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Summary

Representing and exploring large and even infinite state spaces is a challenge for many
subareas of computer science in general and for Artificial Intelligence (AI) in particular.
A possibly weighted state space graph is to be explored by successively applying state
expansions starting from the initial state to eventually reach a desired goal state.

This thesis studies the theoretical foundations of guided exploration algorithms and
their impact in the following application areas.

Puzzle Solving Domain-dependent puzzle solving searches for optimal solution paths in
solitaire games. Challenges are real-world problems like Rubik's Cube or the set of
(n2 � 1)-Puzzles, and computer games like Sokoban or Atomix. The thesis takes
Atomix as a selected case study for which it refines storage structures to enhance
duplicate detection.

Action Planning In action planning, domains and problem instances are specified in a
general description language (PDDL) with parameterized operators. Starting from
propositional planning, in which each state is represented as a subset of atoms,
planning problems have been extended with action duration, resource variables, and
objective functions. The thesis proposes a successful metric and temporal heuristic
search framework planner featuring a versatile static analyzer and different heuristic
estimates.

Theorem Proving Automated deduction considers object logics like first and higher-
order logic to specify axioms and theorems, searching for according proofs. Many
current theorem provers face infinite spaces of all possible proof states. The thesis
proposes functional heuristic search to generate proofs fully automatically.

Hardware Verification Hardware designs may contain subtle errors. These are to be
found with automated verification techniques that validate if an implemented sys-
tem is conformant to its specification. The thesis adds symbolic heuristic search
to the algorithmic portfolio of an existing�-calculus model checker based on an
estimate that propagates the error description through the circuit.

Software Verification Asynchronous software systems like communication protocols or
multi-threaded Java programs require involved concurrency maintenance e.g. to
avoid deadlocks. Automated validation simulates all possible executions traces and
yields short witnesses in case of a failure. This thesis contributes explicit-state
directed model checking and shows how the control of flow can be inferred by
supervised learning by example.

Route planning Traffic information systems search for lowest-cost paths in explicit
maps. If the map is provided on CD/DVD, it is likely too large to be kept in main
memory. The thesis proposes a complete and optimal localized heuristic search ex-
ploration scheme that explicitly pages portions of the graph according to the spatial
structure of the map. It further considers route planning and map inference aspects
for a set of global positioning traces.

The central problem in all research areas is overcoming the state (space) explosion
problem: many puzzles are known to be at least NP-hard, propositional planning is
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PSPACE-complete, while numeric planning and automated theorem proving are both
undecidable. Last but not least, the state space size in concurrent systems grows often
exponentially in the number of state variables.

To cope with this intrinsic hardness, all contributed algorithms apply heuristic search
to focus the search process, where the estimates are found by exploring abstracted state
spaces.

Among other techniques to reduce the number of nodes to be looked at, the thesis
studies state compaction, symbolic representation, pattern databases, and partial order
reduction. State compaction stores a small signature of the state, symbolic representation
assigns and maintains characteristic formulae for sets of states, pre-computed dictionaries
serve refined estimates for the overall search engines, and partial order reduction exploits
the commutativity of concurrent actions.

Beside theoretical work we provide implementations of heuristic search algorithms in
practical systems, including a commercial car navigation system, an awarded action plan-
ner, an automated higher-order theorem prover, a generic puzzle solver, a programming-
by-example tool, a symbolic and an explicit-state model checker.
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Overview

The thesis divides into seven parts:Foundations, Puzzle Solving, Action Planning, The-
orem Proving, Software Verification, Hardware Verification, andRoute Planning. It is
composed of a selection published papers, organized in form of chapters. The order of
the presentation has been chosen to maximize comprehensiveness.

Foundations

For Part I we selected the following four papers.

� Memory Limitation in Artificial Intelligence.

� Theory and Practice of Time-Space Trade-Offs in Memory Limited Search.

� Time Complexity of Iterative-Deepening-A*.

� Prediction of Regular Search Tree Growth by Spectral Analysis.

The first paper surveys approaches to cope with limited memory for the design of al-
gorithms and data structures in Artificial Intelligence, since many systems, for instance in
puzzle solving, two-player games, action and route planning, robotics, machine learning,
data mining, logic programming, and theorem proving, explore very large or even infinite
implicitly given state spaces. The main focus is on strategies for an improved time-space
trade-off in case main memory becomes exhausted and include refined representation and
exploration techniques, the introduction of additional search or control knowledge, and
the explicit maintenance of secondary memory. The paper is utilized as a welcome intro-
duction to the topic of the thesis.

The second paper presents theoretical and practical results on new variants for ex-
ploring state-space with respect to memory limitations. The work refines storage main-
tenence aspects from the first one. It establishesO(logn) minimum-space algorithms
that omit both the open and the closed list to determine the shortest path between ev-
ery two nodes and studies the gap in between full memorization in a hash table and the
information-theoretic lower bound. The proposed structure of suffix-lists elaborates on a
concise binary representation of states by applying bit-state hashing techniques. Signif-
icantly more states can be stored while searching and insertingn items into suffix lists
is still available inO(n logn) time. Bit-state hashing leads to the new paradigm of par-
tial iterative-deepening heuristic search, in which full exploration is sacrificed for a better
detection of duplicates in large search depth.

The third paper analyzes the time complexity of IDA*. We first show how to calculate
the exact number of nodes at a given depth of a regular search tree, and the asymptotic
brute-force branching factor. We then use this result to analyze IDA* with a consistent,
admissible heuristic function. Previous analyses relied on an abstract analytic model,
and characterized the heuristic function in terms of its accuracy, but do not apply to
concrete problems. In contrast, our analysis allows us to accurately predict the perfor-
mance of IDA* on actual problems such as the sliding-tile puzzles and Rubik's Cube.
The heuristic function is characterized by the distribution of heuristic values over the
problem space. Contrary to conventional wisdom, our analysis shows that the asymptotic
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heuristic branching factor is the same as the brute-force branching factor. Thus, the effect
of a heuristic function is to reduce the effective depth of search by a constant, relative to
a brute-force search, rather than reducing the effective branching factor.

The last paper elaborates on the above result, which shows that predicting the growth
of the search tree in IDA* essentially relies on only two criteria: The number of nodes
in the brute-force search tree for a given depth and the equilibrium distribution of the
heuristic estimate. Since the latter can be approximated by random sampling, the paper
accurately predicts the number of nodes in the brute-force search tree for large depth in
closed form by analyzing the spectrum of the problem graph or one of its factorization.
It further derives that the asymptotic brute-force branching factor is in fact the spectral
radius of the problem graph and exemplifies the considerations in the domain of the(n2�
1)-Puzzle.

Puzzle Solving

In Part II we chose the paper that documents current aspects to solve challenges in solitaire
games best.

� Finding Optimal Solutions to Atomix

We present solutions of benchmark instances to the solitaire computer game Atomix
found with different heuristic search methods. The problem is PSPACE-complete. An
implementation of the heuristic algorithm A* is presented that needs no priority queue,
thereby having very low memory overhead. The limited memory algorithm IDA* is
handicapped by the fact that, due to move transpositions, duplicates appear very fre-
quently in the problem space; several schemes of using memory to mitigate this weakness
are explored, among those, “partial” schemes which trade memory savings for a small
probability of not finding an optimal solution. Even though the underlying search graph
is directed, backward search is shown to be viable, since the branching factor can be
proven to be the same as for forward search.

Action Planning

In Part III we present a total of five papers that document the basics and novelties in the
development of our planning system MIPS.

� Exhibiting Knowledge in Planning Problems to Minimize State Encoding Length.

� The Model Checking Integrated Planning System.

� Directed Symbolic Exploration and its Application to AI-Planning.

� Planning with Pattern Databases.

� Symbolic Pattern Databases in Heuristic Search Planning.

� Taming Numbers and Durations in the Model Checking Integrated Planning Sys-
tem.
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In the first paper we present a general-purposed algorithm for transforming a planning
problem specified in STRIPS into a concise state description for single state or symbolic
exploration. The process of finding a state description consists of four phases. In Phase 1
we symbolically analyze the domain specification to determine constant and one-way
predicates, i.e. predicates that remain unchanged by all operators or toggle in only one
direction, respectively. In Phase 2 we symbolically merge predicates which leads to a
drastic reduction of state encoding size, while in Phase 3 we constrain the domains of
the predicates to be considered by enumerating the operators of the planning problem.
Phase 4 combines the result of the previous phases.

The second paper describes the system at 2000 as a search engine that applies binary
decision diagrams to compactly represent world states in a planning problem and effi-
ciently explore the underlying state space. It is the first general planning system based on
model checking methods. It can handle the STRIPS subset of the PDDL language and
some additional features from ADL, namely negative preconditions and (universal) condi-
tional effects. At the AIPS 2000 conference, MIPS has been one of five planning systems
to be awarded for “Distinguished Performance” in the fully automated track. The article
gives a brief introduction to BDDs and explains the basic planning algorithm employed
by MIPS, using a simple logistics problem as an example.

The third paper studies traditional and enhanced BDD-based exploration procedures
capable of handling large planning problems. As shown above, reachability analysis and
model checking have eventually approached AI-Planning. Unfortunately, they (typically)
rely on uninformedblind search. On the other hand, heuristic search and especially lower
bound techniques have matured in effectively directing the exploration even for large
problem spaces. Therefore, with heuristic symbolic search we address the unexplored
middle ground between single state and symbolic planning engines to establish algorithms
that can gain from both sides. To this end we implement and evaluate heuristics found in
state-of-the-art heuristic single-state search planners.

The forth and fifth paper contribute a new heuristic, since previous estimates were
either not admissible or too weak, so that optimal solutions were found in rare cases only.
In contrast, heuristic pattern databases are known to significantly improve lower-bound
estimates for optimally solving challenging single-agent problems like the 24-Puzzle and
Rubik's Cube. The paper studies the effect of pattern databases in the context of determin-
istic planning. Given a fixed state description based on instantiated predicates, we pro-
vide a general abstraction scheme to automatically create admissible domain-independent
memory-based heuristics for planning problems, where abstractions are found in factor-
izing the planning space. We evaluate the impact of pattern database heuristics in A* and
hill climbing algorithms for a collection of benchmark domains.

Symbolic pattern databases (SPDB) combine the two aspects heuristic search and
model checking, being off-line computed dictionaries, that are generated in symbolic
backward traversals of automatically inferred planning space abstractions. The entries
of SPDBs serve as heuristic estimates to accelerate explicit and symbolic, approximate
and optimal heuristic search planners. Selected experiments highlight that the symbolic
representation yields much larger and more accurate pattern databases than the ones gen-
erated with explicit methods.

Since the MIPS has also shown distinguished performance in the third international
planning competition the sixth paper present the status quo of the object-oriented frame-
work architecture that clearly separates the portfolio of explicit and symbolic heuristic
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search exploration algorithms from different on-line and off-line computed estimates and
from the planning problem representation. The planner extensions include critical path
analysis of sequentially generated plans to generate optimal parallel plans. The linear time
algorithm bypasses known NP hardness results for partial ordering with mutual exclusion
by scheduling plans with respect to the set of actionsand the imposed causal structure.
To improve exploration guidance approximate plans are scheduled for each encountered
planning state. One major strength of MIPS is its static analysis phase that grounds and
simplifies parameterized predicates, functions and operators, that infers single-valued in-
variances to minimize the state description length, and that detects symmetries of domain
objects. The aspect of object symmetry is analyzed in detail. The paper shows how
temporal plans of any planner can be visualized in Gannt-chart format in a client-server
architecture. The front-end turns also be appropriate for concise almost problem instance
independent domain visualization.

Theorem Proving

Part IV provides one paper which presents recent work, that analyzes the effect of heuris-
tic search algorithms like A* and IDA* to accelerate proof-state based theorem provers.

� Directed Automated Theorem Proving.

A functional implementation of possibly weighted A* is proposed that extends Dijk-
stra's single-source shortest-path algorithm. Efficient implementation issues and possible
flaws for both A* and IDA* are discussed in detail.

Initial results with first and higher order logic examples inIsabelle indicate that
directed automated theorem provingis superior to other known general inference mecha-
nisms and that it can enhance other proof techniques like model elimination.

Software Verification

In Part V, the correctness of software mostly in form of communication protocols is con-
sidered. The selection consists of four papers.

� Inferring Flow of Control in Program Synthesis by Example.

� Directed Explicit-State Model Checking in the Validation of Communication Pro-
tocols.

� Trail-Directed Model Checking.

� Partial-Order Reduction in Directed Model Checking.

The first paper presents a supervised, interactive learning technique that infers control
structures of computer programs from user-demonstrated traces. A two-stage process is
applied: first, a minimal deterministic finite automaton (DFA)M labeled by the instruc-
tions of the program is learned from a set of example traces and membership queries to
the user. It accepts all prefixes of traces of the target program. The number of queries
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is bounded byO(k � jM j), with k being the total number of instructions in the initial ex-
ample traces. In the second step we parse this automaton into a high-level programming
language inO(jM j2) steps, replacing jumps by conditional control structures.

The next three papers are different from the former approach in the sense that they
address the verification instead of the synthesis problem, which automation is known
as model checking. The success of model checking is largely based on its ability to
efficiently locate errors in software designs. If an error is found, a model checker produces
a trail that shows how the error state can be reached, which greatly facilitates debugging.
However, while current model checkers find error states efficiently, the counterexamples
are often unnecessarily lengthy, which hampers error explanation. This is due to the use
of “naive” search algorithms in the state space exploration.

In the second paper we present approaches to the use of heuristic search algorithms
in explicit-state model checking. We present the class of A* directed search algorithms
and propose heuristics together with bit-state compression techniques for the search of
safety property violations. We achieve great reductions in the length of the error trails,
and in some instances render problems analyzable by exploring a much smaller number
of states than standard depth-first search. We then suggest an improvement of the nested
depth-first search algorithm and show how it can be used together with A* to improve
the search for liveness property violations. Our approach to directed explicit-state model
checking has been implemented in a tool set called HSF-SPIN. We provide experimental
results from the protocol validation domain using HSF-SPIN.

The second paper improves HSF-SPIN as a Promela model checker based on heuris-
tic search strategies. It utilizes heuristic estimates in order to direct the search for
finding software bugs in concurrent systems. As a consequence, HSF-SPIN is able
to find shorter trails than blind depth-first search. The paper contributes an exten-
sion to the paradigm ofdirected model checkingto shorten already established unaccept-
able long error trails. This approach has been implemented in HSF-SPIN. For selected
benchmark and industrial communication protocols experimental evidence is given that
trail-directed model checkingeffectively shortcuts existing witness paths.

The third paper presents one refinement to the one above by partial order reduction
as a very succesful technique for avoiding the state explosion problem that is inherent to
explicit state model checking of asynchronous concurrent systems. It exploits the commu-
tativity of concurrently executed transitions in interleaved system runs in order to reduce
the size of the explored state space. Directed model checking on the other hand addresses
the state explosion problem by using guided search techniques during state space explo-
ration. As a consequence, shorter errors trails are found and less search effort is required
than when using standard depth-first or breadth-first search. We analyze how to com-
bine directed model checking with partial order reduction methods and give experimental
results on how the combination of both techniques performs.

Hardware Verification

Part VI shows how to apply symbolic heuristic search to find errors in hardware circuits.
Actually this was the first application area we applied the technique to.

� Error Detection with Directed Symbolic Model Checking.
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In practice due to entailed memory limitations the most important problem in model
checking is state (space) explosion. Therefore, to prove the correctness of a given design,
binary decision diagrams (BDDs) are widely used as a concise and symbolic state space
representation. Nevertheless,BDDsare not able to avoid an exponential blow-up in gen-
eral. If we restrict ourselves to find an error of a design which violates a safety property,
in many cases a complete state space exploration is not necessary and the introduction
of a heuristic to guide the search can help to keep both the explored part and the associ-
atedBDD representation smaller than with the classical approach. In the paper we will
show that this idea can be extended with an automatically generated heuristic and that it
is applicable to a large class of designs. Since the proposed algorithm can be expressed in
terms ofBDDs it is even possible to use an existent model checker without any internal
changes.

Route Planning

Part VII addresses the problem of finding shortest paths in large external or dynamic maps
and consists of the following two papers.

� Localizing A*.

� Route Planning and Map Inference with Global Positioning Traces.

The first paper acknowledges the fact that heuristic search in large problem spaces
inherently calls for algorithms capable of running under restricted memory. This question
has been investigated in a number of articles. However, in general the efficient usage of
two-layered storage systems is not further discussed. Even if hard-disk capacity is suffi-
cient for the problem instance at hand, the limitation ofmain memorymay still represent
the bottleneck for their practical applications. Since breadth-first and best-first strategies
do not exhibit any locality of expansion, standardvirtual memory managementcan soon
result in thrashing due to excessive page faults. In the paper we propose a new search al-
gorithm and suitable data structures in order to minimize page faults by a local reordering
of the sequence of expansions. We prove its correctness and completeness and evaluate
it in a real-world scenario of searching a large road map in a commercial route planning
system.

Navigation systems assist almost any kind of motion in the physical world including
sailing, flying, hiking, driving and cycling. On the other hand, traces supplied by global
positioning systems (GPS) can track actual time and absolute coordinates of the moving
objects. Consequently, this last paper addresses efficient algorithms and data structures
for the route planning problem based on GPS data; given a set of traces and a current
location, infer a short(est) path to the destination. The algorithm of Bentley and Ottmann
is shown to transform geometric GPS information directly into a combinatorial weighted
and directed graph structure, which in turn can be queried by applying classical and re-
fined graph traversal algorithms like Dijkstras' single-source shortest path algorithm or
A*. For high-precision map inference especially in car navigation, algorithms for road
segmentation, map matching and lane clustering are presented.
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Omissions and Demarcation

For the sake of conciseness and integrity of this thesis the work does not include all
available publications. In the following we briefly mention the papers that have been left
out for various reasons.

In Foundationsthe following work on two-player games has not been included, since
it does not refer toheuristic search.

� Stefan Edelkamp. Symbolic Exploration in Two-Player Games: Preliminary Re-
sults. In Artificial Intelligence Planning and Scheduling (AIPS)–Workshop on
Model Checking, 2002.

In this paper symbolic exploration with binary decision diagrams (BDDs) is applied
to two-player games to improve main memory consumption for reachability analysis and
game-theoretical classification, since BDDs provide a compact representation for large
set of game positions. A number of examples are evaluated:Tic-Tac-Toe, Nim, Hex,
andFour Connect. In Chesswe restrict the considerations to the creation of endgame
databases. The results are prelimary, but the study puts forth the idea that BDDs are
widely applicable in game playing and provide a universal tool for people interested in
quickly solving practical problems.

In the partAction Planningwe left out the following initial paper to retain a concise
representation in favor to more elaborated results.

� Stefan Edelkamp and Frank Reffel. Deterministic State Space Planning with BDDs.
In European Conference on Planning (ECP), pages 381–382, Lecture Notes in
Computer Science (Preprint), Springer, 1999.

The short paper (for a long version cf. [113]) proposes a planner that applies BDDs to
compactly represent sets of propositionally represented states. Using this representation,
accurate reachability analysis and backward chaining can apparently be carried out with-
out necessarily encountering exponential representation explosion. The main objectives
are the interest in optimal solutions, the generality and the conciseness of the approach.
The algorithms are tested against the AIPS' 98 planning competition problems and lead to
substantial improvements to existing solutions.

We further omitted two papers from this part, which are subsumed by a subsequent
journal publication.

� Stefan Edelkamp. First Solutions to PDDL+ Planning Problems. InArtificial Intel-
ligence Planning and Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSIG), 75-88, 2001.

� Stefan Edelkamp. Mixed Propositional and Numerical Planning in the Model
Checking Integrated Planning System Preliminary Results. InArtificial Intelligence
Planning and Scheduling (AIPS)–Workshop on Temporal Planning, 2002.

In the first paper we present the design and algorithmic details of a directed search
temporal and metric planner to solve benchmark planning problems specified in PDDL+
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syntax. The planner produces sequential solutions and handles mixed logical-numerical
problems, grounds and groups predicates, simplifies arithmetic trees, and instantiates nu-
merical quantities on the fly. It uses forward state-space search with an A* search control
and is evaluated in problem instances of two benchmark planning problems.

The second paper considers the extensions to the planner to solve mixed propositional,
temporal and numerical planning problems in PDDL+ syntax for the 3rd international
planning competition. The directed search exploration algorithm applies critical path
scheduling to parallelize sequential plans.

