the Fourier Integral Operator case is the

vital observation. In other words, this chapter is all about using the integration

techniques above and applying them to formally use the idea of functional calculus

with Fourier Integral Operators.

Example Let (X,g) be a compact Riemannian C∞-manifold of dimension1 N ∈ 2N

without boundary. Let ∣g∣ be the determinant of the metric tensor G and write

dvolX =
√∣g∣dx with the Lebesgue measure dx in the parameter space. Then, the

Laplace-Beltrami operator is given by

∆ = −
1√∣g∣∂jgjk

√∣g∣∂k

1Note that N ∈ 2N has very far reaching implications; compare with stationary phase ap-

proximation and the problem d + N−1
2
− j ∈ −N which cannot happen if d ∈ Z and N ∈ 2N.

219
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where gjk are the coefficients of the inverse of the metric tensor G−1. Let γ be the

positively oriented contour

{rei π4 ; r ∈ R≥c} ∪ {ceiϕ; ϕ ∈ [π4 , 7π4 ]} ∪ {re−i π4 ; r ∈ R≥c}

with c ∈ R>0 and consider the integral

i

2π

ˆ

γ

e−λt(∆ − λ)−1dλ
which has the kernel

(2π)−N ˆ
RN

ei⟨x−y,ξ⟩RN i

2π

ˆ

γ

e−λtσ ((∆ − λ)−1) (x, ξ)dλdξ.
For now, we will ignore that we already know the existence of these integral since

it is simply an application of the holomorphic functional calculus. Instead, we will

use that σ ((∆ − λ)−1) has an asymptotic expansion

σ ((∆ − λ)−1) (x, ξ) ∼ ∑
j∈N

0

r−2−j(x, ξ, λ)
with

r−2−j(x, tξ, t2λ) = t−2−jr−2−j(x, ξ, λ)
whenever t > 0 and ∥ξ∥ℓ2(N) + ∣λ∣ 12 ≥ 1. From

∆ = −
1√∣g∣∂jgjk

√∣g∣∂k
= − gjk∂j∂k − (∂jgjk)∂k − 1

2 ∣g∣gjk(∂j ∣g∣)∂k



12. “HOLOMORPHIC FUNCTIONAL CALCULUS” 221

=gjk(−i∂j)(−i∂k) + (−i∂jgjk)(−i∂k) + 1

2 ∣g∣gjk(−i∂j ∣g∣)(−i∂k)

we obtain

σ(∆) = a2(x, ξ) + a1(x, ξ)

with

a2(x, ξ) = gjk(x)ξjξk

and

a1(x, ξ) = ( 1

2 ∣g∣gjk(Dj ∣g∣) +Djg
jk) ξk

where Dj ∶= −i∂j. Furthermore, we have the recursion (which follows from the

formula of the symbol of the composition of pseudo-differential operators)

r−2(x, ξ, λ) = (a2(x, ξ) − λ)−1
r−2−j(x, ξ, λ) = − r−2(x, ξ, λ) ∑

(µ,k,l)∈Ij
1

µ!
(∂µ2 a2−k(x, ξ)) (Dµ

1 r−2−l(x, ξ, λ))

where

Ij ∶= {(µ, k, l) ∈ NN0 × {0,1}×N0,<j ; ∥µ∥ℓ1(N) + k + l = j} .

To obtain the asymptotic expansion, it suffices to consider the integrals

(2π)−N ˆ
RN

ei⟨x−y,ξ⟩RN i

2π

ˆ

γ

e−λtr−2−j(x, ξ, λ)dλdξ.
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Let j = 0. It is easy to see that λ ↦ e−tλ(a2 − λ)−1 is integrable taking values

in the Hörmander class S−2 (a Fréchet space). Hence,

i

2π

ˆ

γ

e−λt(a2 − λ)−1dλ = e−ta2

is well-defined and the top-order contribution of tr exp(−t∆) evaluates to

ˆ

X

((2π)−N ˆ
RN

ei⟨x−y,ξ⟩RN i

2π

ˆ

γ

e−λt(a2(x, ξ) − λ)−1dλdξ)∣
y=x

dx

=

ˆ

X

(2π)−N ˆ
RN

i

2π

ˆ

γ

e−λt(a2(x, ξ) − λ)−1dλdξdx
=

ˆ

X

(2π)−N ˆ
RN

e−ta2(x,ξ)dξdx

=

ˆ

X

(2π)−N ˆ
RN

exp (−tgjk(x)ξjξk)dξdx
=

ˆ

X

(2π)−N ˆ
RN

exp(−1
2
⟨tG−1(x)ξ, ξ⟩

RN )dξdx
=

ˆ

X

(2π)−N(2π)N
2 (det ((2t)−1G)) 1

2 dx

=

ˆ

X

(4πt)−N
2

√∣g∣dx
=
volX(X)(4πt)N

2

.

It is interesting to note that this extends the highest order pole coefficient of our

previous observation

ζ(T (t))(0) =volRN /Γ (RN/Γ)(4πt)N
2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠
for the heat semi-group on a flat torus to a significantly larger class of (even-

dimensional) manifolds.

For j = 1, the recursion yields

I1 ∶={(µ, k, l) ∈ NN0 × {0,1} ×N0,<1; ∥µ∥ℓ1(N) + k + l = 1}
={(µ,0,0) ∈ NN0 ×N ×N; ∥µ∥ℓ1(N) = 1} ∪ {(0,1,0)}
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and

r−3 = − r−2 ∑
(µ,k,l)∈Ij

1

µ!
(∂µ2 a2−k) (Dµ

1 r−2−l)
= − r2−2a1 − r−2 ∑

∥µ∥ℓ1(N)=1
(∂µ2 a2) (Dµ

1 r−2)
= − r2−2a1 + r−2 ∑

∥µ∥ℓ1(N)=1
(∂µ2 a2) (Dµ

1a2) r2−2
=r3−2 ∑

∥µ∥ℓ1(N)=1
(∂µ2 a2) (Dµ

1 a2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶b

−r2−2a1.

Again, it is easy to see that λ ↦ e−tλr−3(⋅1, ⋅2, λ) is integrable with values in the

Hörmander class S−3. Cauchy’s integral formula

∂nf(z0) = n!

2πi

ˆ

γ̃

f(z)(z − z0)n+1 dz,
where γ̃ is a cycle around z0 with winding number one, allows us to calculate the

next coefficient

ˆ

X

(2π)−N ˆ
RN

i

2π

ˆ

γ

e−λt (r−2(x, ξ, λ)3b(x, ξ) − r−2(x, ξ, λ)2a1(x, ξ))dλdξdx
=

ˆ

X

(2π)−N ˆ
RN

b(x, ξ) i
2π

ˆ

γ

e−λtr−2(x, ξ, λ)3dλdξdx
−

ˆ

X

(2π)−N ˆ
RN

a1(x, ξ) i
2π

ˆ

γ

e−λtr−2(x, ξ, λ)2dλdξdx
=

ˆ

X

(2π)−N ˆ
RN

b(x, ξ) i
2π

ˆ

γ

e−λt

(a2(x, ξ) − λ)3 dλdξdx
−

ˆ

X

(2π)−N ˆ
RN

a1(x, ξ) i
2π

ˆ

γ

e−λt

(a2(x, ξ) − λ)2 dλdξdx
=

ˆ

X

(2π)−N ˆ
RN

b(x, ξ) t2
2
exp (−ta2(x, ξ)) dξdx

−

ˆ

X

(2π)−N ˆ
RN

a1(x, ξ)t exp (−ta2(x, ξ)) dξdx.
Since ξ ↦ b(x, ξ) t2

2
and ξ ↦ a1(x, ξ)t are polynomials where each monomial cαξ

α

has an odd number of variables, that is, ∥α∥ℓ1(N) ∈ 2N − 1, it follows (cf. equation
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(3.27) in [31]) that both inner integrals vanish, i.e.

ˆ

X

(2π)−N ˆ
RN

i

2π

ˆ

γ

e−λt (r−2(x, ξ, λ)3b(x, ξ) − r−2(x, ξ, λ)2a1(x, ξ))dλdξdx = 0.

For j ∈ N≥2, the recursion

r−2(x, ξ, λ) = (a2(x, ξ) − λ)−1
r−2−j(x, ξ, λ) = − r−2(x, ξ, λ) ∑

(µ,k,l)∈Ij
1

µ!
(∂µ2 a2−k(x, ξ)) (Dµ

1 r−2−l(x, ξ, λ))
yields that each λ ↦ r−2−j(⋅1, ⋅2, λ) takes values in S−2−j (∂µ2 a2−k ∈ S

2−k−∥µ∥ℓ1(N) ,

r−2(⋅1, ⋅2, λ) ∈ S−2, and Dµ
1 r−2−l(⋅1, ⋅2, λ) ∈ S−2−l). Furthermore, note that a2 and a1

can be written as sums a2(x, ξ) =∑j α2,j(x)σ2,j(ξ) and a1(x, ξ) = ∑j α1,j(x)σ1,j(ξ)
where the σi,j are monomials of degree i. Assuming

r−2−l(x, ξ, λ) = nl

∑
k=1

r−2(x, ξ, λ)kbl,k(x)sl,k(ξ)
(which holds for l = 0 with n0 = 1, b0,1 = 1, and s0,1 = 1) for all l ∈ N0,<j implies

there are functions βκ which are sums of products σ2,kD
να2,j such that

r−2−j = − r−2 ∑
(µ,k,l)∈Ij

1

µ!
(∂µ2 a2−k)(Dµ

1 ( nl

∑
k=1

rk−2bl,ksl,k))
= − r−2 ∑

(µ,k,l)∈Ij
1

µ!
(∂µ2 a2−k)∑

ν≤µ

(µ
ν
) nl

∑
k=1

Dν
1 (rk−2)Dµ−νbl,ksl,k

= − r−2 ∑
(µ,k,l)∈Ij

1

µ!
(∂µ2 a2−k)∑

ν≤µ

(µ
ν
) nl

∑
k=1

Dν
1 ((a2 − λ)−k)Dµ−νbl,ksl,k

= − r−2 ∑
(µ,k,l)∈Ij

1

µ!
∑
m

σ2−k,m∂
µα2−k,m ∑

ν≤µ

(µ
ν
) nl

∑
k=1

∑
κ≤ν

βκr
k+∥κ∥ℓ1(N)
−2 Dµ−νbl,ksl,k

holds. In other words (inductively), all r−2−j are sums of terms of the form

r−2(x, ξ, λ)ks(x, ξ) where the s(x, ξ) are polynomials in ξ. Hence, the jth coef-

ficient is given by a sum of integrals

ˆ

X

(2π)−N ˆ
RN

i

2π

ˆ

γ

e−λtr−2(x, ξ, λ)ks(x, ξ)dλdξdx.



12. “HOLOMORPHIC FUNCTIONAL CALCULUS” 225

Again, the functions λ↦ e−λtr−2(⋅1, ⋅2, λ)ks(x, ξ) are integrable with values in some

Hörmander class (making the integrals well-defined) and we obtain

ˆ

X

(2π)−N ˆ
RN

i

2π

ˆ

γ

e−λtr−2(x, ξ, λ)ks(x, ξ)dλdξdx
=

ˆ

X

(2π)−N ˆ
RN

s(x, ξ) i
2π

ˆ

γ

e−λtr−2(x, ξ, λ)kdλdξdx
=

ˆ

X

(2π)−N ˆ
RN

s(x, ξ) tk−1(k − 1)! exp (−ta2(x, ξ)) dξdx.
As explained in [31], the inner integrals can be evaluated

(2π)−N ˆ
RN

s(x, ξ) tk−1(k − 1)! exp (−ta2(x, ξ)) dξ
=(2π)−N ⎛⎝ (2π)N

2√
det (2tG(x)−1) exp(−

1

2
div2G(x)grad2) s(x, ⋅) tk−1(k − 1)!⎞⎠(0)

=
⎛⎝
√∣g(x)∣
(4πt)N

2

exp(−1
2
div2G(x)grad2) s(x, ⋅) tk−1(k − 1)!⎞⎠(0)

=

√∣g(x)∣tk−1−N
2

(4π)N
2 (k − 1)! (exp(−

1

2
div2G(x)grad2) s(x, ⋅)) (0).

We shall not include higher order calculations here as these get rather lengthy very

soon. However, in [31] (equation 3.64) the explicit calculation for the j = 2 term

can be found which produces

t1−
N
2

3(4π)N
2

total curvature(X).

∎

Example Using our general integration theory, we obtain that replacing the phase

function ⟨x − y, ξ⟩RN by ϑ(x, y, ξ) in

(2π)−N ˆ
RN

ei⟨x−y,ξ⟩RN i

2π

ˆ

γ

e−λtr−2−j(x, ξ, λ)dλdξ
is perfectly fine (because D ′Γ is at least quasi-complete if you choose the Hörmander

or any finer topology - Proposition 29 in [17]; hence, the integrals all converge in
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D ′Γ) and we obtain, for instance,

(2π)−N ˆ
RN

eiϑ(x,y,ξ) i
2π

ˆ

γ

e−λtr−2(x, ξ, λ)dλdξ =(2π)−N ˆ
RN

eiϑ(x,y,ξ)e−ta2(x,ξ)dξ.

Considering a linear phase function ϑ(x, y, ξ) = ⟨Θ(x, y), ξ⟩RN the integrand be-

comes

exp(i⟨Θ(x, y), ξ⟩RN −
1

2
⟨ξ,2tG(x)−1ξ⟩

RN)
which is the characteristic function ϕY of a normally distributed random variable Y

with mean Θ(x, y) and covariance 2tG(x)−1. Since Z ∈ N (µ,σ) (that is, a normally

distributed random variable with mean µ and standard deviation σ) has the density

fZ(η) =exp(−
⟨η−µ,σ−1(η−µ)⟩

RN

2
)√(2π)N detσ
= (2π)−N ˆ

RN

e−i⟨t,η⟩RN ϕZ(t)dt,
we conclude

fY (0) =(2π)−N ˆ
RN

eiϑ(x,y,ξ)e−ta2(x,ξ)dξ

= ((2π)N det (2tG(x)−1))− 1
2 exp(− ⟨Θ(x, y),G(x)Θ(x, y)⟩RN

4t
)

=

√∣g∣
(4πt)N

2

exp(− ⟨Θ(x, y),G(x)Θ(x, y)⟩RN

4t
) .

In other words, the first coefficient in the trace expansion is given by

1(4πt)N
2

ˆ

X

exp
⎛⎝−
∥Θ(x,x)∥2g

4t

⎞⎠dvolX(x)
where ∥Θ(x,x)∥2g = ⟨Θ(x,x),G(x)Θ(x,x)⟩RN . In particular, if ∀x ∈ X ∶ Θ(x,x) =
0, then we are reduced to the example above. If we have a pseudo-differential

operator on the quotient RN /Γ, we obtain ϑγ(x, y, ξ) = ⟨x−y −γ, ξ⟩RN , and have to

sum over γ ∈ Γ, i.e.

∑
γ∈Γ

1

(4πt)N
2

ˆ

RN /Γ
exp
⎛⎝−
∥γ∥2g
4t

⎞⎠dvolRN /Γ(x) =volRN /Γ (RN /Γ)(4πt)N
2

∑
γ∈Γ

exp
⎛⎝−
∥γ∥2ℓ2(N)

4t

⎞⎠ .
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For j > 0 we also have polynomial factors to consider, that is, we have integrals

of the form

(2π)−N ˆ
RN

p(x, ξ, t)ei⟨Θ(x,y),ξ⟩RN − 1
2
⟨ξ,2tG(x)−1ξ⟩

RN dξ

where p is a polynomial in ξ. For any monomial ξα, we obtain

(2π)−N ˆ
RN

ξαei⟨Θ(x,y),ξ⟩RN− 1
2
⟨ξ,2tG(x)−1ξ⟩

RN dξ

=(2π)−N
2 F (ξ ↦ ξαe−

1
2
⟨ξ,2tG(x)−1ξ⟩

RN ) (−Θ(x, y))
=(2π)−N

2 ((i∂)αF (ξ ↦ e−
1
2
⟨ξ,2tG(x)−1ξ⟩

RN )) (−Θ(x, y))
=(2π)−N

2 ((i∂)α (η ↦√det ((2t)−1G(x))e− 1
2
⟨η,(2t)−1G(x)η⟩

RN )) (−Θ(x, y))
=

√∣g∣
(4πt)N

2

((i∂)α (η ↦ e−
1
4t
⟨η,G(x)η⟩

RN )) (−Θ(x, y))
where F denotes the Fourier transform. Let f(η) ∶= e− 1

4t
⟨η,G(x)η⟩

RN . Then, the jth

coefficient is given by a sum of integrals

ˆ

X

s(x, t)
(4πt)N

2

((i∂)αf) (−Θ(x,x))dvolX(x)
where the s are polynomials in t.

For even more general phase functions, we will introduce polar coordinates.

Then, coefficients are sums of integrals of the form

ˆ

∂B
RN

ˆ

R>0

p(x, y, η)rkeiϑ(x,y,η)re−t⟨η,G(x)−1η⟩RN r2 dr dvol∂B
RN
(η),

that is,

ˆ

∂B
RN

p(x, y, η) L (r ↦ rke−t⟨η,G(x)−1η⟩RN r2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(−1)k∂kL(r↦e−t⟨η,G(x)−1η⟩

RN
r2)

(−iϑ(x, y, η)) dvol∂B
RN
(η)

where L denotes the Laplace transform. These can (in principle) be evaluated since

L (r ↦ e−ar
2) (s) =ˆ

R>0

e−sre−ar
2

dr
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=
1√
a

ˆ

R>0

e
−r2− s√

a
r
dr

=
1√
a

ˆ

R>0

e
−(r+ s

2
√

a
)2
e

s2

4a dr

=
e

s2

4a√
a

ˆ

R> s
2
√

a

e−r
2

dr

=

√
πe

s2

4a

2
√
a

erfc( s

2
√
a
)

where erfc denotes the complementary error function (an entire function) which is

defined by the holomorphic extension of

erfc(z) ∶= 2√
π

ˆ

R>z
e−r

2

dr

for z ∈ R. Let

f(s) ∶= √
π

2
√
t⟨η,G−1η⟩RN

e
s2

4t⟨η,G−1η⟩
RN erfc

⎛⎝ s

2
√
t⟨η,G−1η⟩RN

⎞⎠ .
Since

∂ erfc(z) = − 2√
π
e−z

2

,

it follows that

∂
⎛⎝s ↦ erfc

⎛⎝ s

2
√
t⟨η,G−1η⟩RN

⎞⎠⎞⎠(z) = − 1√
tπ⟨η,G−1η⟩RN

e
− z2

4t⟨η,G−1η⟩
RN ,

i.e.

∂f(s) = √
π

2
√
t⟨η,G−1η⟩RN

s

2t⟨η,G−1η⟩RN

e
s2

4t⟨η,G−1η⟩
RN erfc

⎛⎝ s

2
√
t⟨η,G−1η⟩RN

⎞⎠
−

√
π

2
√
t⟨η,G−1η⟩RN

e
s2

4t⟨η,G−1η⟩
RN

1√
tπ⟨η,G−1η⟩RN

e
− s2

4t⟨η,G−1η⟩
RN

=
s
√
π

4 (t⟨η,G−1η⟩RN ) 3
2

e
s2

4t⟨η,G−1η⟩
RN erfc

⎛⎝ s

2
√
t⟨η,G−1η⟩RN

⎞⎠ − 1

2t⟨η,G−1η⟩RN

=
s

2t⟨η,G−1η⟩RN

f(s) − 1

2t⟨η,G−1η⟩RN
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and we obtain, inductively,

∂nf(s) = pn ( 1

2t⟨η,G−1η⟩RN

, s) f(s)+ qn ( 1

2t⟨η,G−1η⟩RN

, s)
with p0(x, y) = 1, q0(x, y) = 0. Furthermore,

∂ (σ ↦ pn ( 1

2t⟨η,G−1η⟩RN

, σ) f(s)+ qn ( 1

2t⟨η,G−1η⟩RN

, σ))(s)
=∂2pn ( 1

2t⟨η,G−1η⟩RN

, s) f(s)+ pn ( 1

2t⟨η,G−1η⟩RN

, s) f ′(s)
+ ∂2qn ( 1

2t⟨η,G−1η⟩RN

, s)
=∂2pn ( 1

2t⟨η,G−1η⟩RN

, s) f(s)
+ pn ( 1

2t⟨η,G−1η⟩RN

, s)( s

2t⟨η,G−1η⟩RN

f(s) − 1

2t⟨η,G−1η⟩RN

)
+ ∂2qn ( 1

2t⟨η,G−1η⟩RN

, s)
=(∂2pn ( 1

2t⟨η,G−1η⟩RN

, s) + pn ( 1

2t⟨η,G−1η⟩RN

, s) s

2t⟨η,G−1η⟩RN

) f(s)
− pn ( 1

2t⟨η,G−1η⟩RN

, s) 1

2t⟨η,G−1η⟩RN

+ ∂2qn ( 1

2t⟨η,G−1η⟩RN

, s)
implies

pn(x, y) = ∂2pn−1(x, y) + xypn−1(x, y),
and

qn(x, y) = ∂2qn−1(x, y) − xpn−1(x, y).
In particular, pn is a polynomial of degree n in both arguments, as is qn in the first

argument, whereas qn is a polynomial of degree n − 1 in the second argument.

Let ϑ(x, y, ξ) ∶= ⟨x − y, ξ⟩RN ± ∥ξ∥ℓ2(N). For x = y and j = 0, we have p = 1, i.e.

ˆ

∂B
RN

(−1)N−1∂N−1L (r ↦ e−t⟨η,G(x)−1η⟩RN r2) (∓i) dvol∂B
RN
(η)

=

ˆ

∂B
RN

(−1)N−1∂N−1f(∓i) dvol∂B
RN
(η)
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to evaluate. For N = 1, this collapses to

f(∓i)∣η=1 + f(∓i)∣η=−1 =2
√
π

2
√
tG−1

e
(∓i)2
4tG−1 erfc( ∓i

2
√
tG−1

)
=

√
π√

tG−1
e−

1

4tG−1 erfc( ∓i

2
√
tG−1

) .
Thus, the leading coefficient is given by

ˆ

X

√
π√

tG−1(x)e−
1

4tG−1(x) erfc
⎛⎝ ∓i

2
√
tG−1(x)

⎞⎠dx =
ˆ

X

√
π√
t
e−

∣g∣
4t erfc

⎛⎝∓i
√∣g∣
2
√
t

⎞⎠dvolX .
For N ≥ 2

ˆ

∂B
RN

(−1)N−1∂N−1f(∓i) dvol∂B
RN
(η)

becomes

ˆ

∂B
RN

(−1)N−1pN−1 ( 1

2t⟨η,G−1η⟩RN

,∓i) f(∓i) dvol∂B
RN
(η)

+

ˆ

∂B
RN

(−1)N−1qN−1 ( 1

2t⟨η,G−1η⟩RN

,∓i) dvol∂B
RN
(η)

=

ˆ

∂B
RN

p̃N−1
⎛⎝ 1√

2t⟨η,G−1η⟩ ,∓i
⎞⎠ e

−1
4t⟨η,G−1η⟩ erfc

⎛⎝ ∓i

2
√
t⟨η,G−1η⟩

⎞⎠ dvol∂B
RN
(η)

+

ˆ

∂B
RN

(−1)N−1qN−1 ( 1

2t⟨η,G−1η⟩RN

,∓i) dvol∂B
RN
(η)

where

p̃N−1(x, y) ∶= (−1)N−1
√
π√

2
xpN−1 (x2, y) .

Supposing we have a flat manifold with G−1(x) = 1, i.e. ⟨η,G−1η⟩RN = 1, we observe

ˆ

∂B
RN

(−1)N−1∂N−1f(∓i) dvol∂B
RN
(η)

=

ˆ

∂B
RN

p̃N−1 ( 1√
2t
,∓i) e −14t erfc( ∓i

2
√
t
) dvol∂B

RN
(η)

+

ˆ

∂B
RN

(−1)N−1qN−1 ( 1
2t
,∓i) dvol∂B

RN
(η)

=(−1)N−1vol∂B
RN
(∂BRN )(√ π

4t
pN−1 ( 1

2t
,∓i) e −14t erfc( ∓i

2
√
t
) + qN−1 ( 1

2t
,∓i))
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=(−1)N−1 2π
N
2

Γ (N
2
) (
√

π

4t
pN−1 ( 1

2t
,∓i)e −14t erfc( ∓i

2
√
t
) + qN−1 ( 1

2t
,∓i)) ,

i.e. the leading coefficient becomes

(−1)N−12πN
2 volX(X)

Γ (N
2
) (√ π

4t
pN−1 ( 1

2t
,∓i) e −14t erfc( ∓i

2
√
t
) + qN−1 ( 1

2t
,∓i)) .

