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It has recently been shown that vacuum expectation values and Feynman path inte-

grals can be regularized using Fourier integral operator ζ-function, yet the physical

meaning of these ζ-regularized objects was unknown.

Here we show that ζ-regularized vacuum expectations appear as continuum limits

using a certain discretization scheme. Furthermore, we study the rate of convergence

for the discretization scheme using the example of a one-dimensional hydrogen atom

in (−π, π) which we evaluate classically, using the Rigetti Quantum Virtual Machine,

and on the Rigetti 8Q quantum chip “Agave” device. We also provide the free radi-

ation field as an example for the computation of ζ-regularized vacuum expectation

values in a gauge theory.
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Zeta-regularized vacuum expectation values

I. INTRODUCTION

In a quantum field theory (QFT), vacuum expectation values are fundamental objects.

As expectation values of observables they allow for experimental verification and to test

theoretical models. Furthermore, the Wightman Reconstruction Theorem asserts that a

QFT is uniquely determined by its n-point functions which are tempered (by the Wightman

axioms) distributions whose point evaluations (on functions) are vacuum expectation values

of n field operators. Hence, given a QFT with Hilbert space H, vacuum state ψ, and an

operator A, we are interested in computing the vacuum expectation value 〈A〉 of A;

〈A〉 := 〈ψ|A |ψ〉 := 〈ψ,Aψ〉H.

In general, we do not have access to ψ but it is possible1–3 to express 〈A〉 in terms of operator

traces. Let U = texp
(
− i

~

∫ T
0
H(s)ds

)
the wave propagator of the QFT where H denotes

the Hamiltonian and texp the time-ordered exponential. Then

〈A〉 = lim
T→∞

tr(UA)

trU
.

Again, we are in a precarious situation since, in general, neither U nor UA are trace-class

operators in H. This indicates that the difficulty in defining vacuum expectation values with

this approach is the construction of these traces.

Considering only the partition function trU , Hawking4 observed that it is possible to

relate trU to a ζ-function trace construction for pseudo-differential operators.5–8 Since this

is a spectral approach to the trace construction, it requires explicit diagonalization of a sec-

ond order differential operator which is induced by the background fields and the quadratic

term of metric fluctuation. As such, explicit computation of spectrally ζ-regularized par-

tition functions are next to impossible in a non-trivial theory. Furthermore, the approach

is not easily extended to the numerator tr(UA) and the physical meaning of the resulting

ζ-regularized partition function remained unknown.

Nevertheless it was shown9 that both traces, tr(UA) and trU , can be constructed in a

non-perturbative way using Fourier integral operator ζ-functions. In this formulation, we

assume that the Hamiltonian H and the operator A are pseudo-differential operators on a

compact Riemannian C∞-manifold X without boundary (a Cauchy surface of the “universe”;

the infinite volume limit X → “non-compact manifold” is taken after ζ-regularization9 and
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henceforth ignored for the purposes of this paper) and the Hilbert spaceH is a Sobolev space

W s
2 (X) for some s ∈ R. The operators U and A are then bounded linear operators mapping

W s
2 (X) to W s′

2 (X) for some s′ ∈ R. It is then necessary to construct a suitable holomorphic

family of operators9–12 (G(z))z∈C which (among a number of technical properties) satisfies

two important conditions; namely, G(0) = 1 and ∃R ∈ R ∀z ∈ C<(·)<R : UG(z) and

UG(z)A are of trace-class. Hence, considering the families UGA and UG, we can recover

the operators we are interested in through point evaluation in zero and for <(z) < R the

traces tr(UG(z)A) and tr(UG(z)) are well-defined. In fact, the maps

ζ0(UGA) : C<·<R → C; z → tr(UG(z)A)

and

ζ0(UG) : C<·<R → C; z → tr(UG(z))

have meromorphic extensions to C with at most isolated simple poles. We will denote these

extensions by ζ(UGA) and ζ(UG) respectively, and we can define the ζ-regularized vacuum

expectation value 〈A〉G of A with respect to G as

〈A〉G := lim
T→∞

ζ(UGA)

ζ(UG)

which is meromorphic again. Finally, we are interested in computing 〈A〉G(0) which is

“almost always” independent9,11 of the choice of G and, in general, very difficult to compute.

For examples of ζ-regularized vacuum expectation values using Fourier integral operators

we refer to references9,11,13.

At this stage we therefore have a fully regularized expectation value, but the physical

meaning of 〈A〉G(0) is still unclear. Hence, it is precisely the purpose of this paper to provide,

for the first time, a physical interpretation of 〈A〉G(0).

Example This kind of construction of G is called a “gauge” in the mathematical litera-

ture14 and related to many questions in geometric analysis. For instance, let us consider

the operator |∂| on the flat torus R/2πZ. As we will see later, this is a simplification of the

operator considered in Section II. Its spectrum is σ(|∂|) = {|n| ; n ∈ Z} counting multiplic-

ities. Hence, we can deduce that G(z) := |∂|z has spectrum σ(G(z)) = {|n|z ; n ∈ Z} which

is absolutely summable, i.e., in `1(Z), whenever <(z) < −1.

3
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Suppose that |∂| is indeed the Hamiltonian of a quantum field theory we wish to consider.

Then U = exp
(
− i

~T |∂|
)
is a unitary time evolution operator and UG(z) is of trace-class

whenever <(z) < −1 since all Schatten classes are two-sided ideals in the set of bounded

operators on a Hilbert space (here L2(R/2πZ)). �

Example More generally, Radzikowski15,16 showed that given the Hadamard condition, the

operators U , A, and G(z) can be assumed to be Fourier integral operators. Since the product

UG(z) needs to be computed, it is often advantageous to choose G(z) as a function of the

Hamiltonian H, e.g., Hz. This ensures that UG(z) can be computed in terms of a functional

calculus. In particular, this ensures that G(z) is a Fourier integral operator of order γz for

some γ > 0 if H is unbounded on the Hilbert space. In other words, G(z) is of trace-class

whenever <(z) is sufficiently negative. For example, if H is a pseudo-differential operator

on a manifold X, then G(z) is of trace-class provided <(z) < −dimX
γ

. �

Remark In general, computing these traces through spectral decomposition is very difficult.

Instead we use that Fourier integral operators are integral operators whose kernels are much

more easily accessible than the spectrum.

Let A be a pseudo-differential operator with symbol σ(x, y, ξ) on an open subset U of

Rn; in other words, A is given by Au(x) =
∫
Rn
∫
U
ei〈x−y,ξ〉σ(x, y, ξ)u(y)dydξ. Then, the

kernel k of A is k(x, y) =
∫
Rn e

i〈x−y,ξ〉σ(x, y, ξ)dξ. Thus, if A is a trace-class operator, then17

trA =
∫
U
k(x, x)dx =

∫
U

∫
Rn σ(x, x, ξ)dξdx. This can be lifted to the manifold case18, that

is, if A is locally given by a symbol σ, then trA is given by the density
∫
Rn trσ(x, x, ξ)dξ |dx|.

Similarly, if A is a trace-class Fourier integral operator whose (matrix-valued) kernel is

locally given by k(x, y) =
∫
Rn e

iϑ(x,y,ξ)σ(x, y, ξ)dξ, then its trace can be computed integrating

the density
∫
Rn tr(eiϑ(x,x,ξ)σ(x, x, ξ))dξ |dx|. �

Numerically, we typically access discretized systems which can be understood abstractly

by assuming that the Hilbert space is finite dimensional and the operators are matrices. In

this sense, we will consider restrictions to finite dimensional subspaces to be discretizations

and approximations of the infinite dimensional Hilbert space to be a “continuum limit”. This

therefore includes cases of lattice discretizations but also allows for “discretization schemes”

which do not formally discretize space-time. For instance, we will consider discretization of

Fourier modes in Section III which extrapolate to the “continuum of Fourier modes”.
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Defining the traces is thus no problem but we need to compute the continuum limit. Since

the regularized traces are defined via meromorphic extension, it is neither obvious that any

such continuum limit should exist nor that it coincides with the value 〈A〉G(0).

In this article, we will discuss a method of discretization which ensures that the continuum

limit exists and we will prove that it coincides with 〈A〉G(0). Furthermore, the chosen method

of discretization is interesting in the context of quantum computing which allows us to

approximate discretized vacuum states ψdisc, e.g., using a variational quantum eigensolver.19

In particular, we will prove the following Theorem 1 which states that continuum limits

are precisely the ζ-regularized vacuum expectation values.

Theorem 1. Let ψn be the vacuum as computed using the discretization scheme disc (cf. sec-

tion IV) and A and G such that the sequences (z 7→ ‖G(z)Aψn‖)n∈N and (z 7→ ‖G(z)ψn‖)n∈N
are locally bounded in C(C). Furthermore, let the assumptions of Proposition 4 be satisfied.

Then the continuum limit c-lim of discretized vacuum expectation values 〈Adisc〉 exists

and satisfies

〈A〉G(0) =c-lim 〈ψn|A |ψn〉 = c-lim〈Adisc〉 = c-lim 〈ψdisc|Adisc |ψdisc〉 = 〈ψ|A |ψ〉 .

From a physical point of view, 〈ψ|A |ψ〉 is the quantity we would like to compute but we

do not have access to it since, in general, we don’t know the vacuum ψ. On the other hand,

〈A〉G(0) is a mathematically well-defined object applying ζ-regularization to Feynman’s path

integral. A priori, there is no reason for these two quantities to be related since we have been

changing the path integral definition on a very fundamental level. Nonetheless, Theorem 1

states that the two have to coincide, i.e., that physical vacuum expectation values arise as

ζ-regularized vacuum expectation values.

