
Applying recursive numerical integration
techniques for solving high dimensional integrals

Andreas Ammone, Alan Genzb, Tobias Hartungc, Karl Jansena, Hernan Leöveyd ,
Julia Volmer∗a

aNIC, DESY
Platanenallee 6, D-15738 Zeuthen, Germany

bDepartment of Mathematics, Washington State University
Pullman, WA 99164-3113 USA

cDepartment of Mathematics, King’s College London
Strand, London WC2R 2LS, United Kingdom

dInstitut für Mathematik, Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin

dIVU Traffic Technologies AG
Bundesallee 88, 12161 Berlin, Germany

Email: andreas.ammon@desy.de, genz@math.wsu.edu,
tobias.hartung@kcl.ac.uk, karl.jansen@desy.de,
leovey@math.hu-berlin.de, julia.volmer@desy.de

The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves
like 1/

√
N. This scaling makes it often very time intensive to reduce the error of computed ob-

servables, in particular for applications in lattice QCD. It is therefore highly desirable to have
alternative methods at hand which show an improved error scaling. One candidate for such an
alternative integration technique is the method of recursive numerical integration (RNI). The ba-
sic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaus-
sian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann
weights. We present the application of such an algorithm to the topological rotor and the anhar-
monic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate
that the RNI technique shows an error scaling in the number of integration points m that is at least
exponential.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

ar
X

iv
:1

61
1.

08
62

8v
1

 [
he

p-
la

t]
 2

5
N

ov
 2

01
6

mailto:andreas.ammon@desy.de
mailto:genz@math.wsu.edu
mailto:tobias.hartung@kcl.ac.uk
mailto:karl.jansen@desy.de
mailto:leovey@math.hu-berlin.de
mailto:julia.volmer@desy.de

Recursive numerical integration techniques Julia Volmer

1. Introduction

For evaluation of the high dimensional path integrals in numerical simulations of statistical
physics and lattice-QCD [1] mainly Markov-Chain Monte Carlo methods (MCMC) are used.

If we have a model with discrete variables {x1, ...,xd},xi ∈ D ⊂ R and an action S[x] ≡
S(x1, ...,xd), we can measure the expectation value of an observable O[x] in this model by

〈O〉=
∫

Dd dxO[x] e−S[x]∫
Dd dx e−S[x]

. (1.1)

These integrals are usually impossible to approximate with reasonable sample sizes by means of
direct sampling because d is large. MCMC methods can be applied to large dimensions d because
they often choose N sampling configurations [x] from a probability distribution dependent on e−S[x].
On the other side the error of 〈O〉 scales weakly, namely like 1√

N
. Additionally, the consecutively

chosen sampling points have a dependence and these autocorrelations can lead to large errors since
they necessitate very long MCMC runs. Therefore it is highly desirable to look for alternative
methods to improve the weak error scaling, especially for very time-intensive computations as they
are done for example in lattice-QCD.

One alternative approach, the Recursive Numerical Integration (RNI) method [2, 3], promises
to overcome both MCMC drawbacks, at least in principle. RNI is a polynomially exact method,
not of statistical nature, therefore we directly avoid autocorrelations and the theoretical predictions
for the error scaling are usually at least exponential. In this method we compute numerator and
denominator in (1.1) separately. Similar to MCMC we also exploit the weighting function e−S[x]

but not as a probability density but by using its structure to simplify the integrals and finally apply
Gaussian quadrature to solve them numerically to get a polynominally exact solution. The sim-
plification of course depends a lot on the action itself and therefore is model dependent. Here we
apply the method to the topological oscillator to obtain a first test whether the predicted improved
error scaling can indeed be reached.

2. Recursive Numerical Integration

We use the principle of Recursive Numerical Integration (RNI) [2, 3] to derive the final formula
we use to compute each of the two main integrals in (1.1). The derivation consists of three main
steps. First we identify a structure in the integrand, secondly we integrate recursively, and finally
choose a quadrature rule to perform each integration numerically. The last paragraph in this section
is dedicated to the discussion of the differences in computing the two integrals in (1.1)

Integrand Structure Throughout the whole paper we look at physical 1-dimensional models,
schematically shown at the top of figure 1, with d lattice points, only next-neighbor couplings fi

(which are in general different from each other) and periodic boundaries. Because in addition all
considered observables are of algebraic nature we can write each of the two integrals in (1.1) in the
form

I =
∫

D
dx1 ...

∫
D

dxd

d

∏
i=1

fi(xi,xi+1). (2.1)

1

Recursive numerical integration techniques Julia Volmer

lattice
f1 f2 fd−2 fd−1 fdx1 x2 x3 xd−2 xd−1 xd xd+1 := x1

Id
1. integration

Id−1
2. integration

I3
(d− 2). integration

I2
(d− 1). integration

I := I1
d. integration

· · ·...