Since p0(x, y) = 1, q0(x, y) = 0,

pn(x, y) = ∂2pn−1(x, y) + xypn−1(x, y),

and

qn(x, y) = ∂2qn−1(x, y) − xpn−1(x, y)

hold, we obtain

n pn(x, y) pn ( 1
2t
,∓i) qn(x, y) qn ( 1

2t
,∓i)

0 1 1 0 0

1 xy ∓i 1
2t

−x −
1
2t

2 x + x2y2 1
2t
−

1
4t2

−x2y ±i 1
4t2

3 3x2y + x2y2 1
4t2
(∓3i − 1) −2x2 − x3y2 −1

2t2
+

1
8t3

⋮ ⋮ ⋮ ⋮ ⋮

which yields
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N
(−1)N−12πN

2 volX(X)
Γ(N

2
) (√ π

4t
pN−1 ( 1

2t
,∓i) e −14t erfc( ∓i

2
√
t
) + qN−1 ( 1

2t
,∓i))

1 2volX(X) (√ π
4t
e
−1
4t erfc( ∓i

2
√
t
))

2 −2πvolX(X) (√ π
4t
(∓i 1

2t
) e −14t erfc( ∓i

2
√
t
) − 1

2t
)

3 4πvolX(X) (√ π
4t
( 1
2t
−

1
4t2
) e −14t erfc( ∓i

2
√
t
) ± i 1

4t2
)

4 −π2volX(X) (√ π
4t

1
4t2
(∓3i − 1) e −14t erfc( ∓i

2
√
t
) + 1

8t3
−

1
2t2
)

⋮ ⋮

where we used Γ (1
2
) =√π and Γ ( 3

2
) = √π

2
. The complementary error function can

be evaluated using the upper incomplete Γ-function Γui which satisfies erfc(z) =
1√
π
Γui ( 12 , z2) or

erfc(z) = 1 − 2√
π
∑
k∈N

0

(−1)kz2k+1
k!(2k + 1) ,

i.e.

erfc( ∓i
2
√
t
) = 1 ± i√

πt
∑
k∈N

0

(4t)−k
k!(2k + 1) .

∎



CHAPTER 13

The ζ-function on Hörmander spaces D′Γ

Since Radzikowski [57, 58] showed the importance of the wave front set in

quantum field theories on curved space-time, the Hörmander spaces D ′Γ (set of dis-

tributions with wave front set in the closed cone Γ such that the semi-norms ∥⋅∥N,V,χ
in Definition 13.1 are finite) have become very important in the re-formulation of

quantum field theories. In this chapter, we want to return to the ζ-function and

study it on those spaces D ′Γ whose topological properties were studied in [15–17].

There are multiple canonical1 topologies on D ′Γ; most notably, the normal topology

(which is the Arens topology as introduced by Arens in [2]; the topology of uni-

form convergence on absolutely convex2 compact sets) and the coarser Hörmander

topology (defined in [39] on p. 125) which is given by the following semi-norms

(Definition 8.2.2 in [38]).

Definition 13.1. Let U ⊆ Rn be open, Γ a closed cone in the co-tangent bundle

of U without the zero section, and D ′Γ ⊆ C
∞
c (U)′ the set of distributions with wave

front set in Γ such that the following semi-norms are finite.

(i) For f ∈ C∞c (U) we define

pf ∶ D
′
Γ → R; u↦ ∣⟨u, f⟩∣ .

1Hörmander initially defined the topology as a pseudo-topology, that is, he defined what con-

vergent sequences and their limits are. It should be noted that not every pseudo-topology defines

a topology; for instance, there is no topology of almost everywhere convergence. In Hörmander’s

case, however, there are multiple different topologies which induce his pseudo-topology.
2A subset A of a topological vector space over K ∈ {R,C} is called absolutely convex if and

only if ∀x, y ∈ A ∀λ,µ ∈ K ∶ ( ∣λ∣ + ∣µ∣ ≤ 1 ⇒ λx + µy ∈ A ).

233
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(ii) For N ∈ N, a closed cone V ⊆ Rn, and χ ∈ C∞c (U) with (sptχ×V )∩Γ = ∅
(spt denotes the support), we define

∥⋅∥N,V,χ ∶ D ′Γ → R; u↦ sup
k∈V
(1 + ∥k∥ℓ2(n))N ∣F (χu)(k)∣

where F denotes the Fourier transform which exists because χu is a com-

pactly supported distribution.

In the light of Corollary 9.17, we will want to show that the ζ-function on

gauged poly-log-homogeneous elements in D ′Γ defines a sequentially closed linear

operator in a certain sense, i.e. it suffices to consider the coarser Hörmander topol-

ogy which makes D ′Γ quasi-complete (cf. Proposition 29 in [17]). The topology on

the set of gauged distributions in D ′Γ will be the induced topology of compact con-

vergence in Cω(Ω,D ′Γ) where Ω ⊆ C is an open and connected set and Cω denotes

the set of analytic functions.

Definition 13.2. Let E be a locally convex topological vector space with semi-

norms (pEι )ι∈I and Ω ⊆open,connected C. Then, we endow Cω(Ω,E) with the semi-

norms

p
Cω(Ω,E)
ι,K ∶ Cω(Ω,E) → R; f ↦ ∥pι ○ f∥L∞(K)

for every ι ∈ I and K ⊆compact Ω.

Definition 13.3. For R ∈ R and Ω ⊆open,connected C such that ∀r ∈ R ∶ {z ∈
Ω; R(z) < r} ≠ ∅, we define D ′Γ,R,Ω,plh ⊆ C

ω(C,D ′Γ) to be the set of gauged poly-log-

homogeneous distributions in D ′Γ whose ζ-functions are holomorphic in Ω and none

of the degrees of homogeneity at zero have real part greater than R. Furthermore,

we define D ′Γ,R,Ω,ph ∶= {u ∈ D ′Γ,R,Ω,plh; u polyhomogeneous}.
With this prelude, we can state the following theorem.
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Theorem 13.4. Let R ∈ R and Ω ⊆ C be open and connected such that ∀r ∈

R ∶ {z ∈ Ω; R(z) < r} ≠ ∅. Then, ζ ∣D ′
Γ,R,Ω,plh

∶ D ′Γ,R,Ω,plh → Cω(Ω) has a quasi-

complete extension3 ζR,Ω.

Proof. Let (vα, ζ(vα))α∈A be a bounded net in D ′Γ,R,Ω,plh⊕C
ω(Ω) with vα → 0

and ζ(vα) →∶ v ∈ Cω(Ω). Then, we need to show v = 0. In fact, it suffices to show

[{0}]v has an accumulation point in Ω.

Let z ∈ Ω. Then, (vα(z))α∈A is a bounded net in D ′Γ and (ζ(vα)(z))α∈A
is a bounded net in C. In particular, V ∶= {vα(z); α ∈ A} is metrizable (cf.

Proposition 1 and Theorem 33 in [17]), as is Z ∶= {ζ(vα)(z); α ∈ A} ∪ {v(z)}.
Hence, {(vα(z), ζ(vα)(z)); α ∈ A} is contained in the metrizable set V × Z, i.e.

(0, v(z)) can be calculated using sequences.

Let (un(z))n∈N ∈ V N be such that un(z)→ 0 and ζ(un)(z)→ v(z). Note that

ζ(un)(z) is the regularized dual pair ⟨un(z), δdiag⟩. Let (fm)m∈N be a “δ-sequence”

approximating δdiag. Then,

∀m ∈ N ∶ ⟨un, fm⟩→ 0 (n→∞) compactly

holds by assumption and implies

∀m ∈ N ∶ ⟨un(z), fm⟩→ 0 (n→∞)

Furthermore, there exists r ∈ R such that

∀z ∈ Ω ∩CR(⋅)<r ∶ ⟨un(z), δdiag⟩ need not be regularized,

3Just as the completion can be constructed by adding all limits of nets in ζ ∣D ′
Γ,R,Ω,plh

, we

can construct the quasi-complete “closure” by taking all bounded nets in ζ ∣D ′
Γ,R,Ω,plh

and add

their limits if they converge in D ′Γ ⊕Cω(Ω)
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i.e.

⟨un(z), fm⟩→ ζ(un)(z) (m→∞).

Let ε ∈ R>0, z ∈ Ω with R(z) < r, n ∈ N such that ∣v(z)− ζ(un)(z)∣ < ε
3
, and

m ∈ N such that ∣ζ(un)(z)− ⟨un(z), fm⟩∣ < ε
3

as well as ∣⟨un(z), fm⟩ − 0∣ < ε
3
. Then,

∣v(z)∣ ≤ ∣v(z)− ζ(un)(z)∣ + ∣ζ(un)(z) − ⟨un(z), fm⟩∣ + ∣⟨un(z), fm⟩∣ < ε
shows ∀z ∈ Ω ∩C

R(⋅)<r ∶ v(z) = 0, i.e. the assertion.

�

This theorem has a couple of very important consequences. On one hand, it

allows us to extend the ζ-function to elements of D(ζR,Ω) which may very well

include distributions that are not poly-log-homogeneous. On the other hand, and

much more importantly, ζR,Ω has the convex compactness property, i.e. we can

calculate Pettis integral of continuous functions f on compact Borel spaces (K,Σ, µ)
with values in ζR,Ω. In other words,

ˆ

K

(f(x), ζR,Ω(f(x)))dµ = (ˆ
K

f(x)dµ,ˆ
K

ζR,Ω(f(x))dµ) ∈ ζR,Ω
exists and implies

ˆ

K

f(x)dµ ∈D(ζR,Ω) ∧ ζR,Ω (ˆ
K

f(x)dµ) = ˆ
K

ζR,Ω(f(x))dµ.
Remark So far, we only had the fundamental theorem of calculus which allowed

the following. Let a, b, c ∈ R, a < b, c ∈ [a, b], f ∈ C([a, b],Cω(C,D ′Γ)), and

g ∶ [a, b]→ Cω(C,D ′Γ); x↦
ˆ x

c

f(s)ds.
Then, g is differentiable with g′ = f , i.e.

ˆ b

a

f(s)ds = ˆ b

a

g′(s)ds = g(b)− g(a).
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Then, we obtain

ζ (ˆ b

a

f(s)ds) =ζ(g(b) − g(a))
=ζ(g(b))− ζ(g(a))
=

ˆ b

a

∂sζ(g(s))ds
=

ˆ b

a

ζ(g′(s))ds
=

ˆ b

a

ζ(f(s))ds.

∎

Since the restriction of considering only ζ-functions on a shared holomorphic do-

main is quite technical, it would seem more natural to consider ζ as a map from

Cω(C,D ′Γ) to the set of meromorphic functions Mer(C). Furthermore, we would

like to still have compact convergence on holomorphic domains; i.e. we are looking

for a locally convex Hausdorff topology on Mer(C) which extends the topology of

compact convergence. This, however, is a rather delicate problem.

The probably most natural way of topologizing Mer(Ω) for Ω ⊆open,connected C

non-empty was introduced by Ostrowski [54] and regards Mer(Ω) as a subspace

of C(Ω, Ĉ) where Ĉ is the extended complex plane with the chordal metric (that

is, identification with the Riemann sphere and using the induced ℓ2(3) metric of

R3). C(Ω, Ĉ) is then endowed with the topology of compact convergence and the

induced topology τc on Mer(Ω) makes Mer(Ω) a metric space which is complete

if we add the constant function ∞; cf. chapter VII.3 in [14]. Unfortunately, this

topology is not linear. In fact, Cima and Schober showed (Proposition 4 in [12])

that there is no locally convex vector space topology comparable with τc.
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In [72] Tietz introduced a locally convex topology based on the Mittag-Leffler

theorem which states that every meromorphic function f in Ω can be decomposed

as

f(z) = g(z)+∑
k

(hαk(z) − rk(z))
where hαk are the principal parts of f at its singularities αk, and g and the rk are

holomorphic in Ω. Tietz also posed the problem of finding a locally convex topology

on Mer(Ω) which satisfies a certain duality relation appearing in §5 of [72]. This

problem was solved in [32] studying a topology introduced by Holdgrün in [40]

and paralleling methods used by Golovin in [29,30] who studied a slightly different

topology. Any of these topologies can be considered natural from a certain point

of view. However, Tietz’s, Holdgrün’s, and Golovin’s topologies are too strong for

our purposes here.

If, for instance, we consider the operator H ∶=
√∣∆∣ on R/2πZ where ∆ is the

Laplacian, then we may think of the continuous function

f ∶ [0,1]→ Cω(C,Ψ); x↦ (C ∋ z ↦Hx+z ∈ Ψ)
where Ψ denotes the set of pseudo-differential operators. Then, we obtain

ζ(f(x))(z) = 2ζR(−z − x)
where ζR is the Riemann-ζ-function. Hence, ζ(f(x)) has a pole at −1 − x and we

would most certainly like

[0,1] ∋ x↦ ζ(f(x)) ∈Mer(C)
to be continuous. In Tietz’s and Golovin’s topologies, however, this is not the case

and, since Holdgrün’s topology is strictly stronger than Golovin’s, neither of them

is adequate for our purposes.
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In [12] Cima and Schober defined a locally convex topology on Mer(Ω) which

does allow singularities to converge (and makes Mer(Ω) metric, in fact). Unfor-

tunately, these topologies depend on a previously chosen exhaustion of Ω and,

depending on the exhaustion, it is possible to construct a sequence (pn)n∈N ∈ ΩN

with pn →∶ p such that the meromorphic functions z ↦ 1
z−pn

do not converge to

z ↦ 1
z−p

even though they usually do. Hence, even though this topology looks

much more promising, it exhibits properties that are wholly undesirable. Further-

more, these properties are deeply linked to the construction of the topology making

it inherently difficult to get rid of with only minor changes to the construction.

In other words, if we want to consider ζ as a function taking values in Mer(C)
as a locally convex Hausdorff space, then we will have to define yet another “natural”

topology on Mer(Ω) or, at least, Mer(C) which reduces to the topology of compact

convergence on the subspace of holomorphic functions. However, we were not able

to find any such topology.

Luckily, any ζ-function of a gauged poly-log-homogeneous distribution is holo-

morphic on some half-plane R(z) < r ∈ R. Hence, we can consider the subspace

Mζ ∶= {f ∶ C → C measurable; ∃r ∈ R ∶ f ∣C
R(⋅)<r holomorphic}

of the measurable functions (note that we need to use the complete4 Lebesgue

measure here, so that almost everywhere continuous functions are measurable).

Let

D ∶= {Ω ⊆open,connected C; ∃r ∈ R ∶ CR(⋅)<r ⊆ Ω}
4A measure is called complete if and only if every subset of a null set is measurable and a

null set itself.
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and

Hζ(Ω) ∶= {f ∈Mζ ; f ∣Ω holomorphic}.

Then, (D,⊇) is directed5 and Mζ = ⋃Ω∈DHζ(Ω). On Hζ(Ω) we will want to have

compact convergence and the plan is to endow Mζ with the corresponding final

topology. This can be done but the inductive limit will not be strict6, i.e. there is

very little we know about that topology. Instead, we will define a slightly different

topology on Hζ(Ω).
Let dH(Ω) be a metric defining compact convergence on the set of holomorphic

functions in Ω. We will extend dH(Ω) to the semi-metric

dΩ ∶ Hζ(Ω)2 → R≥0; (f, g)↦ dH(Ω) (f ∣Ω, g∣Ω) .

Furthermore, let dµ be the metric of local convergence in measure7 on C (cf. 245A

and 245E in [25]), that is, fn → f locally in measure if and only if

∀ε ∈ R>0 ∀B ∈ B(C) ∶ ( λ(B) <∞ ⇒ lim
n→∞

λ ({z ∈ B; ∣fn(z)− f(z)∣ ≥ ε}) = 0 )
5Let A be a set and ≤ a pre-order on A, that is, a reflexive and transitive binary relation.

Then, we call (A,≤) directed if and only if ∀a, b ∈ A ∃c ∈ A ∶ a ≤ c ∧ b ≤ c.
6This is a consequence of the fact that compact convergence in an open set does not imply

convergence anywhere else; e.g. (z ↦ enz)n∈N converges compactly to zero on C
R(⋅)<0

but there

is no compact convergence anywhere else. Hence, if we consider Ω,Ω′ ∈ D with Ω ⊆ Ω′ then the

topology of compact convergence on Ω for holomorphic functions on Ω′ is strictly weaker than

compact convergence on Ω′, i.e. the inductive limit is not strict (to be strict the topologies need

to coincide).
7To construct such a metric, choose an increasing and exhausting sequence (Kn)n∈N of sets

of finite measure (e.g. compacta) and consider ̺n(f, g) ∶=
´

Kn
min{∣f(z) − g(z)∣ ,1}dz. Then,

̺(f, g) ∶= ∑n∈N
̺n(f,g)

1+2nλ(Kn)
is a metric that induces the topology of local convergence in measure;

cf. 245E in [25].
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holds where λ is the Lebesgue measure in C and B(C) is the Borel σ-algebra in C.

Note that dµ is strictly weaker than dΩ on Ω. We will now endow Hζ(Ω) with the

metric

dHζ(Ω) ∶= dΩ + dµ.

Lemma 13.5. Hζ(Ω) is complete.

Proof. Let (fn)n∈N ∈Hζ(Ω)N be a Cauchy sequence. Since the set of measur-

able functions with the topology of local convergence in measure is complete, we

have fn →∶ f with respect to dµ. Furthermore, (fn∣Ω)n∈N is Cauchy with respect to

compact convergence, i.e. f is holomorphic in Ω, that is, f ∈Hζ(Ω).
�

In order to prove the following lemma, we will quickly recall Vitali’s theorem

(cf. e.g. chapter 1 in [42]).

Theorem 13.6 (Vitali). Let Ω ⊆open,connected C, f ∈ Cω(Ω)N locally bounded,

and let

{z ∈ Ω; (fn(z))n∈N converges}
have an accumulation point in Ω. Then, f is compactly convergent.

Lemma 13.7. Let Ω0,Ω1 ∈ D and Ω0 ⊇ Ω1. Then, Hζ(Ω0) ⊆ Hζ(Ω1) and the

topology induced by Hζ(Ω1) coincides with the topology of Hζ(Ω0).
Furthermore, Hζ(Ω0) is closed in Hζ(Ω1).
Proof. Hζ(Ω0) ⊆ Hζ(Ω1) is trivial and since every compact set in Ω1 is a

compact set in Ω0 we obtain that every semi-norm of Hζ(Ω1) is a semi-norm of

Hζ(Ω0), i.e. Hζ(Ω0)↪Hζ(Ω1) is continuous. It remains to show that any sequence

(fn)n∈N ∈ Hζ(Ω0)N which converges to f ∈ Hζ(Ω0) with respect to the topology
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of Hζ(Ω1) implies convergence fn → f in Hζ(Ω0). In other words, we need to

show that fn converges to f compactly in Ω0. By Vitali’s theorem (since we have

pointwise convergence in Ω1), it suffices to show that (fn)n∈N is locally bounded in

Ω0.

Suppose (fn)n∈N were not locally bounded in Ω0. Then,

∃z0 ∈ Ω0 ∀ε,M ∈ R>0 ∃n ∈ N ∀z ∈ B(z0, ε) ∶ ∣fn(z)− f(z)∣ >M.

In particular, there exists a subsequence (fnj
)j∈N such that

∃z0 ∈ Ω0 ∃ε ∈ R>0 ∀j ∈ N ∀z ∈ B(z0, ε) ∶ ∣fnj
(z)− f(z)∣ > j.

However, this violates local convergence in measure. Hence, (fn)n∈N is locally

bounded in Ω0 and the first assertion holds true.

In order to show that Hζ(Ω0) is closed in Hζ(Ω1), let (fn)n∈N ∈ Hζ(Ω0)N be

convergent to f ∈ Hζ(Ω1) in Hζ(Ω1). Then, we need to show that f ∈ Hζ(Ω0).
However, we already know that (fn)n∈N converges compactly in Ω0 by the previous

part of the proof, i.e. the limit is holomorphic in Ω0.

�

Since each Hζ(Ω) is contained in at least one Hζ (CR(⋅)<−n) for some n ∈ N and

its topology is given by the induced topology, we may endow

Mζ = ⋃
n∈N

Hζ(CR(⋅)<−n)
with the strict inductive limit topology, that is, the finest topology that renders

all Hζ(CR(⋅)<−n) ↪ Mζ (n ∈ N) continuous, i.e. the finest topology rendering all

Hζ(Ω)↪Mζ (Ω ∈D) continuous.

Theorem 13.8. (i) Mζ is a Hausdorff LF-space.8

8LF-spaces are countable inductive limits of Fréchet spaces.
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(ii) The topology of Hζ(Ω) coincides with the topology induced by Mζ .

(iii) B ⊆Mζ is bounded if and only if B ⊆Hζ (CR(⋅)<−n) holds for some n ∈ N

and B is bounded in Hζ (CR(⋅)<−n).
(iv) Mζ is bornological.9

(v) Mζ is sequential.10

(vi) Let E be a locally convex topological vector space and A ∶ Mζ → E a linear

operator. Then, the following are equivalent.

(a) A is continuous.

(b) A is sequentially continuous.

(c) A is bounded.11

(vii) Mζ is complete.

(viii) Mζ is barreled.12

(ix) Mζ is ultrabornological13.

9A topological vector space over K ∈ {R,C} is called bornological if and only if it is locally

convex and every absolutely convex bornivorous set is a neighborhood of zero. A set is called

bornivorous if and only if it absorbs all bounded sets, i.e. let A be bounded and B a set then B

is bornivorous if and only if there exists α ∈ R>0 such that ∀λ ∈ K
∣⋅∣≥α
∶ A ⊆ λB.

10A subset U of a topological space is called sequentially open if and only if every sequence

converging to a point in U is eventually in U . A topological space is called sequential if and only if

every sequentially open set is open. Being sequential is the minimum requirement for a topological

spaces such that sequences suffice to determine the topology.

11A bounded linear operator maps bounded sets into bounded sets.
12A topological vector is called barreled if and only if every barrel is a neighborhood of zero.

A barrel is an absolutely convex, closed, and absorbing set. A set A ⊆ E is called absorbing if and

only if ∀x ∈ E ∃α ∈ R>0 ∀λ ∈ K∣⋅∣≥α ∶ x ∈ λA.
13Let D be absolutely convex and bounded. D is called a Banach disk if and only if linD

equipped with the Minkowski functional pD(x) ∶= inf{λ ∈ R>0; λx ∈ B} is a Banach space. An

absolutely convex set is called infrabornivorous if and only if it absorbs all Banach disks. A locally

convex topological vector space is called ultrabornological if and only if every infrabornivorous set

is a neighborhood of zero.
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(x) Mζ is webbed.14

(xi) Mζ is not metrizable.

(xii) Mζ is not first-countable.

(xiii) Mζ is not a Fréchet-Urysohn space.15

Proof. (i-iii) Theorem of Diedonné-Schwartz (cf. Theorem 9.7 in [75]).

(iv) Theorem 9.13 in [75] (the Hζ (CR(⋅)<−n) are bornological since metriz-

able).

(v) Follows from (iv) with Corollary 1.7 in [23].

(vi) “(a)⇒(b)” Let A be continuous. Then, we obtain Axα → Ax in E whenever

a net (xα)α converges to x in Mζ . In particular, this implies sequential

continuity.

“(b)⇒(a)” Suppose A is not continuous. Then, we can find U ⊆open E

such that [U]A is not open, i.e. not sequentially open. Let (xn)n∈N ∈ (Mζ∖

[U]A)N satisfy xn →∶ x ∈ [U]A. Then, we obtain ∀n ∈ N ∶ Axn ∈ E ∖ U

and Ax ∈ U . In other words, A is not sequentially continuous.

“(a)⇔(c)” Proposition 6.13 in [66].

(vii) Köthe’s theorem (cf. Theorem 9.17 in [75]).