Furthermore - and central to proving this statement - both 〈ψ|A |ψ〉 and 〈A〉G(0) can be

expressed as the same continuum limit of 〈Adisc〉 := 〈ψdisc|Adisc |ψdisc〉 which is the numerical

problem of computing 〈ψ|A |ψ〉 in a certain discretization scheme disc (further discussed

below and in full detail in Section IV). This discretized vacuum expectation can alternatively

be stated as 〈Adisc〉 = 〈ψn|A |ψn〉 where ψn is a discretized approximation to the vacuum

ψ. Most importantly, ψn is accessible on a Quantum Processing Unit for which we choose

the Rigetti 8Q chip “Agave” in this paper.20 In terms of qubits, n = 2number of qubits and the

continuum limit is n→∞.
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However, the most remarkable observations are that, firstly, all computations (ζ and

discretized) are non-perturbative and performed in Minkowski space allowing for real time

computations and, secondly, the ζ-computation is in the continuum. This, in combination

with quantum computing, can therefore lead to completely new avenues for quantum field

theory calculations. Note also that the here described procedure is much more general than

standard a lattice theory formulation on a Euclidean space-time grid.

In more mathematical terms, we take the point of view that a discretization scheme is a

restriction of a problem posed in a separable Hilbert spaceH to finite dimensional subspaces.

In other words, a discretization scheme is a sequence of projections (Pn)n∈N on H such that

∀n ∈ N : dim(Pn[H]) = n. The discretization scheme disc will furthermore assume that

these projections are nested in the sense ∀n ∈ N : Pn[H] ⊆ Pn+1[H]. Hence, increasing

n can be seen as refinement of the discretization. Such a discretization scheme can, for

instance, be constructed using an orthonormal basis (ej)j∈N0 and defining

∀n ∈ N : Pn[H] := lin{ej; 0 ≤ j < n}.

Such a construction ensures density of
⋃
n∈N Pn[H] in H and makes it fairly easy to compute

the matrix M describing the discretization of an operator A on Pn[H]. More precisely,

∀0 ≤ j, k < n : Mjk = 〈ej, Aek〉H.

Given the Hamiltonian H of the system in H, the vacuum state ψ is defined to be a nor-

malized minimizer of x 7→ 〈x,Hx〉H. Thus, we can obtain approximate vacuum states ψn

on Pn[H] by minimizing x 7→ 〈x,Hx〉H over all normalized elements of Pn[H]. It should

be noted that a priori ψn need not be Pnψ, i.e., we do not get ψn → ψ for free. However,

since Pn[H] ⊆ Pn+1[H] and each ψn minimizes x 7→ 〈x,Hx〉H, we do know that the sequence

(〈ψn, Hψn〉H)n∈N is non-increasing which under additional assumptions (namely those of

Proposition 4) will yield ψn → ψ as well as 〈ψn, Aψn〉H → 〈ψ,Aψ〉H for observables A. In

this sense, the continuum limits in Theorem 1 are to be understood as limits n→∞.

The remaining assumptions in Theorem 1 for A and G to be such that the sequences

(z 7→ ‖G(z)Aψn‖)n∈N and (z 7→ ‖G(z)ψn‖)n∈N are locally bounded in C(C), are necessary to

prove that the limit is precisely the ζ-regularized vacuum expectation. This is due to the fact

that - in the proof - we express 〈A〉G as the quotient 〈ψ,G(·)Aψ〉H
〈ψ,G(·)ψ〉H

and then use the discretization

scheme on both numerator and denominator separately. Hence, pointwise boundedness

6
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of (z 7→ ‖G(z)Aψn‖)n∈N and (z 7→ ‖G(z)ψn‖)n∈N is simply one of the assumptions in

Proposition 4. In particular, for z = 0 they are numerically necessary as otherwise the

variance of the observable A is unbounded making any numerical approach to compute the

limit unfeasible. However, pointwise boundedness is not quite sufficient for the proof since

a pointwise convergent sequence of holomorphic functions might not have a holomorphic

limit. On the other hand, we need the limit limn→∞
〈ψn,G(·)Aψn〉H
〈ψn,G(·)ψn〉H

to be meromorphic if we

want to conclude that it coincides with 〈A〉G.

In order to obtain a more thorough understanding of how the discretization scheme and

ζ-regularization work, we will consider two examples before proving Theorem 1 in sections IV

and V. First, we will consider the free radiation field (Section II) as an introductory example

of a QFT with easy to compute vacuum energy. We will explicitly construct the Hamiltonian

H and compute its vacuum energy using both methods, i.e., 〈0|H |0〉 and 〈H〉G(0). The

second example (Section III) will be the 1-dimensional hydrogen atom on (−π, π) and focus

on the the convergence rate in the discretization scheme. This example is chosen in such

a way, that the vacuum state is highly non-trivial but the discretizations are numerically

easy to handle. In particular, we will use the Rigetti Quantum Virtual Machine and Rigetti

8Q chip “Agave” to show that the discretization scheme using the standard Fourier basis

converges exponentially fast in the number of qubits and that such a convergence rate can

be realized on a quantum computer within the limitations of its fidelity. Thus quantum

computation can be a powerful tool to compute vacuum expectation values of observables

in Minkowski background even utilizing a small number of qubits.

II. THE FREE RADIATION FIELD

Before presenting the proof of Theorem 1 we would like to showcase the ζ-regularization

part applied to a QFT. This section does not contain the discretization aspect of Theorem 1

but is intended to give a non-trivial example of the continuum computation using the ζ-

function definition of vacuum expectation values. In particular, we want to consider a gauge

theory which a priori is highly non-trivial to discuss in this context. Further examples

including scalar fields and the Dirac field have been reported previously.9,11,13

As an example, we will consider the free radiation field, i.e., QED without coupling to

matter, on the spatial torus (R/XZ)3. The quantization of the free radiation field using the

7
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Gupta Bleuler formalism is well-known in high energy physics. However, in order to make

the paper self-contained, we have recapitulated the construction in Appendix A.

Following the construction in Appendix A, the Hilbert space H≤N of up to N photons is

given by the symmetric tensor product

H≤N =
N⊕
n=1

S
n⊗
j=1

L2

(
(R/XZ)3,C2

)
	 lin


0

1


 ⊆ L2

(
(R/XZ)3N ,C2

)
and the Hamiltonian HN is

HN =
N∑
k=1

(
k−1⊗
m=1

idL2((R/XZ)3,C2)

)
⊗
∣∣∇L2((R/XZ)3,C2)

∣∣ idC2 ⊗

(
N⊗

m=k+1

idL2((R/XZ)3,C2)

)

which extends the example |∂| on R/2πZ as discussed in the introduction.

Since |∇| is a pseudo-differential operator with symbol σ|∇| : R3 → R; ξ 7→ ‖ξ‖`2(3), we

obtain thatHN is pseudo-differential with symbol σHN : (R3)N → R; ξ 7→
∑N

n=1 ‖ξn‖`2(3) idC2

and, since HN is time independent and its kernel independent of the spatial variable, we con-

clude that the up-to-N -photon wave propagator UN is given by UN = e−iTHN and has symbol

σUN : (R3)N → R; ξ 7→ e−iT
∑N
n=1‖ξn‖`2(3) idC2 . Hence, choosing the gauge G(z) := Hz

N , we

obtain

〈HN〉G(z) = lim
T→∞

∫
(R3)N

tr
(
e−iT

∑N
n=1‖ξn‖`2(3)

∑N
n=1 ‖ξn‖`2(3)

∏N
m=1 ‖ξm‖

z
`2(3)

idC2

)
dξ∫

(R3)N
tr
(
e−iT

∑N
n=1‖ξn‖`2(3)

∏N
m=1 ‖ξm‖

z
`2(3)

idC2

)
dξ

= lim
T→∞

∑N
n=1

∏N
m=1

∫
R3 e

−iT‖ξm‖`2(3) ‖ξm‖z+δmn`2(3)
dξm∏N

m=1

∫
R3 e

−iT‖ξm‖`2(3) ‖ξm‖z`2(3) dξm

= lim
T→∞

N
∫
R>0

e−iT rrz+3dr∫
R>0

e−iT rrz+2dr

= lim
T→∞

NΓ(z + 4)(iT )−z−4

Γ(z + 3)(iT )−z−3︸ ︷︷ ︸
∝ 1
T

=0.

These integrals are well-defined in terms of homogeneous distributions whenever UNHz+1
N is

of trace-class which is satisfied for <(z) < −4.

Remark Let ϑ be a phase function in an open cone Γ ⊆ X×Rn, F ⊆ Γ∪(X×{0}) a closed

cone, and a in the symbol class Sµ%,δ(X × Rn) with support in F for some µ ∈ R, % ∈ (0, 1],

8
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and δ ∈ [0, 1). Then, I : C∞c (X) → C; u 7→
∫
X×Rn e

iϑ(x,ξ)a(x, ξ)u(x)d(x, ξ) defines a

distribution of order ≤ k whenever max{µ− k%, µ− k(1− δ)} < −n (Theorem 7.8.2 in 21).

Hence, in the case of I :=
∫
R3 e

−iT‖ξm‖`2(3) ‖ξm‖z+δmn`2(3)
dξm, we observe % = 1, δ = 0,

ϑ(x, ξm) = T ‖ξm‖`2(3), and a(x, ξm) = ‖ξm‖z+δmn`2(3)
is a classical symbol with µ = <(z) + δm,n.

In other words, I is a well-defined distribution if <(z) + 1 < −3. �

By construction of the ζ-regularization scheme, the vacuum expectation is then defined

via analytic continuation of 〈HN〉G(z) to 0, i.e., 〈HN〉G(0) = 0. Finally, we can capture all

physically reachable states taking the (now trivial) limit N →∞ and observe

〈H〉 = 〈0|H |0〉 = 0 = 〈H〉G(0) = lim
N→∞

〈HN〉G(0).

Remark The full Fock space can be treated in a similar manner to the computation above.

An in-depth discussion of the Fock space case is included in Appendix B. �

The convergence with respect to disc is not interesting in this case because most reason-

able choices of basis vectors naturally contain the vacuum. Hence, choosing any enumeration

(en)n∈N0 of basis vectors will imply that the vacuum |0〉 is contained in all Pn[H] with n suf-

ficiently large. This, however, trivializes the limit. We will therefore discuss a non-trivial

example from the discretization point of view in Section III.

III. CONVERGENCE IN disc

Having discussed the ζ-regularization half of Theorem 1, we want to have a look at the rate

of convergence using a non-trivial example. This example illustrates that the discretization

scheme can be implemented on a quantum device and, as we will see, convergence rates can

be exponential in the number of qubits. This gives access to the discretized vacuum state

(minimizing the energy) and hence vacuum expectations can be computed directly using the

vacuum state. This can be generalized to include the time evolution and evaluate the path

integral. However, this is beyond the scope of this example.

