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Abstract

We apply the Quasi Monte Carlo (QMC) and recursive numerical integration
methods to evaluate the Euclidean, discretized time path-integral for the quan-
tum mechanical anharmonic oscillator and a topological quantum mechanical
rotor model. For the anharmonic oscillator both methods outperform stan-
dard Markov Chain Monte Carlo methods and show a significantly improved
error scaling. For the quantum mechanical rotor we could, however, not find
a successful way employing QMC. On the other hand, the recursive numerical
integration method works extremely well for this model and shows an at least
exponentially fast error scaling.

Keywords: recursive numerical integration, quasi monte carlo, quantum
mechanical rotor, anharmonic oscillator, lattice systems, low order couplings

1. Introduction

Markov Chain Monte Carlo (MCMC) is the method of choice for simulations
of quantum field theories or systems in statistical physics. The advantage of
MCMC is that it can be applied very generally to many physical models. It
allows to compute expectation values of physical observables 〈O〉 with an error
∆ which scales only as ∆ ∝ 1/

√
N , however, where N is the number of samples.

This error scaling law leads to a very large numerical effort if another significant
digit in the accuracy of an observable is needed.

In quantum field theory, in particular quantum chromodynamics (QCD) -
our theory of the strong interaction between quarks and gluons - very significant
progress has been achieved in the last years through improvements of the MCMC
methods used; see, e.g., ref. [1] for an overview. But, even though lattice
QCD simulations of the theory could be accelerated substantially, computations
typically run several months or even years on state of the art supercomputers. In
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addition, none of those improvements have changed the error scaling of 1/
√
N .

It will therefore be very demanding to obtain a significant improvement of the
accuracy of physical observables in this field.

On the other hand, it is known that Quasi Monte Carlo (QMC) [2, 3] or
recursive numerical integration [4, 5] methods show a much improved error
scaling. For QMC methods this error scaling reads ∆ ∝ 1/Nα where α can
reach values of α = 1 or even larger. For recursive numerical integration methods
the error scaling can be even better and, in some cases, it is even faster than
exponential, see also the discussion below.

Clearly, such QMC and recursive numerical integration methods could, thus,
lead to a much enhanced accuracy of simulations. However, these methods
have not been tried for generic quantum field theories, so far, and neither their
applicability nor whether they lead to an improved error scaling is clear.

In [6, 7, 8] we initiated a test of QMC methods for the harmonic and anhar-
monic quantum mechanical oscillator discretized on a Euclidean time lattice;
see the next section for an introduction to these systems. The results of these
investigations have been very promising. For the harmonic oscillator, which is
a Gaussian system, we found an error scaling of ∆ ∝ 1/N which is optimal.
Adding a non-Gaussian term in case of the anharmonic oscillator, we found
α ≈ 0.75 which is not optimal but significantly better than the error scaling of
MCMC methods. However, it needs to be mentioned that for certain system
sizes, that is, large Euclidean times, the QMC method did not work particularly
well for the anharmonic oscillator and no error scaling improvement could be
established; cf., [7] for details.

However, QMC methods can also solve another problem: when using MCMC
for the anharmonic oscillator, only samples in the vicinity of one minimum of
the action are drawn and the probability to jump to another minimum is very
small. This leads to a very large, in fact exponential, autocorrelation time. As
demonstrated in refs. [6, 7, 8] with QMC using the harmonic approximation
this problem is completely overcome. This is not surprising since QMC avoids
long autocorrelation times essentially by construction. We stress that, with
the new developments described in section 5.2, the iterated numerical integra-
tion method allows to solve the anharmonic oscillator without any problem of
autocorrelations, as well.

In this paper, we want to extend the work of refs. [6, 7, 8] in two directions.
One direction is to apply recursive numerical integration methods for the an-
harmonic oscillator. As we will see below, this method does not suffer from the
shortcomings of the QMC method for large Euclidean times. The other direction
is the investigation of a topological quantum mechanical model, the quantum
rotor. This model has some characteristic features that are also present for
non-linear σ-models or gauge theories which are essential and most important
models for describing elementary particle interactions; see, e.g., refs. [9, 10, 11]
for introductions to lattice field theories applied to particle theory. However,
since the quantum rotor is a much simpler 1-dimensional quantum mechanical
model, it is easier to treat numerically. In this way, it becomes possible to test
in detail, whether QMC or recursive numerical integration methods work for
such a model. Clearly, in case the application of one of the methods fails, it will
become almost impossible to proceed with higher dimensional gauge theories.
As we will discuss below, so far we have not been able to apply QMC success-
fully to the quantum rotor. On the other hand, recursive numerical integration
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methods turn out to be highly successful and show an extremely good error
scaling behavior.

Another aspect investigated here is the rapid increase of the autocorrelation
time for the quantum mechanical rotor when the continuum limit is approached.
For the sake of illustrating this generic problem of MCMC methods, we will
perform a calculation of the quantum rotor with the Metropolis algorithm. QMC
and recursive numerical integration methods do not suffer from this problem
and are, hence, also very advantageous in this respect. Since for the quantum
mechanical rotor a particular MCMC method which also avoids the problem
of very large autocorrelation times, the cluster algorithm, can be applied, we
compare the recursive numerical integration method to this optimal MCMC
algorithm to see whether a gain can still be found.

The paper is organized as follows. In the next section we introduce the
models which are investigated throughout the paper. In section 3 we shortly
summarize our (failed) attempts to solve the quantum rotor with QMC methods.
In section 4 we introduce the recursive numerical integration method and discuss
its theoretical basis. Finally, in section 5 we present our results and conclude in
section 6.

2. Lattice systems: 1-dimensional models

In this paper we investigate two different quantum mechanical models in
Euclidean time1. In order to evaluate the models numerically we will discretize
time and solve the resulting high dimensional integrals numerically. In this sec-
tion we start with some general considerations about calculating observables of
lattice systems before we describe the two models we investigate, the topological
oscillator and the anharmonic oscillator.