(viii) Theorem 9.13 in [75] (the Hζ (CR(⋅)<−n) are barreled since metrizable).

(ix) cf. below Corollary 4 in chapter 13.1 in [41]

(x) cf. §35.4(8) in [46]

14Let E be a topological vector space. A class W = {Cn1,...,nk
⊆ E; k,nj ∈ N} is called a

web if and only if ∀k ∈ N ∀n1, . . . , nk ∶ Cn1,...,nk
= ⋃nk+1∈N

Cn1,...,nk+1
and E = ⋃n1∈N Cn1 . W is

called a C-web if and only if for every fixed sequence (nk)k∈N there exists (̺k)k∈N ∈ (R>0)
N such

that for all λk ∈ [0, ̺k] and all xk ∈ Cn1,...,nk
the series ∑k∈N λkxk converges in E. E is called a

webbed space if and only if there exists a C-web on E.
15A space is called a Fréchet-Urysohn space if and only if the closure and the sequential

closure of any subset coincide.
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(xi) No metrizable strict LF-space can be complete by Corollary 5 in [64].

(xii) Follows directly from the fact that a Hausdorff topological vector space is

first-countable if and only if it is metrizable (cf. §15.11(1) in [45]).

(xiii) If Mζ were a Fréchet-Urysohn space, then it would be metrizable by The-

orem 2.2 in [10].

�

These properties of Mζ are sufficient for us to consider many Pettis integrals of

ζ-functions. Even though the Pettis integral may not be a meromorphic function

anymore, we still obtain the following proposition.

Proposition 13.9. Let Ω ∈D, j ∈ Z, γ a cycle in Ω, and α ∈ C with windα(γ) =
1 where wind denotes the winding number. Then, the Laurent coefficient map

lcj,α,γ ∶ Hζ(Ω)→ C; f ↦
1

2πi

ˆ

γ

f(z)(z − α)j+1 dz
is continuous.

Proof. lcj,α,γ is continuous if and only if it is sequentially continuous. Let

(fn)n∈N ∈ Hζ(Ω)N be convergent to f ∈ Hζ(Ω). Since the image imγ of γ is a

compact subset of Ω, we obtain

∥fn − f∥L∞(imγ) → 0,

i.e.

∣lcj,α,γ(fn) − lcj,α,γ(f)∣ = ∣ 1

2πi

ˆ

γ

fn(z) − f(z)(z − α)j+1 ∣
≤
1

2π

ˆ

γ

∣z − α∣−j−1 dz
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈R>0

∥fn − f∥L∞(imγ)

shows the assertion.

�
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Example Returning to H ∶=
√∣∆∣ on R/2πZ where ∆ is the Dirichlet-Laplacian

and

f ∶ [0,1]→ Cω(C,Ψ); x↦ (C ∋ z ↦Hx+z ∈ Ψ)
where Ψ denotes the set of pseudo-differential operators, we can interpret

ζ(f(x))(z) = 2ζR(−z − x)
as an element of Hζ(C ∖ [−2,−1]).

Choosing a cycle γ in C ∖ [−2,−1] with wind−1(γ) = 1, we obtain

∀x ∈ [0,1] ∶ lc−1,−1,γ(ζ(f(x))) = res−1−x(ζ(f(x))).
Using Pettis integration in Mζ and our extension of ζ to ζR,Ω, we find

ˆ 1

0

res−1−x(ζ(f(x)))dx =ˆ 1

0

lc−1,−1,γ(ζ(f(x)))dx
=lc−1,−1,γ (ˆ 1

0

ζ(f(x))dx)
=lc−1,−1,γ (ˆ 1

0

ζ2,Ω(f(x))dx)
=lc−1,−1,γ ○ ζ2,Ω (ˆ 1

0

f(x)dx) .
Similarly, for j ∈ N0,

ˆ 1

0

lcj,−1,γ(ζ(f(x)))dx =lcj,−1,γ (ˆ 1

0

ζ(f(x))dx) = lcj,−1,γ ○ ζ2,Ω (ˆ 1

0

f(x)dx) .
∎

Example At this point, let us consider an orientable compact Riemannian C∞-

manifold (M,g) of dimension N ∈ 2N. Let ∣∆∣ be the non-negative Dirichlet-

Laplacian on (M,g) and T the semigroup generated by − ∣∆∣. For any multiplicative

gauge g we have seen that ζ(T (t)g)(0) admits a Laurent expansion at zero with

highest order negative Laurent coefficient volM (M)
(4πt)N2 (in fact, if g̃ is another gauge,
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then ζ(T (t)g)(0) = ζ(T (t)g̃)(0)). The second highest order Laurent coefficient is

given by total curvature(M)
3(4π)N2 tN2 −1 .

Let us now assume the metric g is a measurable function on a Radon measure

probability space K, that is, (M,g) is subject to random perturbations in the met-

ric, such that K ∋ ω ↦ T (t)(ω) is bounded and takes values in a separable subspace

of D ′id,1,C,plh. Let E denote the expectation, i.e. integration in the probability space

K. Then, we obtain

Eζ1,C(T (t)g) = ζ1,C(E(T (t)g)) = ζ1,C(E(T (t))g)
and, by continuity of δ0 in H(C),

E (ζ1,C(T (t)g)(0)) = ζ1,C(E(T (t))g)(0)
as well as

∀j ∈ Z ∶ E (lcj,0 (ζ1,C(T (t)g)(0))) = lcj,0 (ζ1,C(E(T (t))g)(0))
where lcj,0(f) denotes the jth Laurent coefficient of f in zero, i.e. a meromorphic

function f has the Laurent expansion f(z) = ∑j∈Z lcj,0(f)zj at zero. In particu-

lar, the expected volume and the expected mean curvature are determined by the

operators ET (t).
Note that the Hörmander classes Sm and, hence, all Ψm are Fréchet spaces,

i.e. ET (t) ∈ Ψm whenever all T (t) are elements of Ψm. Since all T (0) are the

identity operator, we obtain ET (0) = 1 ∈ Ψ0. Since all T (t) for t ∈ R>0 are in Ψ−∞,

i.e. ∀m ∈ R ∶ T (t) ∈ Ψm, we conclude ∀m ∈ R ∶ ET (t) ∈ Ψm, that is, ET (t) ∈ Ψ−∞.

In particular, the extension to ζ1,C is not even necessary to evaluate the ζ-functions.

However, we need it in order to justify integration (note that the same works just

as well for wave traces but, then, we will need the quasi-complete extensions of ζ).
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On the other hand, ET (t) can be expressed using the holomorphic functional

calculus

T (t) =e−t∣∆∣ = 1

2πi

ˆ

γ

e−tλ(λ − ∣∆∣)−1dλ,
that is, T (t) has the kernel

kT (t)(x, y) = 1(2π)N
ˆ

RN

ei⟨x−y,ξ⟩e−tσ(∣∆∣)(x,y,ξ)dξ.

Hence, E(T (t)) has the kernel

EkT (t)(x, y) = 1(2π)N
ˆ

RN

ei⟨x−y,ξ⟩E (e−tσ(∣∆∣)(x,y,ξ))dξ.

Since the T (t) are smoothing operators (save T (0)), we can largely reduce the

assumptions on the measurable functions ω ↦ T (t)(ω). The important equality

here is

trET (t) = E trT (t)
which is also satisfied if tr is continuous and the T (t) are Pettis integrable (above,

we considered it in light of Hille’s theorem). The assertion tr ∈ (Ψ−∞)′ is an

application of the following version of the closed graph theorem (cf. Corollary 1 in

chapter III.12 in [73]).

Theorem 13.10 (Closed Graph Theorem). Let X be an LF-space, Y a Fréchet

space, and T ∶ X → Y a linear operator (everywhere defined). Then, the following

are equivalent.

(i) T is continuous.

(ii) T is closed.

(iii) T is closable.

Lemma 13.11. tr ∶ Ψ−∞ → C is continuous.
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Proof. It suffices to show that tr is closable. Let (An)n∈N ∈ (Ψ−∞)N such that

An → 0 and trAn → t. We need to show that t = 0. Let an be the symbol of An.

Then, we have

∀m ∈ R ∶ an → 0 in Sm(X ×X ×RN).
In particular, the set {an; n ∈ N} ⊆ Sm(X ×X ×RN) is bounded for each m ∈ R.

Let m ∈ R such that m < −N − 1. Then,

τ ∶ Sm+1(X ×X ×RN) ⊆ C∞(X ×X ×RN) → C; f ↦
ˆ

X

ˆ

RN

f(x,x, ξ)dξdvolX(x)
is continuous and ∀n ∈ N ∶ τ(an) = trAn. Since the topology of C∞(X×X×RN) and

Sm+1(X ×X ×RN) coincide on bounded subsets of Sm(X ×X ×RN) (cf. paragraph

above Proposition 1.1.11 in [39]), we obtain τ(an) → 0 in Sm+1(X ×X ×RN). In

other words, the assertion follows from

t ← trAn = τ(an)→ 0.

�

Considering wave traces, we can follow the same idea as above but with the

analytic semi-groups W generated by −
√∣∆∣. Again, we will obtain that all ex-

pected Laurent coefficients are determined by the operators EW (t) and, in terms

of the kernel, by

EkW(t)(x, y) = 1(2π)N E

ˆ

RN

ei⟨x−y,ξ⟩e−tσ(
√∣∆∣)(x,y,ξ)dξ.

At this point it may be more convenient to not yet Fubini-ize this integral because

we are interested in the extension to t ∈ iR. For the sake of simplicity, let us assume

σ(√∣∆∣)(x, y, ξ) = s(x, y) ∥ξ∥ℓ2(N). Then,

EkW(t)(x, y) = 1(2π)N E

ˆ

RN

ei⟨x−y,ξ⟩e−tσ(
√∣∆∣)(x,y,ξ)dξ
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=
1(2π)N E

ˆ

RN

e
i(⟨x−y,ξ⟩−I(t)s(x,y)∥ξ∥ℓ2(N))e−R(t)s(x,y)∥ξ∥ℓ2(N)dξ

shows that we may also consider these integrals in an algebra of Fourier integral

operators where our phase functions are

ϑt(x, y, ξ) ∶= ⟨x − y, ξ⟩ − I(t)s(x, y) ∥ξ∥ℓ2(N) .

∎

Example Let Ω be a connected, compact, separable, metric space and (Ω,Σ, µ) a

finite Radon measure space such that every open set has positive measure. Let Ellm

be the set of elliptic pseudo-differential operators of order m on a compact manifold

without boundary and E ⊆ Ψm a separable subspace of the pseudo-differential

operators of order m with E ∩ Ellm ≠ ∅. Let f ∈ L1 (µ;E) take values in Ellm,

µ̂ ∶= µ(Ω)−1µ, and E the expectation with respect to µ̂. Then,

ˆ

Ω

fdµ = µ(Ω)Ef.
By Lusin’s measurability theorem, there exists Ωε such that µ(Ω∖Ωε) < ε and f ∣Ωε

is continuous for every ε ∈ R>0. Let ind f(ω) be the index of f(ω). Then, indf

is locally constant on each Ωε and ⋃ε∈R>0 Ωε is dense in Ω because Ω ∖ ⋃ε∈R>0 Ωε

cannot contain an open set. But ind f need not be a constant function.

Consider Ω ∶= R/Z with the Borel Σ-algebra and the Lebesgue measure λ, and

let

f ∶= A01[0, 1
2
] +A11( 1

2
,1).

Then, Ω0 = (0,1) ∖ { 12} and f ∣Ω0
is locally constant. However,

Ef =
A0 +A1

2
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and

E ind f =

ˆ

Ω

ind ○(A01[0, 1
2
] +A11( 1

2
,1))dλ

=

ˆ

[0, 1
2
]
ind○(A01[0, 1

2
] +A11( 1

2
,1))dλ +

ˆ

[ 1
2
,1]

ind○(A01[0, 1
2
] +A11( 1

2
,1)) dλ

=

ˆ

[0, 1
2
]
indA0dλ +

ˆ

[ 1
2
,1]

indA1dλ

=
indA0 + indA1

2
.

In particular, the expected index and the index of the expectation need not coincide.

Since Ψm is a Fréchet space, E is a separable metric space and (Ω,Σ, µ;E)
a Sombrero space. Thus, Fubini’s theorem and Hille’s theorem hold. Let D ∈

M(µ;E) be a measurable family of Dirac operators (we may think of a manifold

with random metric here) such that e−tD
∗D, e−tDD

∗

∈ L1(µ;E) (e.g. D ∈ L∞(µ;E)).
Then, the pointwise index is given by

indD = tr (e−tD∗D − e−tDD∗)
and we can use the fact that tr is a bounded linear operator on the smoothing

operators Ψ−∞ (Lemma 13.11) to obtain

E indD =E tr (e−tD∗D − e−tDD∗) = trE (e−tD∗D − e−tDD∗)
where E (e−tD∗D − e−tDD∗) can also be taken in Ψ−∞, i.e. trE (e−tD∗D − e−tDD∗)
is well-defined.

This becomes particularly interesting if we consider non-continuous deforma-

tions. Let (Ω,Σ, µ) be the space ([0,3],B([0,3]), µ) where µ = 1
3
λ and λ is the

Lebesgue measure. Let M0 be the 2-sphere and (0,1) ∋ ω ↦ Mω be a continuous

deformation of M0 such that the north and south pole converge to the origin and

the pointwise limit M1 exists. Furthermore, let M1 ∖ BR3(0, ε) be a manifold for
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every ε ∈ R>0. Let M3 be a torus in R3 and (1,3) ∋ ω ↦ Mω a continuous defor-

mation approximating M1. In other words, [0,3] ∖ {1} ∋ ω → Mω is a continuous

deformation and M1 exists as a limit but is not a manifold. For instance, we may

think of rotations of the following.

For ω ∈ [0,3]∖{1}, let Eω be the sum of even exterior powers of the cotangent

bundle of Mω, Fω the sum of odd powers, and D(ω) ∶= dω + d∗ω where dω is the

exterior derivative onMω. Then, D is measurable (in fact, continuous on [0,3]∖{1})
and indD is locally constant. Since indD(ω) is the Euler characteristic of Mω, it

follows that indD = 2 ⋅ 1[0,1) and we obtain the expected Euler characteristic

E indD =
2

3
.

If, on the other hand, we wanted to consider this family on the geometric side

of the index theorem, then we would look at integrals of the form

E (ω ↦ ˆ
Mω

Âωchω)
with no chance of applying Fubini here since the Mω may not even be written

as the same set and changing metric. The operator treatment is not faced by

such problems giving us a tool to consider random manifolds and their expected

characteristic values under discontinuous perturbations.

∎

Remark Note that we do not expect ζ to be continuous/closable in general. Con-

sider the Hörmander classes Sm. According to Proposition 1.1.11 in [39], S−∞

is dense in Sm with respect to the topology of Sm
′

whenever m′ > m. Let A
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be a polyhomogeneous pseudo-differential operator with symbol in Sm and non-

vanishing residue trace. Furthermore, let g ∶ C
R(⋅)<1 → S1 be gauged and (An)n∈N

a sequence of operators with symbols in S−∞ such that An → A with respect to

their symbols in Sm+1. Then, we also have ∀z ∈ C
R(⋅)<1 ∶ Ang(z) → Ag(z) with

respect to Sm+1. Hence, if ζ were continuous, we would obtain ζ(Ang) → ζ(Ag)
and, thus, 0 = res0 ζ(Ang)→ res0 ζ(Ag) ≠ 0.

In other words, obtaining quasi-complete extensions is the best we can do (in

this generality).

∎

Remark Note that the dependence on R in ζR,Ω is (essentially) irrelevant if Ω ∈ D,

that is, Ω contains a subspace C
R(⋅)<r. If we consider an operator A with poly-log-

homogeneous expansion A = A0 +∑ι∈I Aι, then each of the Aι contributes a term

cι(N+dι+z)lι , i.e. we have poles at −N − dι. Now, for Aι(z) to not be of trace-class

R(dι+z) ≥ −N is necessary, i.e. R(dι) ≥ −N −R(z). Hence, having no poles p with

R(p) < r implies

R(dι) ≥ −N − r ⇒ cι = 0.

In other words, defining Î ∶= {ι ∈ I; R(dι) ≥ −N − r} and Ĩ ∶= {0} ∪ I ∖ Ĩ we can

write A = Ã + Â where Ã ∶= ∑ι∈Ĩ Aι ∈ D
′
Γ,−N−r,Ω,plh and Â ∶= ∑ι∈Î Aι is an operator

whose ζ-function vanishes.

∎

Finally, we will remark that the proof that ζ has a quasi-completion on H(Ω),
does not extend to Hζ(Ω) (i.e. not to Mζ) without further arguments since we

cannot use Vitali’s theorem because there my not be a dense and open subset of C

which does not contain any poles of a sequence of ζ-function. As a counterexample,
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consider a bijection q ∈ (iQ)N . Then, ζ (z ↦√∣∆∣qn+z) (s) = 2ζR(−s − qn) has a

pole at −1 − qn, i.e. there exists no open and connected Ω0 ⊆ C such that −2 ∈ Ω0

and 0 ∈ Ω0. However, this counterexample violates that sequences used in the proof

converge to zero. If, on the other hand, we define

D ′Γ,plh ∶= ⋃
(m,n)∈Z2

D ′Γ,m,C
R(⋅)<n,plh

⊆ Cω(C,D ′Γ),
then ζ ⊆ D ′Γ,plh⊕Mζ is everywhere defined and we do obtain the following theorem.

Theorem 13.12. Let (vα, ζ(vα))α∈A ∈ ζA be a bounded net, (vα, ζ(vα))→ (0, s)
in ζ ⊆ D ′Γ,plh ⊕Mζ , and Ω0 ⊆ C open, connected, and dense such that ∀α ∈ A ∶

ζ(vα) ∈ H (Ω0). Then, s = 0.

Proof. Since each D ′Γ,m,C
R(⋅)<n,plh

has the subspace topology of Cω(C,D ′Γ)
and (D ′Γ,m,C

R(⋅)<−n,plh
)(m,n)∈(N2,⊴) with

∀(m,n), (m′, n′) ∈ N2
∶ (m,n) ⊴ (m′, n′) ∶⇔ m ≤m′ ∧ n ≤ n′

is directed, we obtain that

ζ = ⋃
(m,n)∈N2

ζ ∣D ′
Γ,m,C

R(⋅)<−n,plh´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊆D ′

Γ,m,C
R(⋅)<−n,plh

⊕Hζ(C
R(⋅)<−n)

⊆ D ′Γ,plh ⊕Mζ

is a strict inductive limit. Let B be a bounded subset of ζ. Then, the Theorem of

Diedonné-Schwartz (cf. Theorem 9.7 in [75]) implies the existence of (m,n) ∈ N2

such that B is a bounded subset of ζ ∣Hζ(CR(⋅)<−n)
D ′

Γ,m,C
R(⋅)<−n,plh

which is metrizable.

Let (vα, ζ(vα))α∈A ∈ ζA be a bounded net such that vα → 0 in D ′Γ,m,C
R(⋅)<−n,plh

and ζ(vα) →∶ s in Hζ (CR(⋅)<−n). Let (m,n) ∈ N2 be such that (vα, ζ(vα))α∈A ∈
(D ′Γ,m,C

R(⋅)<−n,plh
⊕Hζ (CR(⋅)<−n))A, V ∶= {vα; α ∈ A} ∪ {0}, Z ∶= {ζ(vα), α ∈

A} ∪ (s), and d a metric on V × Z. Then, (vα, ζ(vα))α∈A → (0, s) is equivalent to
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(uβ(k), sβ(k))k∈N → (0, s) where β ∶ N → A is chosen such that

∀k ∈ N ∀α ∈ A ∶ ( α ≥ β(k) ⇒ d ((uα, sα), (uβ(k), sβ(k))) ≤ 1

k
)

holds. Then, by definition of Hζ (CR(⋅)<−n), (sβ(k))k∈N is a locally bounded se-

quence. Hence, Vitali’s theorem yields that s is holomorphic in Ω0 and by Theorem

13.4, we obtain sβ(k)∣C
R(⋅)<−n

→ 0. In other words, s = 0 almost everywhere.

�



Concluding remarks

Based on Guillemin’s work [34, 35] on the residue trace for Fourier Integral

Operators, we have developed an extension of the theory of ζ-functions for pseudo-

differential operators to a large class of Fourier Integral Operators. By introducing

the notion of gauged poly-log-homogeneous distributions explicitly and, thus, work-

ing in a generalized setting that shares the fundamental analytical structures that

are preserved when replacing pseudo-differential operators with Fourier Integral Op-

erators, we were able to study the Laurent expansion of Fourier Integral Operator

ζ-functions and prove existence of a generalized Kontsevich-Vishik trace.

In conjunction with stationary phase expansion results for the Laurent coeffi-

cients and the kernel singularity structure, we have extended many known formu-

lae from the pseudo-differential operator case to varying classes of Fourier Integral

Operators. Furthermore, these considerations allowed us to identify non-trivial

algebras of Fourier Integral Operators consisting purely of Hilbert-Schmidt oper-

ators with regular trace integrals, as well as utilize our unified approach to inde-

pendently verify known results for special cases of Fourier Integral Operators. A

particular special case that deserves highlighting are Boutet de Monvel’s results

[7] on generalized Szegő projectors since they gave rise to a class of Fourier Inte-

gral Operators whose generalized Kontsevich-Vishik trace is form-equivalent to the

pseudo-differential operator case.

At this point, the lack of a holomorphic functional calculus in most algebras of

Fourier Integral Operators became the limiting factor since many a consideration in

256



CONCLUDING REMARKS 257

the pseudo-differential case makes heavy use of the functional calculus. It was not

even clear if we could replace phase functions in calculations that use holomorphic

functional calculus and end up with an expression that is defined within a given

algebra of Fourier Integral Operators. Hence, in part II, we had a look at Bochner-,

Lebesgue-, and Pettis-integration in algebras of Fourier Integral Operators. We

were, then, able to prove that replacement of phase functions is indeed possible and

the integrals remain well-defined.

Furthermore, these integrals permit considerations of measurable functions of

Fourier Integral Operators which extend the notion of continuous families of Fourier

Integral Operators and whose “measurable index bundles” reduce to the Atiyah-

Jänich bundle. In particular, these measurable Fourier Integral Operators raise

the question whether or not it is possible to consider stochastic applications, e.g.

randomly perturbed manifolds, directly (that is, without the need of the Colombeau

algebra). We were able to give a positive answer to that question by calculating

the expected volume of a randomly perturbed manifold as part of the expected

heat- and wave-trace. Additionally, in appendix A, we have developed the basic

theorems of probability in algebras of Fourier Integral Operators including versions

of the law of large numbers and a Lindeberg type central limit theorem.

With a well-functioning integration theory in our hands, we returned to the

ζ-functions. By introducing a topology on the set of ζ-functions, we proved the

existence of quasi-complete extensions of certain restrictions on the ζ function.

Hence, we obtained that the ζ-function and the integral commute in certain cir-

cumstances. Similarly, the extracting Laurent coefficients and taking the classical

trace commutes with the integration (modulo some technical caveats); thus, validat-

ing that the expected heat- and wave-trace coefficients are, in fact, the coefficients
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of the trace of the expected semi-groups (a property that is very useful but far from

obvious).

Of course, there are a number of open problems. For instance, we have ob-

tained a notion of generalized ζ-determinants. However, it remains unclear for

which classes of gauged Fourier Integral Operators these are actually determinants

in the sense detζ(AB) = detζ(A)detζ(B). Finding such classes of Fourier Integral

Operators, as well as extending more known formulae from the pseudo-differential

case, will probably need to make heavy use of integration techniques; at least if we

want to stay fairly close to the known cases.

Regarding stochastic Fourier Integral Operators, essentially everything needs

to be done. However, since we know that the index bundle is measurable, existence

of measurable versions of the spectral flow, for instance, would follow directly from

a proof of continuity/measurability of the first Chern character (in case of the

spectral flow) with respect to the index bundle topology.