The main advantage of our discretization scheme is the proof of convergence. Thus

any discretization scheme used in practice will converge to the physically correct vacuum

expectation value provided it satisfies the assumptions of Theorem 1. However, it is not

clear from the construction which rates of convergence to expect. In order to go beyond a

9
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mere convergence proof result, we want to explicitly demonstrate that numerically viable

convergence rates can be obtained. The application is therefore not intended to devise novel

quantum algorithms nor is the implementation competitive with state-of-the-art quantum

algorithms. This is based on the fact that the ζ-regularization serves only to provide a

rigorous definition of the continuum limit. The construction of the discretization scheme

itself is an independent procedure whose limit coincides with the ζ-regularized vacuum

expectation value as long as the assumptions of Theorem 1 are satisfied. Whether having

an analytically well-defined expression for the continuum limit may lead to novel algorithms

or a priori estimates on the convergence is an interesting but independent question.

The example we would like to consider is a 1-dimensional version of the hydrogen atom

in (−π, π) with the proton sitting in 0. In other words, the Hamiltonian is given by H =

− ∂2

2m
+ qU(x) where U is the Coulomb potential. However, we will not consider the 3-

dimensional Coulomb potential U3(x) = −1
‖x‖`2(3)

since that would be a very severe term

(note that U3 is integrable over (−π, π)3 but not over (−π, π)). Instead we choose the N -

dimensional Coulomb potential UN to be the Green’s function of the Laplacian on (−π, π)N .

In other words, UN(x) = −1
‖x‖N−2

`2(N)

for N ≥ 3 and U2(x) = ln ‖x‖`2(2) are well-known, and

U1(x) = x · 1(0,π)(x) =

x ; x ∈ (0, π)

0 ; x ∈ (−π, 0]

can be easily verified, since for any ϕ ∈ C∞c ((−π, π)) we observe∫ π

−π
(x− y)1(0,π)(x− y)ϕ′′(y)dy =

∫ x

−π
(x− y)ϕ′′(y)dy =

∫ x

−π
ϕ′(y)dy = ϕ(x).

The Hamiltonian H : W 2
2 ((−π, π)) ⊆ L2((−π, π)) → L2((−π, π)) is then defined to be the

second order differential operator1

− ∂2

2m
+ qx1(0,π)(x).

The Hilbert space H is L2((−π, π)) and the basis of our choice is ϕk(x) := 1√
2π
eikx for k ∈ Z.

We will order them as e0 := ϕ0, e2j−1 := ϕ−j, and e2j := ϕj, i.e., the finite dimensional

subspaces the discretization is defined on is given by

∀n : Pn[H] = lin

{
ϕk; −

⌊
N

2

⌋
≤ k ≤ N − 1−

⌊
N

2

⌋}
.

1 We note that H is the sum of the unbounded self-adjoint operator − ∂2

2m and the bounded self-adjoint

operator qx1(0,π)(x). Since (A + B)∗ = A∗ + B∗ whenever at least one of the operators A and B is

bounded, we obtain that H is self-adjoint.

10
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Figure 1. This figure shows the relative truncation error of 〈ψn|H |ψn〉 computed for dimension

of Hilbert space n ∈ {50, 100, . . . , 1000} and compared to 〈ψ1050|H |ψ1050〉 as well as the graph of

n 7→ 4.85 · 10−7 · e−.00644n which indicates exponential convergence. We have chosen m = q = 1 for

the mass of the electron m and the electric coupling constant q. To compute 〈ψn|H |ψn〉, we have

computed the smallest eigenvalue of H restricted to Pn[H].

The matrix elements of the Hamiltonian are then given by

〈ϕk, Hϕk〉 =

∫ π

−π

k2

2m

1

2π
dx+

∫ π

0

qx
1

2π
dx =

k2

2m
+
qπ

4

and for k 6= l

〈ϕl, Hϕk〉 =

∫ π

−π

k2

2m

ei(k−l)x

2π
dx+

∫ π

0

qx
ei(k−l)x

2π
dx

=
q
(
(−1)k−l(1− iπ(k − l))− 1

)
2π(k − l)2

.

In Figure 1 we can see the relative truncation error of 〈ψn|H |ψn〉 as a function of n. Fur-

thermore, we have added the graph of n 7→ 4.85 · 10−7 · e−.00644n which indicates exponential

convergence of (〈ψn|H |ψn〉)n∈N.

Since the dimension of the Hilbert space of a q-qubit quantum computer grows expo-

nentially (more precisely, n = 2q), this becomes even more interesting if we consider an

implementation on a quantum computer. In that case, Figure 2 shows the dependence of

the relative truncation error of 〈ψn|H |ψn〉 with respect to the number of qubits q. It shows

that the convergence of (〈ψ2q |H |ψ2q〉)q∈N is comparable to q 7→ 1.14 · e−1.92q.

In order to perform this computation on a quantum computer, we need to map the Q-

qubit discretized Hamiltonian HQ :=
(
〈ej, Hek〉L2((−π,π))

)
0≤j,k<2Q

onto the Pauli-Basis of

11
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Figure 2. This figure shows the relative truncation error of 〈ψn|H |ψn〉 computed for

number qubits ∈ {1, 2, . . . , 11} and compared to 〈ψn|H |ψn〉 computed with 12 qubits as well as

the graph of q 7→ 1.14 · e−1.92q which indicates exponential convergence. We have chosen m = q = 1

for the mass of the electron m and the electric coupling constant q. To compute 〈ψn|H |ψn〉, we

have computed the smallest eigenvalue of H restricted to Pn[H].

⊗Q−1
q=0 C2. Following the convention used by Rigetti22, we will use the Kronecker product

notation for tensor products; that is, for vectors

∀a ∈ Cm ∀b ∈ Cn : a⊗ b =


a0b

a1b
...

am−1b

 ∈ Cmn

and for matrices ∀A ∈ Cm,n ∀B ∈ Cr,s :

A⊗B =


A00B A01B . . . A0nB

A10B A11B . . . A1nB
...

... . . . ...

Am0B Am1B . . . AmnB

 ∈ Cmr,ns.

In C2, we choose the basis |0〉 = (1, 0)T and |1〉 = (0, 1)T . Then we obtain the basis

(|q〉)0≤q<2Q of C2Q of the Q-fold tensor product of C2s where |q〉 = (δj,q̂)0≤j<2Q with q̂ ∈ N0

having binary representation q. For instance, |100〉 = (0, 0, 0, 0, 1, 0, 0, 0)T = (δj,4)0≤j<8 and

|001〉 = (0, 1, 0, 0, 0, 0, 0, 0)T = (δj,1)0≤j<8.

The Pauli matrices in C2 are given by σ0 =

1 0

0 1

, σ1 =

0 1

1 0

, σ2 =

0 −i

i 0

, and

12
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σ3 =

1 0

0 −1

. Using the Kronecker product, we can construct the Pauli basis of C2Q,2Q

which is given by {
Sq = σqQ−1 ⊗ σqQ−2 ⊗ . . .⊗ σq0 ; 0 ≤ q < 4Q

}
.

In terms of matrix elements Sqjk, let 0 ≤ j, k < 2Q be decomposed as j =
∑Q−1

n=0 jn2n and

k =
∑Q−1

n=0 kn2n. Then Sqjk =
∏Q−1

n=0 σ
qn
jnkn

. The Sq are orthogonal in C2Q,2Q with respect to

the scalar product (A,B) 7→ tr(AB∗) and their norm satisfies

‖Sq‖2C2Q,2Q = tr(SqSq) = tr(σ0 ⊗ σ0 ⊗ . . .⊗ σ0) = 2Q

which implies

HQ =
∑

0≤q<4Q

tr (HQS
q)

2Q
Sq.

Now we are in a position to use the pyQuil variational quantum eigensolver with conjugate

gradients in the classical optimization loop. Since each HQ is a restriction of HQ+1, we can

compute (〈ψ2Q , HQψ2Q〉)Q∈N iteratively starting with Q = 1 which is relatively cheap as

it is only a minimization problem in a three dimensional parameter space and then use

ψ2Q as initial guess for the minimization problem C2Q+1 3 ψ 7→ 〈ψ,HQ+1ψ〉 → min. For

Q ∈ {1, 2, 3, 4, 5} we then obtain Table I on the Rigetti Quantum Virtual Machine ignoring

noise terms which shows that an implementation on a quantum computer with sufficiently

high fidelity can realize the convergence shown in Figure 2.

In fact, direct implementation on the Rigetti 8Q chip “Agave” in pyQuil23,24 through

the Rigetti Forest API yields comparable results within the limitations of the chip’s fidelity.

Here, we performed a simple, sequential loop over all parameters of the resource Hamiltonian

and thus minimizing the energy one parameter at a time where we looped thrice over the

set of all parameters. Using a single qubit, the state preparation requires only five gate

operations which keeps gate noise low. “Agave’s” fidelity for single qubit operations (at

the time of execution) was best on qubit 2 which benchmarked a single-qubit gate fidelity

F1Q = 0.982 and readout fidelity FRO = 0.94. Performing the computation on “Agave’s”

qubit 2, we obtained the one qubit ground state energy with a relative mean error of 4.9%

at 2.8% standard deviation of the relative mean error. We have repeated the computation

on “Agave’s” qubit 0 whose fidelity benchmarked at F1Q = 0.956 and FRO = 0.78. There, we

13
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Q qubits min. eig. HQ 〈ψ2Q , HQψ2Q〉 〈HQ〉-min. eig.

1 .392108816647 .392108816647 0.0

2 .229395425745 .229395425968 2.22839913189e-10

3 .224258841712 .224258841747 3.48265860595e-11

4 .223452200306 .223452200445 1.39043221381e-10

5 .223336689755 .223336690423 6.67360250395e-10

Table I. Simulation of the ground state energy computation for the 1-dimensional hydrogen atom

using the Rigetti Quantum Virtual Machine (ignoring noise) and comparison to minimal eigenvalue

of HQ. We note that the error terms presented in this table are not with respect to the continuum

limit but the errors we obtained at each corresponding point in Figure 2 after replacing the direct

computation of the minimal eigenvalue with the QVM-VQE results. Hence, the simulation on the

Rigetti Quantum Virtual Machine reproduces Figure 2.

only reached a relative mean error of approximately 15% which highlights the great impact

fidelity has.