Calculating observables in discretized time. The coordinate x(t) ∈ R describes
the trajectory of a particle in time. Classically, this path of a particle propa-
gating from x0 = x(0) to x1 = x(T ) during a time period T is determined by
the minimum of the action S(x) (with respect to x(t)),

S(x) =

∫ T

0

L(x, t)dt ∈ R,

with the Lagrangian L(x, t) containing all necessary information about the
model.

In order to obtain a numerically tractable and positive action while keeping
the quantum mechanical observables real we have to define the trajectory x(t)
on a Euclidean, equidistant time lattice with lattice spacing a. Corresponding
to this, we replace the following quantities by their discretized counterparts:

t→ ti := i · a, i ∈ {0, 1, 2, ..., d− 1},
x(t)→ xi := x(ti), xi ∈ R,

(1)

1Euclidean time is common practice in the standard lattice approach.
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with T = a · d, such that∫ T

0

dt→ a

d−1∑
i=0

,
dx

dt
→ ∇xi =

1

a
(xi+1 − xi). (2)

We remark that the choice of the discretization of the derivative is not unique
and alternative discretizations can lead to different error expansions of observ-
ables in terms of the lattice spacing in the continuum limit, a→ 0 and T →∞.
We will use cyclic boundary conditions xd := xd( mod d) = x0 throughout this
paper.

In a quantum mechanical system not only the classical path contributes to a
given observable, but all possible paths have to be taken into account. Following
Feynman’s description, the quantum mechanical system is defined by the path
integral ∫

Dd
e− S[x]dx, (3)

where D is a domain in R. In (3) the transformation to Euclidean time has
been performed already. For a time discretized quantum mechanical system (3)
is well-defined, although it may have a high dimension d, which could be 1000
or larger.

The expectation value 〈O[x]〉 of an observable O[x] = O(x0, x2, . . . , xd−1) of
a quantum mechanical model with a discretized action S[x] can now be calcu-
lated using the path integral formalism

〈O[x]〉 =

∫
Dd

O[x] e− S[x]dx∫
Dd

e− S[x]dx
. (4)

We note that the formalism for treating quantum mechanical systems, as
it is sketched out above, can be generalized to quantum field theories. Such
quantum field theories are the actual basis for the theoretical investigation of
elementary particle interactions.

Topological oscillator. As indicated previously, the first model we are going
to consider in this article is the topological oscillator or quantum rotor which
describes a particle with mass M0 moving on a circle with radius R, and corre-
spondingly, has a moment of inertia of I = M0R

2. We investigate this particular
model because it goes beyond the classical quantum mechanical oscillator (de-
scribed later on) and already shows some characteristic features of non-linear
σ-models and gauge theories which are of prime importance in particle physics.

The free coordinate of the system is the angle φ ∈ [−π, π), describing the
position of the particle on a circle with radius R around the origin. The system
is described by the action

S(φ) =

∫ T

0

I

2

(
dφ

dt

)2

dt,

and is obtained from the action of a free particle moving in two dimensions,

S(x) =

∫ T

0

M0

2

(
ẋ(t)2 + ẏ(t)2

)
dt (x, y) ∈ R2, (5)
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and the transformation x(t) = R cos(φ(t)) and y(t) = R sin(φ(t)) respectively.
The corresponding discretized action reads

S[φ] =
I

a

d−1∑
i=0

(1− cos (φi+1 − φi)) , (6)

where we use the cosine to describe the kinetic part of the action, as 1
a2 (1 −

cos(φi+1−φi)) = 1
2 (∇φi)2

+O((∇φi)4) and hence corresponds to leading order
to the naive lattice derivative (as in (2), right). In the following we will, if not
stated otherwise, set the lattice spacing to a = 1. This means, in particular,
that the continuum limit is reached2 by T = d · a→∞.

One characteristic quantity of the quantum mechanical rotor is the topolog-
ical charge of the system. It describes the number of complete revolutions the
rotor performs during a time period T

Q(φ) =
1

2π

∫ T

0

(
dφ

dt

)
dt ∈ Z .

We use the discretized version

Q[φ] =
1

2π

d−1∑
i=0

(φi+1 − φi) mod [−π, π).

As an observable, we will investigate the topological susceptibility

χt =
〈Q2[φ]〉
T

T→∞−→ 1

4π2I
,

where 〈Q2[φ]〉 is calculated according to (4).
Other important observables of the system are the energy gaps which can

be extracted from Euclidean correlation functions Γ(j),

Γ(j) =
1

d

d−1∑
i=0

φi · φi+j , j ∈ {0, 1, . . . , d/2}. (7)

It measures the correlation of angles at different lattice sites separated by a
distance j. This correlation function has an exponential decay rate with the
distance j,

Γ(j) ∝̃ e−j·∆E , j � 1. (8)

From this the energy gap ∆E between the ground state and the first excited
state and therefore also the correlation length ξ can be determined,

ξ =
1

∆E

T→∞−→ 2I. (9)

Other energy levels can be computed in a similar way.

2In principle, the physical extent of time lattice T = d · a should be kept constant and
hence the continuum limit a→ 0 requires d→∞.

5



Through the energy gap, a connection to the topological susceptibility can
be established, as well; namely,

χt =
〈Q2〉
T

=
1

2π2
∆E.

This, however, only holds in the continuum limit a→ 0 and T →∞.

Anharmonic oscillator. The second quantum mechanical system considered in
this article is the harmonic oscillator which describes a particle with mass M0

moving along a path x ∈ R in a potential proportional to x2. Adding a x4 term
to the potential, the system is called the anharmonic oscillator. The Lagrangian
is given by

L(x, t) =
M0

2

(
dx

dt

)2

+
µ2

2
x2 + λx4

where µ2, λ ∈ R. In order to keep the action bounded from below, the coupling
λ has to be chosen positive. With λ > 0 present, the constant µ2 can be chosen
arbitrarily and for µ2 > 0 one finds a distorted harmonic potential while for
µ2 < 0 a double well potential appears.