The most important open problem, however, is probably the case of Fourier

Integral Operators on manifolds with boundary. While non-compact manifolds can

easily be incorporated by assuming that the kernel representation as a series of os-

cillatory integrals is locally finite and by adding a condition that makes the series of

local contributions to the ζ-function summable, considering manifolds with bound-

ary is a far more complicated problem. Nevertheless, such further development will

be left to future work.
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APPENDIX A

Probability in certain algebras of Fourier Integral

Operators

Since we have seen that our integration theory allows us to consider random

manifolds, it would be an interesting question whether or not it also permits theo-

rems of classical stochastics, e.g. the central limit theorem. Hence, in this appendix,

we will consider theorems from classical probability. From now on let A be an al-

gebra of Fourier Integral Operators such that the integral on L1(µ;A) takes values

in A (e.g. an algebra associated with a Hörmander space D ′Γ) and µ a probability

measure (though some of the theorems work for finite measures or more general

measures as well; mutatis mutandis). We will also continue to use the letter E if

we do not use the algebra structure of A (so that, later on, we can easily consider

subspaces of algebras which are not an algebra themselves). Furthermore, we will

make no distinction between A and the corresponding space of kernels D ′A .

Recall that we assume that composition in the algebra is continuous, i.e.

∀ι ∈ I ∃κ,λ ∈ I ∃c ∈ R≥0 ∀A,B ∈ A ∶ pι(A ○B) ≤ cpκ(A)pλ(B).
The minimal constant c is also denoted by ∥○∥ι,κ,λ. Similarly, we assume that the

involution in a ∗-algebra is continuous. Furthermore, recall Hölder’s inequality.

Theorem 9.11 (Hölder’s inequality). Let Ai ∈ Lpi(µ;A) for i ∈ N≤n and

∑ni=1
1
pi
= 1
r
. Then, A1 ○A2 ○ . . . ○An ∈ Lr(µ;A) and

∀ι ∈ I ∃κ ∈ In ∃c ∈ R≥0 ∶ p
Lr(µ;A)
ι (A1 ○A2 ○ . . . ○An) ≤ c n

∏
j=1

p
Lpj
(µ;A)

κj
(Aj).

260
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Observation A.1. Let E be a subspace of a ∗-algebra which is invariant with

respect to the involution and A ∈ Lp(µ;E). Then, A∗ ∈ Lp(µ;E) and

ˆ

Ω

A∗dµ = (ˆ
Ω

Adµ)∗

for p = 1. Furthermore, if A ∈ SLp(µ;E), then A∗ ∈ SLp(µ;E).
Proof. Since A ∋ a ↦ a∗ ∈ A is continuous, we obtain A∗ ∈ Lp(µ;E) directly

from

∀ι ∈ I ∃κ ∈ I ∶ pι ○A
∗ ≤ ∥A ∋ a ↦ a∗ ∈ A∥ι,κ pκ ○A ∈ Lp(µ).

A∗ ∈ SLp(µ;E) follows from taking the adjoints of each of the simple functions

approximating A ∈ SLp(µ;E). Finally,

⟨(ˆ
Ω

Adµ)∗ϕ,ψ⟩ = ⟨ϕ,ˆ
Ω

Adµψ⟩
=

ˆ

Ω

⟨ϕ,Aψ⟩dµ
=

ˆ

Ω

⟨A∗ϕ,ψ⟩dµ
= ⟨ˆ

Ω

A∗dµϕ,ψ⟩
implies

´

Ω
A∗dµ = (´

Ω
Adµ)∗ for the Pettis integral. For the Bochner/Lebesgue

integral it follows directly from the Pettis case (or applying Hille’s theorem directly

to the linear operator A↦ A∗).

�

Let us now define and study the most important property of classical proba-

bility; the notion of independence.

Definition A.2. Let A ∈ M(µ;E) and B(E) the Borel σ-algebra on E. Then,

we define the distribution µA of A with respect to µ to be the measure

∀S ∈ B(E) ∶ µA(S) ∶= µ([S]A).
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We say that a family (Aκ)κ∈K ∈ EK is independent if and only if for every finite

set k ⊆finite K and every B ∈ B(E)k
µ(⋂

κ∈k

[Bκ]Aκ) =∏
κ∈k

µ ([Bκ]Aκ)
holds, i.e. the joint distribution µ⊕κ∈kAκ

satisfies

µ⊕κ∈kAκ
= ×
κ∈k

µAκ
.

Lemma A.3. Let A1, . . . ,An ∈ M(µ;E) be independent, k,m ∈ N, k ≤ n, and

f ∶ Ek → Em Borel-measurable. Then, g ∶= f ○ (A1, . . . ,Ak),Ak+1, . . . ,An are

independent.

Proof. Let S ⊆ Em and Sk+1, . . . , Sn ⊆ E be Borel measurable sets. Then,

µ
⎛⎝[S]g ∩

n

⋂
j=k+1

[Sj]Aj⎞⎠ =µ⎛⎝[[S]f](A1, . . . ,Ak) ∩ n

⋂
j=k+1

[Sj]Aj⎞⎠
=µ([[S]f × n

×
j=k+1

Sj] (A1, . . . ,An))

=µ ([[S]f] (A1, . . . ,Ak)) n

∏
j=k+1

µ ([Sj]Aj)

=µ ([S]g) n

∏
j=k+1

µ ([Sj]Aj)
�

An important application of Lemma A.3 is that the operations in our alge-

bra/topological vector space preserve independence.

Corollary A.4. (i) Let A,B,C ∈ M(µ;E) be independent. Then, A

and B +C are independent.

(ii) Let A,B,C ∈M(µ;A) be independent. Then, A and BC are independent.

(iii) Let A be a ∗-algebra and A,B ∈ M(µ;A) be independent. Then, A∗ and

B are independent.
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Proof. Follows directly from Lemma A.3 and the fact that addition, compo-

sition, and involution are continuous.

�

At this point the notion of independence turns out to be completely classical.

Let us now consider the convolution since it is the main tool to study random

variables and their distributions.

Definition A.5. Let µ, ν be Borel measures on E. Then, we define their

convolution

∀S ∈ B(E) ∶ (µ ∗ ν)(S) ∶= ˆ
E

µ(S − x)dν(x)
where S − x ∶= {s − x ∈ E; s ∈ S}.

Lemma A.6. Let λ,µ, ν be σ-finite Borel measures on E. Then, the following

are true.

(i) µ ∗ ν = ν ∗ µ.

(ii) λ ∗ (µ + ν) = λ ∗ µ + λ ∗ ν.
(iii) Let α ∶ E2 → E; (x, y) ↦ x + y. Then, µ ∗ ν is the push-forward measure

of µ × ν under α.

(iv) If f ∈ SL1(µ ∗ ν), then
´

E
fdµ ∗ ν =

´

E2 f(x + y)d(µ × ν)(x, y).
(v) Let λ be translation invariant and µ have a density p ∈ SL1(λ,E). Then,

µ ∗ ν has the density h(x) = ´
E
p(x − y)dν(y).

(vi) Let λ be translation invariant, µ have a density p ∈ SL1(λ,E), and ν have

a density q ∈ SL1(λ,E). Then, µ ∗ ν has the density

h(x) = ˆ
E

p(x − y)q(y)dλ(y) = ˆ
E

q(x − y)p(y)dλ(y).
Proof. (i) For S ∈ B(E), we obtain

µ ∗ ν(S) =ˆ
E

µ(S − x)dν(x)
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=

ˆ

E

ˆ

E

1S−x(y)dµ(y)dν(x)
=

ˆ

E

ˆ

E

1S(x + y)dµ(y)dν(x)
=

ˆ

E2

1S(x + y)d(µ × ν)(x, y)
by Fubini’s theorem.

(ii) For S ∈ B(E), we obtain

λ ∗ (µ + ν)(S) =ˆ
E

(µ + ν)(S − x)dλ(x)
=

ˆ

E

µ(S − x)dλ(x) + ˆ
E

ν(S − x)dλ(x)
=λ ∗ µ(S) + λ ∗ ν(S).

(iii) For S ∈ B(E), we obtain

µ ∗ ν(S) =ˆ
E2

1S(x + y)d(µ × ν)(x, y)
=

ˆ

E2

1S ○ αdµ × ν

=

ˆ

E2

1[S]αdµ × ν

=µ × ν([S]α).
(iv) Let f ∈ SL1(µ ∗ ν). Then,

ˆ

E

fdµ ∗ ν =

ˆ

E2

f ○ αdµ × ν =

ˆ

E2

f(x + y)d(µ × ν)(x, y).
(v) For S ∈ B(E), we obtain

µ ∗ ν(S) =ˆ
E

ˆ

E

1S(x + y)dµ(x)dν(y)
=

ˆ

E

ˆ

E

1S(x + y)p(x)dλ(x)dν(y)
=

ˆ

E

ˆ

E

1S(x)p(x − y)dλ(x)dν(y)
=

ˆ

E

ˆ

E

p(x − y)dν(y)1S(x)dλ(x)
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=

ˆ

E

1S(x)h(x)dλ(x)

(vi) Follows directly from (v).

�

Lemma A.7. Let A,B ∈M(µ;E) be independent. Then,

µA+B = µA ∗ µB .

Proof. Let α ∶ E2 → E; (x, y) ↦ x + y. Then, we obtain for every S ∈ B(E)

µA+B(S) =µ ([S](A +B))
=µ ([S]α ○ (A⊕B))
=µ ([[S]α]A⊕B)
=µA⊕B ([S]α)
(∗)
= µA × µB ([S]α)
(†)
= µA ∗ µB (S)

where (∗) uses the definition of independence and (†) is (iii) in Lemma A.6.

�

Definition A.8. Let A ∈ L1(µ;E). Then, we define the expected value E(A)
of A to be

E(A) ∶= ˆ
Ω

Adµ.

Furthermore, we define the variance of A ∈ L2(µ;A) to be

V(A) ∶= E ((A −E(A))2) .
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Note, by Proposition 9.25, we obtain

∀A ∈ L1(µ;E) ∶ E(A) = ˆ
Ω

Adµ =

ˆ

E

xdµA(x)
provided that the identity id ∈ L(E) can be approximated by a net of simple

functions, i.e. id ∈ SM(µA;E).
Lemma A.9. Let A,B ∈ L1(µ;A) independent such that id ∈ SL1(µA;A) ∩

SL1(µB;A) and A2 ∋ (x, y) ↦ xy ∈ A is an element of SL1(µA × µB ;A). Then,

AB ∈ L1(µ;A) and

E(AB) = E(A)E(B).
Proof.

E(A)E(B) =ˆ
Ω

Adµ

ˆ

Ω

Bdµ

=

ˆ

A

xdµA

ˆ

A

ydµB

=

ˆ

A2

xyd(µA × µB)(x, y)
=

ˆ

A2

xyd(µA⊕B)(x, y)
=

ˆ

Ω

ABdµ

=E(AB)
�

Example Let f be a measurable family of m-forms, g a measurable family of

n-form, and f, g independent. Then, we obtain

E (f ∧ g) (v1, . . . , vm+n)
=E ((f ∧ g) (v1, . . . , vm+n))
=E
⎛⎝ 1

m!n!
∑

σ∈Sym(m+n)
sgn(σ)f (vσ(1), . . . , vσ(m)) g (vσ(m+1), . . . , vσ(m+n))⎞⎠
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=
1

m!n!
∑

σ∈Sym(m+n)
sgn(σ)E (f) (vσ(1), . . . , vσ(m))E (g) (vσ(m+1), . . . , vσ(m+n))

= (E (f) ∧E (g)) (v1, . . . , vm+n)
where Sym denotes the symmetric group and sgn(σ) is the sign of the permutation

σ. Here we used that the functions f (vσ(1), . . . , vσ(m)) and g (vσ(m+1), . . . , vσ(m+n))
are K ∈ {R,C} valued and that (Ω,Σ, µ;K) is a Sombrero space, as well as conti-

nuity of point-evaluation.

∎

Observation A.10. Let A,B ∈ L2(µ;A) and a, b ∈ A. Then, the following are

true.

(i) V(A) = E(A2) −E(A)2
(ii) V(aA + b) = V(aA)
(iii) Let Ã ∶= A −E(A) and B̃ ∶= B −E(B). Then,

V(A +B) = V(A) +V(B) + E (ÃB̃ + B̃Ã)
(iv) If A,B are uncorrelated, that is,

E(AB) + E(BA) = E(A)E(B) +E(B)E(A),
then V(A +B) = V(A) +V(B).

Proof. (i)

V(A) =E ((A −E(A))2)
=E (A2

−AE(A) − E(A)A +E(A)2)
=E(A2) −E(AE(A)) −E(E(A)A) + E(E(A)2)
=E(A2) −E(A)2.
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(ii)

V(aA + b)
=E ((aA + b)2) − E(aA + b)2
=E (aAaA) +E(aAb) +E(baA) + b2 − (aE(A) + b)2
=E ((aA)2) + aE(A)b + baE(A) + b2 − (E(aA)2 + aE(A)b + baE(A) + b2)
=E ((aA)2) −E(aA)2
=V(aA)

(iii)

V(A +B)
=E (A2

+AB +BA +B2) − (E(A)2 +E(A)E(B) +E(B)E(A) + E(B)2)
=V(A) +V(B) +E (AB +BA − E(A)E(B) −E(B)E(A))
=V(A) +V(B) +E (AB − E(A)E(B) +BA −E(B)E(A))
=V(A) +V(B) +E (AB − E(A)E(B) −E(A)E(B) +E(A)E(B))
+E (BA − E(B)E(A) −E(B)E(A) +E(B)E(A))
=V(A) +V(B) +E (AB − E(A)B −AE(B) +E(A)E(B))
+E (BA − E(B)A −BE(A) +E(B)E(A))
=V(A) +V(B) +E ((A −E(A))(B −E(B)) + (B −E(B))(A −E(A)))

(iv)

V(A +B)
=E (A2

+AB +BA +B2) − (E(A)2 +E(A)E(B) +E(B)E(A) + E(B)2)
=V(A) +V(B) +E (AB +BA − E(A)E(B) −E(B)E(A))
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=V(A) +V(B) +E(A)E(B) +E(B)E(A) −E(A)E(B) − E(B)E(A)
=V(A) +V(B)

�

Definition A.11. Let A be a ∗-algebra and A ∈ L2(µ;A). Then, we define the

symmetric variance of A to be

Vsym(A) ∶= E ((A −E(A)) (A∗ − E(A∗))) .
Observation A.12. Let A,B ∈ L2(µ;A) and a, b ∈ A. Then, the following are

true.

(i) Vsym(A) = E(AA∗) −E(A)E(A∗)
(ii) Vsym(aA + b) = Vsym(aA) = aVsym(A)a∗
(iii) Let Ã ∶= A −E(A) and B̃ ∶= B −E(B). Then,

Vsym(A +B) =Vsym(A) +Vsym(B) +E (ÃB̃∗ + B̃Ã∗)
(iv) If A,B are skew-uncorrelated, that is,

E(AB∗) +E(BA∗) = E(A)E(B∗) +E(B)E(A∗),
then Vsym(A +B) = Vsym(A) +Vsym(B).

Proof. (i)

Vsym(A) =E ((A − E(A)) (A∗ −E(A∗)))
=E (AA∗ −AE(A∗) −E(A)A∗ + E(A)E(A∗))
=E(AA∗) − E(AE(A∗)) −E(E(A)A∗) +E(E(A)E(A∗))
=E(AA∗) − E(A)E(A∗).
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(ii)

Vsym(aA + b)
=E ((aA + b)(aA + b)∗) − E(aA + b)E((aA + b)∗)
=E (aAA∗a∗) +E(aAb∗) +E(bA∗a∗) + bb∗ − (aE(A) + b)(E(A∗)a∗ + b∗)
=E ((aA)(aA)∗) + aE(A)b∗ + bE(A∗)a∗ + bb∗
− (E(aA)E((aA)∗) + aE(A)b∗ + bE(A∗)a∗ + bb∗)
=E ((aA)(aA)∗) −E(aA)E((aA)∗)
=Vsym(aA)

(iii)

Vsym(A +B)
=E (AA∗ +AB∗ +BA∗ +BB∗)
− (E(A)E(A∗) +E(A)E(B∗) + E(B)E(A∗) +E(B)E(B∗))
=Vsym(A) +Vsym(B) + E (AB∗ +BA∗ −E(A)E(B∗) −E(B)E(A∗))
=Vsym(A) +Vsym(B) + E (AB∗ −E(A)E(B∗) +BA∗ −E(B)E(A∗))
=Vsym(A) +Vsym(B) + E (AB∗ −E(A)E(B∗) −E(A)E(B∗) +E(A)E(B∗))
+E (BA∗ −E(B)E(A∗) − E(B)E(A∗) +E(B)E(A∗))
=Vsym(A) +Vsym(B) + E (AB∗ −E(A)B∗ −AE(B∗) +E(A)E(B∗))
+E (BA∗ −E(B)A∗ −BE(A∗) + E(B)E(A∗))
=Vsym(A) +Vsym(B) + E ((A −E(A))(B∗ −E(B∗)) + (B −E(B))(A∗ −E(A∗)))

(iv)

Vsym(A +B)
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=Vsym(A) +Vsym(B) +E (AB∗ +BA∗ −E(A)E(B∗) −E(B)E(A∗))
=Vsym(A) +Vsym(B) +E (AB∗) + E (BA∗) −E(A)E(B∗) −E(B)E(A∗)
=Vsym(A) +Vsym(B)

�

Definition A.13. Let A,B ∈ L2(µ;A). Then, we define the covariance

cov(A,B) ∶=E ((A −E(A))(B − E(B))) +E ((B −E(B))(A −E(A)))
2

=
E(AB) +E(BA) − E(A)E(B) −E(B)E(A)

2
.

A and B are called uncorrelated if and only if cov(A,B) = 0.
If A is a ∗-algebra, then we also define the symmetric covariance

covsym(A,B) ∶=E ((A − E(A))(B∗ − E(B∗))) +E ((B −E(B))(A∗ −E(A∗)))
2

=
E(AB∗) +E(BA∗) − E(A)E(B∗) −E(B)E(A∗)

2

and A and B are called skew-uncorrelated if and only if covsym(A,B) = 0.
Remark Note that there are other approaches to the covariance on a topological

vector space E (cf. e.g. Definition 2.2.7 in [5]). Let µ be a probability Borel

measure on (E,σ(E,E′)) (σ(E,E′) is the weak topology in E, i.e. the coarsest

topology such that all linear functionals in the topological dual E′ are continuous)

such that E′ ⊆ L2(µ). Then, the mean of µ is defined as an element aµ of (E′)∗
(the algebraic dual of E′) via

∀f ∈ E′ ∶ aµ(f) ∶= ˆ
E

f(x)dµ(x).
Furthermore, we define the covariance operator Rµ by

Rµ ∶ E
′ → (E′)∗; f ↦ ( g ↦ ˆ

E

(f(x) − aµ(f))(g(x) − aµ(g))∗dµ )
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and the covariance of µ is the corresponding quadratic form on E′, i.e.

Cµ ∶ (E′)2 → K; (f, g) ↦ ˆ
E

(f(x) − aµ(f))(g(x) − aµ(g))∗dµ.
However, this means that we will have to work with the distribution of a random

operator rather than the operators themselves. In particular, the assumptions

needed to define these operators are much more technically involved (for instance,

how will one check that E′ ⊆ L2(µA) holds for some A ∈ L1(µ;E)?). Hence, we are

using the notion of covariances which can be defined in algebras rather than the

one coming from topological vector spaces.

∎

With those definitions, we can also write

V(A1 +A2) =V(A1) +V(A2) + 2cov(A1,A2),
Vsym(A1 +A2) =Vsym(A1) +Vsym(A2) + 2covsym(A1,A2).

Since the covariances are bi-linear1, we obtain by induction

V(sym) ( n∑
i=1

Ai) =V(sym) (n−1∑
i=1

Ai) +V(sym) (An) + 2cov(sym) (n−1∑
i=1

Ai,An)
=
n−1

∑
i=1

V(sym) (Ai) + 2 ∑
i<j<n

cov(sym) (Ai,Aj) +V(sym) (An)
+ 2

n−1

∑
i=1

cov(sym) (Ai,An)
=
n

∑
i=1

V(sym) (Ai) + 2∑
i<j

cov(sym) (Ai,Aj)
=

n

∑
i,j=1

cov(sym) (Ai,Aj)
where we used V(sym)(A) = cov(sym)(A,A). We also observe that independent

variables are uncorrelated and skew-uncorrelated (whenever that makes sense).

1For covsym we need to assume (A+B)∗ = A∗ +B∗ to show linearity; in general, for densely

defined A +B (A and B are operators between Hilbert spaces) we only have A∗ +B∗ ⊆ (A +B)∗

- similarly, A∗B∗ ⊆ (BA)∗ - with equality if at least one of A and B are bounded.
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So far, we have seen that many of the numerical characteristics of real proba-

bility theory still exist, though the assumptions on many theorems might be more

restrictive. However, it is still sufficiently nice for us to have a look at some more

interesting theorems.

Proposition A.14. Let E be metrizable and (An)n∈N ∈ M(µ;E)N indepen-

dent. Then,

An → 0 µ-almost everywhere⇔ ∀ι ∈ I ∀k ∈ N ∶ ∑
n∈N

µ([R≥ 1
k

] (pι ○An)) <∞.
Proof. The set Ω0 ∶= {ω ∈ Ω; An(ω) → 0} is measurable (for every choice of

representatives) because

Ω0 ={ω ∈ Ω; ∀ι ∈ I ∀k ∈ N ∃n ∈ N ∀m ∈ N≥n ∶ pι(Am(ω)) ≤ 1

k
}

=⋂
ι∈I
⋂
k∈N
⋃
n∈N

⋂
m∈N≥n

{ω ∈ Ω; pι(Am(ω)) ≤ 1

k
}

which is measurable because I is countable. Hence, Borel-Cantelli2 yields

∀ι ∈ I ∀k ∈ N ∶ ∑
n∈N

µ([R≥ 1
k

] (pι ○An)) <∞
⇔ ∀ι ∈ I ∀k ∈ N ∶ µ

⎛⎝⋂n∈N ⋃
m∈N≥n

{ω ∈ Ω; pι(Am(ω)) ≥ 1

k
}⎞⎠ = 0

⇔ µ
⎛⎝⋃ι∈I ⋃k∈N ⋂n∈N ⋃

m∈N≥n

{ω ∈ Ω; pι(Am(ω)) ≥ 1

k
}⎞⎠ = 0

⇔ µ
⎛⎝⋂ι∈I ⋂k∈N ⋃n∈N ⋂

m∈N≥n

{ω ∈ Ω; pι(Am(ω)) < 1

k
}⎞⎠ = 1

2cf. Theorem 18.9 in [65]

Theorem (Borel-Cantelli). Let (Ω,Σ, µ) be a probability space and (Sj)j∈N ∈ ΣN . Then,

∑
j∈N

µ(Sj) <∞ ⇒ µ
⎛⎜⎝⋂k∈N ⋃

j∈N≥k
Sj

⎞⎟⎠ = 0.

If the sets Sj are pairwise independent, i.e. ∀j, k ∈ N ∶ µ(Sj ∩ Sk) = µ(Sj)µ(Sk), then

∑
j∈N

µ(Sj) =∞ ⇒ µ
⎛⎜⎝⋂k∈N ⋃

j∈N≥k
Sj

⎞⎟⎠ = 1.
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⇔ µ (Ω0) = 1

�

Remark The proof shows that the set Ω0 might not be measurable if E is not

metrizable. Even if it were, as it would be the case choosing the Ai ∈ SM(µ;E),
then the union of uncountably many null sets need not be a null set anymore.

∎

Theorem A.15 (Hájek-Rènyi). Let A be a ∗-algebra of densely defined linear

operators on a Hilbert space H, and A1, . . . ,An ∈ SL2(µ;A) independent. Further-

more, let r1 ≥ r2 ≥ . . . ≥ rn ∈ R>0, ε ∈ R>0, D ∶= ⋂
n
i=1D(A∗n), and

∀i ∈ N≤n ∶ Si ∶=
i

∑
k=1

(Ak − E(Ak))

such that the Si and Ai are uncorrelated and skew-uncorrelated. For ϕ ∈ D and

m ∈ N≤n, let

Ω̂ ∶= {ω ∈ Ω; max
m≤i≤n

ri ∥Si(ω)∗ϕ∥H ≥ ε} .

Then,

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

E (∥(A∗j −E(A∗j ))ϕ∥2H) + n

∑
j=m+1

r2jE (∥(A∗j −E(A∗j ))ϕ∥2H)⎞⎠ .