In Software Verficationtwo conference papers were omitted, since they have also been
merged and extended in a journal publication.

� Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Protocol Verification
with Heuristic Search. InAAAI-Spring Symposium on Model-based Validation of
Intelligence, pages 75–83, 2001.

� Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed Model-
Checking in HSF-SPIN. InSPIN Workshop, pages 57–79, Lecture Notes in Com-
puter Science. Springer, 2001.

In the first paper we present an approach to reconcile explicit state model checking and
heuristic directed search suited to an AI audience. We provide experimental evidence that
the model checking problem for concurrent systems, such as communications protocols,
can be solved more efficiently, since finding a state violating a property can be understood
as a directed search problem.

The second paper addresses the model checking audience and also incorporates a
large class of LTL-specified liveness properties. We propose an improved nested depth-
first search algorithm that exploits the structure of Promela Never-Claims and provide
experimental results for applying HSF-SPIN to two toy protocols and one real world
protocol, the CORBA GIOP protocol.

The following contributions were excluded from the manuscript, since they are al-
ready cited and discussed in the Ph.D. thesis:Data Structures and Learning Algorithms
in State Space Search (Datenstrukturen und Lernverfahren in der Zustandsraumsuche),
DISKI-201, Infix, 1999.

� Stefan Edelkamp and Jürgen Eckerle. New Strategies In Real-Time Heuristic
Search. InNational Conference on Artificial Intelligence (AAAI)-Workshop on On-
line Search, pages 30–35, 1997.

� Stefan Edelkamp and Stefan Schrödl. Learning Dead Ends in Sokoban InWorkshop
Komplexitätstheorie, Datenstrukturen und Effiziente Algorithmen, Technical Report
CSR-98-01, Fakultät für Informatik, TU Chemnitz, pages 16–21, 1998.

� Stefan Edelkamp. GST: General Sliding Tile InWorkshop Komplexitätstheorie,
Datenstrukturen und Effiziente Algorithmen, Technical Report, Institut für Infor-
matik, Universität Mainz, 1997

� Stefan Edelkamp and Richard E. Korf. The Branching Factor of Regular Search
Spaces. InNational Conference on Artificial Intelligence (AAAI), 1998. 299–304.
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� Stefan Edelkamp. Suffix Tree Automata in State Space Search. InGerman Con-
ference on Artificial Intelligence (KI), Lecture Notes in Computer Science, pages
381–385. Springer, 1997.

� Stefan Edelkamp. Dictionary Automaton in Optimal Space, 1999. Technical Report
129, Institut für Informatik, Albert-Ludwigs-Universität Freiburg.

� Stefan Edelkamp. Updating Shortest Paths. InEuropean Conference on Artificial
Intelligence (ECAI), pages 655–659. Wiley, 1998.

� Stefan Edelkamp and Frank Reffel. OBDDs in Heuristic Search. InGerman Con-
ference on Artificial Intelligence (KI), Lecture Notes in Computer Science, pages
81–92. Springer, 1998.

The next two papers were published after the Ph.D. was accomplished, but were omit-
ted, since they are written in German.

� Stefan Edelkamp. Datenstrukturen und Lernverfahren in der Zustandsraumsuche.
KI, 3, pages 49-51, ArenDTaP, 1999.

� Stefan Edelkamp. Neue Wege in der Exploration. InInformatik, Lecture Notes in
Computer Science, pages 65–77. Springer, 2000.

Furthermore, the following work was excluded, since it refers to a dictionary or a
multi-media product.

� Phillip A. Laplante, editor.Dictionary of Computer Science, Engeneering and Tech-
nology. CRC Press, 2000. One contributor: Stefan Edelkamp.

� Thomas Ottmann, Sven Schuierer and Stefan Edelkamp.Geometrische Algorith-
men. VIROR - AOF Compact Disc, 1999. http://www.viror.de/lernen/cdroms.

� Thomas Ottmann, Alois Heinz and Stefan Edelkamp.Algorithmentheorie. VIROR
- AOF Compact Disc, 2000. http://www.viror.de/lernen/cdroms.

Last but not least, two recent papers on sequential sorting were not mentioned in the
main part of this thesis, since they do not fit well to the topic of state-space search.

� Stefan Edelkamp and Ingo Wegener. On the Performance of Weak-Heapsort
In Symposium on Theoretical Aspects in Computer Science Computer Science
(STACS), Lecture Notes in Computer Science, pages 254–266. Springer, 2000. (An
extended version is published in Electronic Colloquium on Computational Com-
plexity, TR99-028, ISSN 1433-8092.)

� Stefan Edelkamp and Patrick Stiegeler. Pushing the Limits in Sequential Sorting. In
Workshop on Algorithm Engineering (WAE), Lecture Notes in Computer Science.
Springer, 2000. (A fairly extended version is going to be published in theACM
Journal of Experimental Algorithmicswith the titleImplementing HEAPSORT with
n logn� 0:9n and QUICKSORT withn logn+ 0:2n comparisons).
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The former paper presents a furtherHEAPSORTvariant calledWEAK-HEAPSORT,
which also contains a new data structure for priority queues. The sorting algorithm and
the underlying data structure are analyzed showing thatWEAK-HEAPSORTis the best
HEAPSORTvariant and that it has a lot of nice properties. It is shown that the worst case
number of comparisons isndlogne � 2dlog ne + n� dlogne � n logn + 0:1n andWeak-
Heapscan be generated withn�1 comparisons. A double-ended priority queue based on
Weak-Heapscan be generated inn+ dn=2e�2 comparisons. Moreover, examples for the
worst and the best case ofWEAK-HEAPSORTare presented, the number ofWeak-Heaps
onf1; : : : ; ng is determined, and experiments on the average case are reported.

The latter paper presents refinements to theWEAK-HEAPSORTalgorithm establish-
ing the general and practical relevant sequential sorting algorithmINDEX-WEAK-HEAP-
SORTwith exactlyndlogne � 2dlog ne + 1 � n logn � 0:9n comparisons and at most
n logn + 0:1n transpositions on any given input. It comprises an integer array of sizen

and is best used to generate an index for the data set. WithRELAXED-WEAK-HEAPSORT
andGREEDY RELAXED-WEAK-HEAPSORTwe discuss modifications for a smaller set
of pending index element transpositions. If extra space to create an index is not avail-
able, withQUICK-WEAK-HEAPSORTwe propose an efficientQUICKSORTvariant with
n logn+0:2n+o(n) comparisons on the average. Furthermore, we present data showing
that WEAK-HEAPSORT, INDEX-WEAK-HEAPSORTand QUICK-WEAK-HEAPSORT
beat other performantQUICKSORTandHEAPSORTvariants even for moderate values
of n.
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Abstract

This article surveys approaches to cope with limited memory for the design of algo-
rithms and data structures in Artificial Intelligence, since many systems, e.g. in puzzle
solving, two-player games, action and route planning, robotics, machine learning, data
mining, logic programming and theorem proving, explore very large or even infinite im-
plicitly given state spaces.

The main focus is on strategies for an improved time-space trade-off in case main
memory becomes exhausted and include refined representation and exploration tech-
niques, the introduction of additional search or control knowledge, and the explicit main-
tenance of secondary memory.
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1.1 Introduction

Artificial Intelligence (AI) deals with structuring large amounts of data. As a very first
example of an expert system [195], take the oldest known scientific treatise surviving from
the ancient world, the surgical papyrus [45] of about 3000 BC. It discusses cases of injured
men for whom a surgeon had no hope of saving and lay many years unnoticed until it was
rediscovered and published for the New York Historical Society. The papyrus summarizes
surgical observations of head wounds disclosing an inductive method for inference [119],
with observations that were stated with title, examination, diagnosis, treatment, prognosis
and glosses much in the sense thatif a patient has this symptom, then he has this injury
with this prognosis if this treatment is applied.

About half a century ago, pioneering computer scientists report the emergence of in-
telligence with machines that think, learn and create [326]. The prospects were driven by
early successes in exploration. Samuel [312] wrote a checkers-playing program that was
able to beat him, whereas Newell and Simon [277] successfully ran the general problem
solver (GPS) that reduced the difference between the predicted and the desired outcome
on different state-space problems. GPS represents problems as the task of transform-
ing one symbolic expression into another, with a decomposition that fitted well with the
structure of several other problem solving programs. Due to small available memories
and slow CPUs, these and some other promising initial AI programs were limited in their
problem solving abilities and failed to scale in later years.

There are two basic problems to overcome [257]: theframe problem– characterized
asthe smoking pistol behind a lot of the attacks on AI[78] – refers to all that is going on
around the central actors, while thequalification problemrefers to the host of qualifiers
to stop an expected rule from being followed exactly. While [206] identifies several argu-
ments of why intelligence in a computer is not a true ontological one, the most important
reason for many drawbacks in AI are existing limits in computational resources, espe-
cially in memory, which is often too small to keep all information for a suitable inference
accessible.

Bounded resources lead to a performance-oriented interpretation of the term intel-
ligence: different to the Turing-test [341], programs have to show human-adequate or
human-superior abilities in a competitive resource-constrained environment on a selected
class of benchmarks. As a consequence even the same program can be judged to be more
intelligent, when ran on better hardware or when given more time to execute. This com-
petitive view settles; international competitions in data mining (e.g. KDD-Cup), game
playing (e.g. Olympiads), robotics (e.g. Robo-Cup), theorem proving (e.g. CADE ATP),
and action planning (e.g. IPC) call for highly performant systems on current machines
with space and time limitations.

1.2 Hierarchical Memory

Restricted main memory calls for the use ofsecondary memory, where objects are either
scheduled by the underlying operating system or explicitly maintained by the application
program.

Hierarchical memory problems have been confronted to AI for many years. As an
example, take thegarbage collector problem. Minsky [264] proposes the first copying
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garbage collector for LISP; an algorithm using serial secondary memory. The live data is
copied out to a file on disk, and then read back in, in a contingous area of the heap space;
[33] extends [264] to parallelize Prolog based on Warren's abstract machine, and modern
copy collectors inC++ [117] also refer to [264]. Moreover, garbage collection has a bad
reputation for thrashing caches [198].

Access time graduates on current memory structures: processor register are better
available than pre-fetched data, first-level and second level caches are more performant
than main memory, which in turn is faster than external data on hard disks optical hard-
ware devices and magnetic tapes. Last but not least, there is the access of data via local
area networks and the Internet connections. The faster the access to the memorized data
the better the inference.

Access to the next lower level in the memory hierarchy is organized inpagesor blocks.
Since the theoretical models of hierarchical memory differ e.g. by the amount of disks
to be concurently accessible, algorithms are often ranked according tosorting complexity
O(sort(N)), i.e., the number of block accesses (I/Os) necessary to sortN numbers, and
according toscanning complexityO(scan(N)), i.e., the number of I/Os to readN num-
bers. The usual assumption is thatN is much larger thanB, the block size. Scanning
complexity equalsO(N=B) in a single disk model. The first libraries for improved sec-
ondary memory maintainance are LEDA-SM [73] and TPIE1. On the other end, recent
developments of hardware significantly deviate from traditional von-Neumann architec-
ture, e.g., the next generation of Intel processors have three processor cache levels. Cache
anomalies are well known; e.g. recursive programs like Quicksort often perform unex-
pectedly well when compared to the state-of-the art.

Since the field of improved cache performance in AI is too young and moving too
quickly for a comprehensive survey, in this paper we stick to knowledge exploration, in
which memory restriction leads to acoverage problem: if the algorithm fails to encounter
a memorized result, it has to (re-)explore large parts of the problem space. Implicit ex-
ploration corresponds to explicit graph search in the underlying problem graph. Unfor-
tunately, theoretical results in external graph search are yet too weak to be practical, e.g.
O(jV j+sort(jV j+jEj)) I/Os for breadth-first search (BFS) [272], wherejEj is the number
of edges andjV j is the number of nodes. One additional problem in external single-source
shortest path (SSSP) computations is the design of performant external priority queues,
for which tournament-trees [227] serve as the current best.

Most external graph search algorithms includeO(jV j) I/Os for restructuring and read-
ing the graph, an inacceptable bound for implicit search. Fortunately, for sparse graphs
efficient I/O algorithms for BFS and SSSP have been developed [339]. For example, on
planar graphs, BFS and SSSP can be performed inO(sort(jV j)) time. For general BFS,

the best known result isO
�q
jV j � scan(jV j+ jEj) + sort(jV j+ jEj)

�
I/Os [261].

In contrast, most AI techniques improve internal performance and include refined
state-space representations, increased coverage and storage, limited recomputation of re-
sults, heursitic search, control rules, and application-dependent page handling, but close
connections in the design of internal space saving strategies and external graph search
indicate a potential for cross-fertilization.

We concentrate on single-agent search, game playing, and action planning, since
in these areas, the success story is most impressive. Single-agent engines optimally

1http://www.cs.duke.edu/TPIE
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solve challenges like Sokoban [199] and Atomix [194], the 24-Puzzle [218], and Ru-
bik's Cube [215]. Nowadays domain-independent action planners [100, 143, 181] find
plans for very large and even infinite mixed propositional and numerical, metric and tem-
poral planning problems. Last but not least, game playing programs challenge human
supremacy for example inChess[192], American Checkers[317], Backgammon[338],
Hex [13], Computer Amazons[271], andBridge[144].

1.3 Single-Agent Search

Traditional single-agent search challenges are puzzles. The “fruit-fly” is the NP-complete
(n2 � 1)–Puzzle popularized by Loyd and Gardner [137]. Milestones for optimal solu-
tions were [319] forn = 3, [213] for n = 4, and [221] forn = 5. Other solitaire games
that are considered to be challenging are the above mentionend PSPACE-hard computer
games Sokoban and Atomix. Real-life applications includenumber partitioning[216],
graph partitioning [123], robot-arm motion planning[171], route planning[115], and
multiple sequence alignment[353].

Single-agent search problems are either given explicitly in form of a weighted directed
graphG = (V;E; w), w : E ! IR+, together with one start nodes 2 V and (possibly
several) goal nodesT � V , or implicitly spanned by a quintuple(I;O; w; expand; goal)
of initial stateI, operator setO, weight functionw : O ! IR+, successor generation
functionexpand, and goal predicategoal. As an additional input, heuristic search algo-
rithms assume an estimateh : V ! IR+, with h(t) = 0 for t 2 T . Since single-agent
search can model Turing machine computations, it is undecidable in general [296].

Heuristic searchalgorithms traverse the re-weighted problem graph. Re-weighting
sets the new weight of(u; v) tow(u; v)� h(u) + h(v). The total weight of a path froms
to u according to the new weights differs from the old one byh(s)� h(u). Functionh is
admissibleif it is a lower bound, which is equivalent to the condition that any path from
the current node to the set of goal nodes in the re-weighted graph is of non-negative total
weight. Since on every cycle the accumulated weights in the original and re-weighted
graph are the same, the transformation cannot lead to negatively weighted cycles. Heuris-
tic h is calledconsistent, if h(u) � h(v)+w(u; v), for all (u; v) 2 E. Consistent heuristics
imply positive edge weights.

TheA* algorithm [161] traverses the state space according to a cost functionf(n) =

g(n) + h(n), whereh(n) is the estimated distance from staten to a goal andg(n) is the
actual shortest path distance from the initial state. Weighted A* scales between the two
extremes;best-first searchwith f(n) = h(n) and BFS withf(n) = g(n). State spaces are
interpreted as implicitly spanned problem graphs, so that A* can be casted as a variant of
Dijkstra's SSSP algorithm [80] in the re-weighted graph (cf. Fig. 1.1). In case of negative
values forw(u; v)� h(u) + h(v) shorter paths to already expanded nodes may be found
later in the exploration process. These nodes arere-opened; i.e. re-inserted in the set of
horizon nodes. Given an admissible heuristic, A* yields an optimal cost path. Despite the
reduction of explored space, the main weakness of A* is its high memory consumption,
which grows linear with the total number of generated states; the number of expanded
nodesjV 0j << jV j is still large compared to the main memory capacity ofM states.

Iterative deepening A*(IDA*) [213] is a variant of A* with a sequence of bounded
depth-first-search (DFS) iterations. In each iteration IDA* expands all nodes having a
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Figure 1.1: The effect of heuristics in A* and IDA* (right) compared to blind SSSP (left).

total cost not exceeding threshold�f , which is determined as the lowest cost of all gener-
ated but not expanded nodes in the previous iteration. The memory requirements in IDA*
are linear in the depth of the search tree. On the other hand IDA* searches the tree expan-
sion of the graph, which can be exponentially larger than the graph itself. Even on trees,
IDA* may explore
(jV 0j2) nodes expanding one new node in each iteration. Accurate
predictions on search tree growth [96] and IDA*'s exploration efforts [220] have been
obtained at least for regular search spaces. In favor of IDA*, problem graphs are usually
uniformly weighted with an exponentially growing search tree, so that many nodes are
expanded in each iteration with the last one dominating the overall search effort.

As computer memories got larger, one approach was to develop better search algo-
rithmsand to use the available memory resources. The first suggestion was to memorize
and update state information also for IDA* in form of atransposition table[305]. In-
creased coverage compared to ordinary hashing has been achieved bystate compression
and bysuffix lists. State compression minimizes the state description length. For example
the internal representation of a state in the 15-Puzzle can easily be reduced to 64 bits, 4
bits for each tile. Compression often reduces the binary encoding length toO(log jV j), so
that we might assume that for constantc the statesu to be stored are assigned to a number
�(u) in [1; : : : ; n = jV jc]. For the 15-Puzzle the size of the state space is16!=2, so that
c = 64=dlog(16!=2)e = 64=44 � 1:45.

1011001
0011011
1011010
0011101
1011011
0101000
1011110
0101001
0101111

0
0
0

1
0

0
0
0
0
0
1
0
1
0
0
0 1

0
1
0
0
1
0
0
0

prefix-list suffix-list

0011

0000

0101

1011

1111

1011

0011
0011
0101
0101
0101

1011
1011

1011

011
101
000
001
111
001
010
011
110

011
101
000
001
111
001
010
011
110

closed nodes in sorted order

Figure 1.2: Example for suffix lists withp = 4, ands = 3.

Suffix lists [111] have been designed for external memory usage, but show a good
space performance also for internal memorization. Letbin(�(u)) be the binary represen-
tation of an elementu with �(u) � n to be stored. We splitbin(�(u)) in p high order
bits ands = dlogne � p low order bits. Furthermore,�(u)s+p�1; : : : ; �(u)s denotes the
prefix of bin(�(u)) and�(u)s�1; : : : ; �(u)0 stands for the suffix ofbin(u). The suffix list
consists of a linear arrayP and of a two-dimensional arrayL. The basic idea of suffix
lists is to store a common prefix of several entries as a single bit inP , whereas the distinc-
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tive suffixes form a group withinL. P is stored as a bit array.L can hold several groups
with each group consisting of a multiple ofs + 1 bits. The first bit of each(s + 1)-bit
row in L serves as agroup bit. The firsts bit suffix entry of a group has group bit one,
the other elements of the group have group bit zero. We place the elements of a group
together in lexicographical order, see Fig. 1.2. The space performance is by far better
than ordinary hashing and very close to theinformation theoretical bound. To improve
time performance to amortizedO(log jV j) for insertions and memberships, the algorithm
buffers states and inserts checkpoints for faster prefix-sum computations.

h(u)

u

h1(u) h2(u)

u

hc(u)

h(u)

u

Figure 1.3: Single bit-state hashing, double bit-state hashing, and hash-compact.

Bit-state hashing[72] andstate compactionreduce the state vector size to a selection
of few bits allowing even larger table sizes. Fig. 2.4 illustrates the mapping of stateu

via the hash functionsh, h1 andh2 and compaction functionhc to the according storage
structures. This approach ofpartial searchnecessarily sacrifices completeness, but often
yields shortest paths in practice [194]. While hash compact also applies to A*, single and
double bit-state hashing are better suited to IDA* search [111], since thef priority of a
state and its predecessor pointer to track the solution, are mandatory for A*.