For progression to the two qubit computation, we thus chose the two qubits with the

best fidelity. Unfortunately, we could not achieve significant results in this setup. Nonethe-

less, high precision results on many qubits were not the primary goal of our work nor to

be expected since this example of a 1-dimensional hydrogen atom in a bounded universe

was chosen to ensure that the vacuum is highly non-trivial from the point of view of the

discretization scheme. In particular, the wave function in the continuum is unknown to us

and we are only able to obtain comparisons with classical algorithms because the low num-

ber of qubits still permits numerical diagonalization of the Hamiltonian. However, scaling

the computation to 50 for instance, direct computation of the minimal eigenvalue and cor-

responding eigenvector (for a 250 × 250 matrix) are practically impossible and Monte-Carlo

algorithms are not applicable since we are working in a Minkowski background. Yet the

noise-free QVM results and the comparison between “Agave’s” qubits 0 and 2 show that

improved quantum processing units will provide numerical access to expectation values and

vacuum wave functions in physical simulations of this kind.

Remark The example discussed in this section is purposely chosen to be very difficult to

14



Zeta-regularized vacuum expectation values

solve. In general, all 4# Qubits Pauli terms will need to be measured in order to evaluate the

Hamiltonian. Given this exponential scaling behavior, we did not attempt an optimal imple-

mentation on the quantum device nor complete complexity and resource analysis. However,

the fact that we still observe exponential convergence is very promising for simpler models

in which quantum algorithms with polynomial scaling are known. �

IV. THE DISCRETIZATION SCHEME disc

At this point, we want to commence the proof of Theorem 1. The proof will be in two

steps. First, we will discuss the discretization in detail and prove its properties. This will

mainly prove the part of Theorem 1 concerning

〈ψ|A |ψ〉 =c-lim 〈ψdisc|Adisc |ψdisc〉 = c-lim 〈ψn|A |ψn〉 = c-lim〈Adisc〉.

In a second step (Section V) we will then address the ζ-regularized part of Theorem 1.

For the discretization, we need to approximate our operators using matrices. In other

words, we need to project onto finite dimensional spaces. Since we have a holomorphic

family of operators G, it is imperative that these projections make sense for every value

of z. This is possible, since by construction of G all of our operators are well-defined on

W∞
2 (X) (or W s

2 (X) for some s ∈ R provided we introduce an upper bound on <(z)).

Let H0 ⊆ H be a dense subspace and (ej)j∈N0 an orthonormal basis of H with ∀j ∈ N0 :

ej ∈ H0. For n ∈ N, we define the orthogonal projection Pn onto the n-dimensional subspace

Pn[H] = lin{ej; 0 ≤ j < n} ⊆ H0

Pn : H → H; ϕ 7→
n−1∑
j=0

〈ej, ϕ〉Hej.

For any given upper bound R< ∈ R>0 on <(z), we choose H0 such that we can find a

continuously embedded Hilbert space H1 with H0 ⊆ H1 ⊆ H for which all G(z) and

G(z)A with <(z) < R< are in L(H1,H). Then, we can discretize G(z) and G(z)A as

PnG(z)Qn, and PnG(z)AQn where Qn is the orthogonal projection onto Pn[H] in H1 and

the discretization of U is given in terms of the discretized Hamiltonian PnHQn, that is,

Udisc = texp
(
− i

~

∫ T
0
PnH(s)Qnds

)
.

Example For instance, let H be L2(X) and A a pseudo-differential operator of order α > 0.

Then, G(z) can be constructed to be a pseudo-differential operator of order z, we can choose

15
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H0 to be contained in W∞
2 (X), and define H1 := W s

2 (X) for any s > α+R<. Thus, all G(z)

and G(z)A are pseudo-differential operators of order ≤ α+R< for <(z) < R< and therefore

elements of L(H1,H).

More generally, the assumptions on the class of operators9 imply that we are working

in algebras of Fourier integral operators with finite order. This setup always allows for a

construction using H0 ⊆ W∞
2 and H1 = W s

2 . �

This discretization is viable in the sense of the following lemmas and particularly Propo-

sition 4 which says that the discretized Hamiltonian is still self-adjoint, the ground state

energy computed in disc converges to the ground state energy of the continuum (in H),

and the vacuum computed in disc “converges” to the vacuum in H. Finally, Proposition 4

states that 〈ψdisc|Adisc |ψdisc〉 converges to the vacuum expectation 〈ψ|A |ψ〉 given any op-

erator A ∈ L(H1,H) for which the vacuum of H is in the domain of A∗ where A∗ is the

adjoint of A as an unbounded operator in H (this is the case for pseudo-differential A be-

cause A∗ is a pseudo-differential operator of the same order) and such that ‖Aψdisc‖H =√
〈ψdisc| (A∗A)disc |ψdisc〉 is bounded. While the last assumption - boundedness of the vari-

ance of the discretized operator A in the continuum limit - is technical, it is essentially

necessary for numerical applications since otherwise the vacuum expectations 〈PnAQn〉 in

Pn[H] are virtually impossible to compute numerically for large n.

Lemma 2. Let A ∈ L(H1,H), (e′j)j∈N0 an orthonormal basis of H1 such that ∀n ∈ N :

lin{e′j; 0 ≤ j < n} = Pn[H], and Qn the orthogonal projection onto Pn[H] in H1. Then

PnAQn converges to A in the strong operator topology, i.e.,

∀x ∈ H1 : lim
n→∞

PnAQnx = Ax.

Proof. Let x ∈ H1. Then

‖Ax− PnAQnx‖2H =
n−1∑
j=0

∣∣〈ej, Ax− PnAQnx〉H
∣∣2 +

∑
j∈N≥n

∣∣〈ej, Ax− PnAQnx〉H
∣∣2

=
n−1∑
j=0

∣∣〈ej, A(1−Qn)x〉H
∣∣2 +

∑
j∈N≥n

∣∣〈ej, Ax〉H∣∣2
≤‖A(1−Qn)x‖2H +

∑
j∈N≥n

∣∣〈ej, Ax〉H∣∣2
16
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≤‖A‖2L(H1,H)

∑
j∈N≥n

∣∣∣〈e′j, x〉H1

∣∣∣2︸ ︷︷ ︸
→0

+
∑
j∈N≥n

∣∣〈ej, Ax〉H∣∣2︸ ︷︷ ︸
→0

shows the assertion.

Lemma 3. Let B ∈ L(H), A ∈ L(H1,H), (e′j)j∈N0 an orthonormal basis of H1 such that

∀n ∈ N : lin{e′j; 0 ≤ j < n} = Pn[H], and Qn the orthogonal projection onto Pn[H] in H1.

Then

∀x ∈ H1 : lim
n→∞

PnBQnPnAQnx = BAx.

Proof. Let x ∈ H1, Bn := PnBQn, and An := PnAQn. Then

‖BAx−BnAnx‖2H =
n−1∑
j=0

∣∣〈ej, BAx−BnAnx〉H
∣∣2 +

∑
j∈N≥n

∣∣〈ej, BAx−BnAnx〉H
∣∣2

=
n−1∑
j=0

∣∣〈ej, (BA−BPnAQn)x〉H
∣∣2 +

∑
j∈N≥n

∣∣〈ej, BAx〉H∣∣2
≤‖B(A− An)x‖2H +

∑
j∈N≥n

∣∣〈ej, BAx〉H∣∣2
≤‖B‖2L(H) ‖(A− An)x‖2H︸ ︷︷ ︸

→0

+
∑
j∈N≥n

∣∣〈ej, BAx〉H∣∣2︸ ︷︷ ︸
→0

shows the assertion.

Proposition 4. Let H be the Hamiltonian, i.e., ∀s ∈ [0, T ] : H(s) is a self-adjoint operator,

each −H(s) generates a C0-semigroup, and there exists E0 := minσ(H(s)) such that E0

is in the point spectrum, ker(H(s) − E0) is independent of s, and ∃ε ∈ R>0 ∀s ∈ [0, T ] :

B(E0, ε)∩σ(H(s)) = {E0} (in other words, the QFT has an energy gap). Then the following

are true.

(i) Let A be self-adjoint in H. Then PnAQn is self-adjoint on (Pn[H], 〈·, ·〉H). In partic-

ular, PnH(s)Qn is self-adjoint.

(ii) Let ψ be the vacuum state (i.e., an eigenvector with respect to E0) and ψn the vacuum

state of PnH(s)Qn in Pn[H]. Then

lim
n→∞
〈ψn, PnH(s)Qnψn〉H = lim

n→∞
〈ψ, PnH(s)Qnψ〉H = 〈ψ,H(s)ψ〉H = E0.

17
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(iii) Let Ĥ := H(s) − E0. If the vacuum is non-degenerate, i.e., ker Ĥ = lin{ψ}, then

〈ψn, ψ〉Hψn → ψ in H.

(iv) Let the vacuum be non-degenerate and A ∈ L(H1,H) be such that the sequence

(‖Aψn‖H)n∈N is bounded and ψ ∈ D(A∗) where A∗ is the adjoint of A as an un-

bounded operator in H. Then

〈ψn, Aψn〉H = 〈ψn, PnAQnψn〉H → 〈ψ,Aψ〉H

and

〈ψ, PnAQnψ〉H → 〈ψ,Aψ〉H.

Proof. “(i)” Since (Pn[H], 〈·, ·〉H) is a finite dimensional complex Hilbert space, we know that

PnAQn is self-adjoint if and only if its numerical range

NR(PnAQn) := {〈ϕ, PnAQnϕ〉H; ϕ ∈ Pn[H], ‖ϕ‖H = 1}

is an interval. By the Hausdorff-Toeplitz theorem, NR(PnAQn) is convex and compact.

Hence, it suffices to show that NR(PnAQn) ⊆ R. However, that claim follows directly from

self-adjointness of A in H

∀ϕ ∈ Pn[H] : 〈ϕ, PnAQnϕ〉H =〈Pnϕ,AQnϕ〉H = 〈ϕ,Aϕ〉H ∈ R

since Pn and Qn are the identity on Pn[H].