Proof. Let

Ωi ∶= {ω ∈ Ω; ri ∥Si(ω)∗ϕ∥H ≥ ε}

and

ωi ∶= Ωi ∖
i−1

⋃
j=m

Ωj .
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Then, we have Ω̂ = ⋅⋃nj=m ωj ( ⋅⋃ denotes the disjoint union) and ωj ⊆ Ωj . Let

Z ∶= ∑nj=m(r2j − r2j+1)SjS∗j with rn+1 = 0. Then,

E(Z) = n

∑
i=m

(r2i − r2i+1)Vsym(Si)
=

n

∑
i=m

i

∑
j=1

(r2i − r2i+1)Vsym(Aj)
=

n

∑
i=m

m

∑
j=1

(r2i − r2i+1)Vsym(Aj) + n

∑
i=m

i

∑
j=m+1

(r2i − r2i+1)Vsym(Aj)
=r2m

m

∑
j=1

Vsym(Aj) + n

∑
j=m+1

n

∑
i=j

(r2i − r2i+1)Vsym(Aj)
=r2m

m

∑
j=1

Vsym(Aj) + n

∑
j=m+1

r2jVsym(Aj)
implies

E⟨Zϕ,ϕ⟩H =⟨E(Z)ϕ,ϕ⟩H
=r2m

m

∑
j=1

⟨Vsym(Aj)ϕ,ϕ⟩H + n

∑
j=m+1

r2j ⟨Vsym(Aj)ϕ,ϕ⟩H
=r2m

m

∑
j=1

⟨E ((Aj −E(Aj))(A∗j −E(A∗j )))ϕ,ϕ⟩H
+

n

∑
j=m+1

r2j ⟨E ((Aj −E(Aj))(A∗j −E(A∗j )))ϕ,ϕ⟩H
=r2m

m

∑
j=1

E ⟨(Aj −E(Aj))(A∗j − E(A∗j ))ϕ,ϕ⟩H
+

n

∑
j=m+1

r2jE ⟨(Aj −E(Aj))(A∗j −E(A∗j ))ϕ,ϕ⟩H
=r2m

m

∑
j=1

E (∥(A∗j −E(A∗j ))ϕ∥2H) + n

∑
j=m+1

r2jE (∥(A∗j −E(A∗j ))ϕ∥2H) .
On the other hand, we obtain, since ⟨Zϕ,ϕ⟩H is non-negative,

E⟨Zϕ,ϕ⟩H ≥E ( n

∑
i=m

1ωi
⟨Zϕ,ϕ⟩H)

=
n

∑
i=m

n

∑
j=m

(r2j − r2j+1)E (1ωi
∥S∗j ϕ∥2H)

≥
n

∑
i=m

n

∑
j=i

(r2j − r2j+1)E (1ωi
∥S∗j ϕ∥2H)
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≥
n

∑
i=m

n

∑
j=i

(r2j − r2j+1)ε2
r2i
µ(ωi)

=
n

∑
i=m

ε2µ(ωi)
=ε2µ (Ω̂) ,

i.e.

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

E (∥(A∗j −E(A∗j ))ϕ∥2H) + n

∑
j=m+1

r2jE (∥(A∗j −E(A∗j ))ϕ∥2H)⎞⎠ .
�

Corollary A.16 (Kolmogorov). Let A be a ∗-algebra of densely defined linear

operators on a Hilbert space H, A1, . . . ,An ∈ SL2(µ;A) independent, ε ∈ R>0,

D ∶= ⋂ni=1D(A∗n),
∀i ∈ N≤n ∶ Si ∶=

i

∑
k=1

(Ak − E(Ak))
such that the Si and Ai are uncorrelated and skew-uncorrelated, and ϕ ∈D. Then,

µ({ω ∈ Ω; max
i≤n
∥Si(ω)∗ϕ∥H ≥ ε}) ≤ 1

ε2

n

∑
j=1

E (∥(A∗j −E(A∗j ))ϕ∥2H) .
Corollary A.17 (Chebyshev). Let A be a ∗-algebra of densely defined linear

operators on a Hilbert space H, A ∈ SL2(µ;A), ε ∈ R>0, and ϕ ∈D(A∗). Then,

µ ({ω ∈ Ω; ∥(A(ω)∗ −E(A∗))ϕ∥H ≥ ε}) ≤ 1

ε2
E (∥(A∗ − E(A∗))ϕ∥2H) .

We may also state the Hájek-Rènyi inequality for closed linear relations.

Theorem A.18 (Hájek-Rènyi for relations). Let A be a ∗-algebra of closed

linear relations in a Hilbert space H, and A1, . . . ,An ∈ SL2(µ;A) independent.

Furthermore, let r1 ≥ r2 ≥ . . . ≥ rn ∈ R>0, ε ∈ R>0, D ∶= ⋂
n
i=1D(An ○ A∗n), ϕ ∈

D, and χj , ψij ,Ψij ∈ H such that (ϕ,χj) ∈ A∗j , (χj , ψij) ∈ Ai, (Eχj ,Ψij) ∈ Ai,
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(χj , ψ̂ij) ∈ EAi, and (Eχj , Ψ̂ij) ∈ EAi for every j ∈ N≤n. Let τj ∶= ∑
j
i=1 χi − Eχi,

σj ∶= ∑
j
i=1∑

j
k=1 ψik −Ψik − ψ̂ik + Ψ̂ik, and

∀i ∈ N≤n ∶ Si ∶=
i

∑
k=1

(Ak − E(Ak))
such that the Si and Ai are uncorrelated and skew-uncorrelated, i.e.

Eσj =
j

∑
i=1

E (ψii −Ψii − ψ̂ii + Ψ̂ii) .
For m ∈ N≤n, let

Ω̂ ∶=

⎧⎪⎪⎨⎪⎪⎩ω ∈ Ω; max
m≤i≤n

ri

XXXXXXXXXXX
i

∑
j=1

χj(ω)− EχjXXXXXXXXXXXH ≥ ε
⎫⎪⎪⎬⎪⎪⎭ .

Then,

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

E (∥χj −Eχj∥2H) + n

∑
j=m+1

r2jE (∥χj −Eχj∥2H)⎞⎠ .
Proof. Let

Ωi ∶=

⎧⎪⎪⎨⎪⎪⎩ω ∈ Ω; ri
XXXXXXXXXXX
i

∑
j=1

χj(ω) −EχjXXXXXXXXXXXH ≥ ε
⎫⎪⎪⎬⎪⎪⎭

and

ωi ∶= Ωi ∖
i−1

⋃
j=m

Ωj .

Then, we have Ω̂ = ⋅⋃nj=m ωj ( ⋅⋃ denotes the disjoint union) and ωj ⊆ Ωj . Further-

more, let rn+1 ∶= 0. Then,

r2m

m

∑
j=1

E (∥χj −Eχj∥2H) + n

∑
j=m+1

r2jE (∥χ∗j −Eχj∥2H)
=r2m

m

∑
j=1

E ⟨ψjj −Ψjj − ψ̂jj + Ψ̂jj , ϕ⟩H
+

n

∑
j=m+1

r2jE ⟨ψjj −Ψjj − ψ̂jj + Ψ̂jj , ϕ⟩H
= ⟨r2m m

∑
j=1

E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

+ ⟨ n

∑
j=m+1

r2jE (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H
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= ⟨r2m m

∑
j=1

E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

+ ⟨ n

∑
j=m+1

n

∑
i=j

(r2i − r2i+1)E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

= ⟨ n

∑
i=m

m

∑
j=1

(r2i − r2i+1)E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

+ ⟨ n

∑
i=m

i

∑
j=m+1

(r2i − r2i+1)E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

= ⟨ n

∑
i=m

(r2i − r2i+1) i

∑
j=1

E (ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

=E ⟨ n

∑
i=m

(r2i − r2i+1) i

∑
j=1

(ψjj −Ψjj − ψ̂jj + Ψ̂jj) , ϕ⟩
H

=
n

∑
i=m

(r2i − r2i+1) i

∑
j=1

E ⟨ψjj −Ψjj − ψ̂jj + Ψ̂jj , ϕ⟩H
=

n

∑
i=m

n

∑
j=m

(r2j − r2j+1)E ⟨σi, ϕ⟩H´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

≥
n

∑
i=m

n

∑
j=m

(r2j − r2j+1)E1ωi
⟨σi, ϕ⟩H

= ⟨ n

∑
i=m

n

∑
j=m

(r2j − r2j+1)E (1ωi

i

∑
k=1

i

∑
l=1

ψlk −Ψlk − ψ̂lk + Ψ̂lk) , ϕ⟩
H

=
n

∑
i=m

n

∑
j=m

(r2j − r2j+1) i

∑
k=1

i

∑
l=1

E (1ωi
⟨ψlk −Ψlk − ψ̂lk + Ψ̂lk, ϕ⟩H)

=
n

∑
i=m

n

∑
j=m

(r2j − r2j+1) i

∑
k=1

i

∑
l=1

E (1ωi
⟨χk −Eχk, χl −Eχl⟩H)

=
n

∑
i=m

n

∑
j=m

(r2j − r2j+1)E ⎛⎝1ωi
∥ i

∑
k=1

χk −Eχk∥2
H

⎞⎠
≥

n

∑
i=m

n

∑
j=i

(r2j − r2j+1)E ⎛⎝1ωi
∥ i

∑
k=1

χk − Eχk∥2
H

⎞⎠
≥

n

∑
i=m

n

∑
j=i

(r2j − r2j+1)ε2
r2i
µ(ωi)

=
n

∑
i=m

ε2µ(ωi)
=ε2µ (Ω̂) .

�
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Proposition A.19 (Weak Law of Large Numbers; Strong Operator Topology).

Let A be a ∗-algebra of densely defined operators in a Hilbert space H, (An)n∈N ∈
SL2(µ;A)N skew-uncorrelated, D ∶= ⋂n∈N D(A∗n),

∀n ∈ N ∶ Sn ∶=
1

n

n

∑
k=1

(Ak −E(Ak)),
ϕ ∈D, and 1

n2 ∑
n
j=1 ⟨Vsym(Aj)ϕ,ϕ⟩H → 0. Then,

µ ({ω ∈ Ω; ∥Sn(ω)∗ϕ∥H ≥ ε}) → 0 (n →∞).
Proof. Chebyshev’s inequality yields

µ ({ω ∈ Ω; ∥Sn(ω)∗ϕ∥H ≥ ε}) =µ ({ω ∈ Ω; ∥(Sn(ω)∗ −E(S∗n))ϕ∥H ≥ ε})
≤
1

ε2
E (∥(S∗n − E(S∗n))ϕ∥2H)

=
1

ε2
E (∥S∗nϕ∥2H)

=
1

n2ε2
E
⎛⎝∥

n

∑
k=1

(A∗k −E(A∗k))ϕ∥
2

H

⎞⎠
=

1

n2ε2
E (⟨ n∑

k=1

(A∗k −E(A∗k))ϕ, n∑
k=1

(A∗k − E(A∗k))ϕ⟩
H

)
=

1

n2ε2

n

∑
k=1

⟨Vsym(Ak)ϕ,ϕ⟩H
→0.

�

Note that the strong operator topology refers to convergence of S∗n, i.e. S∗n

converges to zero in measure with respect to the strong operator topology. With

the following lemma we can also formulate the strong law of large numbers in the

strong operator topology.

Lemma A.20. Let (An)n∈N ∈ EN and (tn)n∈N ∈ R>0 such that tn ↘ 0 and

∑n∈N tnAn is Cauchy. Then, tn∑nk=1Ak → 0.



A. PROBABILITY IN CERTAIN ALGEBRAS OF FOURIER INTEGRAL OPERATORS 280

Proof. For n ∈ N0, let Bn ∶= ∑
n
k=1 tkAk. Then, An =

Bn−Bn−1

tn
and

tn

n

∑
k=1

Ak =tn
n

∑
k=1

Bk −Bk−1

tk

=Bn −
n

∑
k=2

Bk−1
tn

tk
+

n−1

∑
k=1

Bk
tn

tk

=Bn −
n−1

∑
k=1

Bk ( tn
tk+1

−
tn

tk
) .

Let ι ∈ I and ε ∈ R>0. Then, there exists n0 ∈ N such that for all m,n ∈ N≥n0

pι(Bm −Bn) < ε
holds. Hence,

pι (Bn − n−1∑
k=1

Bk ( tn
tk+1

−
tn

tk
))

=pι (Bn − n−1∑
k=1

(Bk −Bn)( tn
tk+1

−
tn

tk
) − n−1∑

k=1

Bn ( tn
tk+1

−
tn

tk
))

=pι (Bn (1 − n−1∑
k=1

( tn
tk+1

−
tn

tk
)) − n−1∑

k=1

(Bk −Bn)( tn
tk+1

−
tn

tk
))

=pι
⎛⎝Bn tnt1 −

n0−1

∑
k=1

(Bk −Bn)( tn
tk+1

−
tn

tk
) − n−1

∑
k=n0

(Bk −Bn)( tn
tk+1

−
tn

tk
)⎞⎠

≤pι(Bn) tn
t1
+

n0−1

∑
k=1

pι(Bk −Bn)( tn
tk+1

−
tn

tk
) + n−1

∑
k=n0

pι(Bk −Bn)( tn
tk+1

−
tn

tk
)

<pι(Bn) tn
t1
+ tn

n0−1

∑
k=1

pι(Bk −Bn)( 1

tk+1
−

1

tk
) + εtn n−1

∑
k=n0

( 1

tk+1
−

1

tk
)

≤pι(Bn) tn
t1
+ tn

n0−1

∑
k=1

(pι(Bk −Bn0
) + pι(Bn0

−Bn))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2maxk≤n0

pι(Bk−Bn0
)

( 1

tk+1
−

1

tk
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 (n→∞)

+ ε(1 − tn

tn0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ε (n→∞)

holds. Furthermore,

∃N ∈ N ∀m,n ∈ N≥N ∶ pι
⎛⎝

n

∑
j=m

tjAj
⎞⎠ < ε

implies

pι(Bn) tn
t1
=
tn

t1
pι ( n

∑
k=1

tkAk)
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≤
tn

t1

⎛⎝pι (BN) + pι ⎛⎝
n

∑
j=N+1

tjAj
⎞⎠⎞⎠

<
tn

t1
(pι (BN) + ε)

→0 (n→∞),
i.e.

lim
n→∞

pι (tn n

∑
k=1

Ak) = lim
n→∞

pι (Bn − n−1∑
k=1

Bk ( tn
tk+1

−
tn

tk
)) < ε.

�

Theorem A.21 (Strong Law of Large Numbers; Strong Operator Topology).

Let A be a ∗-algebra of densely defined operators in a Hilbert space H, (An)n∈N ∈
SL2(µ;A)N independent, D ∶= ⋂n∈N D(A∗n), ∑n∈N Vsym(An)

n2 Cauchy, ϕ ∈D, and

∀n ∈ N ∶ Sn ∶=
1

n

n

∑
k=1

(Ak −E(Ak))
such that the Sn and An are uncorrelated and skew-uncorrelated. Then,

∥S∗nϕ∥H → 0 µ-almost everywhere (n→∞).
Proof. Since ∑n∈N

Vsym(An)
n2 is Cauchy, we obtain

1

n2

n

∑
k=1

Vsym(Ak)→ 0.

Thus, for ε ∈ R>0,

µ
⎛⎝
⎧⎪⎪⎨⎪⎪⎩ω ∈ Ω; sup

i∈N≥m
∥Si(ω)∗ϕ∥H ≥ ε

⎫⎪⎪⎬⎪⎪⎭
⎞⎠

=µ({ω ∈ Ω; lim
n→∞

max
m≤i≤n

∥Si(ω)∗ϕ∥H ≥ ε})
= lim
n→∞

µ({ω ∈ Ω; max
m≤i≤n

∥Si(ω)∗ϕ∥H ≥ ε})
≤ lim
n→∞

1

ε2

⎛⎜⎝
1

m2

m

∑
j=1

E (∥(A∗j −E(A∗j ))ϕ∥2H) + n

∑
j=m+1

E (∥(A∗j −E(A∗j ))ϕ∥2H)
j2

⎞⎟⎠
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=
1

ε2

⎛⎝⟨ 1

m2

m

∑
j=1

Vsym(Aj)ϕ,ϕ⟩
H

+ ⟨ ∑
j∈N>m

Vsym(Aj)
j2

ϕ,ϕ⟩
H

⎞⎠
holds3 and implies

lim
m→∞

µ
⎛⎝
⎧⎪⎪⎨⎪⎪⎩ω ∈ Ω; sup

i∈N≥m
∥Si(ω)∗ϕ∥H ≥ ε

⎫⎪⎪⎬⎪⎪⎭
⎞⎠ = 0.

Hence,

0 = lim
m→∞

µ
⎛⎝
⎧⎪⎪⎨⎪⎪⎩ω ∈ Ω; sup

i∈N≥m
∥Si(ω)∗ϕ∥H ≥ ε

⎫⎪⎪⎬⎪⎪⎭
⎞⎠

= lim
m→∞

µ
⎛⎝ ⋃i∈N≥m {ω ∈ Ω; ∥Si(ω)

∗ϕ∥H ≥ ε}⎞⎠
=µ
⎛⎝ ⋂m∈N ⋃i∈N≥m {ω ∈ Ω; ∥Si(ω)

∗ϕ∥H ≥ ε}⎞⎠
=µ ({ω ∈ Ω; ∥Si(ω)∗ϕ∥H ≥ ε infinitely often})

implies

µ ({ω ∈ Ω; ∥Si(ω)∗ϕ∥H < ε at most finitely often}) = 1,
i.e. (∥S∗nϕ∥H)n∈N converges to zero µ-almost everywhere.

�

Example Since L2 spaces over separable measure spaces are separable, the gener-

alized Sombrero Lemma 9.8 yields that (Ω,Σ, µ;L2) is a Sombrero space for every

Radon measure space (Ω,Σ, µ) and every algebra of Fourier Integral Operators

associated with a canonically idempotent canonical relation has the strong law of

large numbers with respect to the strong operator topology in a separable L2.

∎

3Recall that measures are continuous from below, i.e. (Sj)j∈N ∈ ΣN with Sj ↗∶ S ∈ Σ implies

µ(S) = limn→∞ µ(Sj); cf. Theorem 4.4 in [65]. Similarly, all measures are continuous from above.
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If we want a to obtain a weaker formulation of the law of large numbers,

then we will need the following weaker Hájek-Rènyi inequality which is simply the

Hájek-Rènyi inequality for real random variables.

Theorem A.22 (Hájek-Rènyi; classical). Let A1, . . . ,An ∈ L2(µ;A) indepen-

dent, r1 ≥ r2 ≥ . . . ≥ rn ∈ R>0, ε ∈ R>0, and

∀i ∈ N≤n ∶ Si ∶=
i

∑
k=1

(Ak −E(Ak)).
For ϕ ∈ L(A,K) with K ∈ {R,C} and m ∈ N≤n, let

Ω̂ ∶= {ω ∈ Ω; max
m≤i≤n

ri ∣ϕ (Si(ω))∣ ≥ ε} .
Then,

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

Vsym (ϕ ○Aj) + n

∑
j=m+1

r2jVsym (ϕ ○Aj)⎞⎠ .

In particular, if ϕ is a character,4 then we obtain

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

ϕ (Vsym (Aj)) + n

∑
j=m+1

r2jϕ (Vsym (Aj))⎞⎠ .
Proof.

µ (Ω̂) ≤ 1

ε2

⎛⎝r2m
m

∑
j=1

Vsym (ϕ ○Aj) + n

∑
j=m+1

r2jVsym (ϕ ○Aj)⎞⎠ .
is simply the Hájek-Rènyi inequality over K (the statement follows from the Hájek-

Rènyi inequality above with A = K and noting that the ϕ ○ Aj ∈ L2(µ) = SL2(µ)
are independent, thus, (skew-)uncorrelated). If ϕ is a character, then

Vsym(ϕ ○A) =E ((ϕ ○A) (ϕ ○A)∗) − (E (ϕ ○A)) (E (ϕ ○A))∗
=E (ϕ ○ (AA∗)) − ϕ (EA)ϕ (EA)∗

4ϕ ∈ L(A,K) is called a character if and only if ϕ is a homomorphism, i.e. ∀A,B ∈ A ∶
ϕ(AB) = ϕ(A)ϕ(B) ∧ ϕ(A∗) = ϕ(A)∗.



A. PROBABILITY IN CERTAIN ALGEBRAS OF FOURIER INTEGRAL OPERATORS 284

=ϕ (E (AA∗)) − ϕ (EAEA∗)
=ϕ(Vsym(A))

shows the assertion.

�

Corollary A.23 (Kolmogorov; classical). Let A1, . . . ,An ∈ L2(µ;A) indepen-

dent, ε ∈ R>0,

∀i ∈ N≤n ∶ Si ∶=
i

∑
k=1

(Ak −E(Ak)),
and ϕ ∈ L(A,K) with K ∈ {R,C}. Then,

µ({ω ∈ Ω; max
i≤n
∣ϕ (Si(ω))∣ ≥ ε}) ≤ 1

ε2

n

∑
j=1

Vsym (ϕ ○Aj) .

In particular, if ϕ is a character, then we obtain

µ({ω ∈ Ω; max
i≤n
∣ϕ (Si(ω))∣ ≥ ε}) ≤ 1

ε2

n

∑
j=1

ϕ (Vsym (Aj)) .
Corollary A.24 (Chebyshev; classical). Let A ∈ L2(µ;A), ε ∈ R>0, and ϕ ∈

L(A,K) with K ∈ {R,C}. Then,

µ ({ω ∈ Ω; ∣ϕ(A(ω) −E(A))∣ ≥ ε}) ≤ 1

ε2
Vsym (ϕ ○A) .

In particular, if ϕ is a character, then we obtain

µ ({ω ∈ Ω; ∣ϕ(A(ω) − E(A))∣ ≥ ε}) ≤ 1

ε2
ϕ (Vsym (A)) .

Corollary A.25 (Strong Law of Large Numbers; weak topology). Let ϕ ∈

L(A,K) with K ∈ {R,C}, (An)n∈N ∈ L2(µ;A)N independent,

∀n ∈ N ∶ Sn ∶=
1

n

n

∑
k=1

(Ak −E(Ak)),
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∑n∈N
Vsym(ϕ○An)

n2 Cauchy. Then,

ϕ ○ Sn → 0 µ-almost everywhere (n →∞).

Considering convergent sums 1
n ∑

n
k=1Ak, we obtain the notion of tail events.

Definition A.26. Let (An)n∈N ∈M(µ;E)N . S ∈ Σ is called a tail event if and

only if S ∈ σ ((An)n∈N≥m) for all m ∈ N where σ ((An)n∈N≥m) denotes the σ-algebra

generated by ⋃n∈N≥m{[S′]An; S′ ∈ B(E)}.

Remark Note that S ∈ σ ((An)n∈N≥m) and (An)n∈N independent imply indepen-

dence of S and σ(A1, . . . ,Am−1). S being independent of σ(A1, . . . ,An) for all n ∈ N

implies, thus, independence of S and σ ((An)n∈N).
∎

Proposition A.27 (Kolmogorov’s 0-1-Law). Let (An)n∈N ∈ M(µ;E)N be in-

dependent and S ∈ Σ a tail event. Then, µ(S) ∈ {0,1}.

Proof. Since S ∈ σ ((An)n∈N≥m) for all m ∈ N, we obtain that S is independent

of all σ(A1, . . . ,An), i.e. independent of σ ((An)n∈N). However, S ∈ σ ((An)n∈N).
Hence, S is independent of itself, that is,

µ(S) = µ(S ∩ S) = µ(S)µ(S)
which implies µ(S) ∈ {0,1}.

�

Proposition A.28. Let (An)n∈N ∈ M(µ;E)N be independent and identically

distributed, B ∈ M(µ;E), and 1
n ∑

n
k=1Ak → B µ-almost everywhere. Then, ∀n ∈

N ∶ An ∈ L1(µ;E) and B ∈ L1(µ;E).
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If (An)n∈N ∈ M(µ;E)N furthermore satisfies the weak law of large numbers

in E, i.e. 1
n ∑

n
k=1 (Ak − E(Ak)) → 0 in measure, and id ∈ L(E) ∩ SM(µAn

;E) for

every n ∈ N, then ∀n ∈ N ∶ B = E(An) µ-almost everywhere.