In regular search spaces, with a finite set of different operators to be applied,Finite
state machine (FSM) pruning[337] provides an alternative for duplicate prediction in
IDA*. FSM pruning pre-computes a string acceptor for move sequences that are guaran-
teed to have shorter equivalents; the set offorbidden words. For example, twisting two
opposite sides of the Rubiks cube in one order, has always an equivalent in twisting them
in the opposite order. This set of forbidden words is established by hash conflicts in a
learning phase prior to the search and converted to a substring acceptor by the algorithm
of Aho and Corasick [3]. Fig 1.4 shows an example to prune the search tree expansion
in a regular Grid. The FSM enforces to follow the operatorsup (U), down(D), left (L),
andright (R) along the corresponding arrows reducing the exponentially sized search tree
expansion with4d states,d > 0, to the optimum ofd2 states. Suffix-tree automata [91]
interleave FSM construction and usage.

In route planning based onspatial partitioningof the map, the heap-of-heap priority-
queue data structure of Fig. 1.4 has effectivly been integrated in a localized A* algo-
rithm [115]. The map is sorted according to the two dimensional physical layout and
stored in form of small heaps, one per page, and one being active in main memory. To
improve locality in the A* derivate,deleteMinis substituted by a specializeddeleteSome
operation that prefers node expansions with respect to the current page. The algorithm is
shown both to be optimal and to significantly reduce page faults counter-balanced with
a slight increase in the number of node expansions. Although locality information is ex-
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D

EM

active
page

IM

Figure 1.4: The finite state machine to prune the Grid (left) and the heap-of-heap data
structure for localized A* (right). The main and the active heap are in internal memory
(IM), while the others reside on external memory (EM).

ploited, parts of the heap-of-heap structure may be substituted by provably I/O efficient
data structures likebuffer trees[15] or tournament trees[227].

Most memory-limited searchalgorithms base on A*, and differ in the caching strate-
gies when memory becomes exhausted.MREC [324] switches fromA* to IDA* if the
memory limit is reached. In contrast,SMA* [311] reassigns the space by dynamically
deleting a previously expanded node, propagating up computedf -values to the parents in
order to save re-computation as far as possible. However, the effect of node caching is
still limited. An adversary may request the nodes just deleted. The best theoretical results
on search trees areO(jV 0j +M + jV 0j2=M) node expansions in theMEIDA* search al-
gorithm [88]. The algorithm works in two phases: The first phase fills the doubly-ended
priority queueD with at mostM nodes in IDA* manner. These nodes are expanded and
re-inserted into the queue if they aresafe, i.e., ifD is not full and thef -value of the suc-
cessor node is still smaller than the maximalf -value inD. This is done untilD eventually
becomes empty. The last expanded node then gives the bound for the next IDA* iteration.
LetE(i) be the number of expanded nodes in iterationi andR(i) = E(i)�E(i� 1) the
number of newly generated nodes in iterationi. If l is the last iteration then the number of
expanded nodes in the algorithm is

Pl
i=1

i �R(l� i+1). Maximizing
Pl

i=1
i �R(l� i+1)

with respect toR(1) + : : : + R(l) = E(l) = jV 0j, andR(i) � M for fixed jV 0j and l
yieldsR(l) = 0, R(1) = jV 0j � (l � 2)M andR(i) = M , for 1 < i < l. Hence, the
objective function is maximized at�Ml2=2 + (jV 0j + 3M=2)l �M . Maximizing for l
yieldsl = jV 0j=M + 3=2 andO(jV 0j+M + jV 0j2=M) nodes in total.

Frontier search[217, 222] contributes to the observation that the newly generated
nodes in any graph search algorithm form a connected horizon to the set of expanded
nodes, which is omitted to save memory. The technique refers to Hirschberg's linear
space divide-and-conquer algorithm for computing maximal common sequences [176].
In other words, frontier search reduces a(d + 1)-dimensional search problem into ad-
dimentional one. It divides into three phases: in the first phase, a goalt with optimal
costf � is searched; in the second phase the search is re-invoked with boundf �=2; and
by maintaining shortest paths to the resulting fringe the intermediate statei from s to t
is detected, in the last phase the algorithm is recursively called for the two subproblems
from s to i, and fromi to t. Fig. 1.5 depicts the recursion step and indicates the necessity
to store virtual nodes in directed graphs to avoid falling back behind the search frontier,
where a nodev is calledvirtual, if (v; u) 2 E, andu is already expanded.



10 PAPER 1. MEMORY LIMITATION IN ARTIFICIAL INTELLIGENCE

t

s

f�

f�=2i

Figure 1.5: Divide step in undirected frontier search (left) and backward arc look-ahead
in directed frontier search (right).

Many external exploration algorithms perform variants of frontier search. In the
O(jV 0j + sort(jV 0j + jE 0j)) I/O algorithm of Munagala and Ranade [272] the set of vis-
ited lists is reduced to one additional layer. In difference to the internal setting above,
this algorithm performs a complete exploration and uses external sorting for duplicate
elimination.

Large dead-end recognition tables[199] are best built in sub-searches of problem
abstractions and avoid non-progressing exploration. Fig. 1.6 gives an example of boot-
strapping dead-end patterns by expansion and decomposition in theSokobanproblem, a
block-sliding game, in which blocks are only to be pushed from an accessible side. Black
ball patterns are found by simple recognizers, while gray ball patterns are inferred in
bottom-up fashion. Established sub-patterns subsequently prune exploration.

Figure 1.6: Bootstrapping to build dead-end recognition tables.

Another approach to speed up the search is to look for more accurate estimates. With
a better heuristic function the search will be guided faster towards the goal state and has
to deal with less of nodes to be stored. Problem-dependent estimates may have a large
overhead to be computed for each encountered state, calling for a more intelligent usage
of memory. Perimeter Search[82] is an algorithm that saves a large table in memory
which contains all nodes that surround the goal node up to a fixed depth. The estimate is
then defined as the distance of the current state and the closest state in the perimeter.

1.4 Action Planning

Domain-independent action planning [6] is one of the central problems in AI, which
arises, for instance, when determining the course of action for a robot. Problem do-
mains and instances are usually specified in a general domain description language
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(PDDL) [258, 131]. Its “fruit-flies” areBlocks Worldand Logistics. Planning has ef-
fectively been applied for instance inrobot navigation[154], elevator scheduling[211],
andautonomous spacecraft control[135].

A classical (grounded)Strips planning problem[126] is formalized as a quadruple
P =< S;O; I;G >, with S � 2F being the set of states,2F being the power set of the
set of propositional atomsF , I 2 S, G � S, andO being the set of operators that
transform states into states. A stateS 2 S is interpreted by the conjunct of its atoms.
Operatoro = (P;A;D) 2 O is specified with its precondition, add and delete lists,
P;A;D � F . If P � S, the resultS 0 2 S of an operatoro = (P;A;D) applied
to stateS 2 S is defined asS 0 = (S n D) [ A. Mixed propositional and numerical
planning[131] takeS � 2F � IRk, k > 0, as the set of states,temporal planningincludes
a special variabletotal-timeto fix action execution time, andmetric planningoptimizes
an additionally specified objective function. Strips planning is PSPACE-complete [53]
andmixed propositional and numerical planningis undecidable [170].

Including a non-deterministic choice on actions effects is often used to model uncer-
tainty of the environment.Strong plans[63], are plans that guarantee goal achievement
despite all non-determinism.Strong plansare complete compactly stored state-action ta-
bles, that can be best viewed as a controller, that applies certain actions depending on
the current state. In contrast, inconformant planning[62] a plan is a simple sequence
of actions, that is successful for all non-deterministic behaviours. Planning with partial
observability interleaves action execution and sensing. In contrast to the successor set
generation based on action application, observations correspond to “And” nodes in the
search tree [32]. Both conformant and partial observable planning can be casted as a
deterministic traversal inbelief space, defined as the power set2S of the original one
planning state spaceS [40]. Belief spaces and complete state-action tables are seemingly
too large to be explicitly stored in main memory, calling for refined internal representation
or fast external storage devices.

In probabilistic planning[298], different action outcomes are assigned to a probabil-
ity distribution and resulting plans/policies correspond to completestate-action tables.
Probabilistic planning problems are often modeled asMarkov decision process(MDPs)
and mostly solved either by policy or value iteration, where the latter invokes to suc-
cessive updates to Bellmann's equation. The complexity of probabilistic planning with
partial observability isPPNP -complete [273]. Different caching strategies for solving
larger partial observable probabilistic planning problems are studied in [251], with up to
substantial CPU time savings for application dependent caching schemes.

Early planning approaches in Strips planning were able to solve only small Strips
problems, e.g., to stack five blocks, but planning graphs, SAT-encodings, as well as heuris-
tic search have changed the picture completely.Graphplan [39] constructs a layered
planning graph containing two types of nodes, action nodes and proposition nodes. In
each layer the preconditions of all operators are matched, such thatGraphplanconsid-
ers instantiated actions at specific points in time.Graphplangenerates partially ordered
plans to exhibit concurrent actions and alternates between two phases:graph extension
to increase the search depth andsolution extractionto terminate the planning process.
Satplan[204] simulates a BFS according to the binary encoding of planning states, with
a standard representation of Boolean formulae as a conjunct of clauses.

In current heuristic search planning, relaxed plans [181] and pattern databases
(PDB) [95] turn out to be best (cf. Fig. 1.7). Therelaxed planning heuristicgenerates ap-
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Figure 1.7: Operator abstractions for the relaxed planning and the pattern database heuris-
tic (left); single and disjoint PDB for subsetsR andQ of all atomsF (right).

proximate plans to the simplified planning problem, in which negative effects have been
omitted in all operators, and is computed in a combined forward and backward traversal
for each encountered state. The first phase determines a fix point on the set of reachable
atoms similar toGraphplan, while the second phase greedily extracts the approximate
plan length as a heursitic estimate.

Pattern databases(PDB) [75] are constant-time look-up tables generated by com-
pletely explored problem abstractions. Subgoals are clustered and for all possible com-
bination of these subgoals in every state of the problem, the relaxed problem is solved
without looking on the other subgoals. Fig. 1.7 illustrates PDB construction. The plan-
ning state is represented as a set of propositional atomsF , and the operators are projected
to one or several disjoint subsets ofF . The simplified planning problem is completely ex-
plored with any SSSP algorithm, starting from the set of goal states. The abstract states are
stored in large hash tables together with their respective goal distance, to serve as heuristic
estimates for the overall search. Retrieved values of different databases are either max-
imized or added. PDBs optimally solved the15-Puzzle[75] andRubik's Cube[215]. A
space-time trade-off for PDB is analyzed in [174]; PDB size is shown to be inversely cor-
related to search time. Since search time is proportional to the number of expanded nodes
N 0 and PDB-size is proportional toM , PDBs make very effective use of main memory.
Finding good PDB abstractions is not immediate. The general search strategy for optimal-
sized PDBs [173] applies to a large set of state-space problems and uses IDA* search tree
prediction formula [220] as a guidiance. A general bin-packing scheme to generate dis-
joint PDBs [218] is proposed [95]. Recall that disjoint PDBs generate very fast optimal
solutions to the 24-Puzzle.

Some planners cast planning asmodel checking[145] and applybinary decision di-
agrams(BDDs) [50] to reduce space consumption. BDDs are compact acyclic graph
data structures to represent and efficiently manipulate Boolean functions; the nodes
are labeled with Boolean variables with two outgoing edges corresponding to the two
possible outcomes when evaluating a given assignment, while the 0- or 1-sink fi-
nally yield the determined result.Symbolic explorationrefers toSatplanand realizes
a BFS exploration on BDD representations of sets of states, where a state is identi-
fied by its characteristic function. Given the represented set of statesSi(x) in itera-
tion i and the represented transtion relationT the successor setSi+1(x) is computed
as Si+1(x) = 9x (Si(x) ^ T (x; x0))[x=x0]. In contrast toconjunctive partitioning
in hardware verification [263], for a refined image computation in symbolic planning
disjunctive partitioningof the transition function is required: ifT (x; x0) = _o2Oo(x; x0)
thenSi+1(x) = 9x (Si(x) ^ _o2Oo(x; x0))[x=x0] = _o2O(9x (Si(x) ^ o(x; x0)))[x=x0]:

Symbolic heuristic search maintains the search horizonOpenand the heursitic es-
timateH in compact (monolithical or partitioned) form. The algorithm BDDA* [112]
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Figure 1.8: Symbolic heuristic search A* search with symbolic priority queue and esti-
mate.

steadily extracts, evaluates, expands and re-inserts the set of statesMin with minimum
f -value (cf. Fig. 1.8). For consistent heursitics, the number of iterations in BDDA* can
be bounded by the square of the optimal path length.

Althoughalgebraic decision diagrams(ADDs), that extend BDDs with floating point
labeled sinks, achieve no improvement to BDDs to guide a symbolic exploration in the 15-
Puzzle [158], generalization for probabilistic planning results in a remarkable improve-
ment to the state-of-the-art [124]. Pattern databases and symbolic representations with
BDDs can be combined to create larger look-up tables and improved estimates for both
explicit and symbolic heuristic search [99]. Inconformant planningBDDs also apply
best, while in this case heuristics have to trade information for exploration gain [31].

Since BDDs are also large graphs, improving memory locality has been studied e.g.
in the breadth-first synthesis of BDDs, that constructs a diagram levelwise [193]. There
is a trade-off between memory overhead and memory access locality, so that hybrid ap-
proaches based on context switches have been explored [351]. Efficiency analysis show
that BDD reduction of a decision diagramG can be achieved inO(sort(jGj)) I/Os, while
Boolean operator application to combine two BDDsG1 andG2 can be performed in
O(sort(jG1j+ jG2j)) I/Os [14].

Domain specific information can control forward chaining search [17]. The proposed
algorithm progresses first order knowledge through operator application to generate an
extended state description and may be interpreted as a form of parameterized FSM prun-
ing.

Another space efficient representation for depth-first exploration of the planning space
is apersistent search tree[16], storing and maintaining the set of instantiations of plan-
ning predicates and functions. Recall that persistent data stuctures only store differences
of states, and are often used for text editors or version management systems providing
fast and memory-friendly random access to any previously encountered state.

Mixed propositional, temporal and numerical planning aspects call for plan schedules,
in which each action is attached to a fixed time-interval. In contrast to ordinary scheduling
the duration of an action can be state-dependent. The currently leading approaches2 are an
interleaved plan generator and optimal (PERT) scheduler of the imposed causal structure
(MIPS), and a local search engine on planning graphs, optimizing plan quality by deleting
and adding actions of generated plans governed by Lagrange multipliers (LPG).

2www.dur.ac.uk/d.p.long/competition.html
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Static analysis of planning domains [129] leads to a general efficient state compression
algorithm [101] and is helpful in different planners, especially in BDD engines.Generic
typeanalysis of domain classes [244] drives the design of hybrid planners, while different
forms of symmetry reduction based on object isomorphisms, effectively shrink explo-
ration space [132]:generic typesexploit similarities of different domain structures, and
symmetry detection utilizes the parametric description of domain predicates and actions.

Action planning is closely related toerror detectionin software [105] and hardware
designs [303], where systems are modeled as state transition graphs of synchronous or
asynchronous systems and analyzed by reasoning about properties of states or paths.
As in planning, the central problem is overcoming combinatorial explosion; the num-
ber of system states is often exponential in the number of state variables. The trans-
fer of technology is rising:Bounded model checking[36] exports theSatplan idea
to error detection,symbolic model checkinghas lead to BDD based planning, while
directed model checking[105] matches with the success achieved with heuristic search
planning.

One approach that has not yet been carried over ispartial order reduction[241],
which compresses the state space by of avoiding concurrent actions, thus reducing the
effective branching factor. In difference to FSM pruning, partial ordering sacrifices opti-
mality, detects neccessary pruning conditions on the fly, and utilizes the fact that the state
space is composed by the cross product of smaller state spaces containing many local
operators.

1.5 Game Playing

One research area of AI that has ever since dealt with given resource limitations is game
playing [316]. Take for example atwo-payer zero-sum game(with perfect information)
given by a set of statesS, move-rules to modify states and two players, called Player 0
and Player 1. Since one player is active at a time, the entire state space of the game is
Q = S�f0; 1g. A game has an initial state and some predicategoal to determine whether
the game has come to an end. We assume that every path from the initial state to a final
one is finite. For the set of goal statesG = fs 2 Q j goal(s)g we define an evaluation
functionv : G ! f�1; 0; 1g,�1 for a lost position,1 for a winning position, and 0 for a
draw. This function is extended tôv : Q ! f�1; 0; 1g asserting a game theoretical value
to each state in the game. More general settings aremulti-player gamesandnegotiable
gameswith incomplete information [300].

DFS dominates game playing and especially computer chess [254], for which [167]
provides a concise primer, includingmini-max search, �� pruning, minimal-windowand
quiescence searchas well asiterative deepening, move ordering, and forward pruning.
Since game trees are often too large to be completely generated in time, static evaluation
functions assert numbers to root nodes of unexpored subtrees. Fig. 1.9 illustrates a sim-
ple mini-max game treewith leaf evaluation, and its reduction by�� search and move
ordering. In a game tree of heighth with branching factorb the minimal traversed part
tree reduces from sizeO(bh) toO(

p
bh). Quiescence search extends evaluation beyond

exploration depth until a quiescent position is reached, while forward pruning refers to
different unsound cut-off techniques to break full-width search. Minimal-window search
is another inexact approximation of�� with higher cut-off rates.
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Figure 1.9: Mini-max game search tree pruned by�� and additional move ordering.

As in single-agent search, transposition tables are memory-intense containers of
search information for valuable reuse. The stored move always provides information,
but the memorized score is applicable only if the nominal depth does not exceed the value
of the cached draft. Since the early 1950s, from the “fruit-fly”-status, chess has advanced
to one of the main successes in AI, resulting in the defeat of the human-world cham-
pion in a tournament match. DeepThought [253] utilized IBM's DeepBlue architecture
for a massive-parallelized, hardware-oriented�� search scheme, evaluating and storing
billions of nodes within a second, with a fine-tuned evaluation function and a large, man-
made and computer-validated opening book.

Nine-Men-Morris has been solved with hugeendgame databases(EDB) [139],
in which every state after the initial placement has been asserted to its
game-theoretical value. The outcome of a complete search is that the game is a draw.
Note that the DeepBlue chess engine is also known to have held complete EDB on the
on-chip memories.

Four Connecthas been proven to be a win for the first player in optimal play using
a knowledge-based approach [7] and mini-max-basedproof number search(PNS) [8],
that introduces the third valueunknowninto the game search tree evaluation. PNS has
a working memory requirement linear in the size of the search tree, while�� requires
only memory linear to the depth of the tree. To reduce memory consumption [8], solved
subtrees are removed, or leveled execution is performed. PNS also solvedGoMoku[9],
where the search tree is partitioned into a few hundred subtrees, externally stored and
combined into a final one [9]. Proof-Set Search is a recent improvement to PNS, that
saves node explorations for a more involved memory handling [270].

Hex is another PSPACE complete board game invented by the Danish mathematician
Hein [48]. Since the game can never result in a draw it is easy to prove that the game
is won for the first player to move, since otherwise he can adopt the winning strategy
of the second player to win the game. The current state-of-the-art programHexyuses a
quite unusual approach electrical circuit theory to combine the influence of sub-positions
(virtual connections) to larger ones [13].

Go has been addressed by different strategies. One important approach [268] with
exponential savings in some endgames uses a divide-and-conquer method based on
combinatorial game theory[29] in which some board situations are split into a sum of
local games of tractable size.Partial order bounding[269] propagates relative evalua-
tions in the tree and has also been shown to be effective in Go endgames. It applies to all
mini-max searchers, such as�� and PNS.

An alternative to�� search with minimax evaluation isconspiracy number search
(CNS) [255]. The basic idea of CNS is to search the game tree in a manner that at
leastc > 1 leaf values have to change in order to change the root one. CNS has been
successfully applied to chess [247, 314].
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Memory limitation is most apparent in the construction of EDBs [343]. Different to
analytical machine learning approaches [320], that construct an explanation why the con-
cept being learned works for positive learning examples – to be stored in operational form
for later re-use in similar cases – EDBs do not discover general rules for infallible play,
but are primary sources of information for the game-theoretical value of the respective
endgame positions. The major compression schemes for positions without pawns use
symmetries along the axes of the chess board.

EDB can also be constructed with symbolic, BDD-based exploration [20, 98], but an
improving integration of symbolic EDBs in game playing has still to be given. Some com-
binatorial chess problems like the total number of 33,439,123,484,294 complete Knight's
tours have been solved with the compressed representation of BDDs [242].