“(ii)” In order to show the convergence claim, we will first note that

lim
n→∞
〈ψ, PnH(s)Qnψ〉H = 〈ψ,H(s)ψ〉H

follows directly from ‖(H(s)− PnH(s)Qn)ψ‖H → 0.

Regarding (〈ψn, PnH(s)Qnψn〉H)n∈N, we note that ∀m,n ∈ N : m ≥ n ⇒ Pn[H] ⊆ Pm[H]

implies that (〈ψn, PnH(s)Qnψn〉H)n∈N is non-increasing. Furthermore, since H(s) is self-

adjoint, its spectrum coincides with its approximate point spectrum which itself is contained

in the closure of the numerical range of an operator, i.e., we obtain

E0 = min NR(H(s)) = min{〈ϕ,H(s)ϕ〉H; ϕ ∈ D(H(s)), ‖ϕ‖H = 1}

since H −E0 ≥ 0 implies 〈ϕ,H(s)ϕ〉H ≥ E0. Hence, (〈ψn, PnH(s)Qnψn〉H)n∈N is convergent

to some value E ≥ E0 = 〈ψ,H(s)ψ〉H.
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Since ∀x ∈ Pn[H] \ {0} : E ≤ 〈ψn, PnH(s)Qnψn〉H = 〈ψn, H(s)ψn〉H ≤ 〈x,H(s)x〉H
‖x‖2H

, it

suffices to find a sequence (xn)n∈N such that ∀n ∈ N ∃m ∈ N : xn ∈ Pm[H], ‖xn − ψ‖H → 0,

and ‖H(s)xn −H(s)ψ‖H → 0 as these conditions imply

E0 ≤E ≤ 〈xn, H(s)xn〉H = 〈xn − ψ,H(s)xn〉H + 〈ψ,H(s)xn〉H → E0

using |〈xn − ψ,H(s)xn〉H| ≤ ‖xn − ψ‖H︸ ︷︷ ︸
→0

‖H(s)xn‖H︸ ︷︷ ︸
bounded

→ 0 as well as 〈ψ,H(s)xn〉H →

〈ψ,H(s)ψ〉H.

In order to find such a sequence, we will use that each −H(s) generates a C0-semigroup,

i.e., there exists a strictly increasing (λk)k∈N ∈ (%(−H(s)) ∩ R>0)
N such that λk ↗ ∞,

λk(λk +H(s))−1ψ → ψ in H, and H(s)λk(λk +H(s))−1ψ → H(s)ψ in H where the Yosida

approximation H(s)λk(λk +H(s))−1 = λk−λ2k(λk +H(s))−1 of H(s) is a bounded operator

on H.

Choosing one such sequence (λk)k∈N, let yk := λk(λk + H(s))−1ψ ∈ H1. Then we obtain

that

∀k ∈ N : ‖Qmyk − yk‖H1
→ 0 (m→∞)

‖Qmyk − yk‖H ≤ ‖id‖L(H1,H) ‖Qmyk − yk‖H1
→ 0

and

‖H(s)Qmyk −H(s)yk‖H ≤‖H(s)‖L(H1,H) ‖Qmyk − yk‖H1
→ 0 (m→∞).

For n ∈ N choose kn,mn ∈ N such that ‖ykn − ψ‖H < 1
2n
, ‖Qmnykn − ykn‖H < 1

2n
,

‖H(s)ykn −H(s)ψ‖H <
1
2n
, and ‖H(s)Qmnykn −H(s)ykn‖H <

1
2n
. Then

∀n ∈ N : xn := Qmnykn ∈ Pmn [H]

implies xn → ψ and H(s)xn → H(s)ψ in H and thus the assertion.

“(iii)” Since Ĥ is strictly positive on the orthocomplement of ker Ĥ, there exists ε ∈ R>0

such that ∀x ∈ (ker Ĥ)⊥ : 〈x, Ĥx〉H ≥ ε ‖x‖2H. Let π be the orthoprojector onto ker Ĥ.

Then we observe

0 = lim
n→∞
〈ψn, Ĥψn〉H = lim

n→∞
〈πψn, Ĥπψn〉H︸ ︷︷ ︸

=0

+〈(1− π)ψn, Ĥ(1− π)ψn〉H

≥ lim
n→∞

ε ‖(1− π)ψn‖2H .

19



Zeta-regularized vacuum expectation values

Hence, ‖(1− π)ψn‖H → 0 and

1 = ‖ψn‖2H = ‖πψn‖2H + ‖(1− π)ψn‖2H

implies |〈ψn, ψ〉H| = ‖πψn‖H → 1 and

‖〈ψn, ψ〉Hψn − ψ‖2H = ‖〈ψn, ψ〉Hπψn − ψ + 〈ψn, ψ〉H(1− π)ψn‖2H

=
∥∥|〈ψn, ψ〉H|2 ψ − ψ∥∥2H + |〈ψn, ψ〉H|2 ‖(1− π)ψn‖2H

=
∣∣|〈ψn, ψ〉H|2 − 1

∣∣︸ ︷︷ ︸
→0

+ |〈ψn, ψ〉H|2︸ ︷︷ ︸
→1

‖(1− π)ψn‖2H︸ ︷︷ ︸
→0

shows the assertion.

“(iv)” Finally, (iv) follows directly from (iii) since we can assume ψn = 〈ψn,ψ〉H
|〈ψn,ψ〉H|

ψn without

loss of generality and observe

|〈ψn, Aψn〉H − 〈ψ,Aψ〉H| = |〈ψn − ψ,Aψn〉H − 〈ψ,A(ψn − ψ)〉H|

≤ ‖ψn − ψ‖H︸ ︷︷ ︸
→0

‖Aψn‖H︸ ︷︷ ︸
bounded

+ ‖A∗ψ‖H ‖ψn − ψ‖H︸ ︷︷ ︸
→0

as well as

〈ψ, PnAQnψ〉H → 〈ψ,Aψ〉H

which follows from Lemma 2.

Remark The non-degeneracy assumption on the vacuum has to be satisfied in a Wightman

theory. In a free field theory, this is satisfied because the theory is essentially an infinite-

dimensional harmonic oscillator and its ground state is essentially an infinite tensor product

of one-dimensional harmonic oscillator ground states. Similarly, in condensed matter physics,

most phases of a material have a unique ground state as well. In the case of moduli spaces,

high degeneracy is generally possible but they usually generate their own superselection

sectors which are separated and hence the Hilbert space H is restricted to be one such

superselection sector making the vacuum in H unique again. �

Since H and H1 are often Sobolev space W s
2 (X), it is canonically possible to choose H1

in such a way, that the operators H, A, . . . are of trace-class, i.e., in the Schatten class

S1(H1,H). In that case, we can improve Lemma 2.
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Lemma 5. Let p ∈ R≥1 ∪ {∞} and A ∈ Sp(H1,H). Then ‖PnAQn − A‖Sp(H1,H) → 0 and

hence ‖PnAQn − A‖L(H1,H) → 0 as well.

Proof. Let ε ∈ R>0. There exists a finite rank operator A0 =
∑K−1

k=0 αk〈xk, ·〉H1yk with

α ∈ CK and orthonormal families (xk)0≤k<K ∈ HK
1 and (yk)0≤k<K ∈ HK such that

‖A− A0‖Sp(H1,H) <
ε
3
. Hence,

‖PnAQn − A‖Sp(H1,H) ≤ ‖PnAQn − PnA0Qn‖Sp(H1,H)︸ ︷︷ ︸
≤‖Pn‖L(H1,H)‖A−A0‖Sp(H1,H)‖Qn‖L(H1,H)

+ ‖PnA0Qn − A0‖Sp(H1,H)

+ ‖A0 − A‖Sp(H1,H)

implies that it suffices to show that ‖PnA0Qn − A0‖Sp(H1,H) is eventually bounded by ε
3
. By

splitting ‖PnA0Qn − A0‖Sp(H1,H) into ‖PnA0(Qn − 1)‖Sp(H1,H) + ‖(Pn − 1)A0‖Sp(H1,H) and,

using that the Sp(H1,H)-norm and L(H1,H)-norm coincide on rank-1 operators, we observe

‖PnA0(Qn − 1)‖Sp(H1,H) ≤
K−1∑
k=0

|αk| ‖〈(Qn − 1)xk, ·〉H1Pnyk‖Sp(H1,H)

=
K−1∑
k=0

|αk| ‖〈(Qn − 1)xk, ·〉H1Pnyk‖L(H1,H)

≤
K−1∑
k=0

|αk| ‖(Qn − 1)xk‖H1︸ ︷︷ ︸
→0

‖Pnyk‖H︸ ︷︷ ︸
≤1

and

‖(Pn − 1)A0‖Sp(H1,H) ≤
K−1∑
k=0

|αk| ‖〈xk, ·〉H1(Pn − 1)yk‖Sp(H1,H)

=
K−1∑
k=0

|αk| ‖〈xk, ·〉H1(Pn − 1)yk‖L(H1,H)

≤
K−1∑
k=0

|αk| ‖xk‖H1︸ ︷︷ ︸
=1

‖Pnyk‖H︸ ︷︷ ︸
→0

which completes the proof.

Later in the proof of Theorem 1, we will want to show for two trace-class opera-

tors A and B that 〈ψn,Aψn〉H〈ψn,Bψn〉H
= limT→∞

tr(UnPnAQn)
tr(UnPnBQn)

→ limT→∞
tr(UA)
tr(UB)

holds where Un =

texp
(
− i

~

∫ T
0
PnH(s)Qnds

)
. We will do this by showing 〈ψn,Aψn〉H

〈ψn,Bψn〉H
→ 〈ψ,Aψ〉H

〈ψ,Bψ〉H
and using

〈ψ,Aψ〉H = limT→∞
tr(UA)
Z

where Z is the partition function. Hence, the partition function
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cancels out and we obtain the required result. However, since the partition function itself

formally evaluates to Z = trU which is mathematically ill-defined, mathematically rigorous

existence of Z can be elusive. Hence, in the trace-class setting of the lemma above, we can

prove tr(UnPnAQn)
tr(UnPnBQn)

→ tr(UA)
tr(UB)

directly which would circumvent the problem of existence of Z

since the discretized partition function trUn is well-defined (Un is simply a matrix).