Figure 1: Visualization of the recursive integration steps for a 1-dimensional lattice with d points xi, next-
neighbor couplings fi and periodic boundaries: How to consecutively calculate Ii, i ∈ {d,d− 1, ...,1} by
integrating out the lattice variable xi (shown in the first row) and finally arrive at the desired integral I.

Recursive Integration We can reorder expression (2.1). Because of the next-neighbor coupling
every lattice point xi appears only twice, in fi and fi−1, and I can be written

I =
∫

D
dx1 ...

(∫
D

dxd−2 fd−3(xd−3,xd−2) ·
(∫

D
dxd−1 fd−2(xd−2,xd−1) ·

(∫
D

dxd fd−1(xd−1,xd) · fd(xd ,xd+1)

)
︸ ︷︷ ︸

Id

)
︸ ︷︷ ︸

Id−1

)

︸ ︷︷ ︸
Id−2︸ ︷︷ ︸

I1

. (2.2)

This recursive integration process is visualized in the lower part of figure 1. The first integration
we can perform is the integral standing at the right end of equation (2.2) over fd−1 and fd . Here
we integrate out xd and call the resulting integral Id . Id has two open indices, xd−1 and xd+1. It is
visualized in the figure as an uninterrupted line including fd−1 and fd from knot xd−1 to xd+1.

In the second integration step we integrate out xd−1. Here we integrate over the already calcu-
lated Id and the new fd−2, which, as Id , depends on xd−1. This procedure is repeated until we have
integrated out all xi, where for the last integration over x1 we just have to integrate over I2(x1,x1).

Numerical Integration For numerical integration we want to approximate each of the above
integrals with some integrand g(x) by a weighted sum (quadrature)

∫
Ddxg(x) ≈ ∑

m
r=1 wrg(xr),

where we evaluate the integrand at specific mesh points xr and weight this result by corresponding
weights wr.1 Applying this approximation to each integral in (2.2) leads to a transformation of∫

Ddxi ∑
m
r=1 wr

i and fi(xi,xi+1) Mi(x
j
i ,x

k
i+1) =: M j,k

i . We apply this approximation to the first
integration step to get

Id(xs
d−1,x

t
1)≈

m

∑
r=1

wr Ms,r
d−1 Mr,t

d =

(
Md−1 ·diag

(
w1,w2, ...,wm)︸ ︷︷ ︸

M̃d−1

·Md

)s,t

, (2.3)

which is just the (s, t) entry of the matrixproduct in brackets. This is valid for all integration mesh
points of xs

d−1 and xt
1, s, t ∈ {1, ...,m}.

1The superscript here is used to distinguish these integration indices from the discretization indices and should not
be interpreted as some exponential.

2

Recursive numerical integration techniques Julia Volmer

For each of the following integration steps i ∈ {2, ...,d−1}, we get an additional sum, weight
and a matrix, which gives an additional M̃d−i+1 in the matrix product. Therefore after repeating

this step d−2 times we arrive at I2(xt
1,x

t
1)≈

((
∏

d−1
i=1 M̃i

)
Md

)t,t
. Integrating finally over x1 gives

I = I1 =
∫

D
dx1 I2(x1,x1)≈

m

∑
t=1

wtIt,t
2 = tr

[
diag

(
w1, ...,wm) It,t

2

]
= tr

[(
d

∏
i=1

M̃i

)]
. (2.4)

Because RNI is a deterministic method and we are mostly interested in the scaling of the error
and not the value of the integration itself, we estimate the error of the integral I(m) at some number
of mesh points m by a truncation error, i.e. by computing I at a larger m0 > m value and compute
the difference ∆I(m) = |I(m)− I(m0)|.

At this point, we have not yet specified which quadrature to use. For every 1-dimensional
integration 2m parameters, the mesh points and weights, have to be determined. By using Gauss
quadrature we approximate the integrand by a polynomial of degree 2m−1 2 and therefore obtain
a polynomially exact solution to our integral. One valid choice for these polynomials are the
Legendre polynoms of degree m. This is a good choice because the functions we look at are mostly
exponentials which are approximated well by Legendre polynomials.

If the integrand g(x) is not itself a polynomial of degree 2m−1 but sufficiently smooth in the
integration range D, g(x) ∈C2m(D), the error scaling of the integral approximation by using Gauss
quadrature is asymptotically (for large enough m)

O

(
1

(2m)!

)
∼O

(
e2m

√
2π2m(2m)2m

)
= O

(
exp [−2m lnm] · 1√

m

)
, (2.5)

where we used the Stirling formula to estimate the factorial.