For EDBs to fit into main memory the general principle is to find efficient encodings.
For external usage run-length encoding suits best for output in a final external file [231].
Huffman encodings [70] are further promising candidates. Thereby, modern game playing
programs quickly become I/O bound, if they probe external EDBs not only at the root
node. In checkers [316] the distributed generation of a very large EDBs has given the
edge in favor to the computer. Schaeffer's checker programChinook[315] has perfect
EDB information for all checker positions involving eight or fewer pieces on the board, a
total of 443,748,401,247 positions generated in largeretrograde analysisusing a network
of workstations and various high-end computers [231]. Commonly accessed portions of
the database are pre-loaded into memory and have a greater than 99% hit rate with a
500MB cache [225]. Even with this large cache, the sequential version of the program is
I/O bound. A parallel searching version ofChinookfurther increased the I/O rate such
that computing the database was even more I/O intensive than running a match.

Interior-node recognition [328] is another memorization technique in game playing
that includes game-theoretical information in form of score values to cut-off whole sub-
trees for interior node evaluation in�� search engines. Recognizers are only invoked,
if transposition table lookups fail. To enrich the game theoretical information,material
signaturesare helpful. The memory access is layered. Firstly, appropriate recognizers are
efficiently detected and selected before a lookup into an EDB is performed [166].

1.6 Other AI Areas

An apparent candidate for hierarchical memory exploitation isdata or information min-
ing [310]; the process of inferring knowledge from very large databases.Web min-
ing [223] is data mining in the Internet whereintelligent internet systems[236] consider
user modeling, information source discovering and information integration. Classifica-
tion and clustering in data mining [266] links to the wide range ofmachine learning
techniques [232] withdecision-treeandstatistical methods, neural networks, genetic al-
gorithms, nearest neighbor searchandrule induction. Association rules are implications
of the formX ) I with I being a binary attribute. SetX has supports, if s% of all data
is inX, whereas a ruleX ) I has confidencec, if c% of all data that are inX also obey
I. Given a set of transactionsD, the problem is to generate all association rules that have
user-specified minimum support and confidence. The main association rule induction al-
gorithm isAIS[1]. For fast discovery, the algorithm was improved inApriori [2]. The first
pass of the algorithm simply counts the number of occurences of each item to determine
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itemsets of cardinality 1 with minimum support. In thek-th pass the itemset with(k� 1)

elements and minimum support of phase(k � 1) are used to generate a candidate set,
which by scanning the database yields the support of the candidate set and thek-itemset
with minimum support. The running time ofApriori is O(jCj � jDj), wherejDj is the
size of the database andjCj the total number of generated candidates. Even advanced
association rule inference requires substantial processing power and main memory [348].
An example to hierarchical memory usage is a distributed rule discovery algorithm [57].

Case-based reasoning(CBR) [203] systems integrate database storage technology into
knowledge representation systems. CBR systems store previous experiences (cases) in
memory and in order to solve new problems, i) retrieve similar experience about similar
situation from memory ii) complete or partial re-use or adapt the experience in the context
of the new situation, iii) store new experience in memory. We give a few examples that
are reported to explicitly use secondary memory. Parka-DB [334] is a knowledge base
with a reduction in primary storage with 10% overhead in time, decreasing the load time
by more than two orders of magnitude. Framer [155] is a disk-based object-oriented
knowledge based system, whereas Thenetsys [285] is a semantic network system that
employs secondary memory structure to transfer network nodes from the disk into main
memory and vice versa.

Automated theorem provingprocedures draw inferences on a set of clauses� ! �,
with � and� as multisets of atoms. A top-down proof creates a proof tree, where the
node label of each interior node corresponds to the conclusion, and the node labels of
its children correspond to the premises of an inference step. Leaves of the proof tree are
axioms or instances of proven theorems. Aproof staterepresents the outer fragment of a
proof tree: the top-node, representing the goal and all leaves, representing the subgoals
of the proof state. All proven leaves can be discharged, because they are not needed for
further proof search. If all subgoals have been solved, the proof is sucessful. Similar
to action planning, proof-state based automated theorem proving spans large and infinite
state spaces. The overall problem is undecidable and can be tackled by user invention and
implicit enumeration only. While polynomial decision procedures exists for restricted
classes [256], first general heuristic search algorithms to accelerate exploration have been
proposed [106].

1.7 Conclusions

The spectrum of research in memory limitations algorithms for representing and explor-
ing large or even infinite problem spaces is enormous and encompasses large subareas
of AI. We have seen alternative approaches to exploit and memorize problem specific
knowledge and some schemes that explicitly schedule external memory. Computational
trade-offs under bounded resources become increasingly important, as e.g. a recent issue
of Artificial Intelligence[191] with articles on recursive conditioning, algorithm portfo-
lios, anytime algorithms, continual computation, and iterative state space reduction indi-
cates. Improved design of hierarchical memory algorithms, probably special-tailored to
AI exploration, are apparently needed.

Nevertheless, there is much more research, sensibility, and transfer of results needed,
as two feedbacks of German AI researchers illustrate. For the case of external algorithms,
Bernhard Nebel [276] mentions that current memory sizes of 256MB up to several GB
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make the question of refined secondary memory access no longer that important. This
argument neglects that even by larger amount of main memory the latency gap still rises,
and that with current CPU speed, exploration engines often exhaust main memory in less
than a few minutes.

For the case of processor performance tuning, action execution in robotics has a high
frequency of 10-20 Hz, but there is almost no research in improved cache performance:
Wolfram Burgard [52] reports some successes by restructuring loops in one application,
but has also seen failures for hand-coded assembler inlines to beat the optimized compiler
outcome in another.

The ultimative motivation for an increased research in space limitations and hierar-
chical memory usage in AI is its inspiror, the human brain, with an hierarchical layered
organization structure, including ultra short time working memory, as well as short and
long time memorization capabilities.
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Abstract

Having to cope with memory limitations is an ubiquitous issue in heuristic search.
We present theoretical and practical results on new variants for exploring state-space with
respect to memory limitations.

We establishO(logn) minimum-space algorithms that omit both the open and the
closed list to determine the shortest path between every two nodes and study the gap in
between full memorization in a hash table and the information-theoretic lower bound.
The proposed structure of suffix-lists elaborates on a concise binary representation of
states by applying bit-state hashing techniques. Significantly more states can be stored
while searching and insertingn items into suffix lists is still available inO(n logn) time.
Bit-state hashing leads to the new paradigm of partial iterative-deepening heuristic search,
in which full exploration is sacrificed for a better detection of duplicates in large search
depth. We give first promising results in the application area of communication protocols.
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IDA* (s)
Push (S; s; h(s)); U  h(s)
while (U 6=1)

U  U 0; U 0  1
while (S 6= ;)

(u; f(u)) Pop(S)
if (goal(u)) return (u; f(u))

for all v in �(u)
if (f(u) + w(u; v)� h(u) + h(v) > U )

if (f(u) + w(u; v)� h(u) + h(v) < U 0)
U 0  f(u) + w(u; v)� h(u) + h(v)

else
Push (S; v; f(u) + w(u; v)� h(u) + h(v))

Table 2.1: The IDA* Algorihm implemented with a Stack.

2.1 Introduction

Heuristic search in large problem spaces inherently calls for algorithms capable of running
under restricted memory. We present new data structures and algorithms that face the
memory vs. duplication elimination problem that still arises even if the exploration is
directed. The class ofmemory-restricted search algorithmshas been developed under this
aim. The framework imposes an absolute upper bound on the total memory the algorithm
may use, regardless of the size of the problem space. If the number of nodes with distance
value smaller than the optimal solution path length is larger than this memory bound,
storing the entire list of visited nodes is no longer possible.

Iterative deepening A*, IDA* for short [213], has proven effective to successively
search the problem graph with bounded DFS traversals according to an increasing thresh-
old for the tentative values. IDA* consumes space linear in the solution length. It does not
use additionally available memory and traverses all generating paths. Unfortunately, the
number of paths in a graph might be exponentially larger than the number of nodes such
that the design of informative consistent heuristics and duplicate elimination remains es-
sential. If all merits are distinct, IDA* expands a quadratic number of nodes in the worst
case. Although iterative deepening is limited to small integral weights it performs well
in practice. Table 2.1 depicts a possible implementation of IDA* in pseudo-code:S is
a stack for backtracking,U is the current threshold, andU 0 the threshold for the next
iteration. The valuew(u; v) is the weight of the transitition(u; v), h(u) andf(u) is the
heuristic estimate and combined merit for nodeu, respectively.

Pattern data-bases [75] are a general tool to improve the estimate that can cope with
complex subproblem interactions. A solution preserving relaxation of the search problem
is traversed prior to the search and the goal distances of all abstract states are kept as lower
bound estimats for the overall problem within a large hash table. However, the application
of this pre-compilation technique is limited to suitable domain abstractions that yield
better results than on-line computations as findings in protocol verification [109], AI-
planning [95], and selected single-agent problems [194] indicate. Therefore, to lessen
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memory consumption according to a large number of states is still a problem.
Transposition tables are used to store and improve the distances until the memory

bound has been reached [305]. However, when the memory is exhausted, IDA*'s time
consumption is often stinged by uncaught duplicates.

Different node caching strategies have been applied: MREC [324] switches from A*
to IDA* if the memory limit is reached. In contrast, SMA* [311] reassigns the space by
dynamically deleting a previously expanded node, propagating up computedf -values to
the parents in order to save re-computation as far as possible. However, the effect of node
cashing is still limited. An adversary may request the nodes just deleted.

The paper is aimed to close this gap and is structured as follows: The first section
gives anO(logn)-space algorithm to search for the shortest path in graphs with uniform
or small weights, withn being the total number of nodes in the problem graph. Suf-
fix lists are a data structure for maximizing the number of stored states according to a
given memory limit. The achieved result is compared to ordinary hashing and a derived
information-theoretic bound. Bit-state state compaction, sequential hashing and partial
search can substitute the transposition table of IDA* with a bit-vector table. Thereby, it is
possible to detect more duplicates in the space while increasing the depth of the search.
We give promising experimental results in validating an industrial communication proto-
col.

2.2 Minimum Space Algorithms

First of all, we might ask for the limit of space reduction. Given a graph withn nodes
we are interested in algorithms that compute the BFS-level and shortest paths of all nodes
and either consume as little working space as possible or perform faster if more space is
available. In addition, we assume that the algorithms are not allowed to modify the input
during the exection.

The similar problems of node reachability (i.e., determine whether there any path
between two nodes) and graph connectivity have been efficiently solved for the same
restricted memory setting using random walk strategies [121, 122]. However, we are not
aware of any equivalent results for BFS and shortest paths. In the following we will devise
anO(logn) space algorithm for BFS and shortest paths with small integer weights. The
principle is similar to the simulation of nondeterministic Turing machines [313].

2.2.1 Divide-And-Conquer BFS

To compute the breadth-first-level for each node, with very limited space, we may use a
DAC strategyPath that reports if there is a path froma to b with l edges. Ifl equals 1
and there is an edge froma to b then the procedure returns true. Otherwise, for each node
index j, 1 � j � n, we recursively determinePath(a; j; dl=2e) andPath(j; b; bl=2c). If
both exist the returned value is true, compare Table 2.2. The recursion stack has to store at
mostO(logn) frames each of which containsO(1) integers. Hence the space complexity
isO(logn). However, this has to be paid with a time complexity ofO(n3+logn) due to the
recurrence equationT (1) = 1 andT (l) = 2n � T (l=2) resulting inT (n) = (2n)log n =

n1+log n time for one test. Varyingb and iterating onl in the range off1; : : : ; ng gives the
overall performance ofO(n3+log n) steps.
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Divide-And-Conquer-BFS(s)
for i 1 to n

for l 1 to n
if (Path(s; i; l))

print (s; i; l)

break

Path(a; b; l)
if ((a; b) 2 E)

return true
else

for j  1 to n
if (Path(a; j; dl=2e) and Path(j; b; bl=2c))

return true
return false

Table 2.2: Computing the BFS Level.

2.2.2 Divide-And-Conquer SSSP

To extend this idea to the single-source shortest path problem (cf. Figure 2.3) with edge
weights bounded by a constantC, we check the weights

bw=2c � dC=2e for path 1, bw=2c+ dC=2e for path 2,
bw=2c � dC=2 + 1e for path 1, bw=2c+ dC=2e � 1 for path 2,
. . . . . .
bw=2c+ dC=2e for path 1, bw=2c � dC=2e for path 2.

If there is a path with total weightw then it can be decomposed into one of above parti-
tions. The worst-case reduction on weights isCn ! Cn=2 + C=2 ! Cn=4 + 3C=4 !
: : :! C ! C � 1! C � 2! C � 3! : : :! 1.

Divide-And-Conquer-SSSP(s)
for i 1 to n

for w 1 to C � n
if (Path(s; i; w))

print (s; i; w)

break

Path(a; b; w)
if (weight(a; b) = w)

return true
else

for j  1 to n
for s maxf1; bw=2c � dC=2eg

to minfw � 1; dw=2e+ dC=2eg
if (Path(a; j; s) and Path(j; b; w � s))

return true
return false

Table 2.3: Searching the Shortest Paths.

Therefore, the recursion depth is bounded bylog(Cn) + C which results in a space
requirement ofO(logn) integers. As in the BFS case this compares to exponential time.

We do not claim practical applicability of these algorithms but want to make a start
towards efficient shortest path algorithms for relatively little memory and unmodifiable
large data, for example on optical read-only storage. In particular, time-space trade-offs
seem to require new techniques.
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Figure 2.1: Example for Suffix Lists withp = 4, ands = 3.

2.3 Suffix Lists

Givenm bits of memory, we want to maintain a dynamically evolving visited listclosed
under inserts and membership queries. The entries ofclosedare integers fromf0; ng. Let
r denote the maximal size of closed nodes that can be accommodated. As long asn � m

a simple bit array with biti denoting elementi is sufficient. Using hashing with open
addressing,r is limited toO(n= logn). In the following we describe a simple but very
space efficient approach with small update and query times. Similar ideas appeared in
[59] but the data structure there is static and not theoretically analyzed. Another dynamic
variant achieving asympotically equivalent storage bounds as our approach is sketched in
[47]. However, constants are only given for two static examples. We provide constants
for the dynamic version; comparing with the numbers of [47], our dynamic version could
host up to five times more elements of the same value range. However, one has to take
into consideration that the data structure of [47] provides constant access time whereas
our structure incurs amortized logarithmic access time.

2.3.1 Representation

Let bin(u) be the binary representation of an elementu � n from the setclosed. We split
bin(u) in p high bits ands = dlogne � p low bits. Furthermore,us+p�1; : : : ; us denotes
the prefix ofbin(u) andus�1; : : : ; u0 stands for the suffix ofbin(u).

A suffix list data structureconsists of a linear arrayP of size2p bits and of a two-
dimensional arrayL of size r(m + 1) bits. The basic idea of suffix lists is to store a
common prefix of several entries as a single bit inP , whereas the distinctive suffixes
form a group withinL. P is stored as a bit array.L can hold several groups with each
group consisting of a multiple ofs + 1 bits. The first bit of eachs + 1-bit row in L

serves as agroup bit. The firsts bit suffix entry of a group has group bit one, the other
elements of the group have group bit zero. We place the elements of a group together in
lexicographical order, see Figure 2.1.
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2.3.2 Searching

First, we computek =
Pp�1

i=0 us+i � 2i which gives us the search position in the prefix
arrayP . Then we simply count the number of ones inP starting from positionP [0] until
we reachP [k]. Let z be this number. Finally we search throughL until we have found the
zth suffix ofL with group bit one. If we have to perform a membership query we simply
search in this group. Note that searching a single entry may require scanning large areas
of main memory.

2.3.3 Inserting

To insert entryu we first search the corresponding group as described above. In caseu

opens a new group withinL this involves setting group bits inP andL. The suffix ofu
is inserted in its group while maintaining the elements of the group sorted. Note that an
insert may need to shift many rows inL in order to create space at the desired position.
The maximum numberr of elements that can be stored inS bits is limited as follows: We
need2p bits forP ands+1 = dlogne� p+1 bits for each entry ofL. Hence, we choose
p so thatr is maximal subject to

r � m� 2p

dlogne � p+ 1
:

Forp = �(logm� log log(n=m)) the space requirement for bothP and the suffixes inL
is small enough to guaranteer = �

�
m

log(n=m)

�
.

2.3.4 Checkpoints

We now show how to speed up the operations. When searching or inserting an elementu

we have to computez in order to find the correct group inL. Instead of scanning poten-
tially large parts ofP andL for each single query we maintain checkpoints,one-counters,
in order to store the number of ones seen so far. Checkpoints are to lie close enough to
support rapid search but must not consume more than a small fraction of the main mem-
ory. For2p � r we havez � r for both arrays, sodlog re bits are sufficient for each
one-counter.

Keeping one-counters after every1=(c1 � blog rc) entries limits the total space require-
ment. Binary search on the one-counters ofP now reduces the scan-area to compute the
correct value ofz to c1 � blog rc bits.

Searching inL is slightly more difficult because groups could extend over2s entries,
thus potentially spanning several one-counters with equal values. Nevertheless, finding
the beginning and the end of large groups is possible within the stated bounds. As we
keep the elements within a group sorted, another binary search on the actual entries is
sufficient to locate the position inL.

2.3.5 Buffers

We now turn to insertions where two problems remain: adding a new element to a group
may need shifting large amount of data. Also, after each insert the checkpoints must be
updated. A simple solution uses a second buffer data structureBU which is less space
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efficient but supports rapid inserts and look-ups. When the number of elements inBU
exceeds a certain threshold,BU is merged with the old suffix lists to obtain a new up-to-
date space efficient representation. Choosing an appropriate size ofBU, amortized analy-
sis shows improved computational bounds for inserts while achieving asymptotically the
same order of phases for the graph search algorithm.

Note that membership queries must be extended toBU as well. We implementBU as
an array for hashing with open addressing.BU stores at mostc2 � r=dlogne elements of
sizep + s = dlogne, for some small constantc2. As long as there is10% space left in
BU, we continue to insert elements intoBU otherwiseBU is sorted and the suffixes are
moved fromBU into the proper groups ofL. The reason not to exploit the full hash table
size is again to bound the expected search and insert time withinBU to a constant number
of tests.

Theorem 1 Searching and insertingn items into suffix lists under space restrictionm
can be done inO(n � log2 n) bit operations. Assuminglogn bits for a machine word, the
total run time forn inserts and memberships isO(n logn).

Proof: For a membership query we perform binary searches on numbers ofdlog re
bits ors bits, respectively. So, to search an element we needO(log2 r + s2) = O(log2 n)

bit operations sincer � n ands � logn.
Each of theO(r= logn) buffer entries consists ofO(logn) bits, hence sorting the

buffer can be done with

O

 
logn � r

logn
� log r

logn

!
= O(r � logn)

bit operations. Starting with the biggest occurring keys merging can be performed inO(1)

memory scans,O(m) operations. This also includes updating all one-counters. In spite
of the additional data structures we still have

r = �

 
m

log(n=m)

!
:

Thus, the total bit complexity forn inserts and membership queries is given by

O(#buffer-runs(#sorting-ops+#merging-ops) +

#elements#buffer-search-ops+

#elements#membership-query-ops) =

O(n=r � logn � (r � logn +m) + n � log2 n + n � log2 n) =
O(n=r � logn � (r � logn + r � log(n=m)) + n � log2 n) =
O(n � log2 n):

Assuming a machine word length oflogn in the RAM model, any modification or
comparison of entries withO(logn) bits appearing in our suffix lists can be done using
O(1) machine operations. Hence the total complexity reduces toO(n � logn) operations.