Lemma 6. Let the Hamiltonian H satisfy the conditions necessary for the time-dependent

Hille-Yosida theorem (cf. Theorem 5.3.1 in 25) and H1 such that H(s) ∈ S1(H1,H) for all

s ∈ [0, T ], as well as A,B ∈ S1(H). Then

tr(UnPnAQn)

tr(UnPnBQn)
→ tr(UA)

tr(UB)
.

Proof. Let An := PnAQn. In order to prove the assertion, it suffices to show that both

numerator and denominator converge separately. Using the lemma above,

|tr(UnAn)− tr(UA)| ≤ |tr((Un − U)An)|+ |tr(U(An − A))|

≤ ‖Un − U‖L(H) ‖An‖S1(H) + ‖U‖L(H) ‖An − A‖S1(H)

implies that it suffices to show ‖Un − U‖L(H) → 0.

According to the proof of the time-dependent Hille-Yosida theorem, we can define sk := kT
K

for 0 ≤ k < K (K ∈ N), let Sk be the semigroup generated by − i
~H(sk), and define

a semigroup ŨK as ŨK(t − s) = Sk(t − s) if sk ≤ s ≤ t ≤ sk+1 and ŨK(t − s) =

Sk(t − sk)Sk−1(T/K) . . . Sj+1(T/K)Sj(sj+1 − s) if s ∈ [sj, sj+1] and t ∈ [sk, sk+1]. Then∥∥∥ŨK(T, 0)− U
∥∥∥
L(H)
→ 0.

Furthermore, the Yosida approximations Hk := − i
~H(sk)λk

(
λk + i

~H(sk)
)−1 generate

semigroups Rk and we can define the semigroup ÛK as ÛK(t − s) = Rk(t − s) if sk ≤ s ≤

t ≤ sk+1 and ÛK(t − s) = Rk(t − sk)Rk−1(T/K) . . . Rj+1(T/K)Sj(sj+1 − s) if s ∈ [sj, sj+1]

and t ∈ [sk, sk+1] to obtain
∥∥∥ÛK(T, 0)− ŨK(T, 0)

∥∥∥
L(H)
→ 0.

Let ε ∈ R>0 and K0 ∈ N such that ∀K ∈ N≥K0 :
∥∥∥ŨK(T, 0)− U

∥∥∥
L(H)

< ε
5
and∥∥∥ÛK(T, 0)− ŨK(T, 0)

∥∥∥
L(H)

< ε
5
. Since ∀k : Hk ∈ S1(H1,H) and there are only finitely

many k, ∃N ∈ N ∀n ∈ N≥N :
∥∥∥ÛK(T, 0)− Ûn

K(T, 0)
∥∥∥
L(H)

< ε
5
where Ûn

K is constructed

correspondingly to ÛK but replacing each Hk with PnHkQn.

Finally, and possibly increasing N , K, and the λk, we can find Ũn
K with correspond-

ing generators PnH(sk)Qn such that ∀K ∈ N≥K0 :
∥∥∥Ũn

K(T, 0)− Un
∥∥∥
L(H)

< ε
5

and
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∥∥∥Ûn
K(T, 0)− Ũn

K(T, 0)
∥∥∥
L(H)

< ε
5
, which yields ‖Un − U‖L(H) → 0 and completes the proof.

Remark It may be advantageous to consider the proof of Lemma 6 in terms of time-

independent Hamiltonians for simplicity. Using Lemma 5, it suffices to show that (Un(T ))n∈N

converges to U(T ) in L(H) where U is the semigroup generated by − i
~H and Un is the

semigroup generated by Hn := − i
~PnHQn. Following the theorem of Hille-Yosida we define

the Yosida approximations H(λ) := λH(λ − H)−1 and H(λ),n := λHn(λ − Hn)−1 for real λ

in the respective resolvent sets. The Yosida approximations are thus bounded operators on

H and generate the semigroups U(λ) :=
(
exp(tH(λ))

)
t∈R≥0

and U(λ),n :=
(
exp(tH(λ),n)

)
t∈R≥0

.

Then, the crucial step in the proof of Hille-Yosida is to show that λ → ∞ implies uniform

convergence for t in compact subsets of R≥0. In particular, U(λ)(T )→ U(T ) and U(λ),n(T )→

Un(T ) holds in L(H).

Hence, it suffices to show U(λ),n(T ) → U(λ)(T ) in L(H) but these are exponential series

of bounded operators. In other words, proving H(λ),n → H(λ) in L(H) is sufficient. At this

point, Lemma 5 implies Hn → H in L(H1,H), i.e., the assertion follows if we can show

that A 7→ (λ − A)−1 is continuous with respect to L(H,H1). For this last step, we use the

resolvent identity (λ − A1)
−1 − (λ − A2)

−1 = (λ − A1)
−1(A1 − A2)(λ − A2)

−1 which im-

plies ‖Rλ(H)−Rλ(Hn)‖L(H,H1)
≤ ‖Rλ(H)‖L(H,H1)

‖H −Hn‖L(H1,H) ‖Rλ(Hn)‖L(H,H1)
where

Rλ(H) := (λ − H)−1 and Rλ(Hn) := (λ − Hn)−1. Thus, the assertion follows from

boundedness of n 7→ ‖Rλ(Hn)‖L(H,H1)
which is a consequence of the Neumann series

since ‖Rλ(Hn)‖L(H,H1)
≤ ‖Rλ(H)‖L(H,H1)

1−q holds for ‖H −Hn‖L(H1,H) < q ‖Rλ(H)‖−1L(H,H1)
with

q ∈ (0, 1).

Since semigroups of time-dependent Hamiltonians are constructed using an analogue of

the forward Euler method, there remains only one more limit to consider in the proof of

Lemma 6. �

Example Since the H(s) are usually unbounded operators in H, it may at first seem sur-

prising to ask for the H(s) to be of trace-class. However, this is more an assumption about

the topology of H1. To illustrate this, we will explicitly discuss a simple example of this

case.

Consider lj : [0, 2π] → R; x 7→ sin(j2x) for each j ∈ N, L := lin{lj; j ∈ N}, as well as
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the following norms on L

‖·‖L2
: L→ R; f 7→ ‖f‖L2([0,2π])

‖·‖W 1
2,0

: L→ R; f 7→ ‖∂f‖L2([0,2π])
.

Then we define H := L
‖·‖L2 and W := L

‖·‖
W1

2,0 . Furthermore, let H be a closed operator on

W (e.g., a differential operator) and H1 := L
‖·‖H where ‖f‖2H := ‖f‖2W 1

2,0
+ ‖Hf‖2W 1

2,0
. Then,

H is bounded as a map from H1 to W and we want to show that it is trace-class as a map

from H1 to H.

To show H ∈ S1(H1,H) we first note that W is compactly embedded in H, i.e., we can

write the identity id : W → H in the form

id =
∑
j∈N

sj〈·, ej〉Wfj

for some orthonormal basis (ej)j∈N of W and orthonormal basis (fj)j∈N of H where (sj)j∈N

is the sequence of singular values. In particular, we obtain id ∈ Sp(W ,H) if and only if

(sj)j∈N ∈ `p(N). Considering the lj, we observe

〈lj, lk〉L2([0,2π]) =

0 , j 6= k

π , j = k

and

〈lj, lk〉W 1
2,0([0,2π])

=〈ij2lj, ik2lk〉L2([0,2π]) =

0 , j 6= k

j4π , j = k
.

In other words, we can choose ej := 1
j2
√
π
lj and fj := 1√

π
lj. However, this directly yields

ek =
∑
j∈N

sj〈ek, ej〉Wfj = skfk,

which implies (sj)j∈N =
(

1
j2

)
j∈N
∈ `1(N) and, hence, id ∈ S1(W ,H).

Finally, H ∈ L(H1,W) and id ∈ S1(W ,H) directly imply H ∈ S1(H1,H). �

V. PROOF OF THEOREM 1

Following Proposition 4 we have already proven

〈ψ|A |ψ〉 =c-lim〈Adisc〉 = c-lim 〈ψdisc|Adisc |ψdisc〉 = c-lim 〈ψn|A |ψn〉 .
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Hence, it remains to show that 〈ψ|A |ψ〉 = limn→∞〈ψn, Aψn〉H = 〈A〉G(0). However, since

〈A〉G(0) is given by analytic extension, we cannot directly compute it. Instead, we will

prove that the sequence (z 7→ 〈ψn,G(z)Aψn〉H)n∈N of meromorphic functions is compactly

convergent on an open, connected, dense subset of C with limit 〈A〉G = ζ(UGA)
ζ(UG)

. Recall that

for <(z) < R, both UG(z)A and UG(z) are of trace-class and

〈A〉G(z) = lim
T→∞

tr(UG(z)A)

tr(UG(z))
.

If UG(z) were a unitary generated by a Hamiltonian, then we could directly interpret this

as a vacuum expectation value in some QFT. However, that is not the case, but for the

discretized system, we can introduce Un = texp
(
− i

~

∫ T
0
PnH(s)Qnds

)
artificially again;

〈Adisc〉G(z) = lim
T→∞

tr(UnPn(G(z)A)Qn)

tr(UnPnG(z)Qn)

= lim
T→∞

tr (UnPn(G(z)A)Qn)

trUn
lim
T→∞

trUn
tr (UnPnG(z)Qn)

=
〈ψn,G(z)Aψn〉H
〈ψn,G(z)ψn〉H

.

Considering numerator and denominator of the right hand side separately, we can directly

see why the assumption for (z 7→ ‖G(z)Aψn‖)n∈N and (z 7→ ‖G(z)ψn‖)n∈N to be locally

bounded in C(C) is necessary. Pointwise boundedness is necessary for both numerator and

denominator to be convergent by Proposition 4. However, pointwise convergence is not

quite enough since we need compact convergence and by Vitali’s theorem that requires local

boundedness.

Theorem 7 (Vitali’s theorem). Let Ω ⊆ C be open and connected and (fn)n∈N a locally

bounded sequence of holomorphic functions on Ω such that {z ∈ Ω; limn→∞ fn(z) exists}

has an accumulation point in Ω. Then (fn)n∈N is compactly convergent.