Proof. Let

Sn ∶=
1

n

n

∑
k=1

Ak

and, for ι ∈ I and k,n ∈ N,

Ωk,n,ι ∶= {ω ∈ Ω; pι (Ak(ω)) ≥ n} .

Then, ∀k,m,n ∈ N ∀ι ∈ I ∶

µ (Ωk,n,ι) =µ ([[R≥n]pι]Ak) = µAk
([R≥n]pι) = µAm

([R≥n] pι) = µ (Ωm,n,ι) .

Hence, 1
n
An = Sn −

n−1
n
Sn−1 → 0 µ-almost everywhere implies that the set

{ω ∈ Ω; ∃j ∈ NN
∀k ∈ N ∶ jk < jk+1 ∧ ω ∈ Ωjk,jk,ι}

must have probability zero, i.e.

µ
⎛⎝⋂k∈N ⋃n∈N≥k Ωn,n,ι

⎞⎠ = 0.

Thus, by Borel-Cantelli,

∀k ∈ N ∀ι ∈ I ∶ ∑
n∈N

µ (Ωk,n,ι) = ∑
n∈N

µ (Ωn,n,ι) <∞.

However, for real random variables X the inequality

∑
n∈N

µ ([R≥n] ∣X ∣) ≤ E(∣X ∣) ≤ 1 + ∑
n∈N

µ ([R≥n] ∣X ∣)
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holds,5 which implies

∀k ∈ N ∀ι ∈ I ∶ E(pι ○Ak) ≤ 1 + ∑
n∈N

µ (Ωk,n,ι) <∞,

i.e. Ak ∈ L1(µ;E). Furthermore,

E (pι ○B) ≤ lim
n→∞

1

n

n

∑
k=1

E (pι ○Ak) ≤ max
k∈N≤n

E (pι ○Ak) ≤ 1 + ∑
n∈N

µ (Ωn,n,ι) <∞

shows B ∈ L1(µ;E).
Note that (An)n∈N ∈M(µ;E)N being identically distributed means ∀k,n ∈ N ∶

µAk
= µAn

which implies

∀k,n ∈ N ∶ E(Ak) = ˆ
E

xdµAk
=

ˆ

E

xdµAn
= E(An)

provided that the An are integrable.

5Proof. Without loss of generality, let X ≥ 0. Then, we obtain Ω = ⋅⋃n∈N
0
An with An ∶=

[[n,n + 1)]X, and EX = ∑n∈N
0

´

An
Xdµ implies

∑
n∈N

0

nµ(An) ≤ EX ≤ ∑
n∈N

0

(n + 1)µ(An) = 1 + ∑
n∈N

0

nµ(An).

Let Bn ∶= [R≥n]X. Then, An = Bn ∖Bn+1 and ∀N ∈ N ∶

N

∑
n=1

nµ(An) =
N

∑
n=1

nµ(Bn) −
N

∑
n=1

nµ(Bn+1) =
N

∑
n=1

nµ(Bn) −
N

∑
n=1

(n − 1)µ(Bn) −Nµ(BN+1)

=

N

∑
n=1

µ(Bn) −Nµ(BN+1)

If EX <∞, then µ(⋂n∈N
0
Bn) = 0, i.e.

0 ≤ Nµ(BN+1) ≤
ˆ

BN+1

Xdµ→ 0

implies ∑n∈N
0
nµ(An) = ∑n∈N µ(Bn), that is, the assertion. If EX =∞, then ∑n∈N

0
nµ(An) =∞

implies ∑N
n=1 µ(Bn) and, hence, the assertion.

�
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If 1
n ∑

n
k=1 (Ak − E(Ak))→ 0 in measure, then

B − E(An) =B − 1

n

n

∑
k=1

E(An)
=B −

1

n

n

∑
k=1

E(Ak)
=B −

1

n

n

∑
k=1

Ak

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 µ-a.e.

+
1

n

n

∑
k=1

(Ak −E(Ak))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0 in measure

→0 in measure.

In other words, B = E(An).
�

Finally, we will define characteristic functions. These will lead directly to a

central limit theorem.

Definition A.29. Let A ∈M(µ;E). Then, we call

charA ∶ L(E,R)→ C; t↦ E (exp○ (it) ○A)
the characteristic function of A.

Corollary A.30. Let A ∈M(µ;E). Then, the following are true.

(i) charA(0) = 1
(ii) ∀t ∈ L(E,R) ∶ charA(−t) = charA(t)∗
(iii) ∣charA(t)∣ ≤ 1

Remark Note that for algebras AΓ the functions t1 = R tr(T ⋅), t2 = R tr(T ∗⋅),
t3 = I tr(T ⋅), and t4 = I tr(T ∗⋅) for smoothing T are interesting. For non-smoothing

T we may also think of choosing a different trace function tr.

∎
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Observation A.31. Let A,B ∈M(µ;E) be independent. Then,

∀t ∈ L(E,R) ∶ charA+B(t) = charA(t) charB(t).
Proof.

charA+B(t) =E (exp (it ○ (A +B)))
=E (exp (it ○A + it ○B))
=E (exp (it ○A) exp (it ○B))
=E (exp (it ○A))E (exp (it ○B))
= charA(t) charB(t)

�

Definition A.32. A ∈ M(µ;E) is called Gaussian if and only if

∀t ∈ L(E,R) ∖ {0} ∶ t ○A is normally distributed.

A is called degenerate Gaussian if and only if there exists a subspace F ⊊ E such

that F ≠ {0}, A takes µ-almost every value in F , and A ∈M(µ;F ) is Gaussian.

Thus, for A ∈ L1(µ;E) Gaussian, we obtain E(t ○ A) = t(E(A)) in the Pettis

sense and, using α ∈ R and

E (exp (iαt ○A)) = exp(iαE(t ○A) − α2V(t ○A)
2

)
= exp(iαtEA − V(αt ○A)

2
) ,

the following statement (note that V(t ○A) = RµA
(t)(t) in the general covariance

of topological vector spaces sense).

Lemma A.33. Let A ∈ L1(µ;E). Then, the following are equivalent.

(i) A is Gaussian.
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(ii) ∀t1, t2 ∈ L(E,R) ∀α ∈ R ∶

E (exp (i(αt1 + t2) ○A)) = exp(i(αt1 + t2)EA − V((αt1 + t2) ○A)
2

) .

(iii) ∀t ∈ L(E,R) ∶ E (exp (it ○A)) = exp(itEA − V(t○A)
2
).

Remark More generally, we can define a measure µ on E to be Gaussian if and

only if for every f ∈ E′ the push-forward µf is Gaussian. We can furthermore define

the characteristic function of a measure to be

char(µ) ∶= ( L(E,R) ∋ f ↦ ˆ
E

exp (if(x))dµ(x) ∈ C) .

In that setting, it can be shown that a measure µ on a locally convex space E is

Gaussian if and only if there exists L ∈ L(L(E,R),R) and a symmetric bilinear

form B on L(E,R) such that f ↦ B(f, f) is non-negative and

char(µ)(f) = exp(iL(f)− 1

2
B(f, f)) ;

cf. e.g. Theorem 2.2.4 in [5]. In fact, L(f) = ´
E
fdµ and B(f, g) = ´

E
(f −L(f))(g−

L(g))dµ, that is, in the case of a random variable A, we have L(f) = E(f ○A) and

B(f, g) = cov(f ○A,g ○A), i.e. B(f, f) = V(f ○A) and L = E(A) in the Pettis sense.

It follows directly ([5] Corollary 2.2.6) that the product µ1 × µ2 of Gaussian

measures and the convolution µ1 ∗ µ2 are Gaussian, as well.

∎

With that prelude, we can state a central limit theorem which follows directly from

Lindeberg’s central limit theorem for real random variables.

Theorem A.34 (Central Limit Theorem). Let (Ak)k∈N ∈ L2(µ;E)N be inde-

pendent with ∀k ∈ N ∶ EAk = 0 such that A ∶= ∑k∈N Ak converges in L2(µ;E).
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Furthermore, let ∀k ∈ N ∶ V(t○Ak) > 0, sn ∶=√∑nk=1 V(t ○Ak) →∶ s ∈ R>0 (n→∞),
and let the Lindeberg condition

∀ε ∈ R>0 ∶ lim
n→∞

1

s2n

n

∑
j=1

ˆ

{x∈R; ∣x∣>εsn}
x2dµt○Aj

(x) = 0
hold for every t ∈ L(E,R) ∖ {0}. Then, A is Gaussian.

Proof. Since sn and∑nk=1Ak are convergent, we obtain ∑
n
k=1Ak

sn
→ 1

s
A (n→∞)

and, hence,

∑nk=1 t ○Ak
sn

→
1

s
t ○A (n→∞).

Thus, Lindeberg’s Central Limit Theorem (cf. e.g. Theorem VIII.4.3 in [22])

implies that 1
s
t ○A is Gaussian which directly implies the assertion.

�

The central limit theorem for independent and identically distributed is a lot

more involved. However, there are theorems in that direction like the following

lemma (Lemma 7.6.9 in [5]).

Lemma A.35. Let µ be a probability Radon measure on E with mean zero and

the sequence (µn)n∈N defined by µ1 ∶= µ and ∀n ∈ N ∶ µn+1 ∶= µ ∗ µn uniformly

tight, that is, ∀ε ∈ R>0 ∃K ⊆compact E ∀n ∈ N ∶ µn(E ∖K) < ε. Then, µn converges

weakly to a Gaussian Radon measure.

The glaring problem, however, is that we do not know whether or not there

exists a random variable A satisfying µ∑n
k=1Ak

= µn ⇀ µA with (Ak)k∈N independent

and identically distributed such that (µk)k∈N is uniformly tight, that is, whether or

not the limit measure has a density; hence, raising the question whether the space

or algebra at hand has the Radon-Nikodým property.



APPENDIX B

The gap topology and generalized convergence

In this appendix, we want to recall a few facts about the gap-topology. We will

closely follow chapter IV in [44].

Definition B.1. Let E be a Banach space and A,B ⊆ E (non-empty) closed

linear subspaces. Then, we define

δ(A,B) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 , A = {0}
sup{distE(u,B); u ∈ A ∩ ∂BE} , A ≠ {0}

and

δ̂(A,B) ∶=max{δ(A,B), δ(B,A)}.
δ̂ is called the gap between A and B.

Corollary B.2. Let E be a Banach space and A,B ⊆ E (non-empty) closed

linear subspaces. Then, the following are true.

(i) δ(A,B) = 0 ⇔ A ⊆ B

(ii) δ̂(A,B) = 0 ⇔ A = B

(iii) δ̂(A,B) = δ̂(B,A)
(iv) δ(A,B) ∈ [0,1]
(v) δ̂(A,B) ∈ [0,1]

In other words, δ̂ is a semi-metric. Unfortunately, δ̂ does not satisfy the triangle

inequality (in general). However, if E is a Hilbert space, then δ̂ is a metric; in fact,

292
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it is a metric that is nicer to work with than the metric we are about to define since

it satisfies

δ̂(A,B) = ∥prA −prB∥L(H)
where prA and prB are the orthogonal projections onto A and B respectively (cf.

footnote 1 p.198 in [44]). In order to obtain a metric in the general case, we will

use the following definition.

Definition B.3. Let E be a Banach space and A,B ⊆ E (non-empty) closed

linear subspaces. Then, we define

d(A,B) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , A = {0}
2 , A ≠ {0} ∧ B = {0}
sup{distE(u,B ∩ ∂BE); u ∈ A ∩ ∂BE} , A ≠ {0} ∧ B ≠ {0}

and

d̂(A,B) ∶=max{d(A,B), d(B,A)}.

Theorem B.4. Let E be a Banach space, A,B,C ⊆ E (non-empty) closed

linear subspaces, and A⊥, B⊥, C⊥ their annihilators, i.e.

A⊥ ∶= {ϕ ∈ E′; ∀a ∈ A ∶ ϕ(a) = 0}.
Then, the following are true.

(i) d(A,B) = 0 ⇔ A ⊆ B

(ii) d̂(A,B) = 0 ⇔ A = B

(iii) d̂(A,B) = d̂(B,A)
(iv) d(A,B) ∈ [0,2]
(v) d̂(A,B) ∈ [0,2]
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(vi) d(A,C) ≤ d(A,B) + d(B,C)
(vii) d̂(A,C) ≤ d̂(A,B) + d̂(B,C)
(viii) δ(A,B) ≤ d(A,B) ≤ 2δ(A,B)
(ix) δ̂(A,B) ≤ d̂(A,B) ≤ 2δ̂(A,B)
(x) δ(A,B) < 1 ⇒ dimA ≤ dimB

(xi) δ̂(A,B) < 1 ⇒ dimA = dimB

(xii) δ(A,B) = δ(B⊥,A⊥)
(xiii) δ̂(A,B) = δ̂(A⊥,B⊥)

Proof. (i-v) are trivial.

“(vi)” If {0} ∈ {A,B,C}, then the assertion is trivial. Hence, let {0} ∉
{A,B,C}. Then,

∀v ∈ B ∩ ∂BE ∶ d(A,C) = sup{distE(u,C ∩ ∂BE); u ∈ A ∩ ∂BE}
= sup
u∈A∩∂BE

inf
w∈C∩∂BE

distE(u,w)
≤ sup
u∈A∩∂BE

inf
w∈C∩∂BE

(distE(u, v) + distE(v,w))
= sup
u∈A∩∂BE

distE(u, v) + inf
w∈C∩∂BE

distE(v,w)
≤ sup
u∈A∩∂BE

distE(u, v) + sup
v′∈B∩∂BE

inf
w∈C∩∂BE

distE(v′,w)
= sup
u∈A∩∂BE

distE(u, v) + d(B,C)
implies

d(A,C) ≤ sup
u∈A∩∂BE

inf
v∈B∩∂BE

distE(u, v) + d(B,C) = d(A,B) + d(B,C).

“(vii)” Using ∀x, y ∈ R ∶ ∣x∣ − ∣y∣ ≤ ∣x + y∣ yields

d̂(A,C) =max{d(A,C), d(C,A)}
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≤max{d(A,B) + d(B,C), d(C,B) + d(B,A)}
≤max{d(A,B), d(B,A)} +max{d(B,C), d(C,B)}
=d̂(A,B) + d̂(B,C).

“(viii)” δ(A,B) ≤ d(A,B) is trivial. For d(A,B) ≤ 2δ(A,B) it suffices to

assume that B ≠ {0}. Let u ∈ A ∩ ∂BE and ε ∈ R>0. Then, there exists v ∈ B ∖ {0}
such that distE(u, v) ≤ distE(u,B) + ε. Then, we obtain

distE(u,B ∩ ∂BE) ≤∥u − v∥v∥E ∥E
≤ ∥u − v∥E + ∥v − v∥v∥E ∥E
= ∥u − v∥E + ∣∥v∥E − 1∣ ∥ v∥v∥E ∥E
= ∥u − v∥E + ∣∥v∥E − ∥u∥E ∣
≤ ∥u − v∥E + ∥v − u∥E
<2distE(u,B) + 2ε.

Since ε was arbitrary, we obtain d(A,B) ≤ 2δ(A,B).
“(ix)”

δ̂(A,B) =max{δ(A,B), δ(B,A)} ≤max{d(A,B), d(B,A)} = d̂(A,B)
≤max{2δ(A,B),2δ(B,A)} = 2δ̂(A,B).

“(x-xi)” Corollary IV §2.6 in [44]

“(xii-xiii)” Theorem IV §2.9 in [44]

�
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Definition B.5. Let E be a Banach space. Then, we call

CLR(E) ∶= {A ⊆ E; A is a (non-empty) closed linear space}
endowed with d̂ the space of closed linear relation.

Convergence in CLR is called gap-convergence, δ̂-convergence, or convergence

in the generalized sense.

Let F be another Banach space. Then, we will also write CLR(E,F ) ∶=
CLR(E ⊕ F ).

Furthermore, we will define the set of closed linear operators CLO(E,F ) as

the set of all right-unique closed linear relations, i.e.

CLO(E,F ) ∶= {A ∈ CLR(E,F ); ∀(x, y), (x, z) ∈ A ∶ y = z} ,
endowed with the topology induced by CLR(E,F ).
Remark As remarked in Remark IV §2.1 in [44], it can be shown that CLR(E)
is a complete metric space. However, for most applications, we are interested in

CLO(E,F ) which, in general, is not complete. To see that, we may choose E = F

and consider the sequence (n id)n∈N ∈ L(E)N . Then, we obtain ∀x ∈ E ∶ (n−1x,x) ∈
n id, i.e. {0} ×E ⊆ limn→∞ n id; but that is not a closed linear operator.

In fact, we can easily picture what is happening here.
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Just as the sequence of linear operators (x ↦ n−1x)n∈N converges to zero in d̂,

the sequence (x ↦ nx)n∈N converges to the relation {0} ×E because everything is

completely symmetrical.

∎

Let us now state a few important theorems regarding CLO(E,F ).
Theorem B.6. Let T ∈ L(E,F ) and S ∈ CLO(E,F ) such that δ̂(S,T ) ≤√

1 + ∥T ∥2L(E,F ). Then, S ∈ L(E,F ) and

∥S − T ∥L(E,F ) ≤ (1 + ∥T ∥2L(E,F )) δ(S,T )
1 −
√

1 + ∥T ∥2L(E,F )δ(S,T ) .
Proof. Theorem IV §2.13 in [44].

�

Theorem B.7. Let T ∈ CLO(E,F ) and A T -bounded with relative bound less

than 1, i.e. [F ]T ⊆ [F ]A and

∀x ∈ [F ]T ∶ ∥Ax∥F ≤ a ∥x∥E + b ∥Tx∥F
with b < 1. Then, S ∶= T +A ∈ CLO(E,F ) with

δ̂(S,T ) ≤ (1 − b)−1√a2 + b2.
In particular, if A ∈ L(E,F ), then

δ̂(S,T ) ≤ ∥A∥L(E,F ) .
Proof. Theorem IV §2.14 in [44].

�

Theorem B.8. Let S,T ∈ CLO(E,F ) and A ∈ L(E,F ). Then,

δ̂(S +A,T +A) ≤ 2 (1 + ∥A∥2L(E,F )) δ̂(S,T ).
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Proof. Theorem IV §2.17 in [44].

�

Theorem B.9. Let S,T ∈ CLO(E,F ) be densely defined. Then,

δ(S,T ) = δ(T ∗, S∗)
and

δ̂(S,T ) = δ̂(T ∗, S∗).

Proof. Theorem IV §2.18 in [44].

�

Theorem B.10. Let T ∈ CLO(E,F ). Then, the following are true.

(i) T is bounded in the sense ∃c ∈ R>0 ∀x ∈ [F ]T ∶ ∥Tx∥F ≤ c ∥x∥E if and

only if δ(T,0) < 1.
(ii) T ∈ L(E,F ) ⇔ δ̂(T,0) < 1.

Proof. Problem IV §2.19 in [44].

�

Theorem B.11. Let S,T ∈ CLO(E,F ) be invertible. Then,

δ(S,T ) = δ(S−1, T −1)
and

δ̂(S,T ) = δ̂(S−1, T −1).

Proof. Problem IV §2.20 in [44].

�
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Theorem B.12. Let S,T ∈ CLO(E,F ), T boundedly invertible, and

δ̂(S,T ) <√1 + ∥T −1∥2L(E,F ).
Then, S is boundedly invertible.

Proof. Theorem IV §2.21 in [44].

�

Theorem B.13. Let T ∈ CLO(E,F ) and (Tn)n∈N ∈ CLO(E,F )N .

(i) Let T ∈ L(E,F ). Then, Tn → T in the generalized sense if and only if

∃N ∈ N ∀n ∈ N≥N ∶ Tn ∈ L(E,F ) and ∥Tn − T ∥L(E,F ) → 0.

(ii) Let T be invertible with T −1 ∈ L(F,E). Then, Tn → T in the generalized

sense if and only if ∃N ∈ N ∀n ∈ N≥N ∶ Tn is invertible with T −1n ∈ L(F,E)
and ∥T −1n − T −1∥L(F,E) → 0.

(iii) Let Tn → T in the generalized sense and A ∈ L(E,F ). Then, Tn+A→ T+A

in the generalized sense.

(iv) Let the Tn and T be densely defined. Then, Tn → T in the generalized

sense if and only if T ∗n → T ∗ in the generalized sense.

Proof. Theorem IV §2.23 in [44].

�

Theorem B.14. Let T ∈ CLO(E,F ) and (An)n∈N ∈ CLO(E,F )N such that

∀n ∈ N ∶ [F ]T ⊆ [F ]An and

∀n ∈ N ∃an, bn ∈ R>0 ∀x ∈ [F ]T ∶ ∥Anx∥F ≤ an ∥x∥E + bn ∥Tx∥F .
If an → 0 and bn → 0, then ∃N ∈ N n ∈ N≥N ∶ T +An ∈ CLO(E,F ) and T +An → T

in the generalized sense.
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Proof. Theorem IV §2.24 in [44].

�

Theorem B.15. Let T ∈ CLO(E,E) and (Tn)n∈N ∈ CLO(E,E)N such that

Tn → T in the generalized sense. If all Tn have compact resolvent and T has non-

empty resolvent set, then T has compact resolvent.

Proof. Theorem IV §2.26 in [44].

�

Theorem B.16. Let G be another Banach space, (Tn)n∈N
0
∈ CLO(E,F )N0 ,

(Un)n∈N
0
∈ L(G,E)N0 , and (Vn)n∈N

0
∈ L(G,F )N0 , such that ∀n ∈ N0 ∶ Un∣[F ]Tn

G is

a bijection, ∀n ∈ N0 ∶ TnUn = Vn, ∥Un −U0∥L(G,E) → 0, and ∥Vn − V0∥L(G,F ) → 0.

Then, Tn → T0 in the generalized sense.

Proof. Theorem IV §2.29 in [44].

�

Having stated the most important properties of the gap topology and general-

ized convergence, we will now continue with the more important features regarding

this thesis. In chapter 11, the following result is very important (cf. Lemma 6.1.1

in [76]).

Lemma B.17. Let H be Hilbert space, and A,B ⊆ H non-empty closed linear

subspaces with δ̂(A,B) < 1
3
. Then,

prA∣AB ∶ B → A

is an isomorphism. Furthermore,

Bδ̂ (A, 13) = {C ∈ CLR(H,H); δ̂(A,C) < 1

3
} ∋ C ↦ (prA∣AC)−1 ∈ L(A,H)

is continuous in δ̂ and norm.
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Proof. From

1 − (prB −prA)(prB −prB⊥) =1 − prB +prB prB⊥ +prA prB −prA prB⊥

=1 − prB +prA prB −prA prB⊥

=prB⊥ +prA prB −prA prB⊥

=prA⊥ prB⊥ +prA prB,

∥prB −prB⊥∥L(H) = ∥prB −(1 − prB)∥L(H) ≤ 2 ∥prB∥L(H) + 1 = 3,

and

∥prB −prA∥L(H) = δ̂(A,B) < 1

3

we obtain (using the Neumann series) that

P (A,B) ∶= prA⊥ prB⊥ +prA prB ∶ H →H

is an isomorphism. Furthermore, H = A + A⊥ = B + B⊥, P (A,B)[B] ⊆ A, and

P (A,B)[B⊥] ⊆ A⊥ show P (A,B)[B] = A and P (A,B)[B⊥] = A⊥ because P (A,B)
is surjective. Hence,

prA∣AB = P (A,B)∣AB ∶ B → A

and

P (A,B)∣A⊥B⊥ ∶ B⊥ → A⊥

are isomorphisms, as well.



B. THE GAP TOPOLOGY AND GENERALIZED CONVERGENCE 302

Since δ̂-continuity and norm-continuity are equivalent, we can use both notions

interchangeably when showing continuity of

Bδ̂ (A, 13) = {C ∈ CLR(H,H); δ̂(A,C) < 1

3
} ∋ C ↦ (prA∣AC)−1 ∈ L(A,H).