Using the discretization scheme mentioned in (1) and (2), the lattice action
for the anharmonic oscillator becomes

S[x] = a

d−1∑
i=0

M0

2
(∇xi)2 +

µ2

2
x2
i + λx4

i .

One type of characteristic observables of this system are powers of the position
x of the particle, i.e., 〈x〉, 〈x2〉, 〈x4〉, etc.

Another type of observable is again the energy gap which can be extracted
from the correlator Γ(j), as already described in eq. (7) and (8) for the topo-
logical oscillator. After exchanging the variables in eq. (7) by the ones of the
anharmonic oscillator model a similar calculation has to be done here.

The harmonic and anharmonic quantum mechanical oscillators have been
studied with QMC methods in [6, 7, 8].

3. Remarks on Quasi-Monte Carlo attempts

In this section, we would like to give an overview of our attempts to solve
the topological oscillator with QMC methods utilizing (randomized) Sobol’ se-
quences (cf., [12, 13]) 3. The section is intended for researchers who are familiar
with QMC and may be skipped by non-experts. The addressed attempts were
motivated by the positive results obtained for the (an)harmonic oscillator model
(cf., e.g., [6]). At the present state, however, we were not able to observe pos-
itive results with our selected QMC constructions for the topological oscillator
model. In the following, we will summarize the sampling techniques that were
tested in combination with (randomized) Sobol’ sequences.

3These Sobol’ sequences are low-discrepancy sequences, i.e., they are designed to be more
uniformly distributed than pseudo-random numbers.
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Näıve Sampling. The näıve sampling here simply means that we used the (ran-
domized) Sobol’ points as an approximate uniform distribution and used these
points directly to evaluate the (re-scaled) integrals according to∫

[0,1]d
f(x)dx ≈ 1

N

N∑
i=1

f(xi)

where the xi are the d-dimensional Sobol’ points. As to be expected, it produced
good results for small Ia but loses accuracy and convergence speed as I

a increases
since most samples have little to no weight rendering them irrelevant. In fact,
as I

a grows significantly larger than 1
2 we have not been able to observe any

convergence in the range of sample sizes that are feasibly generatable.

Harmonic Sampling. Since we observed good results using the Sobol’ sequences
with the harmonic and anharmonic oscillator, it seemed reasonable to approxi-
mate

cos (φi − φj) ≈ 1− (φi − φj)2
,

i.e., to draw just as in [6] and re-weight to account for the error made in drawing
from this approximate distribution. Using the cumulative (standard) normal
distribution Φ, there are three obvious approaches to inverting Φ with range
[−π, π).

• Using R as a covering space of [−π, π) yields the “inverse”

(0, 1)→ [−π, π); x 7→ Φ−1(x) MOD 2π

where

MOD : R→ [−π, π); x 7→ x− round
( x

2π

)
2π = x−

⌊
x

2π
+

1

2

⌋
2π.

• Use the complete normal distribution and dismiss points not in [−π, π]d.
(Note that this approach destroys the property of uniformity of the Sobol’
sequence by rejecting some of the points.)

• Restrict to [−π, π)-slice of the normal distribution, i.e., invert

Φ̃(x) :=
Φ(x)− Φ(−π)

2Φ(π)− 1
.

Qualitatively, all three approaches yield the same result; our quadrature was
highly instable yielding seemingly random numbers and we have not been able
to stabilize them. We think this is due to an inherent under-representation
of samples in the region where |φi+1 − φi| is close to 2π. These samples have
a large weight but the chance of drawing them is slim. Hence, hitting these
regions a little more often can make a significant difference which we observe as
an instability of our results.
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Inversive Samplings. Inversive samplings (cf., [14] chapter II.2) go one step
further than the harmonic sampling by choosing better approximations than
the harmonic one. However, we still have the constraint that we need to be able
to effectively draw from the distribution. In this case, we are looking for an
expression of the form

exp (−S[φ]) ≈
d−1∏
j=0

pj (φj) .

In fact, the two main examples we tested were of the form

exp (−S[φ]) ≈
d−1∏
j=0

p (φj)

where p is a polynomial or a step-function. The step-function has the advan-
tage that we can draw with very little effort. However, QMC does not like
discontinuous integrands, i.e., we expect to lose convergence speed. Choosing
a polynomial p does not have that draw-back but generating samples is a lot
harder since it involves numerically inverting the cumulative distribution func-
tion defined by the polynomial used as a density.

Our results are satisfactory in the sense that we did not observe an increase
in autocorrelation time going to small lattice spacings (in fact, we would be
highly surprised if that happened since we are not using a random walk to
generate samples) but we have not been able to improve over standard Monte
Carlo methods where they are applicable, that is, to obtain an error scaling
better than O

(
N−0.5

)
where N is the sample size.

Sampling - Importance Resampling. SIR (cf., [15, 16, 17]) is a closely related
concept where a pool of sample points is generated (here, using (randomized)
Sobol’ sequences) and stored. Samples are then to be drawn from the discrete
distribution of points in the pool with respect to their weight in the target
distribution (cf., e.g., [14] chapter III.2). It worked fairly well for small sample
sizes but, trying to go to large numbers of samples, the pool must increase as
well in order to keep the systematic error of the changed distribution small
rendering this method too memory demanding to be viable for high accuracy
calculations (an error analysis of QMC based SIR methods can be found in [18]).

Envelope Inversive Rejective Samplings. An approach to draw directly from the
target distribution but with the help of inversive sampling starts by choosing
an approximation S̃[φ] of S[φ] such that

e−S[φ] ≤ e−S̃[φ].

We call such an inversive sampling an Envelope Inversive Sampling. Drawing
from the envelope, we may now use a rejection step (cf., [19]) to ensure drawing
from the target distribution in the usual Monte Carlo manner.