The constants can be improved using the following observation: in the casen =

(1 + �) �m, for a small� > 0 nearly half of the entries inP will always be zero, namely
those which are lexicographically bigger than the suffix ofn itself. Cutting theP array at
this position leaves more room forL which in turn enables us to keep more elements.
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2.3.6 The Information Theoretic Bound

We place an upper bound on the maximal sizer� of the subset that can be stored. For the
static case, we observe thatdlog

�
n

r�

�
e � m. However, if we consider the dynamic case,

i.e. including insertions, we have to represent all former configurations. This results in
&
log

 
r�X
i=0

 
n

i

!!'
� m:

We aim chooser� maximal subject to this inequality. Forr� � (n� 2)=3 we have
 
n

r�

!
�

r�X
i=0

 
n

i

!
� 2 �

 
n

r�

!
:

The correctness follows from
�
n

i

�
=
�

n

i+1

�
� 1=2 for i � (n � 2)=3. We are only

interested in the logarithms, so we conclude

log

 
n

r�

!
� log

 
r�X
i=0

 
n

i

!!
� log

 
2

 
n

r�

!!
= log

 
n

r�

!
+ 1

Obviously in this restricted range it is sufficient to concentrate on the last binomial
coefficient. The error in our estimate is at most one bit. The restriction onr� is compatible
with all reasonable choices forn andm. Using

log

 
n

r�

!
= log

n � (n� 1) � � � � � (n� r� + 1)

r�!

=
nX

j=n�r�+1

log j �
r�X
j=1

log j;

we can approximate the logarithm by two corresponding integrals. If we properly bias
the integral limits we can be sure to compute a lower bound

log

 
n

r�

!
�
Z n

n�r�+1

log(x) dx�
Z r�+1

2

log(x) dx:

Maximizing r� with respect to this equation yields an information theoretic upper
bound.

Table 2.4 compares suffix lists with hashing and open addressing. The constants for
suffix lists are chosen so that2 � c1 + c2 � 1=10 which means that ifr elements can
be treated, we set asider=10 bits to speed-up internal computations. For hashing with
open addressing we also leave10% memory free to keep the internal computation time
moderate. When using suffix lists instead of hashing, note that only the ratio betweenn

andm is important. For the static data structure of [47] the following numbers are given:
for n

m
= 1:0�232

1:9�230
� 1:05 it can store a fraction ofr

n
= 1:4�227

1:0�232
� 4:37% of n. Our approach

achieves22:7% which constitues an improvement by a factor of more than five. For
another example withn=m � 3:2 our approach gains by a factor of about1:8.

Hence, suffix lists can close the phase gap in search algorithms between the upper
bound and trivial approaches like hashing with open addressing. Already forn � 1:1 �m
we reach two-optimality.
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n=m Upper Suffix Hashing
Bound Lists n = 220 n = 230

1.05 33.2 % 22.7 % 4.3 % 2.9 %
1.10 32.4 % 21.2 % 4.1 % 2.8 %
1.25 24.3 % 17.7 % 3.6 % 2.4 %
1.50 17.4 % 13.4 % 3.0 % 2.0 %
2.00 11.0 % 9.1 % 2.3 % 1.5 %
3.00 6.1 % 5.3 % 1.5 % 1.0 %
4.00 4.1 % 3.7 % 1.1 % 0.7 %
8.00 1.7 % 1.5 % 0.5 % 0.4 %

16.00 0.7 % 0.7 % 0.3 % 0.2 %

Table 2.4: Fractions ofn stored in Suffix Lists and Hashing with Open Addressing.

2.4 Bit-State Hash-Tables

Advanced to the treatment of data structures and algorithms we give a small introduc-
tion to the verification of distributed software systems and communication protocols; an
apparent and practical relevant domain for state-space search.

2.4.1 State Space Search for Protocols Validation

Reliable communication is probably the most important issue for accessing the Internet
and for the design of distributed computer systems. Usually a layered structure like the
ISO Reference Modelis used to allow for different abstractions. In one layer (transport
layer) we have the request for reliable communication while the next lower layers provide
this quality of service facing a lossy channel (cf. Figure 2.2).

Sender Receiver

transportation of messages

unreliable (lossy) channel

Figure 2.2: Communication over a Lossy Channel for Messaging in Layered Protocols.

One example to cope with lossy channels is the alternating bit protocol. The message
flow is visualized in Figure 2.3. To assert secure data transport from the sender to the
receiver we assume sequence numbers for messages. In the following we study algorithms
and data structures to certify the correctness of a such a protocol.

2.4.2 Supertrace

The idea of bit-state hashing is adopted from Holzman's protocol validator Spin [189],
that parses the expressive concurrent Promela protocol specification language. It com-
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Figure 2.3: Flow of Control on a Lossy Channel with the Alternating Bit Protocol.

presses the state description of several hundred bits down to only a few bits to build a
hash table with up to230 entries and more. Combined with a depth-first search strategy
this is in fact thesupertrace algorithm: A states is represented by its hash addressh(s).
When generating a state the corresponding bit is set. Synonyms are regarded as duplicates
resulting in pruning the search. The search algorithm is not complete, since not all syn-
onyms are disambiguated. Moreover, through depth-first traversal, the length of a witness
for an encountered error state is not minimal.

2.4.3 Data Structures

As an illustration and generalization of the bit-state hashing idea, Figure 2.4 depicts the
range of possible hash structures: Usual hashing with chaining of synonyms, single-bit
hashing, double-bit hashing and hash compact [331]. Letn be the number of reachable
states andm be the maximal number of bits available. A coarse approximation for single
bit-state hashing coverage withn < m is 1� P1 with the average probability of collision
P1 � 1

n

Pn�1
i=0

i
m
� n=2m, since thei-th element collides with one of thei � 1 already

inserted elements with a probability of at most(i� 1)=m, 1 � i � n [189]. For multi-bit
hashing andh (independent) hash-functions by assuminghn < m coverage is improved
to 1 � Ph with average probability of collisionPh � 1

n

Pn�1
i=0

(h � i
m
)h, sincei elements

occupy at mosthi=m addresses,0 � i � n�1. For double bit-state hashing this simplifies
to P2 � 1

n
( 2

m
)2
Pn�1

i=0
i2 = 2(n� 1)(2n� 1)=3m2 � 4n2=3m2.

2.4.4 Sequential and Universal Hashing

The drawback in incompleteness of partial search is compensated by re-invoking the al-
gorithm with different hash functions to improve the coverage of the search tree. Subse-
quently, this technique, calledsequential hashing, examines various beams in the search
tree (up to a certain threshold depth). In considerably large protocols supertrace with
sequential hashing succeeds in finding bugs but still returns long witness trails. If in se-
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Figure 2.4: Ordinary Hashing, Single Bit-State Hashing, Double Bit-State Hashing, and
Hash-Compact.

quential hashing exploration with the first hash first function coversm=n of the search
space, the probability that a statex is not generated ind independent runs is(1�m=n)d
such thatx is reached with probability1� (1�m=n)d. Eckerle and Lais [89] have shown
that thisideal circumstances are not given in practice and refine the model for coverage
prediction.

Moreover, universal hash functions suit best for implementing sequential hashing. Let
A, B be sets withjBj = 2w, for some integer valuew. The class of hash functionsH is
universal, if for all x, y 2 A, we have

jfh 2 H j h(x) = h(y)gj � jHjjBj :

Universal hash functions lead to a good distribution of values on the average. Ifh

is drawn randomly fromH andS is the set of keys to be inserted in the hash table, the
expected cost of each search, insert and delete operation is bounded by(1 + jSj=jBj).
We give an example of a universal hash function. Letp be prime, andp � jAj and
hm;n(s) = ((m � s + n) modp) mod jBj. Then the classH1 := fhm;njm;n 2 Zpg is
universal.
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Partial IDA* (s)

Push (S; s; h(s)); U 0  U  h(s)
while (U 6=1)

U  U 0; U 0  1
Init (H)
while (S 6= ;)

(u; f(u)) Pop(S)
if (goal(u)) return (u; f(u))
for all v in �(u)

if (Search (H; v) 6= ;)
Insert (H; v)

if (f(u) + w(u; v)� h(u) + h(v) > U )
if (f(u) + w(u; v)� h(u) + h(v) < U 0)

U 0  f(u) + w(u; v)� h(u) + h(v)

else
Push (S; v; f(u) + w(u; v)� h(u) + h(v))

Table 2.5: Partial IDA* Algorithm.

2.4.5 Validating Process

For the validation of the design of the protocols, bug-finding by simulation and testing
has its drawbacks, since several subtle bugs in concurrent systems are difficult to estab-
lish. Given a formal specification of a desired protocol property model-checking is a
push-button procedure to verify the correctness. Validation is performed by traversing the
finite-state machine representation of the protocol to find a bug. Therefore protocols are
represented by state spaces, in which reachability analysis is performed to establish error
states.

Therefore, directed search for minimal counterexamples in the protocol space accord-
ing to a given implementation corresponds to the search for an optimal solution with the
goal as the failure state. From a model checking perspective [65] the approach allows to
implement various heuristics to direct the search into the direction of the failure. From an
AI-perspective partial search, maybe assisted with sequential hashing, condenses dupli-
cate information in various search and planning problem spaces.

2.4.6 Heuristic Search Algorithm

The apparent aspirant for state compaction is IDA* withtransposition tables, since, in op-
posite to A*, it tracks the solution path on the stack, which allows to omit the predecessor
link in the state description of the set of visited states.

When substituting the transposition tableH of already visited nodes in IDA* by bit-
state, multi bit-state or hash compaction we establish thePartial IDA* algorithm as de-
picted in Table 2.5. Since neither the predecessor nor thef -value are present, in order to
distinguish the current iteration from the previous ones, the bit-state table has to be re-
initialized in each iteration of IDA*. Refreshing large bit-vector tables is fast in practice,
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but for shallow searches with a small number of expanded nodes this scheme can be im-
proved by invoking ordinary IDA* with transposition table updates for smaller thresholds
and by applying bit-vector exploration in large depths only.

In practice the obtained counterexamples are minimal, since the coverage with bit-
state duplicate elimination is very close to 100 % for moderately sized systems (n <

m). Moreover, the technique oftrail-directed searchcan effectivly improve non-optimal
existing paths [110].

The results for searching deadlocks in one large communication protocol are depicted
in Table 2.6, where the number of expansions with respect to different optimal search
algorithms for an increasing threshold is shown. For A* a snapshot is taken at each
time the priority queue value increases, while in IDA* the number of expanded nodes
according to each completed iteration is shown. Hence, the number of node expansion
numbers in these two algorithms do not match exactly, but indicate a common trend. The
considered protocol instance is the industrial General Inter-ORB Protocol (GIOP, 1 server
and 3 clients) [201], which is a key component of the Common Object Request Broker
Architecture (CORBA) specification.

The witness for a seeded deadlock in depth 70 has to be established according to
the heuristic that counts the number of non-active processes. The state vector generated
by the validator tool SPIN is 544 Bytes large, such that the visited list (hash table or
transposition table) is bounded to218 states corresponding to approx.217 KByte or 128
MByte. Therefore, we fix the size of the bit-state hash table accordingly at230 Bits.

Algorithm A* exceeds its space limit in depth 61 and fails. IDA* utilizes a trans-
position table which is exhausted at the same depth. As IDA* then searches the tree of
generation paths it compensates space for time. But even when investing more than 24
hours on our 248 MHz Sun Ultra Workstation and when utilizing the table constructed so
far, ordinary IDA* was not able to complete search depth 61. On the other hand, Partial
A* finishes all searches up to depth 70 with either single- and double bit-state hashing
within a total of one hour.

Since the algorithms are not complete, we validated optimality with A* with our max-
imum of 1.5 GByte main memory. Note that the difference in the number of node ex-
pansions in single and double bit-state hashing is very small (less than a hundred) and
only occurs in large search depths (iteration 58 onwards). As Partial IDA* with double
bit-state hashing expands exactly the same number of states as IDA* with a transposition
table, we actually observe no loss of information in the example.

2.5 Conclusion

At the limit of main memory eliminating duplicates and weight diversity can soon result
in thrashing both resources time and space, such that powerful data structures for caching,
partial search and compressed dictionaries are required. Therefore, regarding the limits
and possibilities of A*, we have suggested different contributions to memory-restricted
search. Partial search supports bookkeeping in tremendously large hash tables to avoid
duplicates in the search, while suffix lists push the envelope for increasing the number of
nodes to be stored without loss of information.

The treatment of Partial IDA* search elaborates on precursoring findings in [109],
where a rudimentory bit vector and single-bit hashing function has been chosen for im-
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plementation. For the experiments we chose a non-trivial protocol example [107], but
recent progress shows that the algorithm has also reduced the search efforts for optimally
solving Atomix, a PSPACE-complete AI single-agent search problem [194]. Omitting the
visited list and exploring the space in a Divide-and-Conquer fashion has been proposed
in [217], and the algorithms we consider study the effect of removing the horizon-list as
well. Another model checking approach for state compression as to answer to the rep-
resentation problem of large sets of states are binary decision diagrams (BDDs) that are
able to encode large sets of states without necessarily encountering exponential growth.
However, hybrid methods of explicite and symbolic search methods are still to be devel-
oped.
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A* IDA* Partial IDA* Partial IDA*
depth (hash table) (transposition table) (single bit-state) (double bit-state)

...
...

...
...

...
40 6,646 6,333 6,333 6,333
41 9,306 8,184 8,184 8,184
42 10,955 10,575 10,575 10,575
43 13,666 13,290 13,290 13,290
44 17,761 16,500 16,500 16,500
45 20,130 19,860 19,860 19,860
46 25,426 23,646 23,646 23,646
47 27,714 27,654 27,654 27,654
48 33,799 32,040 32,040 32,040
49 37,095 37,011 37,011 37,011
50 46,105 42,849 42,849 42,849
51 51,113 49,872 49,872 49,872
52 61,710 58,545 58,545 58,545
53 73,195 69,162 69,162 69,162
54 85,245 81,993 81,993 81,993
55 96,995 96,543 96,543 96,543
56 113,950 112,296 112,296 112,296
57 115,460 129,138 129,138 129,138
58 147,042 146,625 146,623 146,625
59 150,344 164,982 164,978 164,982
60 184,872 184,383 184,376 184,383
61 187,411 206,145 206,135 206,145
62 - > 97,157,721 229,611 229,626
63 - - 255,386 255,411
64 - - 282,416 282,444
65 - - 311,306 311,340
66 - - 341,522 341,562
67 - - 373,374 373,422
68 - - 407,249 407,310
69 - - 442,863 442,941
70 - - 67 67

Table 2.6: Number of Expanded nodes of Search Algorithms in the GIOP Protocol.
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Abstract

We analyze the time complexity of iterative-deepening-A* (IDA*). We first show how
to calculate the exact number of nodes at a given depth of a regular search tree, and the
asymptotic brute-force branching factor. We then use this result to analyze IDA* with a
consistent, admissible heuristic function. Previous analyses relied on an abstract analytic
model, and characterized the heuristic function in terms of its accuracy, but do not apply
to concrete problems. In contrast, our analysis allows us to accurately predict the perfor-
mance of IDA* on actual problems such as the sliding-tile puzzles and Rubik's Cube. The
heuristic function is characterized by the distribution of heuristic values over the problem
space. Contrary to conventional wisdom, our analysis shows that the asymptotic heuris-
tic branching factor is the same as the brute-force branching factor. Thus, the effect of
a heuristic function is to reduce the effective depth of search by a constant, relative to a
brute-force search, rather than reducing the effective branching factor.

35
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3.1 Introduction and overview

Our goal is to predict the running time of iterative-deepening-A* (IDA*) [213], a linear-
space version of the A* algorithm [161]. Both these algorithms rely on a heuristic eval-
uation functionh(n) that estimates the cost of reaching a goal from noden. If h(n) is
admissible, or never overestimates actual cost from noden to a goal, then both algorithms
return optimal solutions.

The running time of IDA* is usually proportional to the number of nodes expanded.
This depends on the cost of an optimal solution, the number of nodes in the brute-force
search tree, and the heuristic function. In Section 3.2, we show how to compute the size
of a brute-force search tree, and its asymptotic branching factor. In Section 3.3, we use
this result to predict the number of nodes expanded by IDA* using a consistent heuristic
function. The key to this analysis is characterizing the heuristic function.

Previous work on this problem characterized the heuristic by its accuracy as an esti-
mate of actual solution cost. The accuracy of a heuristic is very difficult to obtain, and the
corresponding asymptotic results, based on an abstract model, don' t predict performance
on concrete problems. In contrast, we characterize a heuristic by its distribution of values,
a characterization that is easy to determine. As a result, we can predict the performance of
IDA* on the sliding-tile puzzles and Rubik's Cube to within 1% of experimental results.
In contrast to previous work, our analysis shows that the asymptotic heuristic branching
factor is the same as the brute-force branching factor. This implies that the effect of a
heuristic function is to reduce the effective depth of search by a constant, relative to a
brute-force search, rather than reducing the effective branching factor.

Much of this work originally appeared in two AAAI-98 papers, one on the brute-
force branching factor [104], and the other on the analysis of IDA* [219]. We begin with
brute-force search trees.

3.2 Branching factor of regular search trees

3.2.1 Graph versus tree-structured problem spaces

Most problem spaces are graphs with cycles. Given a root node of any graph, however,
it can be expanded into a tree. For example, Fig. 3.1 shows a search graph, and the top
part of its tree expansion, rooted at node A. In a tree expansion of a graph, each distinct
path to a node of the graph generates a different node of the tree. The tree expansion of
a graph can be much larger than the original graph, and in fact is often infinite even for a
finite graph.

In this paper, we focus on problem-space trees. The reason is that IDA* uses depth-
first search to save memory, and hence cannot detect most duplicate nodes. Thus, it
potentially explores every path to a given node, and searches the tree-expansion of the
problem-space graph. We can characterize the size of a brute-force search tree by its
asymptotic branching factor. The branching factor of a node is the number of children it
has. In most trees, however, different nodes have different numbers of children. In that
case, we define theasymptotic branching factoras the number of nodes at a given depth,
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Figure 3.1: Graph and part of its tree expansion.

divided by the number of nodes at the next shallower depth, in the limit as the depth goes
to infinity.

We present examples of problem-space trees, and compute their asymptotic branching
factors. We formalize the problem as the solution of a set of simultaneous equations. We
present both analytic and numerical techniques for computing the exact number of nodes
at a given depth, and determining the asymptotic branching factor. We give the branching
factors of Rubik s Cube and sliding-tile puzzles from the Five Puzzle to the Ninety-Nine
Puzzle.

3.2.2 Example: Rubik's Cube

Consider Rubik's Cube, shown in Fig. 3.2. We define any 90, 180, or 270 degree twist
of a face as one move. Since there are six faces, this gives an initial branching factor of
6 �3 = 18. We never twist the same face twice in a row, however, since the same result can
be obtained with a single twist of that face. This reduces the branching factor to5 �3 = 15

after the first move.

Figure 3.2: Rubik's Cube.

Note that twists of opposite faces are independent of each other and hence commute.
For example, twisting the left face followed by the right face gives the same result as
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twisting the right face followed by the left face. Thus, if two opposite faces are twisted
consecutively, we require them to be twisted in a particular order, to eliminate the same
state resulting from twisting them in the opposite order. For each pair of opposite faces,
we arbitrarily label one a “first” face, and the other a “second” face. Thus, if Left, Up and
Front were the first faces, then Right, Down, and Back would be the second faces. After
a first face is twisted, there are three possible twists of each of the remaining five faces,
for a branching factor of 15. After a second face is twisted, however, we can only twist
four remaining faces, excluding the face just twisted and its corresponding first face, for
a branching factor of 12. Thus, the asymptotic branching factor is between 12 and 15.
The exact asymptotic branching factor depends on the relative fraction of nodes where
the last move was a twist of a first face (type-1 nodes), or a twist of a second face (type-2
nodes). Define theequilibrium fractionof type-1 nodes as the number of type-1 nodes
at a given depth, divided by the total number of nodes at that depth, in the limit of large
depth. The equilibrium fraction is not1=2, because a twist of a first face can be followed
by a twist of any second face, but a twist of a second face cannot be followed immediately
by a twist of the corresponding first face. To determine the asymptotic branching factor,
we need the equilibrium fraction of type-1 nodes. The fraction of type-2 nodes is one
minus the fraction of type-1 nodes. Each type-1 node generates2 � 3 = 6 type-1 nodes
and3 � 3 = 9 type-2 nodes as children, the difference being that you can' t twist the same
first face again. Each type-2 node generates2 � 3 = 6 type-1 nodes and2 � 3 = 6 type-2
nodes, since you can' t twist the corresponding first face next, or the same second face
again. Thus, the number of type-1 nodes at a given depth is 6 times the number of type-
1 nodes at the previous depth, plus 6 times the number of type-2 nodes at the previous
depth. The number of type-2 nodes at a given depth is 9 times the number of type-1 nodes
at the previous depth, plus 6 times the number of type-2 nodes at the previous depth.

