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In lattice Quantum Field Theory, we are often presented with integrals over polynomials of co-
efficients of matrices in U(N) or SU(N) with respect to the Haar measure. In some physical
situations, e.g., in presence of a chemical potential, these integrals are numerically very difficult
since their integrands are highly oscillatory which manifests itself in form of the sign problem. In
these cases, Monte Carlo methods often fail to be adequate, rendering such computations practi-
cally impossible.
We propose a new class of integration rules on U(N) and SU(N) which are derived from poly-
nomially exact rules on spheres. We will examine these quadrature rules and their efficiency at
the example of a 0+1 dimensional QCD for a non-zero quark mass and chemical potential. In
particular, we will demonstrate the failure of Monte Carlo methods in such applications and that
we can obtain polynomially exact, arbitrary precision results using the new integration rules.
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1. Introduction

One of the greatest computational challenges in models of statistical and high energy physics
is the sign problem [1]. Hence, a myriad of techniques have been developed to address this prob-
lem, yet no general solution has been found to date [2]. In high energy physics, for instance, the
sign problem prevents a full understanding of the early universe and heavy ion collisions. Such
questions require computations using lattice QCD with a non-zero chemical potential which are
impossible using current techniques due to the appearance of large cancelation errors (cf., [3, 4] for
recent reviews).

Hence, alternative methods need to be developed. For instance, we have proposed and tested
Quasi Monte Carlo and iterated numerical integration techniques [5, 6]. Similarly, polynomially
exact integration techniques [7] and approaches using symmetrization [8, 9] have been studied. In
particular, the symmetrization approach achieved stable results combining Monte Carlo with fairly
small symmetry groups. The method to be proposed in the present work is based on complete
symmetrization and results in an arbitrarily precise evaluation of the integrals considered.

We will construct completely symmetric integration rules for U(N) and SU(N) (section 2)
which lead to polynomial exactness and test them using the 1-dimensional QCD with chemical
potential (cf., e.g., [10]) as an example (sections 3 and 4). Though the 1-dimensional QCD is
interesting in its own right as the strong coupling limit of QCD [11], we will use it as a benchmark
only; especially since observables can be computed analytically allowing us to check the numerical
results directly. In particular, we will compute the chiral condensate over a broad range of action
parameters including values that are impossible (for all practical purposes) to address with standard
Monte Carlo techniques.

2. Construction of polynomially exact rules derived from spheres

The construction of polynomially exact rules on SU(N) and U(N) is based on Theorem 2.1.

Theorem 2.1. Let G1 and G2 be topological groups, B(G1) and B(G2) their Borel σ -algebras,
Φ : G1 → G2 an isomorphism (i.e., a group isomorphism that is also a homeomorphism), γ1 a
(normalized) Haar measure on G1, and γ2 defined by ∀A ∈B(G2) : γ2(A) := γ1([A]Φ) where [A]Φ
denotes the pre-set of A under Φ.

Then, γ2 is a (normalized) Haar measure.

Since U(N) = SU(N)oU(1) holds where o denotes the (outer) semi-direct product, SU(2)∼=
S3, and SU(N) is a principal SU(N− 1)-bundle over S2N−1 [12, equation (22.18)], we can write
U(N) and SU(N) as products of spheres (up to a set of measure zero); more precisely, U(N) '
×N

j=1 S2 j−1 and SU(N) '×N
j=2 S2 j−1. Thus, given a homeomorphism Φ : × j S2 j−1 → G,

we can push the group structure of G ∈ {U(N),SU(N)} to the product of spheres turning Φ into an
isomorphism as in Theorem 2.1. In other words,

∫
G

f dhG =
∫
× j S2 j−1

f ◦Φ dvol× j S2 j−1
(2.1)
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where hG is the normalized Haar measure on G and vol× j S2 j−1
=× j

volS2 j−1

volS2 j−1 (S2 j−1)
is the product

of the normalized volume measures on the spheres defined on the product σ -algebra
⊗

j B
(
S2 j−1

)
.

The map Φ can be constructed inductively. Let Φ2 : ∂BC2 ∼= S3→ SU(2);

(
α

β

)
7→

(
α −β ∗

β α∗

)

where ∂BX is the boundary of the unit ball in X and jN : SU(N− 1)→ SU(N); U 7→

(
U 0
0 1

)
.