Our results are comparable to the Inversive sampling results, that is, no
increased auto-correlation for small lattice spacings but also no accelerated con-
vergence with respect to standard Monte-Carlo methods.
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Smoothed Envelope Inversive Rejective Samplings. Here, the idea is that we
might obtain an edge starting from the envelope inversive rejective sampling
by smoothing the integrand; viz., the rejective step is a step-function in the
integrand which behaves poorly with QMC and, hence, may yield better results
if subjected to a smoothing operation. The method of Smoothed Rejection can
be found in [20] and effectively replaces the step-function describing the rejection
step by a continuous function and additional re-weighting. However, we could
not observe any improvement over the envelope inversive rejective sampling.

4. The method of recursive numerical integration

In this section, we consider the method of recursive numerical integration
(see [4, 5] and references therein) also sometimes called the method of iterated
numerical integration, for the approximation of the integration problems in 1-
dimensional lattice theory stated in section 2. The main idea of this method
is based on the fact that if the integrand at hand can be described as the
product of low-dimensional functions, each one describing the interactions or
couplings between few consecutive objects, then we can write the final high-
dimensional integration problem as the iteration of coupled low-dimensional
integrals. At this point a quadrature rule for low-dimensional integration has to
be chosen in order to carry out the successive approximation of the underlying
low-dimensional integrals. In the following, we will consider the case of simple
1-neighboring couplings for simplicity. For a description of the general case with
several neighboring couplings or branchings, we refer again to [5]. Thus, we have
an integrand function of the form

f(x) =

d−1∏
i=0

fi(xi, x(i+1)(d))

and we would like to approximate

I =

∫
Dd

d−1∏
i=0

fi(xi, x(i+1)(d))dx,

where the notation (.)(d) means to take the argument modulo d, and D ⊂ R is
a 1-dimensional domain. Thus, by the Fubini-Tonelli theorem, assuming that
the desired integral value exists, we can write the problem equivalently as

I =

∫
D

(∫
D

f0(x0, x1) . . .

. . .

(∫
D

fd−3(xd−3, xd−2)

(∫
D

fd−2(xd−2, xd−1)fd−1(xd−1, x0)dxd−1

)
dxd−2

)
. . .

. . . dx1

)
dx0.

Furthermore, we can consider scalings c0, . . . , cd−1 > 0, and define I? :=(∏n−1
i=0

1
ci

)
I, such that

I? =

∫
D

(∫
D

f0(x0, x1)

c0
. . .

. . .

(∫
D

fd−3(xd−3, xd−2)

cd−3

(∫
D

fd−2(xd−2, xd−1)fd−1(xd−1, x0)

cd−2cd−1
dxd−1

)
dxd−2

)
. . .

. . . dx1

)
dx0.
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Usually the quantities c0, . . . , cd−1 will have to be chosen adaptively as they are
used in order to avoid under/over-flows in the recursive method for high dimen-
sions due to limited machine accuracy. By selecting an adequate 1-dimensional
quadrature rule Q with m points and weights for approximating the underlying
integration problems over D in each iteration, we can write the iteration method
in recipe form as

1. Fix, if possible, a quadrature rule with m points x1, . . . , xm and weights
w1, . . . , wm that works well for one dimensional integrals of type∫

D

fi−1(θ1, z)fi(z, θ2)dz, for 1 ≤ i ≤ d− 1, θ1, θ2 ∈ D. (10)

2. Use the quadrature in 1. to estimate

Fd−1(xd−2, x0) :=
1

cd−2cd−1

∫
D

fd−2(xd−2, xd−1)fd−1(xd−1, x0)dxd−1

≈ 1

cd−2cd−1

m∑
j=1

wjfd−2(xd−2, x
j)fd−1(xj , x0),

over the grid of points {x1, . . . , xm}×{x1, . . . , xm} ⊂ D2. By defining the
transfer m×m matrix

Mi(k, l) := fi(x
k, xl), 1 ≤ k, l ≤ m, 0 ≤ i ≤ d− 1,

we can write in matrix form

[Fd−1(xid−2, x
j
0)]1≤i,j≤m ≈

1

cd−2cd−1
Md−2diag((w1, . . . , wm))Md−1,

where

diag((w1, . . . , wm)) :=


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wm

 .

3. For i = d− 2, d− 3, . . . , 2 approximate iteratively

Fi(xi−1, x0) =
1

ci−1

∫
D

fi−1(xi−1, xi)Fi+1(xi, x0)dxi

≈ 1

ci−1

m∑
j=1

wjfi−1(xi−1, x
j)Fi+1(xj , x0)

over the grid of points {x1, . . . , xm}×{x1, . . . , xm} ⊂ D2. Thus, the result
of step 3. over {x1, . . . , xm} × {x1, . . . , xm} can be written as the matrix
products

[F2(xi1, x
j
0)]1≤i,j≤m ≈

( d−2∏
i=1

1

ci
Midiag((w1, . . . , wm))

) 1

cd−1
Md−1,

with the notation for matrix products
∏d−2
i=1 Bi := B1B2 . . . Bd−2.
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4. Estimate with the m-point quadrature in 1. the function

F1(x0, x0) =

∫
D

f0(x1, x0)F2(x1, x0)

c0
dx1.

over the grid {x1
0, . . . , x

m
0 } ⊂ D. Finally, estimate with the m-point

quadrature in 1. the function

I? =

∫
D

F1(x0, x0)dx0.

The result of this step can be written in matrix operations as

I? ≈ Tr

(
diag((w1, . . . , wm))

( d−2∏
i=0

1

ci
Midiag((w1, . . . , wm))

) 1

cd−1
Md−1

)

= Tr

(
d−1∏
i=0

1

ci
Midiag((w1, . . . , wm))

)
.

As mentioned in the previous section we are mainly interested in consider-
ing two types of integrands for high-dimensional integration. The first type of
integrand is given as the weight of the Boltzmann distribution. In this case we
usually obtain that the functions fi, 0 ≤ i ≤ d− 1, satisfy f0 = f1 = · · · = fd−1

due to isotropic conditions of the model. Thus, this case yields M0 = M1 =
· · · = Md−1 =: M and we can choose c0 = c1 = · · · = cd−1 =: c. Hence, the
identity above reduces to

I? = Tr

((1

c
Mdiag((w1, . . . , wm))

)d)
.