Furthermore, by the following two lemmas, the quotient z 7→ 〈ψn,G(z)Aψn〉H
〈ψn,G(z)ψn〉H

is compactly

convergent on an open, dense, connected subset of C and coincides with 〈A〉G.

Lemma 8. Let ∀z ∈ C : D(z) := 〈ψ,G(z)ψ〉H. Then D has only isolated zeros.

Proof. By Proposition 4, D is the pointwise limit of the sequence (z 7→ 〈ψn,G(z)ψn〉H)n∈N

in the denominator and, since the denominator sequence is compactly convergent, D is

holomorphic as well. Hence, D has only isolated zeros or D = 0 (identity theorem for
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holomorphic functions implies D = 0 if [{0}]D := {z ∈ C; D(z) = 0} has an accumulation

point). However, G(0) = 1 implies D(0) = 〈ψ, ψ〉H = 1 and thus the assertion.

Lemma 9.
(
z 7→ 〈ψn,G(z)Aψn〉H

〈ψn,G(z)ψn〉H

)
n∈N

is compactly convergent to 〈A〉G on C \ [{0}]D.

Proof. We obtain pointwise convergence on C \ [{0}]D directly since both numerator and

denominator are compactly convergent and the denominator converges pointwise toD. Com-

pact convergence thus follows from Vitali’s theorem once we have proven local boundedness

of the sequence.

Let z0 ∈ C \ [{0}]D. Then there exists δ ∈ R>0 such that

∀z ∈ B(z0, δ) : |D(z)−D(z0)| <
|D(z0)|

3
,

where B(z0, δ) := {z ∈ C; |z − z0| < δ}, and given such δ ∈ R>0,

∃N ∈ N ∀n ∈ N≥N ∀z ∈ B(z0, δ) : |〈ψn,G(z)ψn〉H −D(z)| < |D(z0)|
3

.

Hence, (z 7→ 〈ψn,G(z)ψn〉H)n∈N is locally eventually bounded away from zero on C \ [{0}]D

and therefore
(
z 7→ 〈ψn,G(z)Aψn〉H

〈ψn,G(z)ψn〉H

)
n∈N

locally eventually bounded on C \ [{0}]D.

Finally, we need to show that the compact limit is indeed 〈A〉G. Since we know that

both 〈A〉G and the compact limit of
(
z 7→ 〈ψn,G(z)Aψn〉H

〈ψn,G(z)ψn〉H

)
n∈N

are holomorphic on an open,

connected, and dense subset Ω of C, it suffices to show that
(
z 7→ 〈ψn,G(z)Aψn〉H

〈ψn,G(z)ψn〉H

)
n∈N

converges

pointwise to 〈A〉G on a set that has an accumulation point in Ω.

Let z ∈ C<·<R \ [{0}]D. Then

lim
n→∞

〈ψn,G(z)Aψn〉H
〈ψn,G(z)ψn〉H

=
〈ψ,G(z)Aψ〉H
〈ψ,G(z)ψ〉H

= lim
T→∞

tr(UG(z)A)

tr(UG(z))
= 〈A〉G(z)

completes the proof.

Finally, since 0 /∈ [{0}]D, we can point evaluate
(
z 7→ 〈ψn,G(z)Aψn〉H

〈ψn,G(z)ψn〉H

)
n∈N

and obtain

lim
n→∞
〈ψn, Aψn〉H = lim

n→∞

〈ψn,G(0)Aψn〉H
〈ψn,G(0)ψn〉H

= 〈A〉G(0)

since G(0) = 1 which completes the proof of Theorem 1
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VI. CONCLUSION

It has previously been observed9,11 that ζ-regularization can be applied to Feynman’s

path integral with Lorentzian background. While being able to obtain physically correct

vacuum expectation values in a number of different examples, it was unclear how physical

this ζ-regularized path integral is. On the other hand, the ζ-regularized vacuum expectation

values are highly interesting because they allow for non-perturbative computations in the

continuum with Lorentzian background.

In Theorem 1 we have provided a proof that such ζ-regularized vacuum expectation val-

ues 〈A〉G(0) are in fact continuum limits and coincide with the “true” vacuum expectation

values 〈A〉 provided the Hamiltonian satisfies certain assumptions. Most of these assump-

tions are relatively non-critical and can be addressed in a physically meaningful way, e.g.,

superselection sectors for non-degenerate vacua. Hence, the only assumption of Theorem 1

that is physically relevant is the assumption of an energy gap. As such Theorem 1 is gen-

erally applicable to generic quantum field theories. We have shown that at the example of

the free radiation field for which we explicitly computed the ground state energy using the

ζ-regularized vacuum expectation values in the N → ∞ photon limit (Section II) and the

full Fock space (Appendix B).

The continuum limits used to prove 〈A〉G(0) = 〈A〉 can be expressed in terms of a

discretization scheme disc which we described in Section IV. This discretization scheme has

a couple of remarkable properties, as well. On one hand, the discretized system still has a

Lorentzian background, i.e., real time computations are possible. On the other hand, the

discrete approximations of the vacuum are accessible on quantum computers where quantum

computing is necessary precisely because we are working on a Lorentzian background. In

fact, for large, non-trivial systems it is expected that quantum computations are the only way

to obtain these expectation values. Hence, the ζ-regularized vacuum expectation values are

accessible using quantum computing, too. We have tested this computation of the continuum

limit using the Rigetti Quantum Virtual Machine and the Rigetti 8Q chip “Agave”.

As an example, we implemented a version of the hydrogen atom in the spatially bounded

universe (−π, π). This forces the ground state to be highly non-trivial from the point of view

of the discretization scheme. Nonetheless, the rate of convergence appears to be exponential

in the number of qubits “error ∼ exp(−1.92 · number of qubits)”. We have shown this
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rate of convergence theoretically (through exact diagonalization of the Hamiltonian) and

were able to reproduce it with a quantum computer. A simulation on the Rigetti Quantum

Virtual Machine (ignoring noise) agreed with the theoretical values to more than 8 significant

digits using up to 5 qubits, and an implementation using the Rigetti 8Q chip “Agave”

reproduced the theoretical results with the expected accuracy on one qubit. Two or more

qubit computations are shown to require quantum processing units with improved fidelity.

Finally, it is important to note that lattice field theories can be expressed as a special case

of the discretization scheme considered here, provided that coarser lattices are contained in

finer lattices, that is, the coarser lattice spacing is an integer multiple of the finer lattice

spacing. The basis used to construct the discretization scheme - which we chose to be the

Fourier basis for the 1-dimensional hydrogen atom - is a basis of piecewise linear functions

in a lattice field theory. This is particularly interesting since it was also observed9,11 that

lattice field theories can be ζ-regularized in the same way. In other words, the methods

described here open up the possibility to study lattice systems on a Lorentzian background.
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Appendix A: Construction of the Hilbert space and Hamiltonian for the free

radiation field

Considering the free radiation field on (R/XZ)3, we have a gauge field A and the elec-

tromagnetic field tensor F := dA, i.e., Fµν = ∂µAν − ∂νAµ. Choosing the Lorentz gauge

∂µA
µ = 0 (for a more detailed expose of the R3 case see 26), the Lagrangian is given by

L = −1

4
FµνF

µν − 1

2
(∂µA

µ)2
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which generates the equation of motion ∂µ∂µA = 0.

Turning the classical field A and its canonical momentum π, which satisfies π0 = −∂µAµ

and πj = ∂jA0 − ∂0Aj, into operators, we impose the canonical commutation relations

[Aµ(x), Aν(x)] = 0, [πµ(x), πν(x)] = 0, as well as [Aµ(x), πν(y)] = iηµνδ
(3)(x − y). We can

now write down A and π in terms of creation and annihilation operators (aλ(p)† and aλ(p))

Aµ(x) =
∑

p∈Z3\{0}

√
X

2π ‖p‖`2(3)

3∑
λ=0

ελµ(p)
(
aλ(p)e

2πi
X
〈p,x〉`2(3) + aλ(p)†e−

2πi
X
〈p,x〉`2(3)

)

πµ(x) =
∑
p∈Z3

i

√
2π ‖p‖`2(3)

X

3∑
λ=0

(εµ)λ(p)
(
aλ(p)e

2πi
X
〈p,x〉`2(3) − aλ(p)†e−

2πi
X
〈p,x〉`2(3)

)
where the 4-vectors ελ are the four polarization vectors. Furthermore, we should note

that the momentum is endowed with a +i rather than the familiar −i which is due to the

Heisenberg picture in which πµ = −∂0Aµ+ . . . generates a factor +i. As for the polarization

vectors, we choose ε0 to be timelike and ε1, ε2, and ε3 spacelike with ε3 longitudinal and ε1

and ε2 transversal, i.e.,

∀λ ∈ {1, 2} : ελµ~p
µ = 0

where ~p = (‖p‖`2(3) , p) is the photon 4-momentum. In other words, for momenta p ∝

(1, 0, 0, 1), (ελ)0≤λ<4 can be chosen to be the canonical basis of R4 and all other polarizations

arise applying the appropriate Lorentz transform.

Now we can translate the commutation relations and obtain

[aλ(p), aλ
′
(q)] = [aλ(p)†, aλ

′
(q)†] = 0 and [aλ(p), aλ

′
(q)†] = −ηλ,λ′δp,q

which is fine for spacelike λs but

[a0(p), a0(q)†] = −δp,q

is problematic. Since the Lorentz invariant vacuum |0〉 is defined via

∀0 ≤ λ < 4 ∀p ∈ Z3 : aλ(p) |0〉 = 0,

we can generate one-photon states |p, λ〉 = aλ(p)† |0〉 and observe

〈p, 0|q, 0〉 = 〈0| a0(p)a0(q)† |0〉 = −δp,q,
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that is, |p, 0〉 has negative norm. This is possible because we haven’t yet incorporated the

Lorentz gauge ∂µAµ = 0. To do so, we need to decompose Aµ(x) into A+
µ (x) +A−µ (x) where

A+
µ (x) =

∑
p∈Z3\{0}

√
X

2π ‖p‖

3∑
λ=0

ελµ(p)aλ(p)e
2πi
X
〈p,x〉

A−µ (x) =
∑

p∈Z3\{0}

√
X

2π ‖p‖

3∑
λ=0

ελµ(p)aλ(p)†e−
2πi
X
〈p,x〉.