First, we note that (H0 ⊕H1)2 ∋ (x, y) ↦ (y, x) ∈ (H1 ⊕H0)2 is an isometry for

any two Hilbert spaces H0 and H1, i.e. GL(H0,H1) ∋ T ↦ T −1 ∈ GL(H1,H0) is δ̂-

continuous. By assumption of δ̂-continuity, we have norm-continuity of Bδ̂ (A, 13) ∋
C ↦ prC ∈ L(H). Furthermore, since δ̂(A,B) = δ̂(A⊥,B⊥) (Theorem B.4 (xiii)),

this implies norm-continuity of Bδ̂ (A, 13) ∋ C ↦ prC⊥ ∈ L(H). Hence, Bδ̂ (A, 13) ∋
C ↦ P (A,C) ∈ L(H) is continuous, as well, and by continuity of the inversion

Bδ̂ (A, 13) ∋ C ↦ P (A,C)−1 ∈ L(H)

is continuous. Finally, for C,D ∈ B
δ̂
(A, 1

3
),

∥(prA∣AC)−1 − (prA∣AD)−1∥
L(A,H) = ∥P (A,C)−1∣A −P (A,D)−1∣A∥L(A,H)

≤ ∥P (A,C)−1 −P (A,D)−1∥
L(H)

→0 (D → C)

shows continuity of

Bδ̂ (A, 13) = {C ∈ CLR(H,H); δ̂(A,C) < 1

3
} ∋ C ↦ (prA∣AC)−1 ∈ L(A,H).

in norm and, thus, in δ̂.

�

We will also need the closely related Lemma B.19 which needs the following

lemma in preparation.
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Lemma B.18. Let X,Y be Banach spaces, A ∈ L(X,Y ), and B ∈ L(Y,X) such

that AB is boundedly invertible in L(X) and BA is boundedly invertible in L(Y ).
Then, A and B are isomorphisms.

Proof. Note, A has the right-inverse B(AB)−1 and the left-inverse (BA)−1B.

Similarly, B has the right-inverse A(BA)−1 and the left-inverse (AB)−1A. Since

the existence of a left-inverse implies injectivity and the existence of a right-inverse

implies surjectivity, both A and B are bijective, i.e. the bounded inverse theorem

yields the assertion.

�

Lemma B.19. Let P,Q ∈ L(E) be projections with ∥(P −Q)2∥
L(E) < 1. Then,

P ∶ Q[E]→ P [E] and Q ∶ P [E]→ Q[E] are isomorphisms.

Proof. Let S ∶= (P −Q)2 = P +Q − PQ −QP . Then,

SP = P −PQP = PS

and

SQ = Q −QPQ = QS

hold. Hence, P [E] and Q[E] are invariant under S. Since 1 − S is boundedly

invertible (Neumann series),

(1 − S)∣Q[E] =(1 − P −Q + PQ +QP )∣Q[E]
=(Q −PQ −Q +PQ +QPQ)∣Q[E]

=QP ∣Q[E]
shows that QP is boundedly invertible on Q[E] and

(1 − S)∣P [E] =(1 −P −Q + PQ +QP )∣P [E]
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=(P −P −QP +PQP +QP )∣P [E]
=PQ∣P [E]

shows that PQ is boundedly invertible on P [E]. Hence, the assertion follows from

Lemma B.18 with A = P , B = Q, X = Q[E], and Y = P [E].
�

The other main application of the gap topology appears in chapter 6. There,

we are particularly interested in the perturbation of eigenvalues with respect to the

gap topology.

Theorem B.20. Let T ∈ CLO(E,E) and K a compact subset of the resolvent

set ̺(T ). Then, ∃δ ∈ R>0 ∀S ∈ Bδ̂(T, δ) ∶ K ⊆ ̺(S).
Proof. Theorem IV §3.1 in [44].

�

Theorem B.21. Let T ∈ CLO(E,E) such that the spectrum σ(T ) is separated

into σ1 and σ2 by a rectifiable simple cycle1 γ. Then, there are subspaces E1,E2 ⊆ E

such that E = E1 + E2, E1 ∩ E2 = {0}, E1 ⊕ E2 ∋ (x1, x2) ↦ x1 + x2 ∈ E is a

homeomorphism, and TP ⊇ PT where P is the projection onto E1 along E2, that

is, P [E] = E1 and (1 − P )[E] = E2; more precisely, since every x ∈ E is uniquely

decomposed as x1+x2 with xi ∈ Ei, we have Px = x1 and (1−P )x = x2. Furthermore,

there are operators Ti ∶ Ei → Ei with [Ei]Ti = [E]T ∩Ei, Ti = T ∣Ei
,2 and σ(Ti) = σi.

If σ1 is bounded (that is, σ1 is the part of the spectrum with winding number 1 with

respect to γ), then T1 ∈ L(E1).
1A cycle is a finite collection of closed curves with disjoint images. It is called simple if and

only if every point that is not in the image of any of the curves has winding number in {0,1}.
2In this case, we call (E1,E2) reducing for T .
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Furthermore, there exists δ ∈ R>0 such that the following properties hold. γ

separates the spectrum of any S ∈ CLO(E,E) with δ̂(S,T ) < δ. Let E = F1 ⊕ F2

be the corresponding decomposition for S, S1 and S2 the corresponding operators,

and PS the projection onto F1 along F2. Then, F1 and F2 are isomorphic to E1

and E2, respectively. In particular, dimE1 = dimF1 and dimE2 = dimF2. Further-

more, σ(S1) and σ(S2) are non-empty if this is true for σ(T1) and σ(T2), and the

decomposition E = F1 ⊕F2 is continuous with respect to S, that is, ∥PS − P∥L(E) →
0 (δ̂(S,T )→ 0).

Proof. Theorem IV §3.16

�

Remark Using the holomorphic functional calculus, we obtain

P =
1

2πi

ˆ

γ

(λ − T )−1dλ
and

T1 =
1

2πi

ˆ

γ

λ(λ − T )−1dλ.
∎

This last theorem is very interesting if we assume that σ1 is a finite set of eigenvalues.

Then, dimE1 = ∑λ∈σ1
µλ <∞ where µλ is the multiplicity of λ ∈ σ(T ). In particular,

if Tn → T in the generalized sense, then each Tn has (eventually) a separated

spectrum and dimE1(Tn) = dimE1, i.e. (Tn)1 is a matrix and σ((Tn)1) contains

only eigenvalues whose multiplicities add up to the total multiplicity of eigenvalues

of T in σ1. Choosing a sequence of cycles (γn)n∈N such that the images converge to

σ1, i.e. the encirclement of σ1 is getting tighter and tighter, we obtain that systems

of finitely many eigenvalues behave continuously under small perturbations in δ̂;

very similar to the behavior of perturbations of eigenvalues of matrices.
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For infinitely many eigenvalues, however, there is no uniform bound on the per-

turbation. Consider an operator T with unbounded and purely discrete spectrum.

Given δ ∈ R>0 it is possible to find ε ∈ R>0 such that δ̂((1 + ε)T,T ) < δ. However,

the eigenvalue λ of T is perturbed by ελ in (1 + ε)T . Since σ(T ) is unbounded,

there is no uniform bound on the perturbation of infinite systems of eigenvalues.

For finitely many eigenvalues, on the other hand, we do know quite a lot about

their perturbations; in particular, if we consider holomorphic perturbations. We will

end this appendix with a theorem (Theorem B.24) on holomorphic perturbations

which is very interesting for the spectral mollification discussed in chapter 6.

Definition B.22. Let Ω ⊆ C be open and T ∈ CLO(E,E)Ω. T is called

resolvent-holomorphic if and only if for every z0 ∈ Ω there are λ0 ∈ ̺(T (z0)) and

an open neighborhood U of z0 such that ∀z ∈ U ∶ λ0 ∈ ̺(T (z)) and

U ∋ z ↦ (λ0 − T (z))−1 ∈ L(E)
is holomorphic.

Lemma B.23. Let Ω ⊆ C be open and T ∈ L(E)Ω holomorphic. Then, T is

resolvent-holomorphic. More precisely, for every z0 ∈ Ω and λ ∈ ̺(T (z0)), there

exists an open neighborhood U of z0 such that ∀z ∈ U ∶ λ ∈ ̺(T (z)) and U ∋ z ↦

(λ − T (z))−1 ∈ L(E) is holomorphic.

Proof. Let z0 ∈ Ω and λ ∈ ̺(T (z0)). Then, the Neumann series implies that

λ − T (z) = (1 − (T (z)− T (z0)) (λ − T (z0))−1) (λ − T (z0))
is boundedly invertible for every

z ∈ U ∶= {s ∈ Ω; ∥T (s)− T (z0)∥L(E) < ∥(λ − T (z0))−1∥−1L(E)}
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and

(λ − T (z))−1 = (λ − T (z0))−1 ∑
j∈N

0

((T (z)− T (z0)) (λ − T (z0))−1)j

converges uniformly on compact subsets of U since for every K ⊆compact U there

exists an ε ∈ R>0 such that

sup
s∈K
∥T (s)− T (z0)∥L(E) ∥(λ − T (z0))−1∥L(E) < 1 − ε,

i.e.

sup
z∈K
∥(λ − T (z))−1∥

L(E)

≤ sup
z∈K
∥(λ − T (z0))−1∥

L(E) ∑
j∈N

0

∥(T (z)− T (z0))∥jL(E) ∥(λ − T (z0))−1∥jL(E)
≤∥(λ − T (z0))−1∥

L(E) ∑
j∈N

0

(1 − ε)j

=
∥(λ − T (z0))−1∥

L(E)
ε

.

Hence, z ↦ (λ − T (z))−1 is holomorphic.

�

Theorem B.24. Let Ω ⊆open C, T ∈ CLO(E,E)Ω resolvent-holomorphic, z0 ∈

Ω, λ0 ∈ σd(T (z0)) where σd(T (z0)) is the discrete spectrum, i.e. the set of eigen-

values with finite multiplicity, and m the algebraic multiplicity of λ0.

(i) Then, there exist δ, ε ∈ R>0 such that σ(T (z)) ∩ B(λ0, ε) ⊆ σd(T (z)) for

every z ∈ B(z0, δ) and the total multiplicity of eigenvalues of T (z) in

B(λ0, ε) is m. Furthermore, for the projections P (z) corresponding to

T (z) and σ(T (z))∩B(λ0, ε), we obtain that z ↦ P (z) and z ↦ T (z)P (z)
are holomorphic.
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(ii) There exist δ, ε ∈ R>0 such that we can write the eigenvalues of T (z) in

B(λ0, ε) as a Puiseux series3 for z ∈ B(z0, δ). If m = 1, then there exists

a “holomorphic eigenvector”.

Proof. “(i)” Since T is resolvent-holomorphic, we obtain T (z)→ T (z0) in the

generalized sense by Theorem B.13 (ii). Hence, the assertion follows from Theorem

B.21 and the fact that

z ↦ P (z) = 1

2πi

ˆ

γ

(λ − T (z))−1dλ
and

z ↦ T (z)P (z) = 1

2πi

ˆ

γ

λ(λ − T (z))−1dλ
are holomorphic (where γ is a suitable cycle).

“(ii)” Let m = 1 and x0 an eigenvector of T (z0) corresponding to λ0. Then,

x(z) ∶= P (z)x0 is holomorphic and has no zero in a sufficiently small neighbor-

hood of z0. Furthermore, x(z) is an eigenvector of T (z) since P (z) maps into the

eigenspace.

For m ≥ 1 and dimE <∞, i.e. E = Cn for some n, we obtain the eigenvalues of

T (z) from the roots of the Weierstrass polynomial det(λ−T (z)). Hence, Theorem

C.25 yields the assertion.

For m ≥ 1 and dimE = ∞, choose δ and ε as in (i). For z ∈ BC(z0, δ), let

E1(z) ∶= P (z)[E] and E2(z) ∶= (1−P (z))[E]. Without loss of generality, let δ and

ε be sufficiently small such that ∥P (z)− P (z0)∥L(E) < 1. Then, P (z) ∶ E1(z0) →
E1(z) and 1 − P (z) ∶ E2(z0) → E2(z) are isomorphisms by Lemma B.19. Hence,

3A Puiseux series is a “fractional power series”, i.e. an expression of the form∑j∈N
0
aj(z−z0) j

n

for some n ∈ N.
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each

U(z) ∶= P (z)P (z0) + (1 −P (z))(1− P (z0))
is an isomorphism of E and

U(z)P (z0) =P (z)P (z0) = P (z)U(z).
Let S(z) ∶= U(z)−1T (z)U(z). Then,

P (z0)U(z)−1 =U(z)−1P (z)
implies

S(z)P (z0) =U(z)−1T (z)U(z)P (z0)
=U(z)−1T (z)P (z)U(z)
⊇U(z)−1P (z)T (z)U(z)
=P (z0)U(z)−1T (z)U(z)
=P (z0)S(z),

i.e. (E1(z0),E2(z0)) is reducing for S. Furthermore,

S(z)P (z0) = U(z)−1T (z)P (z)U(z)
shows that

B(z0, δ) ∋ z ↦ S(z)∣E1(z0) ∈ E1(z0)
is holomorphic. Hence, we obtain the assertion for the eigenvalues of S∣E1(z0)

E1(z0) since

dimE1(z0) < ∞. However, the eigenvalues of S(z)∣E1(z0)
E1(z0) and the eigenvalues of

T (z) in BC(λ0, ε) coincide by definition of S.

�



APPENDIX C

Puiseux series

In order to prove part (ii) of Theorem B.24, we need the notion of Puiseux

series. In this appendix, we will, therefore, introduce all the necessary tools to prove

Theorem B.24 (ii). The results in this appendix (just like Theorem B.24) have been

introduced to me by Prof. Jürgen Voigt during a lecture series on operator theory

in the fall term of 2011 at the Technische Universität Dresden.

Definition C.1. Let R be a commutative ring with 1 without zero divisors,

i.e. ∀a, b ∈ R ∶ ( ab = 0 ⇒ a = 0 ∨ b = 0 ). Then, we call R an integral domain.

Furthermore, we will define the following for a, b ∈ R.

(i) a∣b (a divides b) if and only if ∃c ∈ R ∶ ac = b.

(ii) a is called a unit if and only if a∣1.
(iii) a ∼ b (a and b are associated) if and only if there exists a unit u such that

a = ub.

(iv) a is called reducible if and only if a ≠ 0 and there are non-units b, c ∈ R

such that a = bc.

(v) a is called irreducible if and only if a ≠ 0, a is not a unit, and a is not

reducible.

(vi) a is called a prime element if and only if ∀b, c ∈ R ∶ ( a∣bc ⇒ a∣b ∨ a∣c ).
(vii) J ⊆ R is called co-prime if and only if there is no non-unit a such that

∀b ∈ J ∶ a∣b.
Definition C.2. Let R be an integral domain. Then, we call R a unique

factorization domain (UFD) if and only if every non-unit a ≠ 0 there exist n ∈ N

310
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and irreducible c1, . . . , cn ∈ R such that the factorization a =∏nj=1 cj exists uniquely;

that is, if a = ∏mj=1 dj is another such factorization, then m = n and there exists a

permutation σ ∈ Sn such that ∀j ∈ N≤n ∶ cj ∼ dσ(j).

Lemma C.3. Let R be an integral domain. Then, every prime is irreducible. If

R is furthermore a unique factorization domain, then every irreducible element is

prime.

Proof. Let p be prime and a, b ∈ R such that p = ab. Then, p∣ab implies

p∣a ∨ p∣b. But we also have a∣p and b∣p. Without loss of generality, let p∣b. Hence,

there are u, v ∈ R such that b = up and p = vb, i.e. b = uvb and p = vup. Since p ≠ 0,

we obtain vu = 1, i.e. u and v are units and p ∼ b. Thus, p = ab = aup implies au = 1,

i.e. a is a unit and p irreducible.

Let R be a unique factorization domain, p irreducible, and ab ∈ R such that

p∣ab. Hence, there exists c ∈ R such that ab = pc. Factorizing a, b, and c into

irreducibles implies that there must be an irreducible factor of a and b which is an

associate of p, i.e. p∣a or p∣b. Hence, p is prime.

�

Definition C.4. Let R be a commutative ring. Then, we call R[τ] the ring of

polynomials in τ over R.

More precisely, R[τ] is isomorphic to cc(N0,R) ⊆ RN0 (cc(N0,R) is the set of

finite sequences with values in R) since

R[τ] ∋ p = ∑
j∈N

0

pjτ
j ↦ (pj)j∈N

0
∈ cc(N0,R)
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is a bijection and we endow cc(N0,R) with the component-wise addition and the

multiplication

(pj)j∈N
0
(qj)j∈N

0
∶= ( j

∑
k=0

pj−kqk)
j∈N

0

.

For p ∈ R[τ] we define deg p ∶= sup{n ∈ N0; pn ≠ 0} where sup∅ ∶= −∞.

Let R be an integral domain and p ∈ R[τ]. Then, p is called primitive if and

only if {pj; j ∈ N0,≤degp} is co-prime.

Lemma C.5. Let R be an integral domain. Then, R[τ] is an integral domain.

Proof. It is easy to see that R[τ] is a commutative ring with 1. Let p, q ∈

R[τ] ∖ {0}. Then, p = ∑mj=0 pjτ
j and q = ∑nj=0 qjτ

j with pm ≠ 0 and qn ≠ 0. Hence,

the coefficient of τm+n in pq is given by pmqn which is non-zero since R is an integral

domain. Hence, pq ≠ 0 and R[τ] is an integral domain.

�

From now on, let R be an integral domain and F its field of fractions, i.e.

F ∶= (R × (R ∖ {0}))/∼̂ with

(a, b)∼̂(c, d) ∶⇔ ad = cb

is endowed with the addition (a, b) + (c, d) ∶= (ad + cb, bd) and the multiplication

(a, b) ⋅ (c, d) ∶= (ac, bd). In other words, we interpret (a, b) ∈ F as a
b
.

Lemma C.6. Let p, q ∈ R[τ] be primitive. Then, pq is primitive.

Proof. Let p = ∑mj=0 pjτ
j and q = ∑nj=0 qjτ

j . Let a be a prime, k ∶= min{j ∈
N0,≤m; a ∤ pj}, and k ∶= min{l ∈ N0,≤m; a ∤ qj}. Then, a ∤ pk and a ∤ ql, i.e.

a ∤ pkql. However, the coefficient of τk+l is given by

p0®
a∣⋅
qk+l + p1®

a∣⋅
qk+l−1 + . . . + pk−1±

a∣⋅
ql+1 + pkql±

a∤⋅

+pk+1 ql−1°
a∣⋅
+ . . . + pk+l q0®

a∣⋅
.
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Hence, the coefficient of τk+l is not divisible by a, i.e. pq is primitive.

�

Lemma C.7. (i) Let J ⊆ R be co-prime, a ∈ F , and aJ ⊆ R. Then, a ∈ R.

In particular, p ∈ R[τ] primitive, a ∈ F , and ap ∈ R[τ] imply a ∈ R.

(ii) Let {∅,{0}} /∋ J ⊆finite F . Then, there exists a ∈ F such that aJ ⊆ R is

co-prime. If b ∈ F such that bJ ⊆ R is co-prime as well, then a
b

is a unit

in R.

(iii) Let p ∈ F [τ] ∖ {0}. Then, there exists a ∈ F such that ap ∈ R[τ] is

primitive. If b is another element of F such that bp ∈ R[τ] is primitive,

then a
b

is a unit in R. In other words, ap is unique up to multiplication

with units and we call ap the primitive polynomial associated with p.

Proof. “(i)” Let b ∈ R such that ab ∈ R and c ∈ R prime with c∣b. Then, there

exists d ∈ J such that c ∤ d. However, c∣
=(ba)d³¹¹¹¹¹¹·¹¹¹¹¹µ
b (ad)±
∈R

implies c∣ba and b
c
a ∈ R. Dividing

all prime factors of b implies a ∈ R.

“(ii)” Let J = {d1, . . . , dn} and consider the factorization di =
∏

mi
j=1 eij
∏

ni
j=1 fij

. Let

a1 ∶= ∏ni=1∏
ni

j=1 fij and a2 the product of all common prime factors of all a1di.

Then, a ∶= a1
a2

satisfies the assertion.

Let b be as stated. Then, b
a
aJ = bJ implies b

a
∈ R by (i). Similarly, a

b
∈ R holds

and we obtain a
b
b
a
= 1.

“(iii)” Apply (ii) to J = {pj; j ∈ N0,≤degp} where p = ∑degp
j=0 pjτ

j .

�

Proposition C.8. (i) Let r ∈ R[τ], p, q ∈ F [τ], r = pq, a ∈ F , p̃ ∈ R[τ]
primitive, and p = ap̃. Then, aq ∈ R[τ] and r = (aq)p̃ is a decomposition

of r in R[τ]. If r is primitive, then so is aq.
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(ii) Let p ∈ R[τ] be non-constant and irreducible in R[τ]. Then, p is irre-

ducible in F [τ].
A primitive polynomial in R[τ] is irreducible in R[τ] if and only if

it is irreducible in F [τ].
(iii) Let P ⊆ R[τ]. Then, P is co-prime in F [τ] if and only if the elements of

P have no common, non-constant divisor in R[τ].

Proof. “(i)” There exists b ∈ F and a primitive q̃ ∈ R[τ] such that q = bq̃.

Hence, r = abp̃q̃ and p̃q̃ is primitive which implies (Lemma C.7 (i)) that ab ∈ R and,

thus, aq = abq̃ ∈ R[τ].
If r is primitive, then ab is a unit and aq = abq̃ is primitive.

“(ii)” Suppose p were reducible in F [τ]. Choose a decomposition of p = qr in

F [τ] and (i) yields a decomposition of p in R[τ]. (Note that constant polynomials

are always reducible in F [τ] since there are no non-units in F .)

Let p is primitive and p = qr with q, r ∈ R[τ]. Then, p = qr is also a factorization

in F [τ]. Hence, one of them is a unit. Without loss of generality, let q be the unit

in F , i.e. of degree zero. Then, we have p = qr with q ∈ R and r ∈ R[τ]. But, since

p is primitive, q has to be a unit in R, that is, p is irreducible.

“(iii)” “⇒” is trivial. For “⇐” suppose P were not co-prime in F [τ]. Then,

there exists p ∈ F [τ] with deg p ≥ 1 (all constants are units) such that ∀r ∈ P ∃qr ∈

F [τ] ∶ r = pqr. Furthermore, let a ∈ F and p̃ ∈ R[τ] primitive such that p = ap̃.

Then, (i) implies that aqr ∈ R[τ] and r = (aqr)p̃, i.e. all r have the common and

non-constant divisor p̃.

�
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Theorem C.9 (Euclidean Algorithm). (i) Let p, q ∈ F [τ] such that q ≠

0. Then, there are r, s ∈ F [τ] such that deg s < deg q and p = rq + s.

(ii) Let p, q ∈ F [τ] be co-prime. Then, there are r, s ∈ F [τ] such that rp+sq = 1.

(iii) Let p ∈ F [τ] be irreducible. Then, p is prime.

Proof. “(i)” Polynomial division.

“(ii)” Let t ∈ F [τ] ∖ {0} be any element of J ∶= {ϕp + ψq; ϕ,ψ ∈ F [τ]} of

minimal degree. Then, there are r, s ∈ F [τ] such that p = rt + s and deg s < deg t.

Then, s = p − rt = (1 − rϕ)p − rψq for some ϕ,ψ ∈ F [τ] shows s ∈ J . Hence, s = 0

and t∣p. Similarly, t∣q and {p, q} being co-prime implies that t is a unit. Hence,

1 = ϕ

t
p +

ψ

t
q for some ϕ,ψ ∈ F [τ].

“(iii)” Let q, r ∈ F [τ], p ∣ qr, and p ∤ q. Then, {p, q} is co-prime since p is

irreducible. According to (ii), there are ϕ,ψ ∈ F [τ] such that ϕp + ψq = 1. Hence,

r = ϕpr®
p∣⋅
+ψ qr®

p∣⋅
implies that p is prime.

�

Proposition C.10. F [τ] is a unique factorization domain.

Proof. Let p ∈ F [τ] ∖ {0} not be a unit, i.e. not a constant. If p is reducible,

then we can write p = qr with max{deg q,deg r} < deg p. Inductively, we obtain

p = ∏nj=1 qj where each qj is irreducible and deg qj ≥ 1. Then, Theorem C.9 (iii)

implies that the qj are prime.

Let p = ∏mj=1 qj = ∏
n
j=1 rj be two factorization into primes. Then, each qj

divides ∏nj=1 rj , i.e. n ≥ m and there exists α ∶ N≤m → N≤n injective such that

∀j ∈ N≤m ∶ qj ∼ rα(j). Similarly, m ≥ n and there exists β ∶ N≤n → N≤m injective

such that ∀j ∈ N≤n ∶ rj ∼ qβ(j). In other words, the factorization is unique.