Note that the similarity relation

Mdiag((w1, . . . , wm)) ∼ diag((
√
w1, . . . ,

√
wm))Mdiag((

√
w1, . . . ,

√
wm)),

holds, where for m × m matrices A,B we say that A ∼ B if and only if
A = CBC−1, for an invertible matrix C. The resulting matrix on the right
hand side of the relation above is symmetric and efficient algorithms are known
for its diagonalization (cf., [21]). By use of the eigenvalue decomposition of a
diagonalizable matrix A, we can write Ad = CDdC−1 where D is the diagonal
matrix of eigenvalues, and C is the corresponding invertible matrix of eigen-
vectors. Because the trace of a diagonalizable matrix equals the sum of its
eigenvalues, to calculate the trace of Ad we only need to calculate the eigen-
values of A, raise them to the power of d, and finally sum them up. It is also
worth to mention that for particular applications, recursive-multiplication for

calculation of
(

1
cMdiag((w1, . . . , wm))

)d
may be also a competitive method.

The second type of integrand is given by the Boltzmann weight times an ob-
servable function. For simple observable functions usually considered in lattice
theory, similar gains over direct matrix-matrix multiplications can be obtained
by condensing a sequence of matrix-matrix multiplications into a power form.
Particular examples and the corresponding implementations will be discussed
in detail in the following section.
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5. Numerical experiments

In this section, we will investigate the applicability of the method of recursive
numerical integration to the topological rotor and the anharmonic oscillator,
as described in section 2. In particular, we will compare the calculations of
recursive numerical integration methods with standard MCMC methods applied
to lattice systems [11, 22] and also with improved methods, i.e., the cluster
algorithm [23] and randomized QMC methods for the anharmonic oscillator [7].

5.1. Topological oscillator

For the sake of illustrating the difficulties that can appear in standard
MCMC calculations, we will perform initial computations with the Metropolis
algorithm [24]. This algorithm, although very generally applicable, is often not
the optimal choice to simulate a model and is usually replaced by a more suit-
able technique. However, here we use the Metropolis algorithm to demonstrate
the generic difficulty of many MCMC methods that towards the continuum
limit the autocorrelation time grows rapidly. At fixed number of samples, this
leads to very large errors when the lattice spacing is reduced and, correspond-
ingly, to highly increasing computational costs of the simulations. Throughout
the discussion below, we use a moment of inertia of I = 0.25 for the quantum
mechanical topological rotor.

Besides promising a much improved error scaling, recursive numerical inte-
gration methods avoid this explosion of the autocorrelation time and are there-
fore highly superior to MCMC techniques. Nevertheless, for special situations
there exist MCMC methods which also avoid the increase in autocorrelation
time. For the topological rotor investigated here, cluster algorithms [23] can be
applied which exhibit a basically constant behavior of the autocorrelation time
with respect to the lattice spacing while still showing the 1/

√
N error scaling

behavior of MCMC methods. Hence, we will explore how the recursive numer-
ical integration technique compares to an optimal MCMC method such as the
cluster algorithm and whether a gain can still be found. Since for the quantum
mechanical topological rotor we could not find a satisfactory realization of QMC
methods to solve the system, we will not discuss this approach in this section.

5.1.1. MCMC method

A basic algorithm of the MCMC class is the Metropolis algorithm [24] which,
as discussed above, will be used for illustration purposes only. The Metropolis
algorithm uses importance sampling as described in section 3 to create samples
of a given system on which observables O can be calculated. These observ-
ables are then averaged over all samples to give the expectation value 〈O〉 with
an error ∆〈O〉 ∝ 1/

√
N , where N is the number of samples. The problem of

the Metropolis algorithm - and MCMC methods in general - is that the sam-
ples are not all independent of each other but correlated. This correlation is
measured through the autocorrelation time which is a property of the employed
algorithm and, if the so-called integrated autocorrelation time is taken, also of
the considered observable.

The behavior of the error and the integrated autocorrelation time of the
topological susceptibility when applying the Metropolis algorithm as a function
of the lattice spacing a is shown in figure 1. We have chosen the topological
susceptibility as an observable, since it is very sensitive to correlations between

12
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Figure 1: Logarithmic error and logarithmic integrated autocorrelation time
behavior of the Metropolis algorithm for fixed number of samples (N = 105)
dependent on the lattice spacing a. Left: Error of the topological susceptibility
∆χtop, right: the corresponding integrated autocorrelation time τint.

samples and often shows the largest integrated autocorrelation time in a simu-
lation. It is also for this reason that the quantum mechanical topological rotor,
where topological effects can be studied, is a good test case to compare MCMC
and QMC or recursive numerical integration methods.

We remark that for all values of the lattice spacing shown in fig. 1 a fixed
number of samples (N = 105) has been used. In addition, for the error cal-
culation the integrated autocorrelation time has been fully taken into account.
As can be observed in fig. 1, the integrated autocorrelation time τint (right
plot) and therefore the error of the topological susceptibility ∆χtop (left plot)
are rapidly growing with decreasing lattice spacing a. This leads to highly
increased computational costs.

For systems in statistical physics or quantum field theory the continuum
limit is reached by approaching a critical point. Since the rapid increase of
the autocorrelation time in this limit is generic for many MCMC algorithms,
this constitutes a most severe problem when higher dimensional systems are
explored.

For the explicit model considered here, there exists a cluster algorithm [23]
which avoids the problem of an increasing autocorrelation time for shrinking
lattice spacings. Figure 2 shows the behavior of the autocorrelation time (right
plot) and the error of the topological susceptibility (left plot) for the cluster
algorithm as a function of a. As can be seen for the cluster algorithm, there is
even a tendency that both, the error and the autocorrelation time, shrink for
smaller a.