Let f1 be the fraction of type-1 nodes, andf2 = 1 � f1 the fraction of type-2 nodes
at a given depth. Ifn is the total number of nodes at that depth, then there will benf1
type-1 nodes andnf2 type-2 nodes at that depth. In the limit of large depth, the fraction
of type-1 nodes will converge to the equilibrium fraction, and remain constant. Thus, at
large depth,

f1 =
type-1 nodes at next level
total nodes at next level

=
6nf1 + 6nf2

6nf1 + 6nf2 + 9nf1 + 6nf2

=
6f1 + 6(1� f1)
15f1 + 12(1� f1) =

6f1 + 6f2
15f1 + 12f2

=
6

3f1 + 12
=

2

f1 + 4
= f1

Cross multiplying gives us the quadratic equationf 2
1
+ 4f1 = 2, which has a positive

root atf1 =
p
6� 2 � 0:44949. This gives us an asymptotic branching factor of15 � f1 +

12 � (1� f1) = 3
p
6 + 6 � 13:34847.

3.2.3 A system of simultaneous equations

In general, this analysis produces a system of simultaneous equations. For another exam-
ple, consider the Five Puzzle, the2�3 version of the well-known sliding-tile puzzles (see
Fig. 3.3A).

In this problem, the branching factor of a node depends on the blank position. In
Fig. 3.3B, the positions are labelleds andc, representing side and corner positions, re-
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Figure 3.3: The Five Puzzle.

spectively. We don' t generate the parent of a node as one of its children, to avoid duplicate
nodes representing the same state. This requires keeping track of both the current and pre-
vious blank positions. Letcs denote a node where the blank is currently in a side position,
and the last blank position was a corner position. Definess, sc andcc nodes analogously.
Sincecs andss nodes have two children each, andsc andcc nodes have only one child
each, we have to know the equilibrium fractions of these different types of nodes to deter-
mine the asymptotic branching factor. Fig. 3.3C shows the different types of states, with
arrows indicating the type of children they generate. For example, the double arrow from
ss to sc indicates that each ss node generates two sc nodes at the next level.

Let N(t; d) be the number of nodes of typet at depthd in the search tree. Then,
we can write the following recurrence relations directly from the graph in Fig. 3.3C. For
example, the last equation comes from the fact that there are two arrows fromss to sc,
and one arrow fromcs to sc.

N(cc; d+ 1) = N(sc; d);

N(cs; d+ 1) = N(cc; d);

N(ss; d+ 1) = N(cs; d);

N(sc; d+ 1) = 2N(ss; d) +N(cs; d):

The initial conditions are that the first move either generates an ss node and twosc

nodes, or acs node and acc node, depending on whether the blank starts in a side or
corner position, respectively.

Numerical solution

A simple way to compute the branching factor is to numerically compute the values of
successive terms of these recurrences, until the relative frequencies of different state types
converge. Letfcc, fcs, fss andfsc be the number of nodes of each type at a given depth,
divided by the total number of nodes at that depth. After a hundred iterations, we get
the equilibrium fractionsfcc = 0:274854, fcs = 0203113, fss = 0:150097, andfsc =

0:371936. Sincecs and ss states generate two children each, and the others generate
one child each, the asymptotic branching factor isfcc + 2 � fcs + 2fss + fsc = 1:35321.
Alternatively, we can simply compute the ratio between the total nodes at two successive
depths to get the branching factor. The running time of this algorithm is the product of
the number of different types of states, e.g., four in this case, and the search depth. In
contrast, searching the actual tree to depth 100 would generate over1013 states in this
case.
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Analytical solution

To compute the exact branching factor, we assume that the fractions eventually converge
to constant values. This generates a set of equations, one from each recurrence. Letb

represent the asymptotic branching factor. If we viewfcc as the number ofcc nodes at
depthd, for example, then the number ofcc nodes at depthd + 1 will be bf cc. This
allows us to rewrite the above recurrences as the following set of equations. The last one
constrains the fractions to sum to one.

bfcc = fsc

bfcs = fcc

bfss = fcs

bfsc = 2fss + fcs

1 = fcc + fcs + fss + fsc

Repeated substitution to eliminate variables reduces this system of five equations in
five unknowns to the single equation,b4 + b � 2 = 0, with a solution ofb � 1:35321. In
general, the degree of the polynomial will be the number of different types of states. The
Fifteen Puzzle, for example, has three types of positions, and six types of states.

If we make the naive and incorrect assumption that each blank position is equally
likely in the Five Puzzle, we get an incorrect branching factor of(2�2+1�4)=6 = 1:33333.
Another natural but erroneous approach is to include the parent of a node as one of its
children, compute the resulting branching factor, and then subtract one from the result to
eliminate the inverse of the last move. This gives an incorrect branching factor of1:4142
for the Five Puzzle. The error here is that eliminating the inverse of the last move changes
the equilibrium fractions of the different types of states.

3.2.4 Results

We computed the asymptotic branching factors of square sliding-tile puzzles up to10�10.
Table 3.1 gives the even- and odd-depth branching factors for each puzzle. The last col-
umn is their geometric mean, or the square root of their product, which is the best estimate
of the overall branching factor. Most of these values were computed by numerical itera-
tion of the recurrence relations. As n goes to infinity, all the values converge to three, the
branching factor of an infinite sliding-tile puzzle, since most positions have four neigh-
bors, one of which was the previous blank position.

To see why the even and odd branching factors are different, color the positions of a
puzzle in a checkerboard pattern, and note that the blank always moves between squares
of different colors. If the sets of different-colored squares are equivalent to each other,
as in the Five and Fifteen Puzzles, there is one branching factor. If the sets of different-
colored squares are different however, as in the Eight Puzzle, there will be different even
and odd branching factors. In general, ann � m sliding-tile puzzle will have different
branching factors if and only if bothn andm are odd.



3.3. TIME COMPLEXITY OF IDA* 41

n n2 � 1 Even depth Odd depth Mean
3 8 1.5 2

p
3

4 15 2.1304 2.1304 2.1304
5 24 2.30278 2.43426 2.36761
6 35 2.51964 2.51964 2.51964
7 48 2.59927 2.64649 2.62277
8 63 2.69590 2.69590 2.69590
9 80 2.73922 2.76008 2.74963

10 99 2.79026 2.79026 2.79026

Table 3.1: The asymptotic branching factor for the (n2 � 1)-Puzzle

3.2.5 Generality of this technique

In some problem spaces, every node has the same branching factor. In other spaces, every
node may have a different branching factor, requiring exhaustive search to compute the
average branching factor. The technique described above determines the size of a brute-
force search tree in intermediate cases, where there are a small number of different types
of states, whose generation follows a regular pattern. Computing the size of the brute-
force search tree is the first step in determining the time complexity of IDA*, our next
topic.

3.3 Time complexity of IDA*

IDA* [213] uses the cost functionf(n) = g(n) + h(n), whereg(n) is the sum of the
edge costs from the initial state to noden, andh(n) is an estimate of the cost of reaching
a goal from noden. Each iteration is a depth-first search where a branch is pruned when
it reaches a node whose total cost exceeds the cost threshold of that iteration. The cost
threshold for the first iteration is the heuristic value of the initial state, and increases in
each iteration to the lowest cost of all nodes pruned on the previous iteration. It continues
until a goal node is found whose cost does not exceed the current cost threshold.

3.3.1 Previous work

Most previous analyses of heuristic search focused on A* [138, 287, 295], and used an
abstract problem-space tree where every node hasb children, every edge has unit cost,
and there is a single goal node at depthd. The heuristic is characterized by its error in
estimating actual solution cost. This model predicts that a heuristic with constant absolute
error results in linear time complexity, while constant relative error results in exponential
time complexity [138, 295]. There are several limitations of this model. The first is that
it assumes there is only one path from the start to the goal state, whereas most problem
spaces contain multiple paths to each state. The second limitation is that in order to
determine the accuracy of the heuristic on even a single state, we have to determine the
optimal solution cost from that state, which is expensive to compute. Doing this for a
significant number of states is impractical for large problems. Finally, the results are
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only asymptotic, and don' t predict actual numbers of node generations. Because of these
limitations, the previous work cannot be used to accurately predict the performance of A*
or IDA* on concrete problems with real heuristics. That requires a different approach.

3.3.2 Overview

We begin with the consistency property of heuristics, and the conditions for node expan-
sion by A* or IDA*. Next, we characterize a heuristic by the distribution of heuristic
values over the problem space. Our main result is a formula for the number of node ex-
pansions as a function of the heuristic distribution, the cost threshold of an iteration, and
the number of nodes of each cost in a brute-force search. Finally, we compare our analytic
predictions with experimental data on Rubik s Cube and the Eight and Fifteen Puzzles.
One implication of our analysis is that the effect of a heuristic function is to decrease the
effective depth of search by a constant, rather than reducing the effective branching factor.

3.3.3 Consistent heuristics

One property of the heuristic required by our analysis is that it beconsistent. A heuristic
functionh(n) is consistent if for any noden and any neighborn0, h(n) � k(n; n0)+h(n0),
wherek(n; n0) is the cost of the edge fromn to n0 [287]. An equivalent definition of con-
sistency is that for any pair of nodesn andm, h(n) � k(n;m) + h(m), wherek(n;m) is
the cost of an optimal path fromn tom. Consistency is similar to the triangle inequality of
metrics, and implies admissibility, but not vice versa. However, most naturally occurring
admissible heuristic functions are consistent as well [287].

3.3.4 Conditions for node expansion

We measure the time complexity of IDA* by the number of node expansions. If a node can
be expanded and its children evaluated in constant time, the asymptotic time complexity of
IDA* is simply the number of node expansions. Otherwise, it s the product of the number
of node expansions and the time to expand a node. Given a consistent heuristic function,
both A* and IDA* must expand all nodes whose total cost,f(n) = g(n) + h(n), is less
thanc, the cost of an optimal solution [287]. Some nodes with the optimal solution cost
may be expanded as well, until a goal node is chosen for expansion, and the algorithms
terminate. In other words,f(n) < c is a sufficient condition for A* or IDA* to expand
noden, andf(n) � c is a necessary condition. For a worst-case analysis, we adopt the
weaker necessary condition.

An easy way to understand the node expansion condition is that any search algorithm
that guarantees optimal solutions must continue to expand every possible solution path,
until its cost is guaranteed to exceed the cost of an optimal solution, lest it lead to a
better solution. On the final iteration of IDA*, the cost threshold will equalc, the cost
of an optimal solution. In the worst case, IDA* will expand all nodes n whose cost
f(n) = g(n)+h(n) � c. We will see below that this final iteration determines the overall
asymptotic time complexity of IDA*.
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3.3.5 Characterization of the heuristic

Previous analyses characterized the heuristic function by its accuracy as an estimator
of optimal costs. As explained above, this is difficult to determine for a real heuristic,
since obtaining optimal solutions is extremely expensive. In contrast, we characterize a
heuristic function by the distribution of heuristic values over the nodes in the problem
space. In other words, we need to know the number of states with heuristic value 0, how
many states have heuristic value 1, the number with heuristic value 2, etc. Equivalently,
we can specify this distribution by a set of parametersD(h), which is the fraction of total
states of the problem whose heuristic value is less than or equal toh. We refer to this
set of values as theoverall distributionof the heuristic.D(h) can also be defined as the
probability that a state chosen randomly and uniformly from all states in the problem has
heuristic value less than or equal toh . h can range from zero to infinity, but for all values
of h greater than or equal to the maximum value of the heuristic,D(h) = 1.

h States Sum D(h) Corner Side Csum Ssum P (h)

0 1 1 0.002778 1 0 1 0 0.002695
1 2 3 0.008333 1 1 2 1 0.008333
2 3 6 0.016667 1 2 3 3 0.016915
3 6 12 0.033333 5 1 8 4 0.033333
4 30 42 0.116667 25 5 33 9 0.115424
5 58 100 0.277778 38 20 71 29 0.276701
6 61 161 0.447222 38 23 109 52 0.446808
7 58 219 0.608333 41 17 150 69 0.607340
8 60 279 0.775000 44 16 194 85 0.773012
9 48 327 0.908333 31 17 225 102 0.906594

10 24 351 0.975000 11 13 236 115 0.974503
11 8 359 0.997222 4 4 240 119 0.997057
12 1 360 1.000000 0 1 240 120 1.000000

Table 3.2: Heuristic distributions for Manhattan distance on the Five Puzzle.

Table 3.2 shows the overall distribution for the Manhattan distance heuristic on the
Five Puzzle. Manhattan distance is computed by counting the number of grid units that
each tile is displaced from its goal position, and summing these values for all tiles. The
first column of Table reftab:distribution gives the heuristic value. The second column
gives the number of states of the Five Puzzle with each heuristic value. The third column
gives the total number of states with a given or smaller heuristic value, which is simply
the cumulative sum of the values from the second column. The fourth column gives the
overall heuristic distributionD(h). These values are computed by dividing the value in
the third column by 360, the total number of states in the problem space. The remaining
columns will be explained below.

The overall distribution is easily obtained for any heuristic. For heuristics imple-
mented by table-lookup, orpattern databases[75, 215, 218], the distribution can be de-
termined exactly by scanning the table. Alternatively, for a heuristic computed by a func-
tion, such as Manhattan distance on large sliding-tile puzzles, we can randomly sample
the problem space to estimate the overall distribution to any desired degree of accuracy.
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For heuristics that are the maximum of several different heuristics, we can approximate
the distribution of the combined heuristic from the distributions of the individual heuris-
tics by assuming that the individual heuristic values are independent.

The distribution of a heuristic function is not a measure of its accuracy, and says little
about the correlation of heuristic values with actual costs. The only connection between
the accuracy of a heuristic and its distribution is that given two admissible heuristics, the
one with higher values will be more accurate than the one with lower values on average.

The equilibrium distribution

While the overall distribution is the easiest to understand, the complexity of IDA* depends
on a potentially different distribution. Theequilibrium distributionP (h) is defined as the
probability that a node chosen randomly and uniformly among all nodes at a given depth
of the brute-force search tree has heuristic value less than or equal toh, in the limit of
large depth.

If all states of the problem occur with equal frequency at large depths in the search
tree, then the equilibrium distribution is the same as the overall distribution. For example,
this is the case with the Rubik's Cube search tree described in Section 3.2.2. In general,
however, the equilibrium distribution may not equal the overall distribution. In the Five
Puzzle, for example, the overall distribution assumes that all states, and hence all blank
positions, are equally likely. As we saw in Section 3.2.3, however, at deep levels in the
tree, the blank is in a side position in more than 1/3 of the nodes, and in a corner position
in less than 2/3 of the nodes. In the limit of large depth, the equilibrium frequency of side
positions isfs = fcs + fss = 0:203113 + 0:150097 = 0:35321. Similarly, the frequency
of corner positions isfc = fcc + fsc = 0:274854 + 0:371936 = 0:64679 = 1� fs . Thus,
to compute the equilibrium distribution, we have to take these equilibrium fractions into
account. The fifth and sixth columns of Table 3.2, labelled “Corner” and “Side”, give the
number of states with the blank in a corner or side position, respectively, for each heuristic
value. The seventh and eighth columns, labelled “Csum” and “Ssum”, give the cumulative
numbers of corner and side states with heuristic values less than or equal to each particular
heuristic value. The last column gives the equilibrium distributionP (h). The probability
P (h) that the heuristic value of a node is less than or equal to h is the probability that it is
a corner node, 0.64679, times the probability that its heuristic value is less than or equal
to h, given that it is a corner node, plus the probability that it is a side node, 0.35321,
times the probability that its heuristic value is less than or equal toh, given that it is a side
node. For example,P (2) = 0:64679 � (3=240) + 0:35321 � (3=120) = 0:016915. This
differs from the overall distributionD(2) = 0:016667.

The equilibrium heuristic distribution is not a property of a problem, but of a problem
space. For example, including the parent of a node as one of its children can affect the
equilibrium distribution, by changing the equilibrium fractions of different types of states.
When the equilibrium distribution differs from the overall distribution, it can still be com-
puted from a pattern database, or by random sampling of the problem space, combined
with the equilibrium fractions of different types of states, as illustrated above.

To provide some intuition behind our main result, Fig. 3.4 shows a schematic represen-
tation of a search tree generated by an iteration of IDA* on an abstract problem instance,
where all edges have unit cost. The vertical axis represents the depth of a node, which is
also its g value, and the horizontal axis represents the heuristic value of a node. Each box
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Figure 3.4: Sample tree for analysis of IDA*.

represents a set of nodes at the same depth with the same heuristic value, labelled with
the number of such nodes. The arrows represent the relationship between parent and child
node sets. These particular numbers were generated by assuming that each node generates
one child each with heuristic value one less, equal to, and one greater than the heuristic
value of the parent. For example, there are 6 nodes at depth 3 with heuristic value 1, 1
whose parent has heuristic value 1, 2 whose parents have heuristic value 2, and 3 whose
parents have heuristic value 3. In this example, the maximum value of the heuristic is 4,
and the heuristic value of the initial state is 3.

One assumption of our analysis is that the heuristic is consistent. Because of this, and
since all edges have unit cost in this example, the heuristic value of a child must be at
least the heuristic value of its parent, minus one. We assume a cutoff threshold of eight
moves for this iteration of IDA* . Solid boxes represent sets of “fertile” nodes that will be
expanded, while dotted boxes represent sets of “sterile” nodes that will not be expanded,
because their total cost,f(n) = g(n) + h(n) exceeds the cutoff threshold of 8. The thick
diagonal line separates the fertile node sets from the sterile node sets.

Nodes expanded as a function of depth

The values at the far right of Fig. 3.4 show the number of nodes expanded at each depth,
which is the number of fertile nodes at that depth.Ni is the number of nodes in the
brute-force search tree at depthi, andP (h) is the equilibrium heuristic distribution. The
number of nodes generated is the branching factor times the number expanded.
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Consider the graph from top to bottom. There is a root node at depth 0, which
generatesN1 children. These nodes collectively generateN2 child nodes at depth 2.
Since the cutoff threshold is 8 moves, in the worst-case, all nodes n whose total cost
f(n) = g(n) + h(n) � 8 will be expanded. Since 4 is the maximum heuristic value,
all nodes down to depth8 � 4 = 4 will be expanded, Thus, ford � 4, the number of
nodes expanded at depthd will be Nd, the same as in a brute-force search. Since 4 is the
maximum heuristic value,P (4) = 1, and henceN4P (4) = N4.

The nodes expanded at depth 5 are the fertile nodes, or those for whichf(n) = g(n)+

h(n) = 5 + h(n) � 8, or h(n) � 3. At sufficiently large depths, the distribution of
heuristic values converges to the equilibrium distribution. Assuming that the heuristic
distribution at depth 5 approximates the equilibrium distribution, the fraction of nodes at
depth 5 withh(n) � 3 is approximatelyP (3). Since all nodes at depth 4 are expanded,
the total number of nodes at depth 5 isN5, and the number of fertile nodes isN5P (3).

There exist nodes at depth 6 with heuristic values from 0 to 4, but their distribution
does not equal the equilibrium distribution. In particular, nodes with heuristic values 3
and 4, shown in dotted boxes, are underrepresented relative to the equilibrium distribution,
because these nodes are generated by parents with heuristic values from 2 to 4. At depth
5, however, the nodes with heuristic value 4 are sterile, producing no offspring at depth 6,
hence reducing the number of nodes at depth 6 with heuristic values 3 and 4.

The number of nodes at depth 6 withh(n) � 2 is completely unaffected by any
pruning however, since their parents are nodes at depth 5 withh(n) � 3, all of which
are fertile. In other words, the number of nodes at depth 6 withh(n) � 2, which are the
fertile nodes, is exactly the same as in the brute-force search tree, orN6P (2).

Due to consistency of the heuristic function, all possible parents of fertile nodes are
themselves fertile. Thus, the number of nodes to the left of the diagonal line in Fig. 4 is
exactly the same as in the brute-force search tree. In other words, heuristic pruning of the
tree has no effect on the number of fertile nodes, although it does effect the sterile nodes.
If the heuristic was inconsistent, then the distribution of fertile nodes would change at
every level where pruning occurred, making the analysis far more complex.