Then a state |ψ〉 is physical if and only if

∂µA+
µ |ψ〉 = 0

as this ensures

∀ϕ, ψ physical : 〈ϕ| ∂µAµ |ψ〉 = 0.

This condition is known as Gupta-Bleuler condition.

However, we still do not have a Hilbert space since we have a degenerate vacuum which

means that we only have a semi-inner product. Consider a Fock space basis of the form

|ψT 〉 |ϕ〉 where |ψT 〉 contains the transversal photons and |ϕ〉 the timelike and longitudinal

photons. The Gupta-Bleuler condition then implies (a3(p)− a0(p)) |ϕ〉 = 0. In other words,

any state that contains a timelike photon of momentum p also contains a longitudinal photon

of momentum p. It is also easy to verify that for any states |ϕm〉 withm pairs of timelike and

longitudinal photons and |ϕn〉 with n pairs of timelike and longitudinal photons 〈ϕm|ϕn〉 =

δm0δn0 holds. Taking the quotient with respect to all norm-zero states, we need to make

sure that all physical operators A have the same expectation 〈ϕ|A |ϕ〉 with respect to all

norm-zero states |ϕ〉.

For the Hamiltonian

H0 =
∑

p∈Z3\{0}

2π ‖p‖
X

(
−a0(p)†a0(p) +

3∑
j=1

aj(p)†aj(p)

)

we can directly check this since the a0(p) |ϕ〉 = a3(p) |ϕ〉 implies

〈ψT , ϕ| a0(p)†a0(p) |ψT , ϕ〉 = 〈ψT , ϕ| a3(p)†a3(p) |ψT , ϕ〉

and, hence,

〈ψT , ϕ|H0 |ψT , ϕ〉 = 〈ψT , ϕ|
∑

p∈Z3\{0}

2π ‖p‖`2(3)
X

2∑
j=1

aj(p)†aj(p) |ψT , ϕ〉
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= 〈ψT |
∑

p∈Z3\{0}

2π ‖p‖`2(3)
X

2∑
j=1

aj(p)†aj(p)︸ ︷︷ ︸
=:H

|ψT 〉

which is independent of ϕ. More generally, 〈ψT , ϕ|G0 |ψT , ϕ〉 = 〈ψT |G |ψT 〉 can be checked

to be true for any gauge-invariant operator G0. In other words, the single photon Hilbert

space H1 is spanned by the transversal photon states |ψT 〉, i.e.,

H1 = `2
(
Z3,C2

)
	 lin{|0, 2〉}

with basis (ψp,j)p∈Z3,j∈{1,2} defined as

∀p ∈ Z3 ∀j ∈ {1, 2} : ψp,j := |p, j〉 = aj(p)† |0〉 ,

and the Hamiltonian is given by

H =
∑
p∈Z3

2π ‖p‖`2(3)
X

(
a1(p)†a1(p) + a2(p)†a2(p)

)
where

∀p, q ∈ Z3 ∀j, k ∈ {1, 2} : aj(p)†aj(p)ψq,k = δp,qδj,k.

Alternatively, we may choose a formulation with

H1 = L2

(
(R/XZ)3,C2

)
	 lin


0

1


with basis

ψp,0(x) =
1√
X3

exp

(
2πi

X
〈p, x〉`2(3)

)1

0


ψp,1(x) =

1√
X3

exp

(
2πi

X
〈p, x〉`2(3)

)0

1


for p ∈ Z3 (where lin{ψ0,1} is the orthocomplement of H1 in L2 ((R/XZ)3,C2)) and Hamil-

tonian

H1 = |∇| idC2 .
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Since the Hamiltonian is diagonalized, it is easy to compute the energy of any given state

ψ =
∑

(p,j)∈Z3×2\{(0,1)} αp,jψp,j

〈ψp,j, H1ψp,j〉H =
∑

(p,j)∈Z3×2\{(0,1)}

|αp,j|2
2π ‖p‖`2(3)

X

which is minimal if and only if p = 0, i.e., |0〉 = ψ0,0.

Choosing any increasing sequence of sets Jn ⊆ {ψp,j; (p, j) ∈ Z3 × 2 \ {(0, 1)}} with

#Jn = n, Jn ⊆ Jn+1, and
⋃
n∈N Jn = Z3 × 2 \ {(0, 1)}, ψ0,0 will eventually be contained

in each Pn[H1] trivializing the continuum limit. Furthermore, this is the expected result

as the vacuum should not contain any photons. Yet, since we chose to quotient out norm-

zero states of the Fock space earlier, this vacuum does reproduce the non-trivial vacuum

containing pairs of longitudinal and timelike photons.

In order to consider N -photon states |P 〉 = |(p1, j1), . . . , (pN , jN)〉, we use the N -fold

symmetric tensor product2 S
⊗N

k=1H1 of H1 and set |P 〉 = |p1, j1〉 ⊗ . . . ⊗ |pN , jN〉. The

Hamiltonian in S
⊗N

k=1H1 is given by

HN =
N∑
k=1

(
k−1⊗
m=1

idH1

)
⊗H ⊗

(
N⊗

m=k+1

idH1

)
.

Appendix B: The free radiation field in the Fock space

In this appendix, we will discuss the changes to Section II necessary to discuss the free

radiation field in the Fock space. The Fock space HF is similar to the up-to-N -particle space

H≤N in the sense that we do not consider all states of up to N particles but the smallest

Hilbert space containing all Hilbert spaces with up to N particles. The Fock space HF thus

minimalizes HF ⊇
⋃
n∈NH≤N .

Given the single particle Hilbert space H1 - which in the case of the free radiation field is

L2((R/XZ)3,C2) \C2, i.e., the up-to-one-particle Hilbert space with the vacuum removed -

the (exactly) N -particle space HN is given by the symmetric tensor product

HN = S ⊗Nj=1 H1

2 If we were working in a fermionic theory, the symmetric tensor product would have to be replaced with

the antisymmetric tensor product.
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and the N particle state |P 〉 = |P0, . . . , PN−1〉 =
∏N−1

j=0 a
†
Pj
|0〉 is represented by

|P 〉 =
1

N !

∑
π∈SN

N−1⊗
j=0

∣∣Pπ(j)〉
where SN denotes the symmetric group on the set N . The full Fock space H is then the

Hilbert space complete direct sum of all exactly-N -particle Hilbert spaces

H =
⊕
N∈N

HN =
⊕
N∈N

S ⊗Nj=1 H1.

The Hamiltonian keeps each of the HN invariant and on each HN is simply the restriction

of

HN =
N∑
k=1

(
k−1⊗
m=1

idH1

)
⊗H ⊗

(
N⊗

m=k+1

idH1

)
.

Thus, the Fock space Hamiltonian HF is given by

HF =
⊕
N∈N

HN = diag

((
N∑
n=1

|∇R3 |

)
N∈N

)
.

If we now naïvely attempt to extend the computation of the up-to-N -particle Hilbert space

to the entire Fock space, we observe the following

“〈HF 〉G(z)”

= lim
T→∞

∫
×

N∈N(R
3)N

∑
N∈N tr

(
e−iT

∑N
n=1‖ξn‖`2(3)

∑N
n=1 ‖ξn‖`2(3)

∏N
m=1 ‖ξm‖

z
`2(3)

idC2

)
dξ∫

×
N∈N(R

3)N

∑
N∈N tr

(
e−iT

∑N
n=1‖ξn‖`2(3)

∏N
m=1 ‖ξm‖

z
`2(3)

idC2

)
dξ

= lim
T→∞

∑
N∈N

∑N
n=1

∏N
m=1

∫
R3 e

−iT‖ξm‖`2(3) ‖ξm‖z+δmn`2(3)
dξm∑

N∈N
∏N

m=1

∫
R3 e

−iT‖ξm‖`2(3) ‖ξm‖z`2(3) dξm

= lim
T→∞

∑
N∈NN(vol∂BR3)N

∫
R>0

e−iT rrz+3dr
(∫

R>0
e−iT rrz+2dr

)N−1
∑

N∈N(vol∂BR3)N
(∫

R>0
e−iT rrz+2dr

)N
= lim

T→∞

∑
N∈NN(vol∂BR3)NΓ(z + 4)Γ(z + 3)N−1(iT )−z−4(iT )−Nz+z−3N+3∑

N∈N(vol∂BR3)NΓ(z + 3)N(iT )−Nz−3N

which is a problem because neither numerator nor denominator converge for T � 1 and

<(z)� 0.
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In other words, we need another regularizing factor to control the summation with respect

to N . In this case, we can define

αN(z) := N z(vol∂BR3)z
Γ(4)Γ(3)N

Γ(z + 4)Γ(z + 3)N
(iT )Nz.

Then ∀N ∈ N : αN(0) = 1 and

〈HF 〉G(z)

= lim
T→∞

∫
×

N∈N(R
3)N

∑
N∈N tr

(
e−iT

∑N
n=1‖ξn‖`2(3)

∑N
n=1 ‖ξn‖`2(3) αN(z)

∏N
m=1 ‖ξm‖

z idC2

)
dξ∫

×
N∈N(R

3)N

∑
N∈N tr

(
e−iT

∑N
n=1‖ξn‖`2(3)αN(z)

∏N
m=1 ‖ξm‖

z
`2(3)

idC2

)
dξ

= lim
T→∞

∑
N∈N αN(z)N(vol∂BR3)NΓ(z + 4)Γ(z + 3)N−1(iT )−Nz−3N−1∑

N∈N αN(z)(vol∂BR3)NΓ(z + 3)N(iT )−Nz−3N

= lim
T→∞

∑
N∈NN

z+1(vol∂BR3)N+zΓ(4)Γ(3)NΓ(z + 3)−1(iT )−3N−1∑
N∈NN

z(vol∂BR3)N+zΓ(4)Γ(3)NΓ(z + 4)−1(iT )−3N

which does have convergent numerator and denominator for <(z) � 0 and the quotient is

in O (T−1), i.e.,

〈HF 〉G = 0

which coincides with the N →∞ particle limit computation in Section II.
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