To compare the two algorithms directly, figure 3 shows the observable χtop

dependent on a for the Metropolis and the cluster algorithms. For larger values
of a the error from both algorithms are similar. However, for small values
of a the error of the Metropolis algorithm becomes so large that it would be
very demanding to reach an accurate result below a certain value of the lattice
spacing, thus making a continuum extrapolation of χtop rather difficult. On the
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Figure 2: Error and integrated autocorrelation time behavior of the cluster al-
gorithm for fixed number of samples (N = 105) dependent on the lattice spacing
a. Left: Error of the topological susceptibility ∆χtop, right: the corresponding
integrated autocorrelation time τint.

other hand, for the cluster algorithm the error stays practically constant; hence,
allowing us to reach very small values of the lattice spacing giving a much better
control of the continuum limit.

We stress again that the discussion above is only intended for an illustration
of the generic behavior of MCMC methods and to demonstrate the problem of
an increasing autocorrelation time when approaching the continuum limit for
certain classes of MCMC algorithms. As the examples show, MCMC methods
often have to face the difficulty of very large autocorrelation times which would
be absent for QMC or recursive numerical integration methods. In the model
considered here an optimal algorithm can be used, the cluster algorithm. It
will therefore be interesting to see, whether the recursive numerical integration
method is still advantageous even for cases when highly improved MCMC tech-
niques can be employed. Although not relevant for this paper, we would like to
mention that cluster algorithms are not applicable to gauge theories, so far.

5.1.2. Recursive Gaussian quadrature

In order to demonstrate the precision that can be reached with the recursive
numerical integration method even at very small values of the lattice spac-
ing, we will first discuss some numerical results that we have obtained with
this approach. To this end, we have implemented the method of recursive nu-
merical integration described in section 4, using Gauss-Legendre mesh points
(abscissae), and applied it to the topological oscillator. Fixing the number of
integration points to m = 120 and the value of the moment of inertia I = 0.25,
we calculated the topological susceptibility χtop, the energy gap ∆E and the
ratio of both observables

χtop

∆E as a function of the lattice spacing; cf., fig. 4.
For the employed value of I = 0.25, there are theoretical predictions for the

observables we consider here, see section 2. In particular, in the continuum
limit we should find for the topological susceptibility χtop → 1

4π2I = 1
π2 , for the

energy gap ∆E → 1
2I = 2, and for the ratio

χtop

∆E →
1

2π2 .
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Figure 3: Continuum extrapolation of the topological susceptibility χtop calcu-
lated by the Metropolis and the cluster algorithms for a fixed number of samples
(N = 105).

In figure 4, we show our results obtained with recursive Gauss-Legendre
quadrature with the expected continuum values, as given above, subtracted.
The graphs nicely show that for all observables the results converge to zero;
thus, being fully consistent with the theoretical expectations. Note that in the
left column of fig. 4 we use a linear scale for the observables considered while
in the right column a logarithmic scale is used which demonstrates the high
precision we can reach with recursive Gauss-Legendre quadrature. Furthermore,
note that the ratio

χtop

∆E has a peak at higher values of a, due to peculiar lattice
artifacts, which is consistent with previous studies of this model [25].

Let us now turn to the interesting question of the error scaling for the re-
cursive integration method. The behavior of the error for the topological sus-
ceptibility is shown in figure 5 for a fixed lattice spacing a = 0.4 as a function
of the number of integration points m. Note that we use a logarithmic scale for
plotting the error of the topological susceptibility. We define the error by the
difference of χtop obtained for m = 560 and χtop computed at the given number
of integration points m ≤ 480. For 220 ≤ m ≤ 480 we fit an exponential function
of the error in m which appears as a straight line in fig. 5 where a logarithmic
scale is used. The good agreement between the data and this exponential fit
suggests that asymptotically the error scales down at least exponentially fast.
Recall that the error behavior for Gauss-Legendre quadrature with m points for

infinitely differentiable functions scales like O( 1
(2m)! ) ∼ O( e2m√

2π2m(2m)2m
), where

the latter relation holds due to Stirling’s approximation formula.
It is clear that with asymptotic exponential (or even better) error scaling

the numerical recursive integration method will outperform any algorithm that
shows an algebraic error scaling, in particular the 1/

√
N behavior of MCMC

algorithms. Still, it is an interesting question whether for small, more practical
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Figure 4: Gaussian quadrature - continuum extrapolation of three different
observables, the topological susceptibility χtop (top row), the energy gap ∆E =
E1−E0 (middle row) and the ratio

χtop

∆E (bottom row) with m = 120 integration
points. Each observable is presented with a linear axis scale (left column) and a
logarithmic axis scale (right column). For all results shown, we have subtracted
the theoretical value of the given observable in the continuum such that they
should converge to zero in the continuum limit.

values of N (or m) a gain can be obtained from the recursive integration method.
We, therefore, measured the run-time of the Gauss and the cluster algo-

rithms needed to obtain a given error of the topological susceptibility. For these
measurements we ran both algorithms with the same input parameters (we used
here a lattice spacing of a = 0.1) on the same stand-alone computer. We then
varied the number of samples and integration points for the cluster and recur-
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Figure 5: Gaussian quadrature - error behavior of χtop in dependence of the
number of points m used in the integration and with fixed lattice constant
a = 0.4. Note that we use a logarithmic scale to exhibit the error. The blue line
is an exponential fit of the error for 220 ≤ m ≤ 480 which appears - through the
use of a logarithmic scale - as a straight line for a function of m. The consistency
of the data with the linear behavior suggest that the error scales down at least
exponentially fast.

sive Gauss-Legendre quadrature, respectively, and measured the run-time. We
repeated each measurement ten times and averaged over the measured times to
get an error estimate of the run-time. This error originates from the number
and kind of other processes that are running on the machine at a given time
and is noticeable for small run-times. For the cluster algorithm, in addition,
the size and distributions of the generated clusters can vary leading to different
run-times of the algorithm.