When all edges have unit cost, the number of fertile nodes at depthi is NiP (d � i),
whereNi is the number of nodes in the brute-force search tree at depthi, d is the cutoff
depth, andP is the equilibrium heuristic distribution. The total number of nodes expanded
by an iteration of IDA* to depth is

dX
i=0

NiP (d� i):

3.3.6 General result

Here we state and prove our main theoretical result. First, we assume a minimum edge
cost, and divide all costs by this value, normalizing it to one. We express all costs as
multiples of the minimum edge cost. We allow operators with different costs, and replace
the depth of a node byg(n), the sum of the edge costs from the root to the node. LetNi

be the number of nodes n in the brute-force search tree withg(n) = i.
Next, we assume the heuristic returns an integer multiple of the minimum edge cost.

Given an admissible non-integer valued heuristic, we round up to the next larger integer,
preserving admissibility. We also assume that the heuristic is consistent, meaning that for
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any two nodesn andm, h(n) � k(n;m)+h(m), wherek(n;m) is the cost of an optimal
path fromn tom.

Given these assumptions, our task is to determineE(N; c; P ), the number of nodesn
for which f(n) = g(n) + h(n) � c, given a problem-space tree withNi nodes of costi,
with a heuristic characterized by the equilibrium distributionP (x). This is the number of
nodes expanded by an iteration of IDA* with cost thresholdc, in the worst case.

Theorem 2 In the limit of largec ,

E(N; c; P ) =
cX

i=0

NiP (c� i):

Proof: E(N; c; P ) is the number of nodesn for which f(n) = g(n) + h(n) � c.
Consider the nodesn for which g(n) = i, which is the set of nodes of costi in
the brute-force search tree. There areNi such nodes. The nodes of costi that will be
expanded by IDA* in an iteration with cost thresholdc are those for whichf(n) =
g(n) + h(n) = i + h(n) � c, or h(n) � c � i. By definition ofP , in the limit of
largei, the number of such nodes in the brute-force search tree isNiP (c� i). It remains
to show that all these nodes in the brute-force search tree are also in the tree generated by
IDA*.

Consider an ancestor nodem of such a noden. Sincem is an ancestor ofn, there
is only one path between them in the tree, andg(n) = i = g(m) + K(m;n), where
K(m;n) is the cost of the path from nodem to noden. Sincef(m) = g(m)+ h(m), and
g(m) = i � K(m;n), f(m) = i � K(m;n) + h(m). Since the heuristic is consistent,
h(m) � k(m;n) + h(n), wherek(m;n) is the cost of an optimal path fromm to n

in the problem graph. SinceK(m;n) � k(m;n), h(m) � K(m;n) + h(n). Thus,
f(m) � i � K(m;n) + K(m;n) + h(n), or f(m) � i + h(n). Sinceh(n) � c � i,
f(m) � i+ c� i, or f(m) � c. This implies that nodem is fertile and will be expanded
during the search. Since all ancestors of noden are fertile and will be expanded, node
n must eventually be generated. Therefore, all nodesn in the brute-force search tree for
whichf(n) = g(n) + h(n) � c are also in the tree generated by IDA*. Since there can' t
be any nodes in the IDA* tree that are not in the brute-force search tree, the number of
such nodes at leveli in the IDA* tree isNi � P (c � i). Therefore, the total number of
nodes expanded by IDA* in an iteration with cost thresholdc , which is the number in the
last iteration, is

E(N; c; P ) =
cX

i=0

NiP (c� i):

3.3.7 The heuristic branching factor

The effect of earlier iterations on the time complexity of IDA* depends on the rate of
growth of node expansions in successive iterations. Theheuristic branching factoris the
ratio of the number of nodes expanded in a search to cost thresholdc, divided by the
nodes expanded in a search to costc � 1, orE(N; c; P )=E(N; c � 1; P ), where 1 is the
normalized minimum edge cost. Assume that the size of the brute-force search tree grows
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exponentially with cost, orNi = bi, where is the brute-force branching factor. In that
case, the heuristic branching factorE(N; c; P )=E(N; c� 1; P ) is

Pc
i=0

biP (c� i)Pc�1
i=0

biP (c� 1� i) =
b0P (c) + b1P (c� 1) + b2P (c� 2) + � � �+ bcP (0)

b0P (c� 1) + b1P (c� 2) + � � �+ bc�1P (0)
:

The first term of the numerator,b0P (c), is less than or equal to one, and can be dropped
without significantly affecting the ratio. Factoring b out of the remaining numerator gives

b(b0P (c� 1) + b1P (c� 2) + � � �+ bc�1P (0))

b0P (c� 1) + b1P (c� 2) + � � �+ bc�1P (0)
= b:

Thus, if the brute-force tree grows exponentially with branching factorb, then the run-
ning time of successive iterations of IDA* also grows by a factor ofb. In other words, the
heuristic branching factor is the same as the brute-force branching factor. In that case, it
is easy to show that the overall time complexity of IDA* isb=(b�1) times the complexity
of the last iteration [213]. Previous analyses, based on different assumptions, predicted
that the effect of a heuristic function is to reduce search complexity fromO(bc) toO(ac),
wherea < b, reducing the effective branching factor [287]. Our analysis, however, shows
that on an exponential tree, the effect of a heuristic is to reduce search complexity from
O(bc) toO(bc�k), for some constantk, which depends only on the heuristic function. If
we define the effective depth of a search as the log baseb of the number of nodes ex-
panded, whereb is the brute-force branching factor, then a heuristic reduces the effective
depth fromc to c�k for a constantk. In other words, a heuristic search to costc generates
the same number of nodes as a brute-force search to costc� k.

3.3.8 Experimental results

We tested our analysis experimentally by predicting the performance of IDA* on Ru-
bik's Cube and sliding-tile puzzles, using well-known heuristics. Since all operators have
unit cost in these problems, theg(n) cost of a noden is its depth. ForNi, we used the
exact numbers of nodes at depthi, which were computed from the recurrence relations
described in Section 3.2.3.

Rubik's Cube

We first predicted existing data on Rubik's Cube [215]. The problem space, described in
Section 3.2.2, allows 180-degree twists as single moves, disallows two consecutive twists
of the same face, and only allows consecutive twists of opposite faces in one order. This
search tree has a brute-force branching factor of about 13.34847. The median optimal
solution depth is 18 moves.

The heuristic is the maximum of three different pattern databases [75, 215]. It is ad-
missible and consistent, with a maximum value of 11 moves, and an average value of
8.898 moves. The distribution of the individual heuristics was calculated exactly by scan-
ning the databases, and the three heuristics were assumed to be independent to calculate
the distribution of the combined heuristic. In this case, the equilibrium distribution is the
same as the overall distribution. We ignored goal states, completing each search iteration.
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Depth Theoretical Problems Experimental Error
10 1,510 1000 1,501 0.596%
11 20,169 1000 20,151 0.089%
12 269,229 1000 270,396 0.433%
13 3,593,800 100 3,564,495 0.815%
14 47,971,732 100 47,916,699 0.115%
15 640,349,193 100 642,403,155 0.321%
16 8,547,681,506 100 8,599,849,255 0.610%
17 114,098,463,567 25 114,773,120,996 0.591%

Table 3.3: Nodes generated by IDA* on Rubik's Cube

In Table 3.3, the first column shows the cutoff depth, the next column gives the node
generations predicted by our theory, the next column indicates the number of problem
instances run, the next column displays the average number of nodes generated by IDA*
in a single iteration, and the last column shows the error between the theoretical prediction
and experimental results.

The theory predicts the data to within 1% accuracy in every case. Sources of error
include the limited number of problem instances, the assumption of independence of the
heuristics, and the fact that the heuristic distribution at a finite depth does not equal the
equilibrium distribution. The ratio between the node generations in the last two levels,
which is the experimental heuristic branching factor, is 13.34595, compared to the theo-
retical value of 13.34847. If we take the log, base 13.34847, of the predicted number of
nodes generated at depth 17 (114,098,463,567), we get about 9.825. Thus, this particular
heuristic reduces the effective depth of search by17� 9:825 = 7:175 moves.

Eight Puzzle

We also experimented with the Eight Puzzle, using the Manhattan distance heuristic. It
has a maximum value of 22 moves, and a mean value of 14 moves. The optimal solution
length averages 22 moves, with a maximum of 31 moves, assuming the blank is in a
corner in the goal state. Since the Eight Puzzle has only 181,440 solvable states, the
heuristic distributions were computed exactly. Three distributions were used, depending
on whether the blank is in a center, corner, or side position. The number of nodes of each
type at each depth of the brute-force tree was also computed exactly.

Table 3.4 shows a comparison of the number of node expansions predicted by our
theoretical analysis, to the number of nodes expanded by a single iteration of IDA* to
various depths, ignoring goal states. Each data point is the average of all 181,440 problem
instances. Since the average numbers of node expansions, the size of the brute-force
tree, and the heuristic distributions are all exact, the model predicts the experimental data
exactly, to multiple decimal places, verifying that we have accounted for all the relevant
factors.

The Eight Puzzle has even and odd-depth brute-force branching factors of 1.5 and 2.
The corresponding heuristic branching factors are 1.667 and 1.8, but the product of the
two branching factors is 3 in both cases. If we take the log, base

p
3, of the number of

nodes expanded at depth 31 (160,167), we get about 21.8. This implies that on the Eight
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Depth Theoretical Problems Experimental Error
20 393 181,440 393 0.0%
21 657 181,440 657 0.0%
22 1,185 181,440 1,185 0.0%
23 1,977 181,440 1,977 0.0%
24 3,561 181,440 3,561 0.0%
25 5,936 181,440 5,936 0.0%
26 10,686 181,440 10,686 0.0%
27 17,815 181,440 17,815 0.0%
28 32,072 181,440 32,072 0.0%
29 53,450 181,440 53,450 0.0%
30 96,207 181,440 96,207 0.0%
31 160,167 181,440 160,167 0.0%

Table 3.4: Nodes generated by IDA* on the Eight Puzzle

Puzzle, Manhattan distance reduces the effective depth of search by31 � 21:8 = 9:2
moves.

Fifteen Puzzle

We ran a similar experiment on the Fifteen Puzzle, also using the Manhattan distance
heuristic. The average heuristic value is about 37 moves, and the maximum is 62 moves.
The average optimal solution length is 52.5 moves. Since the Fifteen Puzzle has over1013

solvable states, we used a random sample of ten billion solvable states to approximate the
heuristic distributions. Three different distributions were used, one for the blank in a
middle, corner, or side position. The number of nodes of each type at each depth was also
computed exactly, for each different initial blank position.

Depth Theoretical Problems Experimental Error
40 42,664 100,000 41,973 1.65%
41 90,894 100,000 91,495 0.66%
42 193,641 100,000 191,219 1.27%
43 412,535 100,000 415,490 0.72%
44 878,864 100,000 870,440 0.96%
45 1,872,330 100,000 1,886,363 0.75%
46 3,988,805 100,000 3,959,729 0.73%
47 8,497,734 100,000 8,562,824 0.77%
48 18,103,536 100,000 18,003,959 0.55%
49 38,567,693 100,000 38,864,269 0.77%
50 82,164,440 100,000 81,826,008 0.41%

Table 3.5: Nodes generated by IDA* on the Fifteen Puzzle

Table 3.5 is similar to Table 3.4. Each line is the average of 100,000 random solvable
problem instances. Despite over ten orders of magnitude variation in the nodes expanded
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in individual problem instances, the average values agree with the theoretical prediction to
within 1% in most cases. The ratio between the experimental number of node expansions
at the last two depths is 2.105, compared to the brute-force branching factor of 2.130.
If we take the log, base 2.13, of the predicted number of nodes expanded at depth 50
(82,164,440), we get about 24.1. Thus, on the Fifteen Puzzle, Manhattan distance reduces
the effective depth of search by50� 24:1 = 25:9 moves.

The results above are for single complete iterations to the given search depths, ignor-
ing any solutions found. How well do these results predict the running time of IDA* to
solve a random problem instance? The average optimal solution length for random Fif-
teen Puzzle instances is about 52.5 moves [218]. Multiplying the last value in Table 3.5
by b2 or 2:130422 predicts 372,911,869 node expansions in a complete iteration to depth
52, or 794,451,446 node generations. Multiplying byb2=(b2 � 1) = 1:2826 to account
for all the previous iterations predicts about 1.019 billion node generations. Completing
the final iteration to find all optimal solutions to the same set of 1000 problem instances
generates an average of 1.178 billion nodes. Terminating IDA* when the first solution is
found generates an average of 401 million nodes.

Twenty-Four Puzzle

We can also predict the performance of IDA* on problems we can' t run experimentally,
such as the Twenty-Four Puzzle with the Manhattan distance heuristic. The brute-force
branching factor is 2.36761. Sampling ten billion random solvable states yields an ap-
proximation of the overall heuristic distribution, which approximates the equilibrium dis-
tribution. The average heuristic value is 76 moves. Experiments using more powerful
disjoint pattern database heuristics [218] give an average optimal solution length of about
100 moves. Our theory predicts that running all iterations up to depth 100 will generate an
average of1:217�1019 nodes. On a 440 MHz Sun Ultra 10 workstation, IDA* with Man-
hattan distance generates about 7.5 million nodes per second. This predicts an average
time to complete all iterations up to depth 100, on a random instance of the Twenty-Four
Puzzle, ignoring any solutions found, of about 50,000 years! Manhattan distance reduces
the effective depth of search on the Twenty-Four Puzzle by about 49 moves.

Observed heuristic branching factor

If we run IDA* on a single instance of a sliding-tile puzzle, we observe that the ratio
between the numbers of nodes generated in successive iterations usually decreases with
each iteration, but exceeds the theoretical heuristic branching factor. On the sliding-tile
puzzles with Manhattan distance, the cost threshold increases by two in each successive
iteration, and hence the theoretical heuristic branching factor is the square of the brute-
force branching factor. For example, in the Twenty-Four Puzzle, the observed heuristic
branching factor is often greater than 10, whereasb2 is only 5.6.

The reason for this discrepancy is an initial transient in the observed heuristic branch-
ing factor. The formula in Theorem 2 is based on the equilibriumheuristic distribution.
Starting from a single initial state, it takes many iterations of IDA* for the heuristic distri-
bution to converge to the equilibrium distribution. This effect is ameliorated in the results
presented above because the experimental data is averaged over a large number of initial
states. If we run IDA* long enough on a single problem instance, the observed heuristic
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branching factor eventually converges to the square of the brute-force branching factor.
Why is the observed heuristic branching factor greater than the theoretical branching

factor? The heuristic distribution at the root of the search tree starts with the heuristic
value of the initial state, and gradually spreads out to larger and smaller heuristic values
with increasing depth. Thus, the frequency of small and large heuristic values is initially
zero, underestimating their frequency in the equilibrium heuristic distribution. Underesti-
mating the large values has little effect, since the frequency of these values is multiplied by
the relatively small number of nodes at shallow depths. The frequencies of small values,
however, are multiplied by the large numbers of nodes at deep depths, and hence underes-
timating these values significantly decreases the number of node generations, relative to
what happens at equilibrium. As the search depth increases in successive iterations, the
frequency of nodes with small heuristic values increases, which causes a larger observed
heuristic branching factor than occurs at equilibrium.

In Rubik's Cube, however, the observed heuristic branching factor converges to the
brute-force value, without consistently overestimating it initially. This is due to the
smaller range of heuristic values, and the larger branching factor, which allows conver-
gence to the equilibrium heuristic distribution more quickly.

3.4 Conclusions

We first show how to compute the exact number of nodes at different depths, and the
asymptotic branching factor, of brute-force search trees where different nodes have dif-
ferent numbers of children. We begin by writing a set of recurrence relations for the
generation of the different node types. By expanding these recurrence relations, we can
determine the exact number of nodes at a given depth, in time linear in the depth. We
can also use the ratio of the numbers of nodes at successive depths to approximate the
asymptotic branching factor with very high precision. Alternatively, we can rewrite the
recurrence relations as a set of simultaneous equations involving the relative frequencies
of the different types of nodes, and solve them analytically for small numbers of node
types. We give the asymptotic branching factors for Rubik's Cube, the Five Puzzle, and
the first nine square sliding-tile puzzles.

We then use these results to predict the time complexity of IDA*. We characterize a
heuristic by the distribution of heuristic values, which can be obtained by random sam-
pling, for example. We compare our predictions with experimental data on Rubik's Cube,
the Eight Puzzle, and the Fifteen Puzzle, getting agreement within 1% for Rubik's Cube
and the Fifteen Puzzle, and exact agreement for the Eight Puzzle. In contrast to previous
results, our analysis and experiments indicate that on an exponential tree, the asymptotic
heuristic branching factor is the same as the brute-force branching factor. Thus, the ef-
fect of a heuristic is to reduce the effective depth of search by a constant, relative to a
brute-force search, rather than reducing the effective branching factor.

3.5 Generality and further work

To what extent can these results can be applied to other problems? Our main result is
Theorem 2. It says that the number of nodes n for whichf(n) = g(n) + h(n) � c is a
convolution of two distributions. The first is the number of nodes of a given cost in the
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brute-force search space, and the second is the number of nodes with a given heuristic
value. In order to apply this to a particular problem, however, we have to determine
the size of the brute-force search space, and the heuristic distribution. Thus, we have
decomposed the problem of predicting the performance of a heuristic search algorithm
into two simpler problems.

How could we use this analysis to predict the performance of A*? The main dif-
ference between A* and IDA* is that A* detects duplicate nodes, and doesn' t reexpand
them. Theorem 2 applies to A* as well, butNi is the number of nodes in the problem-
space graph, rather than its tree expansion. Unfortunately, the only technique known for
computing the number of nodes at a given depth in a search graph is exhaustive search to
that depth. As a result, these values are unknown for even regular problem spaces such as
the Fifteen Puzzle or Rubik's Cube. The relevant heuristic distributionP (h) for analyzing
A* is the overall heuristic distributionD(h), because each state occurs only once in the
problem space.

As another example, could we predict the performance of IDA* on the traveling sales-
man problem? In a problem space that constructs a tour by adding one city at a time,
each node represents a partial tour, and the number of nodes at depth is the number of
permutations ofn� 1 elements taken at a time. Computing the distribution for a heuristic
such as the cost of a minimum spanning tree of the remaining cities is difficult, however.
It depends on the depth of search, and the particular problem instance. If the edge costs
and heuristic values are real numbers rather than integers, the discrete convolution of
Theorem 2 becomes a continuous convolution, and the summation becomes an integral.
While we can' t solve this problem currently, Theorem 2 tells us what distributions we
need, and how to combine them.

The running time of IDA* depends on the branching factor, the heuristic distribution,
and the optimal solution cost. Predicting the optimal solution cost for a given problem
instance, or even the average optimal solution cost, is an open problem, however. Since
the number of nodes in a problem-space tree grows by a factor ofb with each succeeding
depth, a lower bound on the maximum optimal solution depth is the log baseb of the
number of reachable states, rounded up to the next larger integer. This can be used as
an estimate of the average solution depth. For example, this method predicts a depth of
22 moves for the Eight Puzzle, which equals the average optimal solution length. For
Rubik's Cube, this method predicts a value of 18 moves, which is the median optimal
solution length. For the Fifteen Puzzle, however, we get an estimate of only 40 moves,
while the average solution depth is 52.5 moves. The reason this method doesn' t accurately
predict the maximum solution depth is that it assumes that all states in the search tree are
unique. For all these problems, however, there are multiple paths to the same state, giving
rise to duplicate nodes in the tree representing the same state.
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Abstract

The time complexity analysis of the IDA* algorithm has shown that predicting the
growth of the search tree essentially relies on only two criteria: The number of nodes
in the brute-force search tree for a given depth and the equilibrium distribution of the
heuristic estimate. Since the latter can be approximated by random sampling, we accu-
rately predict the number of nodes in the brute-force search tree for large depth in closed
form by analyzing the spectrum of the problem graph or one of its factorization.

We further derive that the asymptotic brute-force branching factor is in fact the spec-
tral radius of the problem graph and exemplify our considerations in the domain of the
(n2 � 1)-Puzzle.
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4.1 Introduction

Heuristic search is essential to AI, since it allows very large problem spaces to be tra-
versed with a considerably small number of node expansions. Nevertheless, storing this
number of nodes in memory, as required in the A* algorithm [161], often exceeds the
resources available. This is bypassed in an iterative deepening version of A*, IDA* for
short, that searches the tree expansion of the original state graph instead of the graph it-
self. IDA* [213] applies bounded depth-first traversals with an increasing threshold on
A*'s node evaluation function. The tree expansion may contain several duplicate nodes
such that low memory consumption is counterbalanced with a considerably high overhead
in time.