Furthermore, let

r j,N :=

{
eiα j sinϕ j ∏

j−1
k=1 cosϕk , j < N

eiαN ∏
N−1
k=1 cosϕk , j = N

(2.2)

r j,k :=


0 , j < k < N−1

eiαk cosϕk , j = k < N−1

−eiα j sinϕk sinϕ j ∏
j−1
l=k+1 cosϕl , k < j ≤ N−1

−eiαN sinϕk ∏
N−1
l=k+1 cosϕl , k < N−1 ∧ j = N

(2.3)

r j,N−1 :=


0 , j < N−1

e−i¬N−1 cosϕN−1 , j = N−1

−e−i¬N sinϕN−1 , j = N

(2.4)

where ¬ j := ∑
j−1
k=1 αk +∑

N
k= j+1 αk. Then, the vectors RN,k := (r1,k,r2,k, . . . ,rN,k)

T are orthonormal

and s ∈ {0,1} can be chosen such that RN :=
(
(−1)sRN,1 RN,2 RN,3 · · · RN,N

)
∈ SU(N). The

parameters α j ∈ [0,2π) and ϕ j ∈
[
0, π

2

]
in the definition of RN are uniquely defined by RN,N ∈

∂BCN ∼= S2N−1 up to a set of measure zero (r j,N = 0 ⇔ α j non-unique). Hence, we can define

ΦN : ∂BCN ×
N−1

×
j=2

∂BC j → SU(N); (RN,N ,r) 7→ RN jN(ΦN−1(r)) (2.5)

everywhere up to a set of measure zero.
Given suitable quadrature rules Q j in ∂BC j such that none of the points in×N

j=2 Q j is in the
null set that ΦN is not defined on, we obtain a quadrature rule

QSU(N) := ΦN

[
N

×
j=2

Q j

]
(2.6)

in SU(N). Furthermore, the Haar measure of U(N) decomposes into hU(N) = hSU(N)× hU(1) (cf.,
e.g., [13, Exercise 2.1.7]), i.e., choosing a quadrature rule QU(1) yields a quadrature rule QU(N) :=
QSU(N)×QU(1) on U(N).

As we are interested in polynomially exact quadrature rules, we choose

QU(1) :=
{

e
2πik
t+1 ; k ∈ N≤t+1

}
(2.7)

on U(1) with equal weights 1
t+1 which integrates all polynomials up to degree t exactly [14, Exam-

ple 5.14]. Furthermore, since the pull-back of polynomials in SU(N) have similar symmetry prop-
erties to “standard” polynomials on spheres, we consider (randomized) fully symmetric quadrature
rules as described in [15] for the quadrature rules Q j on S2 j−1.

2



New polynomially exact integration rules on U(N) and SU(N) Tobias Hartung

Remark It should be noted that presently we do not have a complete proof of polynomial exact-
ness for the groups U(N) and SU(N) with general N. However, the application below provides
numerical evidence for the tested groups and polynomial degrees.

3. One dimensional lattice QCD

Let us consider the Dirac operator for a quark of mass m at chemical potential µ [10]

D(U) =



m eµ

2 U1
e−µ

2 U∗n
− e−µ

2 U∗1 m eµ

2 U2

− e−µ

2 U∗2 m eµ

2 U3
. . . . . . . . .
− e−µ

2 U∗n−2 m e−µ

2 Un−1

− eµ

2 Un − e−µ

2 U∗n−1 m


(3.1)

where all empty entries are zero and the corresponding one flavor partition function

Z(m,µ,G,n) =
∫

Gn
detD(U) dhn

G(U) (3.2)

where G ∈ {U(N),SU(N)}, N ∈ N, and hG is the corresponding (normalized) Haar measure on G.
(Note that the integrals Z(m,µ,G,n) can be evaluated analytically; [16, Theorem 2.2] or [17] if
n ∈ 2N.)

As an observable for the model, we will consider the chiral condensate

χ(m,µ,G,n) = ∂m lnZ(m,µ,G,n) =
∂mZ(m,µ,G,n)

Z(m,µ,G,n)
=

∫
Gn ∂m detD(U) dhn

G(U)∫
Gn detD(U) dhn

G(U)
. (3.3)

We will furthermore choose the gauge U j = 1 except Un =U which yields

detD=det

(
n

∏
j=1

m̃ j +2−ne−nµU∗+(−1)n2−nenµU

)
(3.4)

where m̃1 := m, ∀ j ∈ [2,n−1]∩N : m̃ j := m+ 1
4m̃ j−1

, and m̃n := m+ 1
4m̃n−1

+∑
n−1
j=1

(−1) j+12−2 j

m̃ j ∏
j−1
k=1 m̃2

k
. In

particular, this reduces the integration over Gn to an integral over G.

4. Numerical Results

In this section, we will compare the quadrature rules described in section 2 to Markov Chain
Monte Carlo (MC-MC) using the same number of integration points. As a prelude to these compar-
isons, Figure 1 shows the values of Z(m,µ = 1.,G,n = 20) with G ∈ {SU(3),U(3)} over a range
of m values and compares them to 2−3ne3nµ which is the order of magnitude of the non-constant
term in detD. We can identify three regions (I, II, and III).