Being an MCMC method, for the cluster algorithm the procedure of repeat-
ing all runs ten times allows us to also determine the error on ∆χtop, i.e., the
error of the error. The recursive Gauss-Legendre quadrature, on the other hand,
is purely deterministic and, therefore, gives the same result for χtop without any
error every time we run it. Since for this test we have used different parameters,
we have also chosen a different gauge value of m = 400 and calculate the error
for χi(m < 400) via the difference to this value, ∆χi = |χi−χi(m = 400)|. The
error of this error is neglected here.

In figure 6, the run-time t needed to achieve a given error of the topological
susceptibility is shown for both algorithms. Note that the graph is shown in a
double logarithmic scale. The cluster algorithm shows the for MCMC methods
typical 1/

√
t behavior, indicated by the red line. The recursive Gauss-Legendre

quadrature has a much steeper negative slope, such that the calculation to
reduce the error by a specific amount is substantially faster than using the cluster
algorithm. Additionally, even for small run-times the recursive Gauss-Legendre
quadrature shows a much reduced error already. Therefore, the recursive Gauss-
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Figure 6: Comparison of Cluster algorithm and recursive Gauss-Legendre
quadrature. We show the run-time t in seconds needed to get a given error
on the topological susceptibility with fixed lattice spacing a = 0.1 on a stand-
alone computer. Note that the graph is plotted in a double logarithmic scale.
We used N = 102...106 samples for the cluster algorithm and m = 10...300 in-
tegration points for the Gauss algorithm. To achieve the error of the error the
numerical experiment has been repeated ten times for a fixed set of parameters.
The run-time error of both algorithms results from different execution times of
the program due to state of the computer when the program was executed. For
the cluster algorithm the error in the run-time is also determined from differ-
ent distributions of clusters generated. The red line shows the expected 1/

√
t

behavior of the cluster algorithm as a MCMC method.

Legendre quadrature is not only superior in the asymptotic regime at large run-
times where it shows a much improved error scaling but is also advantageous
when only small run-times are employed. This makes it a promising approach
if one thinks of systems in higher dimensions where only short run-times can be
afforded.

5.2. Anharmonic oscillator

Applications of QMC methods to the anharmonic oscillator model and com-
parison with MCMC techniques have been studied in [6, 7, 8]. In particular,
the superiority of randomized QMC techniques applied to the anharmonic os-
cillator model has been observed for small time periods T ≤ 1.5 independently
of the size of lattice spacing a. Here we investigate whether the recursive in-
tegration method can also be successfully applied to this model and whether
improvements over randomized QMC can be observed. To this end, we carry
out tests by choosing different pairs of problem dimension and spacing (d, a).
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The time period T associated to a pair (d, a) is given by T = da. The choice
of the pairs (d, a) has been done with the aim to show that the anharmonic
oscillator model can be approximated satisfactorily with a particular recursive
numerical integration method. The observables investigated are 〈x2〉 and 〈x4〉.
The rest of the parameters of the model have been fixed for the experiments
to M0 = 0.5, µ2 = −16.0, and λ = 1.0. We perform recursive one-dimensional
integration based on Gauss-Legendre quadrature. To this end, we first re-scale
the integration variables and re-arrange the terms in the action such that (using
the same notation as in section 4) we end up with a transition function

fi(xi, xi+1) = e
−(xi−xi+1)2− 1

2

(
µ2a2

M0
(x2
i+x

2
i+1)+ 4λa3

M2
0

(x4
i+x

4
i+1)

)
.

The quartic negative term − 4λa3

M2
0
x4
i dominates the quadratic positive term

−µ
2a2

M0
x2
i when |xi| ≥

√
M0|µ2|

4λa , for i = 1, . . . , d. Outside of the region
[
−√

M0|µ2|
4λa ,

√
M0|µ2|

4λa

]2
, the term inside the exponential in the transition function

fi(xi, xi+1) remains always negative, and decays mainly with a quartic rate that
adds to the quadratic coupling −(xi − xi+1)2. Therefore the marginal tails of
this two-dimensional transition function decay faster than the marginal tails of
a bivariate normal, and this fact can be used to select a region of main impor-
tance for the one-dimensional parametric integration problems described in (10).
Thus, we additionally search to ensure that the decay obtained by the dominant
quartic term overshadows the contribution of the remaining coupling quadratic
term −(xi − xi+1)2 in the action. As an heuristic, we then chose the main

importance region for integration to be of the form
[
− p
√

M0|µ2|
4λa , p

√
M0|µ2|

4λa

]
,

for a number p ≥ 1, and validate numerically that the remaining integration re-

gion
(
−∞,−p

√
M0|µ2|

4λa

]
∪
[
p
√

M0|µ2|
4λa ,+∞

)
has a negligible contribution to the

integration problem. Note that this is the same as to say that the original inte-
gration problem over Rd can be truncated satisfactorily for recursive numerical

integration to the integration region
[
−p
√

M0|µ2|
4λa , p

√
M0|µ2|

4λa

]d
. The selection of

p ≥ 1 can be taken to be a positive value that ensures −µ
2a2

M0
x2
i − 4λa3

M2
0
x4
i ≤ −K,

for some positive value K, and xi in
(
− ∞,−p

√
M0|µ2|

4λa

]
∪
[
p
√

M0|µ2|
4λa ,+∞

)
.

By integrating the tails of a normal density 1
σ
√

2π
e

−t2

2σ2 outside of the region

|t| ≤ 7σ, we obtain a value below (but close to) 10−10. The maximal value of

the exponential function in the density is given by e−
49
2 at t = 7σ. Thus, for our

tests we may select the conservative value of K = 24.5 based on the fact that
the tails of the one-dimensional integration problems in the recursive numerical
integration method decay faster than a normal density, and that inside of the
main importance region the behavior of the marginals seems mainly similar to
the one of a shifted normal density with σ = 1√

2
(due to the coupling quadratic

term). This choice also makes sense since our computations are carried out in
double precision and we aim to obtain at most 10 digits accuracy for the inte-
gration problems. Thus, at the end, we select p ≥ 1 to be the positive number
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that satisfies

−

µ2a2

M0

(
p

√
M0|µ2|

4λa

)2

+
4λa3

M2
0

(
p

√
M0|µ2|

4λa

)4
 =

(
p2 − p4

)( |µ2|2a
4λ

)
= −24.5.