�
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Theorem C.11 (Gauss). R[τ] is a unique factorization domain.

Proof. Let p ∈ R[τ]∖{0} not be a unit. Then, we can write p = aq with a ∈ R

and q ∈ R[τ] primitive. Note that at most one of a and q can be a unit and we

can factorize a and q separately into irreducibles. Since R is a unique factorization

domain, the factorization a = ∏mj=1 aj is unique and each aj is irreducible in R[τ].
Furthermore, we can factorize q =∏nj=1 qj where each qj is a non-constant irreducible

and primitive since q is primitive.

Let p =∏mj=1 aj∏
n
k=1 qk =∏

m′

j=1 a
′
j∏

n′

k=1 q
′
k. Then, the aj and a′j are irreducibles

in R and the qj and q′j are non-constant irreducibles in R[τ]. In particular, the

qj and q′j are primitive. By Lemma C.6, we obtain that ∏nk=1 qk and ∏n
′

k=1 q
′
k are

primitive, as well, i.e. there exists a unit u such that ∏nk=1 qk = u∏
n′

k=1 q
′
k. Replacing

q′1 by uq′1 implies

n

∏
k=1

qk = u
n′

∏
k=1

q′k and
m

∏
j=1

aj =
m′

∏
j=1

a′j .

Since R is a unique factorization domain, we directly obtain that m =m′ and there

exists a bijection α ∶ N≤m → N≤m such that ∀j ∈ N≤m ∶ aj ∼ a
′
α(j). Hence, it

remains to pair off the qj and q′j . Since they are non-constant irreducibles in R[τ],
they are also irreducible in F [τ] (Proposition C.8) which is a unique factorization

domain by Proposition C.10. Hence, n = n′ and there is a bijection β ∶ N≤n → N≤n

as well as units uj ∈ F such that ∀j ∈ N≤n ∶ qj = ujq
′
β(j). However, Lemma C.7 (i)

implies that ∀j ∈ N≤n ∶ uj ∈ R and since the qj are primitive, the uj are units in R.

�

Corollary C.12. Let z0 ∈ C and H(z0) be the ring of holomorphic germs at

z0. Then, H(z0) and H(z0)[τ] are unique factorization domains.

Proof. By Theorem C.11, it suffices to prove the assertion for H(z0).
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Let f, g ∈ H(z0) and U ⊆ C an open neighborhood of z0 such that both f and g

are defined on U . Let fg = 0 and f ≠ 0. Then, the [{0}]f has no accumulation point

in U . Since C is an integral domain, this implies that [{0}]g has the accumulation

point z0, i.e. g = 0. Hence, H(z0) is an integral domain.

Let f ∈ H(z0)∖{0} have the representation f = ∑j∈N≥n aj(z − z0)j with an ≠ 0.

Then, f is invertible (i.e. a unit) if and only if n = 0. Furthermore, f is reducible if

and only if n ≥ 2. Hence, H(z0) is a unique factorization domain with only prime

(z − z0) and f has the unique factorization f =∑j∈N
0
aj+n(z − z0)j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit

(z − z0)n.

�

Definition C.13. Let p, q ∈ R[τ], deg p ≤ m, deg q ≤ n, p = ∑mj=0 pjτ
j , and

q = ∑nj=0 qjτ
j . Then, we call

Λmn(p, q) ∶= det(Λp Λq)
the (m,n)-resultant of p and q where Λp ∈ L(Rn,Rm+n) and Λq ∈ L(Rm,Rm+n)
such that

Λp ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1 p0

⋮ p1 ⋱

pm ⋮ ⋱ p0

pm ⋱ p1

⋱ ⋮

pm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Λp ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0

q1 q0

⋮ q1 ⋱

qn ⋮ ⋱ q0

qn ⋱ q1

⋱ ⋮

qn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If m = n = 0, then we define Λ00 ∶= 1.

Lemma C.14. Let m,n ∈ N0, p, q ∈ R[τ], deg p ≤ m, and deg q ≤ n. Then, the

following are equivalent.
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(i) There are r, s ∈ R[τ] with (r, s) ≠ (0,0), deg r < m, and deg s < n such

that sp = rq.

(ii) Λmn(p, q) = 0.
Proof. Without loss of generality, R = F . Then, sp = rq for r, s ∈ F [τ] with

(r, s) ≠ (0,0), deg r <m, and deg s < n is equivalent to

∀j ∈ N≤m+n−1 ∶
j

∑
k=0

skpj−k − rkqj−k = 0.

Hence, there is a non-trivial solution (s,−r) if and only if the matrix of coefficients

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0 q0

p1 p0 q1 q0

⋮ p1 ⋱ ⋮ q1 ⋱

pm ⋮ ⋱ p0 qn ⋮ ⋱ q0

pm ⋱ p1 qn ⋱ q1

⋱ ⋮ ⋱ ⋮

pm qn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has vanishing determinant, i.e. Λmn = 0.

�

Lemma C.15. Let m,n ∈ N0, p, q ∈ R[τ], deg p ≤ m, and deg q ≤ n. Then, the

following are equivalent.

(i) (pm, qn) ≠ (0,0) and p and q have no common, non-constant divisor.

(ii) Λmn(p, q) ≠ 0.
Proof. “(i)⇒(ii)” Without loss of generality, let pm ≠ 0. Suppose Λmn(p, q) =

0. Then, there are r, s ∈ R[τ] with (r, s) ≠ (0,0), deg r <m, and deg s < n such that

sp = rq. Since deg p =m > deg r, there exists a non-constant prime factor of p which

is not a prime factor of r. Hence, p and q have a common factor  .
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“(ii)⇒(i)” If (pm, qn) = (0,0), then Λmn = 0 is trivial. Let (pm, qn) ≠ (0,0) and

t ∈ R[τ] with deg t ≥ 1 be a common divisor of p and q. Then, there are r, s ∈ R[τ]
with (r, s) ≠ (0,0) such that p = tr and q = ts. In particular, deg r ≤ deg p − 1 < m,

deg s ≤ deg q − 1 < n, and sp = str = qr, i.e. Λmn = 0.

�

Definition C.16. Let n ∈ N, p ∈ R[τ] with deg p ≤ n, and q ∶= ∑nj=1 jpjτ
j−1.

Then, we call

∆n(p) ∶= Λn,n−1(p, q)
the n-discriminant of p. If deg p = n, then we will also write ∆(p) ∶=∆n(p).

For p0, . . . , pn ∈ R, we define ∆n(p0, . . . , pn) ∶=∆n(p) where p ∶= ∑nj=0 pjτ
j.

Corollary C.17. Let n ∈ N, p ∈ R[τ] with deg p ≤ n, and q ∶= ∑nj=1 jpjτ
j−1.

Then, the following are equivalent.

(i) deg p = n and p and q have no common, non-constant divisor.

(ii) ∆n(p) ≠ 0.
Definition C.18. Let U ⊆ C be open, n ∈ N, and aj ∶ U → C holomorphic for

every j ∈ N0,<n. A function

p ∶ U ×C → C; (z, λ)↦ λn +
n−1

∑
j=0

aj(z)λj

is called Weierstrass polynomial.

Lemma C.19. Let p be a Weierstrass polynomial on U × C, z0 ∈ U , and λ0

a simple zero of p(z0, ⋅). Then, there exist δ, ε ∈ R>0 such that every every p(z, ⋅)
with z ∈ BC(z0, δ) ⊆ U has exactly one zero λ(z) ∈ BC(λ0, ε) and z ↦ λ(z) is

holomorphic.
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Proof. Follows directly from the analytic implicit function theorem since

∂2p(z0, λ0) ≠ 0.
�

Lemma C.20. Let ε ∈ R>0, n ∈ N, γ = e
2πi
n , ϕ ∶ BC(0, ε)→ C holomorphic, and

∀z ∈ BC(0, εn) ∀λ ∈ C ∶ p(z, λ) ∶= n−1∏
j=0

(λ −ϕ(γjz 1
n ))

where z ↦ z
1
n is a holomorphic root. Note that this is independent of the explicit

choice of z
1
n since all choices are contained in {γjz 1

n ; j ∈ N0,<n}. Then, p is a

Weierstrass polynomial on BC(0, εn) ×C and has the zeros ϕ(γjz 1
n ) for j ∈ N0,<n

including multiplicities.

Proof. Let (−1)n−jaj(z) be the (n − j)th elementary symmetric polynomial

with variables ϕ(z 1
n ), ϕ(γz 1

n ), . . ., ϕ(γn−1z 1
n ), i.e.

aj(z) = (−1)n−j ∑
1≤k1<k2<...<kn−j≤n−1

n−j

∏
l=1

ϕ(γklz 1
n ) ,

and for z1 ∈ BC(0, εn) ∖ {0} choose a holomorphic root z ↦ z
1
n in a neighborhood

U of z1. Then, all aj are holomorphic in U . Since z1 and the holomorphic root

were arbitrary, all aj are holomorphic in BC(0, εn) ∖ {0}. Since ϕ is continuous in

zero, so are all aj and Riemann’s removable singularity theorem for holomorphic

functions implies that all aj are holomorphic in BC(0, εn). This shows that p is a

Weierstrass polynomial and the assertion about the zeros is trivial.

�

Remark If ϕ is given by the power series ϕ(z) = ∑j∈N
0
cjz

j near zero, then all

roots of p(z, ⋅) are of the form λk(z) = ∑j∈N
0
cjγ

kjz
j
n . Such a series is called a

Puiseux series. Similarly, if we take the expansion near z0, then the roots of p(z0, ⋅)
are given by λk(z) = ∑j∈N

0
cjγ

kj(z − z0) j
n .

∎
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Definition C.21. A functional element is a holomorphic function f ∶ D(f) ⊆
C → C such that D(f) = BC(z, r) for some z ∈ C and r ∈ R>0.

Let z0 ∈ C, f0 a functional element with D(f0) = BC(z0, r0), γ ∈ C([0,1],C),
and γ(0) = z0. A family (ft)t∈[0,1] of functional elements is called an analytic

continuation of f0 along γ if and only if

(i) ∀t ∈ [0,1] ∃rt ∈ R>0 ∶ D(ft) = BC(γ(t), rt) and

(ii) ∀t ∈ [0,1] ∃δ ∈ R>0 ∀s ∈ B[0,1](t, δ) ∶ γ(s) ∈ BC(γ(t), rt) ∧ fs∣D(fs)∩D(ft) =
ft∣D(fs)∩D(ft).

Note, condition (ii) implies that all analytic continuations of f0 along γ are

germ-equivalent along γ.

Corollary C.22. Let z0 ∈ C, f0 a functional element with D(f0) = BC(z0, r0),
γ ∈ C([0,1],C), and γ(0) = z0. Furthermore, let there be 0 = t0 < t1 < . . . < tn =

1 and functional elements fj for j ∈ N≤n such that ∀j ∈ N≤n ∶ γ(tj) ∈ D(fj),
γ [[tj−1, tj]] ⊆ D(fj−1) ∩ D(fj), and fj−1∣D(fj−1)∩D(fj) = fj ∣D(fj−1)∩D(fj). Then,

there exists an analytic continuation of f0 along γ.

Proof. For t ∈ [0,1] choose rt ∈ R>0 and j ∈ N0,≤n such that BC(γ(t), rt) ⊆
D(fj). Then, we define ft ∶= fj ∣BC (γ(t),rt).

�

Lemma C.23. Let Ω ⊆ C be open, p ∶ Ω × C → C a Weierstrass polynomial

of degree n, ∀z ∈ Ω ∶ ∆(p(z, ⋅)) ≠ 0, z0 ∈ Ω, f0 ∶ BC(z0, r0) → C holomorphic,

∀z ∈ BC(z0, r0) ∶ p(z, f0(z)) = 0, γ ∈ C([0,1],Ω), and γ(0) = z0.
Then, there exists an analytic continuation of f0 along γ and every analytic

continuation (ft)t∈[0,1] satisfies ∀t ∈ [0,1] ∀z ∈ D(ft) ∶ p(z, ft(z)) = 0.
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Proof. Since ∀z ∈ Ω ∶ ∆(p(z, ⋅)) ≠ 0, p(z, ⋅) and ∂2p(z, ⋅) have no common,

non-constant divisor, i.e. all zeros of p(z, ⋅) are simple. In particular, p(z, ⋅) has

n “holomorphic zeros” (Lemma C.19); more precisely, there exists r ∶ [0,1] →
R>0 such that BC(γ(t), r(t)) ⊆ Ω and there are holomorphic functions λt1, . . . , λ

t
n ∶

BC(γ(t), r(t)) → C such that ∀z ∈ BC(γ(t), r(t)) ∀j ∈ N≤n ∶ p(z, λtj(z)) = 0.
Furthermore, for each t ∈ [0,1] let εt ∈ R>0 such that γ [(t − εt, t + εt) ∩ [0,1]] ⊆

BC(γ(t), r(t)) and for t ∈ (0,1) let (t−εt, t+εt) ⊆ (0,1). Then, ((t−εt, t+εt))t∈[0,1] is
an open cover of [0,1] and we can choose a minimal subcover ((tj−εtj , tj+εtj))j∈N≤k
for some k ∈ N. By definition of the εt, there are j0, j1 ∈ N≤k such that tj0 = 0 and

tj1 = 1. Without loss of generality, let 0 = t0 < t1 < . . . < tk = 1 and set δj ∶= εtj for

j ∈ N≤k. Note that tj − δj < tj−1 + δj−1 has to hold (otherwise, tj − δj is contained in

another interval with index > j or < j−1, i.e. either the interval with index j or the

interval with index j − 1 is fully contained in another interval, thus, contradicting

the assumption of a minimal cover).

Since

γ [(t1 − δ1, t0 + δ0)] ⊆ BC(γ(0), r0) ∩BC(γ(t1), rt1),
we obtain that BC(γ(0), r0) ∩BC(γ(t1), rt1) is non-empty and simply connected1.

Hence, there exists j ∈ N≤n such that

λt1j ∣BC(γ(0),r0)∩BC(γ(t1),rt1) = f0∣BC (γ(0),r0)∩BC(γ(t1),rt1).

Let ft1 ∶= λ
t1
j . Inductively, we can define ftm ∶= λ

tm
jm

for m ∈ N0,≤k and some

jm ∈ N≤n depending on ftm−1 . Thence, Corollary C.22 yields that there exists an

analytic continuation (ft)t∈[0,1] of f0 along γ.

1A space is simply connected if and only if it is path connected and every two paths with the

same endpoints are homotopic relative to {0,1}.
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Finally, ∀t ∈ [0,1] ∀z ∈D(ft) ∶ p(z, ft(z)) = 0 follows since

(D(ft) ∋ z ↦ p(z, ft(z)) ∈ C)t∈[0,1]
is an analytic continuation ofD(f0) ∋ z ↦ p(z, f0(z)) ∈ C which vanishes identically.

�

Proposition C.24. Let H(0) be the set of holomorphic germs in zero, n ∈ N,

U ⊆ C an open neighborhood of zero, and

p(z, λ) ∶= λn + n−1∑
j=0

aj(z)λj

a Weierstrass polynomial on U ×C irreducible in H(0)[λ].
Then, p(0, ⋅) has only one root λ0 of multiplicity n. Furthermore, there exists

ε ∈ R>0 with BC(0, ε) ⊆ U and a holomorphic function ϕ ∶ BC (0, ε 1
n ) → C such

that ∀u ∈ BC (0, ε 1
n ) ∶ p(un, ϕ(u)) = 0 and this contains all roots. In other words,

the zeros of p(z, ⋅) are given by the Puiseux series λ(z) = ϕ(z 1
n ).

Proof. Since p is irreducible in H(0)[λ] it has no non-constant divisor of

strictly lesser degree. In particular, p and ∂2p cannot have a common, non-constant

divisor. Hence,

0 ≠∆(p) =∆n(a0, a1, . . . , an−2, an−1,1) ∈ H(0).
Thus, there exists ε ∈ R>0 such that ∆(p) is defined on BC(0, ε), ∀z ∈ BC(0, ε)∖{0} ∶
∆(p)(z) ≠ 0, and M ∶= sup{∣aj(z)∣ ; z ∈ BC(0, ε), j ∈ N0,<n} < ∞. Note that we

can choose a smaller ε if ∆(p)(z) = 0 for z ≠ 0 and zero cannot be an accumulation

point of zeros since that would imply ∆(p) = 0. Furthermore, note that

∆(p(z, ⋅)) =∆n(a0(z), a1(z), . . . , an−2(z), an−1(z),1)
=∆n(a0, a1, . . . , an−2, an−1,1)(z)
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=∆(p)(z).

Then,

∀z ∈ BC(0, ε) ∀λ ∈ C ∖BC(0,M + 1) ∶ ∣p(z, λ)∣ ≥ ∣λ∣n ⎛⎝1 −
n−1

∑
j=0

M

λn−j

⎞⎠
≥ ∣λ∣n ⎛⎝1 −

n−1

∑
j=0

M(M + 1)n−j ⎞⎠
= ∣λ∣n ⎛⎝1 −M

n

∑
j=1

( 1

M + 1
)j⎞⎠

= ∣λ∣n ⎛⎝1 −M
1

M+1
− ( 1

M+1
)n+1

1 − 1
M+1

⎞⎠
= ∣λ∣n ⎛⎝1 −M

1 − ( 1
M+1
)n

M

⎞⎠
= ∣λ∣n ( 1

M + 1
)n

≥1

shows that all zeros of p(z, ⋅) are in BC(0,M + 1) provided that z ∈ BC(0, ε).
Let Ω̂ ∶= BC(0, ε) ∖ R≤0 and Ω̌ ∶= BC(0, ε) ∖ R≥0. Since Ω̂ and Ω̌ are simply

connected and ∆(p)(z) ≠ 0 for every z ∈ BC(0, ε)∖{0}, that is, all zeros are simple,

there are holomorphic functions λ̂1, . . . , λ̂n ∶ Ω̂ → C and λ̌1, . . . , λ̌n ∶ Ω̌ → C such

that each λ̂j(z) and λ̌j(z) is a zero of p(z, ⋅) for z ∈ Ω̂ or z ∈ Ω̌, respectively

(n “holomorphic zeros”; Lemma C.19). Without loss of generality, let λ̂j = λ̌j on

BC(0, ε) ∩CI(⋅)>0 for every j ∈ N≤n. Then, there exists a permutation π ∈ Sn such

that λ̂π(j) = λ̌j on BC(0, ε) ∩CI(⋅)<0 for every j ∈ N≤n. Let n0 be the length of the

trajectory of 1 under the action of π; without loss of generality, let the trajectory

be (1,2, . . . , n0), i.e. πk−1(1) = k + 1 − ⌊ k
n0
⌋n0.
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Let ϕ ∶ BC (0, ε 1
n0 ) ∖ {0}→ C be holomorphic and defined as follows.

∀z ∈ BC (0, ε 1
n0 ) ∖ {0} ∶ ϕ(u) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
λ̂j+1 (zn0) , ∣arg z − 2jπ

n0
∣ < π

n0

λ̌j+1 (zn0) , 2jπ

n0
< arg z < 2(j+1)π

n0

.

Since

∀j ∈ N≤n ∀ẑ ∈ Ω̂ ∀ž ∈ Ω̌ ∶ ∣λ̂j (ẑ)∣ <M + 1 ∧ ∣λ̌j (ž)∣ <M + 1
holds, we obtain

lim
z→0

zϕ(z) = 0.
In other words, Riemann’s removable singularity theorem for holomorphic functions

implies that ϕ admits a holomorphic extension to BC (0, ε 1
n0 ). By Lemma C.20,

p0(z, λ) ∶= n0−1

∏
j=0

(λ −ϕ(γjz 1
n0 ))

with γ ∶= e
2πi
n0 is a Weierstrass polynomial on BC(0, ε) ×C with the roots

{ϕ(γjz 1
n0 ) ; j ∈ N≤n0

} =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
{λ̂j(z); j ∈ N≤n0

} , z ∈ Ω̂

{λ̌j(z); j ∈ N≤n0
} , z ∈ Ω̌

.

Let

∀z ∈ BC(0, ε)∖ {0} ∶ q̃(z, λ) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∏nj=n0+1

(λ − λ̂j(z)) , z ∈ Ω̂

∏nj=n0+1
(λ − λ̌j(z)) , z ∈ Ω̌

.

Then, q̃ is well-defined and a Weierstrass polynomial on (BC(0, ε)∖ {0})×C with

bounded coefficients, i.e. q̃ can be extended to a Weierstrass polynomial q on

BC(0, ε) ×C. Since

∀z ∈ BC(0, ε)∖ {0} ∶ p(z, ⋅) = p0(z, ⋅)q(z, ⋅)
holds, we obtain p = p0q.
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However, p was assumed irreducible, i.e. p = p0, n = n0, and λ0 = ϕ(0) is an

n-fold zero of p(0, ⋅).
�

Theorem C.25. Let U ⊆ C be open, z0 ∈ U , p ∶ U × C → C a Weierstrass

polynomial of degree m, and λ0 a zero of p(z0, ⋅) of algebraic multiplicity n. Then,

there are δ, ε ∈ R>0 such that BC(z0, ε) ⊆ U and p(z, ⋅) has exactly n roots (including

multiplicities) in BC(λ0, δ) provided that z ∈ BC(z0, ε). Furthermore, there are

n1, . . . , nk ∈ N with ∑kj=1 nj = n and ϕj ∶ BC (z0, ε 1
nj ) → C holomorphic (j ∈ N≤k)

such that the zeros of p(z, ⋅) in BC(λ0, δ) for z ∈ BC(z0, ε) are given by

∀l ∈ N≤k ∀j ∈ N0,<nl
∶ λl,j(z) ∶= ϕl (γjl (z − z0) 1

nl )
where γl ∶= e

2πi
nl .

Proof. Without loss of generality, let z0 = 0 and consider p as an element of

H(0)[λ]. Since H(0)[λ] is a unique factorization domain (Corollary C.12), we can

factorize p into p =∏k
′

j=1 pj where each pj is prime. Without loss of generality, let all

pj be normalized, that is, they have leading coefficient 1, i.e. they are Weierstrass

polynomials. For l ∈ N≤k′ , let nl ∶= deg pl. Then, each pl(0, ⋅) has a zero λl of

multiplicity nl according to Proposition C.24. Without loss of generality, let k ∈ N

be such that ∀l ∈ N≤k ∶ λl = λ0 and ∀l ∈ N>k,≤k′ ∶ λl ≠ λ0. Then, Proposition C.24

yields holomorphic functions ϕl and εl ∈ R>0 as in the statement of Proposition

C.24 for every l ∈ N≤k′ . Let δ ∶= 1
2
min{∣λl − λ0∣ ; l ∈ N>k,≤k′}. Then, there exists

ε ∈ (0,min{εl; l ∈ N≤k′}) such that ∣ϕl(z) − λl∣ < δ for every z ∈ BC (0, ε 1
nl ) and

l ∈ N≤k′ . Furthermore, the roots of p(z, ⋅) in BC(λ0, δ) for z ∈ BC(0, ε) are precisely

the roots of the pl(z, ⋅) (l ∈ N≤k′).

�
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symmetric covariance, 270

symmetric variance, 268
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topological space
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sequential space, 242

topological vector space
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Banach disk, 242

barreled space, 242
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convex compactness property, 202

infrabornivorous, 242

LF-space, 241

metric convex compactness property,
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Minkowski functional, 242

ultrabornological space, 242

web, 243

webbed, 243

topology
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d̂, 292
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almost-everywhere convergence, 200

Arens, 232

chordal metric, 236

Cima-Schober, 238

final, 239, 241

strict, 239

gap, 210, 291, 292

Golovin, 237
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Hörmander, 232

Holdgrün, 237

holomorphic functions

metric, 239

index bundle, 214

inductive limit, 239, 241

strict, 239

local convergence in measure, 239

Mittag-Leffler Theorem, 237

total curvature, 224

trace

continuous, 247

UFD, 309

ultrabornological space, 242

uncorrelated, 266, 270

skew-uncorrelated, 268, 270

uniformly continuous function, 183

unique factorization domain, 309

holomorphic germs, 315

unit, 309

upper Mellin transform, 97

variance, 264

symmetric, 268

Vitali’s Theorem, 95, 240

wave front set, 34

Weak Law of Large Numbers

strong operator topology, 277

web, 243

C-web, 243

webbed space, 243

Weierstrass polynomial, 318