Types of integrals There are two types of integrals we want to compute, the numerator and
the denominator of equation (1.1). The denominator integrates the Boltzmann weight. Assuming
isotropy of a given model we obtain here f1 = f2 = ... = fd . Therefore also M1 = M2 = ... = Md

and the final integral (2.4) simplifies to I ≈ tr[(M̃)d]. This can be evaluated by either computing the
eigenvalues of M̃, raise them to the dth power and sum them up or computing the dth power of the
matrix explicitly and take the trace. The choice of the approximating polynomial and the chosen
quadrature rule are very important since M̃ is a m×m matrix. Hence, the smaller m is, the easier it
is to compute I.

The numerator depends strongly on the observable. This is normally some summation and/or
multiplication of the variables x1, ...,xd . In general this means we obtain different fi’s though most
of them will still coincide in practice. Thus, we need to compute the trace of a product of at most
d matrices, some of which may be raised to a power less than d.

3. Topological Oscillator

In this section, we apply the discussed method of RNI to the topological oscillator. This
simple physical 1-dimensional model shows some characteristic features of non-linear σ -models

2which has 2m free coefficients

3

Recursive numerical integration techniques Julia Volmer

and gauge theories, see e.g. [4, 5, 6]. It describes a particle with mass M moving on a circle with
radius R. The basic degree of freedom is an angle φ dependent on time t. The action of this system
is the integration of the kinetic energy of the particle over a time period T . We discretize one time
period in d slices with spacing a. On each timeslice lives an angle φi = φ(ti), i ∈ {1, ...,d}.

Scontinuum(φ) =
MR2

2

∫ T

0
dt
(

∂φ

∂ t

)2
lattice
=⇒ S[φ] =

MR2

a

d

∑
i=1

(1− cos(φi+1−φi)). (3.1)

The right side of the above equation is one possibility for the discretized action. One characteristic
quantity of this system is the topological charge. This is the number of complete revolutions of the
rotor in the time period T ,

Qcontinuum(φ) =
1

2π

∫ T

0
dt
(

∂φ

∂ t

)
lattice
=⇒ Q[φ] =

1
2π

d

∑
i=1

(φi+1−φi) mod [−π,π). (3.2)

A more physical observable to characterize a system is the width of the distribution Q normalized
by the time period T , the topological susceptibility χ , with the continuum limit

χ[φ] =
〈Q2[φ]〉

T
a→0,d→∞−−−−−−→
a·d=const

1
4π2MR2 . (3.3)

4. Numerical Results

As a benchmark quantity we compute the topological susceptibility with the RNI method. We
first test the correctness of the method by checking that we obtain the right correct continuum limit
value. Then we look at the error scaling as a function of the number of integration steps we use.
And finally we compare the error scaling and the cost of the computation with the optimal MCMC
Cluster algorithm results by looking at the runtime of both methods on a standalone computer.

To demonstrate the correctness of the results computed with RNI we first fix the number of
integration points to m = 120 and MR2 = 0.25 and computete the topological susceptability χ for
different lattice spacings a. The expected continuum limit value, considering (3.3), is χcontinuum =
1

π2 . The result of the computed χ subtracted by this expected theoretical value is shown in figure 2
and, as expected, it converges to zero at a = 0, compare also [7].

Next we examine the error scaling of the RNI method for which we use the truncation error
as discussed above. We choose MR2 = 0.25, a = 0.4 and a χ gauge value at m0 = 560 to compute
the truncation error for χ values at m < 500. Results are shown in figure 3. We fit an exponential
exp(−cm) to the data points in the range 220≤m≤ 480, which appears as a straight line in figure
3, where a logarithmic scale is used. The good agreement between the data and the exponential
suggests that asymptotically the error scales at least exponentially fast. This is comparable with the
expected error scaling for Gauss quadrature in (2.5). The expected weakening of the exponential
decay by the additional lnm in the exponent and the 1/

√
m behavior cannot be resolved here,

probably because we are not yet fully in the asymptotic regime where (2.5) holds.
With an exponential error scaling RNI will clearly outperform any other method with an alge-

braic error behavior, especially the 1/
√

N behavior of MCMC. An interesting question is whether
for smaller, more practical values of m RNI still gives better results than MCMC. Therefore we

4

Recursive numerical integration techniques Julia Volmer

Figure 2: Continuum extrapolation of the topolog-
ical susceptibility χ of the topological oscillator,
computed with RNI.