We choose to take sample sizes m inside of the selected importance region to

be small multiples of
⌊
2p
√

M0|µ2|
4λa

⌋
, since we would like to have good integra-

tion accuracy in each unit-length interval inside of the parametric problem (10)

in the region
[
− p
√

M0|µ2|
4λa , p

√
M0|µ2|

4λa

]
. Note that in terms of the spacing pa-

rameter a, we have m ∼ O(a−
3
4 ). The remaining marginal tails outside of[

− p
√

M0|µ2|
4λa , p

√
M0|µ2|

4λa

]
can be estimated with very few Gaussian points (or

no points at all) if the relative contribution of the tail of the integrand to the
total integral is negligible relative to our maximal target accuracy. For our ex-
periments, we used Gauss-Hermite points (corresponding to a weight function

of the form e−cx
2

, c > 0) and Gaussian points generated from a weight function

e
− 4λa3

M2
0
x4
i
, for the integration region

(
−∞,−p

√
M0|µ2|

4λa

]
∪
[
p
√

M0|µ2|
4λa ,+∞

)
. By

increasing the sample sizes in this region we were able to observe that the rela-

tive contribution of the integrand on Rd \
[
−p
√

M0|µ2|
4λa , p

√
M0|µ2|

4λa

]d
to the total

integrals on Rd seems less than 10−12. Therefore we believe that the selected
importance region for integration can approximate the original problem with
great relative accuracy (close to 10−11).

Figur 7 shows our calculations of the two observables 〈x2〉 and 〈x4〉, depend-
ing on the sample size m, for different values of lattice points and spacing (d, a).
Note that the highest m ≈ 4600 was taken for (d, a) = (224, 2−12), but even
in this case the computations took no longer than 3 minutes with a standard
PC. For high values of T (like T = 4096) we observe very good results, as well,
contrary to what has been observed with randomized QMC in [6]. We would
like to remark that for the ground state energy E0, which, by virtue of the virial

theorem, is related to 〈x2〉 and 〈x4〉 by E0 = µ2X2 + 3λX4 + µ4

16 , the result-
ing estimates for T = 4096 matches with the theoretical value in 5 significant
digits, E0 = 3.8636669, calculated in [26], namely Ê0 = 3.86367053759882 for
(d, a) = (224, 2−12) and m ≈ 4600.
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Figure 7: Shown are the estimated values of 〈x2〉 (left) and 〈x4〉 (right) in the
anharmonic oscillator model obtained with recursive Gauss-Legendre quadra-
ture for the pairs (d, a) = (27, 2−7), (211, 2−7), (214, 2−10) and (224, 2−12), with
corresponding time periods T = 1.0, T = 16, T = 16 and T = 4096. In all
cases the relative accuracy achieved with the corresponding maximal samples
m seems to be more than 10 significant digits.
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6. Conclusions

In this paper we have applied the methods of Quasi Monte Carlo and recur-
sive numerical integration to two quantum mechanical models discretized on a
Euclidean time lattice within the path integral approach.

The first model we have considered is a quantum mechanical rotor which
is – to some extent – similar to higher dimensional spin systems such as non-
linear σ-models. For the quantum mechanical rotor we could, unfortunately,
not find a successful implementation of the QMC method to solve this model.
On the other hand, the method of recursive numerical integration led to a much
improved accuracy even when compared to an optimal MCMC algorithm for
which we have chosen the cluster algorithm. Conceptually, the error scaling of
the recursive numerical integration is at least exponentially fast in the number of
integration points m. In fig. 5 we could indeed demonstrate that asymptotically
this exponential error scaling is realized. Figure 6 shows that even for a small
number of integration points the accuracy of the recursive integration method is
already much higher than the one of the cluster algorithm with a correspondingly
small number of samples.

We remark that we have chosen the cluster algorithm as the MCMC method
since it avoids the increase of the autocorrelation time towards the continuum
limit, a feature which is shared by the recursive numerical integration technique
by construction. The avoidance of autocorrelation times and our finding that
a very high accuracy can be reached already for a small number of integration
points makes the recursive numerical integration technique a very promising
method for more difficult systems where only a small number of samples can be
realized, e.g. in higher dimensions.

The other model we looked at is the anharmonic quantum mechanical os-
cillator. Here, we had found earlier that the QMC method shows an improved
error scaling [6, 7, 8]. When the extent of the time lattice is kept short, T . 1.5,
both, QMC and recursive numerical integration show a comparable performance
with an improved error scaling which is faster than 1/

√
N . However, as noted

in [7] QMC becomes inefficient when the time extent T is made larger than
T = 1.5, independent of the value of the lattice spacing a.

Therefore, we tested the performance of the recursive numerical integration
method for various choices of the dimension d and lattice spacing a. As fig. 7
shows, we can choose a very broad range for (d, a) where we still find an ex-
tremely good performance of the recursive numerical integration method. In
fact, the values of the time extent, T = da can assume very large values such as
T = 4096 and the values of a can become tiny, e.g., a = 2−12, while still a rapid
convergence of the considered quantities is observed.

In conclusion, we have tested two methods to evaluate the path-integral in
Euclidean time for quantum mechanical systems. These are the QMC and the
recursive numerical integration methods. While we could not find a successful
implementation for QMC in the case of the quantum mechanical rotor, the
technique of recursive numerical integration has been highly successful with an
exponentially fast error scaling. It will be very interesting to test this method
for more complicated 1-dimensional models and, of course, for systems in higher
dimensions.
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