For large values of m (region III) the value of Z is significantly larger than the order of mag-
nitude of the critical terms in the point evaluation. Thus, in region III, we expect both methods
(MC-MC and polynomially exact) to yield very small relative errors.
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For small values of m (region I), on the other hand, Z(m,µ,U(3),n) is significantly lower
than 2−3ne3nµ . The initial error will, therefore, be very large and MC-MC will produce very large
relative errors. The polynomially exact quadrature should still produce machine error results, but
since the point evaluation error is of the same order of magnitude as the MC-MC error (which is
larger than O(1)), machine precision results still lose some precision. Since Z(m,µ,SU(3),n)−
Z(m,µ,U(3),n) ≈ 2−3ne3nµ we expect a regularizing effect on the relative error for SU(3) in re-
gion I, i.e., the relative error in the MC-MC case will not be as bad as it is in the U(3) case.

In the transition region (region II) of intermediate m values, we expect the MC-MC error in the
U(3) case to smoothly transition from machine error (region III) to some very large relative error
(region I). The polynomially exact results should stay on machine error until the MC-MC error
grows above 1 and then smoothly transition to the machine precision results of region I. The SU(3)
case, however, could show a more interesting behavior since the constant term Z(m,µ,SU(3),n)−
Z(m,µ,U(3),n) ≈ 2−3ne3nµ and the critical term in the point evaluation are of the same order of
magnitude. This can lead to cancelation effects (particularly for MC-MC) and, thus, a relative error
that is larger than the relative error in both regions I and III.
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Zanalytic(m, µ,   U(3), n)
Zanalytic(m, µ, SU(3), n)

Figure 1: Order of magnitude 2−3ne3nµ of the point
evaluation of the integrand compared to the value of Z
for G ∈ {U(3),SU(3)}.
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Figure 2: Comparison of the relative error of Z using
MC-MC and polynomially exact quadrature. Compu-
tations were performed with 1024bit extended floats
(≈ 307 digits precision).

In Figure 2, we have plotted the relative error of Z(m,µ = 1.,G,n = 20) over a range of
m values and for all G ∈ {U(1),U(2),SU(2),U(3),SU(3)}. We have performed the computations
with 1024bit extended floating point arithmetic since the values of Z(m� 1.,µ = 1.,U(N),n= 20)
are too low for double precision (as can be seen in Figure 1). In particular, we observe that the
polynomially exact method proposed above operates on machine precision throughout the entire
range of m values while MC-MC yields the expected results in each of the regions I, II, and III.

Considering the chiral condensate

χ(m,µ,G,n) =
∂mZ(m,µ,G,n)

Z(m,µ,G,n)
, (4.1)

Figure 3 shows the values of Z(m,µ = 1.,G,n = 8) and ∂mZ(m,µ = 1.,G,n = 8) over a large
range of m values and with G ∈ {U(2),SU(2)}, as well as, the order of magnitude 2−2ne2nµ of
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the point evaluation. Adding to the complications of computing the denominator Z for small m,
the numerator ∂mZ is difficult to compute, as well. Thus, we expect MC-MC results similar to the
MC-MC results computing partition function Z(m,µ,U(N),n); this is precisely what we observe
in Figure 4. In particular, we note that the MC-MC relative error is O(1) for small m, i.e., no
statistically significant results for the chiral condensate can be obtained using standard MC-MC
methods. In contrast, the polynomially exact results are on machine precision as expected.
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Figure 3: Order of magnitude 2−2ne2nµ of the point
evaluation of the integrand compared to the values of
Z and ∂mZ for G ∈ {U(2),SU(2)}.
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Figure 4: Comparison of the relative error of χ

using MC-MC and polynomially exact quadrature.
Computations were performed with 1024bit extended
floats (≈ 307 digits precision).

5. Conclusion

We have developed new integration rules for the groups U(N) and SU(N), provided numerical
verification that these rules are polynomially exact for N ≤ 3, and compared them to Markov Chain
Monte Carlo using the example of 1-dimensional QCD with a chemical potential in which a sign
problem appears with Monte Carlo for certain parameter values (region I; ∏

n
j=1 m̃ j < 2−NneNnµ ).

These computations have shown that, even in parameter ranges with the most severe sign problem,
the chiral condensate can be computed to arbitrary precision using the newly proposed method.
Standard Markov Chain Monte Carlo methods, on the other hand, exhibit large O(1) relative er-
rors, i.e., not giving any statistically significant results. We even used 1024bit extended precision
for these comparisons and obtained machine precision results with the new method. Furthermore,
the newly constructed quadrature rules yield an error reduction by many orders of magnitude com-
pared to Monte Carlo in regions without the sign problem, as well. Hence, we conclude that our
polynomially exact method completely avoids the sign problem.

The fact that these new integration rules overcome the sign problem and reduce the error by
orders of magnitude in the 1-dimensional QCD is very promising and a notable result in its own
right. However, this benchmark should be regarded as a toy model as it is necessary to demon-
strate applicability of the method to higher dimensions. We are, thus, presently considering the
Schwinger model as a 2-dimensional quantum field theory.
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