Figure 3: Error scaling of the topological suscepti-
bility ∆χ computed with RNI with number of inte-
gration points m. The blue line is an exponential fit
in the range 220≤ m≤ 480.

compare MCMC and RNI directly. In the special case of the Topological Oscillator we can apply a
specific kind of MCMC algorithm, the cluster algorithm [8]. This algorithm leaves the autocorrela-
tion time almost constant when going to smaller lattice spacings and hence is an optimal algorithm
for our system. Because both methods use different error scaling variables (number of mesh points
m for RNI and number of MCMC samples N for the Cluster algorithm) we compare them by run-
time t on a standalone computer. For these computations we use a = 0.1 and MR2 = 0.25 for
both methods and vary N = 102...106 for MCMC and m = 10...300 for RNI. The runtime varies
depending on other processes running on the computer, therefore we repeat every measurement
10 times to get an error estimation of the runtime. For the cluster algorithm, in addition, the size
and distributions of the generated clusters can vary, leading to different runtimes of the algorithm.
The error on the topological susceptibility can be estimated for the cluster algorithm by the slightly
different topological susceptibility results of the 10 runs and from its distribution the error on the
error can be roughly determined. For RNI we get for a fixed m always the same topological sus-
ceptibility result. We estimate the error, as before, by the truncation error, here with a gauge value
at m0 = 400. The error of this error is negleced here. Results can be seen figure 4. For MCMC
we observe the expected 1/

√
t behavior, visualized by the red line in the figure. The RNI error

scaling appears to not be exponential because we are considering values of m that are too small for
the asymptotic error scaling to be observed. However, although RNI is not yet in that regime, it
already outperforms MCMC by orders of magnitudes.

5. Conclusion

In this paper we have applied the method of Recursive Numerical Integration with Gauss-
quadrature to a quantum mechnical system, namely the topological rotor. RNI is a method to
numerically compute a high dimensional integral. It uses the structure of the integrand, here the
next-neighbor coupling, to convert the high dimensional integral in many recursively computed
small dimensional integrals which can be solved with high precision by using Gauss quadrature.

5

Recursive numerical integration techniques Julia Volmer

Figure 4: We show the run-time t in seconds needed
for the Cluster MCMC algorithm and RNI with Gauss
quadrature to get a given error on the topological sus-
ceptibility on a stand-alone computer. The red line
shows the expected 1/

√
t behavior of MCMC.

The topological rotor model is simple
enough to perform a first test of the RNI
method but it also shows already some char-
acteristic features of spin systems and even
gauge theories. We compute the width of
the distribution of the topological charge,
the topological susceptibility as a benchmark
quantity. There we find an exponentially fast
error scaling. Although theoretically the er-
ror scaling should be even faster than expo-
nential, we attribute this finding to the fact
that we still work in an intermediate range
of integration points and are not yet in the
asymptotic regime. Comparing RNI directly
with the for this model optimal MCMC Clus-
ter algorithm shows an improvement of the
error for RNI of several orders of magnitude even for a number of integration points where we are
not yet in the intermediate, exponentially fast error scaling regime. Further applications of RNI to
the anharmonic oscillator are reported in [9] and show extremely good results over a very broad
range of parameters.

In symmary, RNI turns out to be an alternative method to MCMC because it leads to greatly
improved error scaling and to order of magnitude reduced errors for a given runtime. This is
crucial, especially in simulations with a larger number of dimensions. On the other side, applying
RNI to a system with a larger number of dimensions results in the problem that the number of next
neighbors doubles and instead of matrices Mi j we have to deal with tensors Mi jkl which makes the
whole computation not feasible any more. Therefore we hope to combine this method with other
techniques which are more suitable for higher dimensions to exploit the Gauss-quadrature error
scaling to speed up computions.

References

[1] M. Lüscher, Computational Strategies in Lattice QCD, 2010, [1002.4232].

[2] A. Genz and D. K. Kahaner, J. Comput. Appl. Math. 16 (1986) 255–258.

[3] A. Hayter, J. Statist. Plann. Inference 136 (2006) 2284–2296.

[4] H. Rothe, World Sci.Lect.Notes Phys. 43 (1992) 1–381.

[5] I. Montvay and G. Münster. Cambridge Monographs on Mathematical Physics. Cambridge University
Press, 1994.

[6] C. Gattringer and C. B. Lang, Lect.Notes Phys. 788 (2010) 1–211.

[7] W. Bietenholz, U. Gerber, M. Pepe and U.-J. Wiese, JHEP 1012 (2010) 020, [1009.2146].

[8] F. Niedermayer, Lect.Notes Phys. 501 (1998) 36, [hep-lat/9704009].

[9] A. Ammon, A. Genz, T. Hartung, K. Jansen, H. Leövey and J. Volmer, Comput. Phys. Comm. 198
(2016) 71 – 81.

6

https://arxiv.org/abs/1002.4232
http://dx.doi.org/10.1016/0377-0427(86)90100-7
http://dx.doi.org/10.1016/j.jspi.2005.08.024
http://dx.doi.org/10.1007/978-3-642-01850-3
http://dx.doi.org/10.1007/JHEP12(2010)020
https://arxiv.org/abs/1009.2146
http://dx.doi.org/10.1007/BFb0105458
https://arxiv.org/abs/hep-lat/9704009
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2015.09.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2015.09.004