Fortunately, due to simple search tree pruning rules and expressive heuristic estimates
to direct the search process, duplicates in regular search spaces are rare such that IDA*
has been very successfully applied to solve solitaire games like the(n2 � 1) Puzzle [213,
218, 221] and Rubik's Cube [215].

Korf, Reid and Edelkamp [220] have analyzed the IDA* algorithm to predict the
search performance of IDA* in the number of node expansions for a specific problem.
The main result is that assuming consistency1 of the integral heuristic estimate in the
limit of largec, the expected total number of node expansions with cost thresholdc in one
iteration of IDA* is equal to

cX
d=0

n(d)P (c� d);

wheren(d) is the number of nodes in the brute-force search tree with depthd andP
is the equilibrium distribution defined as the probability distribution of heuristic values
in the limit of large depth. More precisely,P (h) is the probability that a randomly and
uniformly chosen node of a given depth has a heuristic value less than or equal toh. In
practice the equilibrium distribution for admissible heuristic functions will be approxi-
mated by random sampling [219]; a representative sample of the problem space is drawn
and classified according to the integral heuristic evaluation function. The valuen(d) for
large depthsd without necessarily exploring the search tree, can be approximated with
the asymptotic brute-force branching factor; the number of nodes at one depth divided
by the number of nodes in the next shallower depth, in the limit as the depth goes to
infinity. The asymptotic heuristic branching factor is defined analogously on search tree
levels for two occurring values on the node evaluation functionf . In some domains we
observe anomalies in the limiting behavior of the asymptotic branching factors, e.g., in
the(n2 � 1)-Puzzle and odd values ofn it alternates between two different values [104].

The observation that a consistent heuristic estimateh affects the relative depth to a
goal instead of the branching itself is supported by the fact that IDA*'s exploration is
equivalent to undirected iterative deepening exploration in a re-weighted problem graph
with costs1 + h(v)� h(u) for all edges(u; v). The new node evaluationf 0(uj) of node
uj on pathp = (s = u1; : : : ; ut = t) equals

Pj�1
i=1 (1 + h(ui+1)� h(ui)) and telescopes to

the old meritf(uj) minush(s). Therefore, the heuristic is best understood as a bonus to

1Consistent heuristic estimates satisfyh(v) � h(u) + 1 � 0 for each edge(u; v) in the underlying
problem graph. They yield monotone node evaluationsf(u) = g(u) + h(u) on generating paths with
lengthg(u). Admissible heuristics are lower bound estimates that underestimate the goal distance for each
state. Consistent estimates are admissible.
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the search depth. Moreover, since we have only altered edge weights, it is not surprising
that for bounded heuristic estimates and large depth the asymptotic heuristic branching
factor equals the asymptotic brute-force branching factor.

Our main result in this paper is that in undirected problem graphs the value of the
number of nodes in depthd of the brute-force search can be computed effectively by
analyzing the spectrum of the adjacency matrix for the problem graph. The analysis
requires some results of linear algebra and an algorithm of applied mathematics. Since
the problem graph is considered to be large for regular search spaces we show how to
factorize the problem graph through an equivalence relation of same branching behavior.
We take the(n2 � 1)-Puzzle as the running example, discuss the generality of the results
from various points of view: other problem domains, general, especially undirected graph
structures, and predecessor pruning. Finally, we give concluding remarks and shed light
on future research options.

4.2 Linear Algebra Basics

Linear Mappings and Bases A mappingf : V ! W , with V , W being vector spaces
over the fieldK (e.g. the set of real or the set of complex numbers) islinear, if f(�v +
�w) = �f(v) + �f(w) for all v; w 2 V and all�; � 2 K. A basisof a vector space
V is a linear independent set of vectors that spansV . If the basis is finite, its cardinality
defines the dimensiondim(V ) of the vector spaceV , otherwise the dimension is said to
be infinite.

Matrices and Basis-Transformations Linear mappings of vector spaces of finite di-
mension can be represented as matrices, since there is an isomorphism that maps the set
of all (m � n) matrices to the set of all linear mappings fromV toW according to their
respectively fixed bases, wheredim(V ) = n anddim(W ) = m. Usually,V equalsW
and in this case the linear mappingf is calledendomorphism. A basis-transformation
from basisA to B in the vector spaceV can be represented by a transformation matrix
CAB which is the inverse ofCBA. Very often,A is the canonical basis. Computing the in-
verseC�1 of a matrixC can be achieved by elementary row transformations, that convert
the(n� 2n) matrix [C j I] into [I j C�1], with I being the identity matrix.

Similarity and Normal Forms Two matricesA andB aresimilar, if there is a matrix
C with B = CAC�1. This is equivalent to the fact that there is an endomorphismf of V
and two basesA andB with matrixA representingf according toA andB representing
f according toB. Similarity is an equivalence relation and one main problem in linear al-
gebra is to derive a concise representative in the equivalence class of similar matrices, the
normal form. A very simple form is the diagonal shape with non-zero values�1; : : : ; �n
only on the main diagonal. In this case, a matrixB is calleddiagonizableand can be
written asB = C � diag(�1; : : : ; �n) � C�1. Unfortunately, not all matrices are diagoniz-
able, especially when the linear mapping is defined on the set of real numbers. Even if
the vector space defining field is the set of complex numbers, onlytridiagonizabilitycan
be granted, in which matrixA may have non-zero components above the main diagonal.
Further simplifications lead to the so-calledJordan normal form.
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Figure 4.1: The Eight-, Fifteen- and Twenty-Four-Puzzles.

Eigenvalues and EigenspacesAn endomorphismf of a vector spaceV over the field
K contains aneigenvalue� 2 K, if there is a non-trivial vectorv 2 V , with f(v) = �v.
Any such non-trivial vectorv 2 V with f(v) = �v is calledeigenvector. If there is a basis
B of eigenvectors, then the matrix representation according toB has a diagonal shape. In
this casef is also calleddiagonizable. It can be shown that the eigenvalues are roots of
thecharacteristic equationPf (�) = det(A � �I) = 0, where the determinant det(A) is
defined as

P
�2Sn

Q
i<j(�(j)� �(i))=(j � i)) � a1�(1) � : : : � an�(n) with Sn being the set of

all n-permutations. If the polynomialPf(�) factorizes, i.e.Pf(�) = const�Qk
i=1

(���i),
which is the case for matrices of complex numbers, the corresponding eigenspacesEf (�i)

have to be computed. If then the number of occurring linear terms(�� �i) in Pf (�), the
algebraic multiplicityof �i, equals the dimension ofEf (�i), thegeometric multiplicityof
�i, thenA is indeeddiagonizable.

4.3 Partitioning the Search Space

The(n2 � 1)-Puzzle is a sliding tile toy problem. It consists of(n2 � 1) numbered tiles
that can be slid into a single empty position, called the blank. The goal is to rearrange
the tiles such that a certain goal position is reached. Figure 4.1 depicts possible end
configurations of well-known instances to the(n2 � 1)-Puzzle: Forn = 3 we get the
Eight-Puzzle, forn = 4 the Fifteen-Puzzle and forn = 5, the Twenty-Four-Puzzle is met.
The state spaces for these problems grow exponentially. The exact number of reachable
states (independent of the initial one) is(n2)!=2 which resolves to approximately105

states for the Eight-Puzzle,1013 states in the Fifteen-Puzzle and1025 states in the Twenty-
Four-Puzzle.

We partition the search spaceS in classesS1; : : : ; Sk, collecting states into groups
with same branching behavior. In other words we devise an equivalence relation that
partitions the state space into equivalence classes: two states are equivalent if their long
term branching behavior coincides. All states in one equivalence classSi, i 2 f1; : : : ; kg,
necessarily have the same node branching factor, defined as the number of children a node
has in the brute-force search tree.

For the example of the(n2 � 1)-Puzzle a partition is given by the following relation:
two states are equivalent if the blank is at the same absolute position. Obviously the
subtrees of such nodes are isomorphic, since the branching behavior of equivalent states
has to be the same. A further reduction of the search tree is established by partitioning
the search space with respect to symmetry. For the(n2 � 1) Puzzle we establish three
branching types: corner orc-nodes with node branching factor 2, side ors-nodes with
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Figure 4.2: Equivalence Graph for the Eight-, Fifteen- and Twenty-Four-Puzzles.

node branching factor 3, and middle orm-nodes with node branching factor4. However,
does the long time node branching behavior depend on these node types only? In the
Eight- and Fifteen-Puzzles this is the case, since for symmetry reasons allc, s andm
nodes generate the same subtree structure. For the Twenty-Four-Puzzle, however, the
search tree of two side or two middle states may differ. For this case we need six classes
with a blank at position 1,2,3,7,8, and 13 according to the tile labeling in Figure 4.2. In
the general case the number of different node branching classes in the(n2 � 1) Puzzle is

dn=2eX
i=0

i =

 dn=2e
2

!
= dn=2e(dn=2e � 1)=2:

This still compares well to a partition according to then2 equivalent classes in the first
factorization (savings of a factor of about eight) and of course to the(n2)!=2 states in the
overall search space (exponential savings).

4.4 Equivalence Graph Structure

Utilizing this partition technique we define the weightedequivalence graphG =
(V ;E; w) as follows. The set of nodesV equals the set of equivalence classes and an
edgee from classSi 2 V to Sj 2 V with weightw(e) is drawn, if every state inSi
leads tow states in classSj. Obviously, the sum of all outgoing edges equals the node
branching factor. LetAG be the adjacency matrix with respect to theequivalence graph
G. Since the explorations inG andG span the same search-tree structure the search tree
growth will be the same.

A generator matrixP for the population of nodes according to the given equivalence
relation is defined byP = AT

G
. More precisely,Pj;i = l if a node of typei in a given level

leads tol nodes of typej in the next level. We immediately infer thatN (d) = PN (d�1),
with N (d) being the vector of nodes in depthd of the search tree. Ifjj � jj1 denotes the
vector normjjxjj1 = jx1j+ : : :+ jxkj then the number of nodesn(d) in depthd is equal to
jjN (d)jj1.

The asymptotic branching factorb (if it exists) is defined as the limit ofn(d)=n(d�1)

for increasingd and equals the weighted product of the node frequenciesb =
Pk

i=1
bifi,

wherefi is the fraction of nodes of classiwith respect to the total number of nodes. As we
will see, we can compute the branching factor analytically without actually determining
node frequency values.
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The first observation is that in case of convergence the asymptotic branching factor is
not only met in the the overall search tree expansion but in every equivalence class. Since
all frequencies of nodes converge we have thatb = limd!1N

(d)
i =N

(d�1)
i , withN (d)

i being
the number of nodes of classi in depthd, i 2 f1; : : : ; kg. In other words, if the ratio of
the cardinality of one equivalence class and the overall search space size settles and the
search space size grows with factorb, then the equivalence class size itself grows with
factorb.

We represent the fractionsfi as a distribution vectorF . We first assume that this vector
converges in the limit of large depth. The considerations for an analytical solution to the
branching factor problem result in the equationsbF = FP , whereb is the asymptotic
branching factor. In addition, we have the equation that the total of all node frequencies
is one. The underlying mathematical issue is an eigenvalue problem. TransformingbF =

PF leads to0 = (P � bI)F for the identity matrixI. The solutions forb are the roots of
the characteristic equationdet(P � bI) = 0 wheredet is the determinant of the matrix.
Sincedet(P � bI) = det(P T � bI) the transposition of the equivalence graph matrixAG

preserves the value ofb. In case of the Eight-Puzzledet(P � bI) equals

det

0
B@

0� b 2 0

2 0� b 1
0 4 0� b

1
CA = 0:

This equation is equivalent tob(4�b2)+4b = 0, yielding the following three solutions
�p8 = �2:828427124, 0,

p
8 = 2:828427124. Experimental results show that the

branching factor alternates every two depth values between 3 and8=3 = 2:666666666.
Since

p
8 is the geometric mean of3 and8=3 the value

p
8 is the proper choice for the

asymptotic branching factorb of the brute-force search tree.
For the case of the Fifteen-Puzzle we have to calculate

det

0
B@

0� b 2 0
1 1� b 1
0 2 2� b

1
CA = 0;

which simplifies to(1 � b)(b � 2)b + 4b � 4 = 0. The solution to this equation are
1, 1 +

p
5 = 3:236067978, and1 � p5 = �1:236067978. The value1 +

p
5 matches

experimental data for the asymptotic branching factor.
For the Twenty-Four-Puzzle we have to solve

det

0
BBBBBBBB@

0� b 2 0 0 0 0

1 0� b 1 1 0 0

0 2 0� b 0 1 0
0 2 0 0� b 2 0

0 0 1 2 0� b 1
0 0 0 0 4 0� b

1
CCCCCCCCA
= 0:

The six eigenvalues are0, 0,
p
3 = 1:732050808, �p3 = �1:732050808,

p
12 =

3:464101616, and�p12 = �3:464101616. Experiments show that for large depth the
branching factor oscillates and that the geometric mean is3:464101616.

We conclude that the asymptotic branching factor in the example problems is the
largesteigenvalue of the adjacency matrix for the equivalence graph and that we observe
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anomalies if the largest eigenvalue has a negative counterpart of the same absolute value.
In the following we will analyze the structure of the eigenvalue problem to show why this
is the case.

4.5 Exact Prediction of Search Tree Size

The equationN (d) = PN (d�1) can be unrolled toN (d) = P dN (0). We briefly sketch how
to computeP d for larged. We have seen thatP is diagonizable, if there exists a invertible
matrixC and a diagonal matrixQ with P = CQC�1. This simplifies the calculation of
P d, since we haveP d = CQdC�1 (the remaining termsC�1C cancel). By the diagonal
shape ofQ the value ofQd is obtained by taking the matrix elementsqi;i to the power of
d. These elements are the eigenvalues ofP . This connection is not surprising, since in
case of convergence of the vector of node frequenciesF we have seen that the branching
factor itself is a solution to the eigenvalue problemPF = bF . We conclude that in case
of diagonizabilitywe can exactly predict the number of nodes of depthd by determining
the set of eigenvalues ofP .

In the example of the Eight-Puzzle the eigenvectors for the eigenvalues�p8, 0, andp
8 are (2;�p8; 1)T , (�2; 0; 1)T , and (2;

p
8; 1)T , respectively. Therefore, the basis-

transformation matrixC is given by

C =

0
B@

2 �2 2

�p8 0
p
8

1 1 1

1
CA

with the following inverse

C�1 = 1=16

0
B@

2 �p8 4
�2 0 8

2
p
8 4

1
CA :

With Q = diag(�p8; 0;p8) we haveC�1C = I andC�1PC = Q. Therefore,
calculatingN (d) = P dN (0) for d � 1 corresponds toN (d) = CQdC�1N (0), whereQd =

diag((�p8)d; 0; (p8)d). Hence,N (d) equals to

1=16

0
B@

2 �2 2

�p8 0
p
8

1 1 1

1
CA
0
B@

(�p8)d 0 0
0 0 0

0 0 (
p
8)d

1
CA
0
B@

2 �p8 4
�2 0 8

2
p
8 4

1
CA
0
B@

1

0
0

1
CA

which resolves to

N (d) = 1=16

�
4
p
8
d
((�1)d + 1); 2

p
8
d+1

((�1)d+1 + 1); 2
p
8
d
((�1)d + 1)

�T
:

The exact formula forN (d) and small values ofd validates the observed search tree
growth:N (1) = (0; 2; 0)T ,N (2) = (4; 0; 2)T ,N (3) = (0; 16; 0)T ,N (4) = (32; 0; 16)T , etc.

The closed form forN (d) explicitly states that the asymptotic branching factor for
the Eight Puzzle is

p
8. Moreover, the odd-even effect for branching in that puzzle is

established by the factor(�1)d + 1, which cancels for an odd value ofd. Nevertheless,
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solving the characteristic equation and establishing the basis of eigenvectors by hand is
tedious work. Fortunately, the application of symbolic mathematical tools such as Maple
and Mathematica help to perform the calculations in larger systems.

For the Fifteen-Puzzle the basis-transformation matrixC and its inverseC�1 are

C =

0
B@

1 �1 1

1�p5 �1 1 +
p
5

3=2� 1=2
p
5 1 3=2 + 1=2

p
5

1
CA

and

C�1 =

0
BB@

1=50
�
5 + 3

p
5
�p

5 �1=50
�
5 +
p
5
�p

5 1=5

�2=5 �1=5 2=5

1=50
�
�5 + 3

p
5
�p

5 �1=50
�
�5 +p5

�p
5 1=5

1
CCA :

The vector of node counts is

N (d) =

0
BBBBBBBBBBBBBBBB@

1=50
�
1�p5

�d �
5 + 3

p
5
�p

5 + 2=5+

1=50
�
1 +
p
5
�d ��5 + 3

p
5
�p

5

1=50
�
1�p5

� �
1�p5

�d �
5 + 3

p
5
�p

5 + 2=5+

1=50
�
1 +
p
5
� �

1 +
p
5
�d ��5 + 3

p
5
�p

5

1=50
�
3=2� 1=2

p
5
� �

1�p5
�d �

5 + 3
p
5
�p

5� 2=5+

1=50
�
3=2 + 1=2

p
5
� �

1 +
p
5
�d ��5 + 3

p
5
�p

5

1
CCCCCCCCCCCCCCCCA

such that the exact total number of nodes in depthd is

1=50
�
7=2� 3=2

p
5
� �

1�
p
5
�d �

5 + 3
p
5
�p

5 + 2=5+

1=50
�
7=2 + 3=2

p
5
� �

1 +
p
5
�d ��5 + 3

p
5
�p

5

The number of corner nodes (1, 0, 2, 2, 10, 26, 90,. . . ), the number of sidenodes (0,
2, 2, 10, 26, 90, 282,. . . ) and the number of middlenodes (0, 0, 6, 22, 70, 230,. . . ) grow
as expected. The largest eigenvalue1+

p
5 dominates the growth of the search tree in the

limit for larged.
In the Twenty-Four-Puzzle the valueN (d) equals
0
BBBBBBBBBBBBBBBBBBB@

1=36
�
�2p3

�d
+ 2=9

�
�p3

�d
+ 2=9

�p
3
�d

+ 1=36
�
2
p
3
�d

�1=18p3
�
�2p3

�d � 2=9
p
3
�
�p3

�d
+ 2=9

p
3
�p

3
�d

+ 1=18
p
3
�
2
p
3
�d

1=18
�
�2p3

�d
+ 1=9

�
�p3

�d
+ 1=9

�p
3
�d

+ 1=18
�
2
p
3
�d

1=12
�
�2p3

�d
+ 1=12

�
2
p
3
�d

�1=18p3
�
�2p3

�d
+ 1=9

p
3
�
�p3

�d � 1=9
p
3
�p

3
�d

+ 1=18
p
3
�
2
p
3
�d

1=36
�
�2p3

�d � 1=9
�
�p3

�d � 1=9
�p

3
�d

+ 1=36
�
2
p
3
�d

1
CCCCCCCCCCCCCCCCCCCA
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for the following total of nodes in depthd

n(d) = 1=36
�
7� 4

p
3
� �
�2
p
3
�d

+ 1=9
�
2�
p
3
� �
�
p
3
�d

+

1=9
�
2 +
p
3
� �p

3
�d

+ 1=36
�
7 + 4

p
3
� �

2
p
3
�d
:

The value for smalld validates that the total number of nodes increases as expected
(2,6,18,60,198,684,. . . ). Once again the vector of the largest absolute value determines
the search tree growth.

If the size of the system is large, the exact value ofN (d) has to be approximated. One
option to bypass the intense calculations for determinants of large matrices and roots of
high-degree polynomials is to compute the asymptotic branching factorb. The number of
nodes in the brute-force search tree is then approximated byn(d) � bd.

4.6 Approximate Prediction of Search Tree Size

The matrix denotation for calculating the population of nodes according to the given
equivalence relation impliesN (d) = PN (d�1), with N (d) being the vector of equivalent
class sizes. The asymptotic branching factorb is given by the limit ofjjN (d)jj1=jjN (d�1)jj1
which equalsN (d)

i =N
(d�1)
i in any componenti 2 f1; : : : ; kg. EvaluatingN (d)

i =N
(d�1)
i for

increasing depthd is exactly what is considered in the algorithm of van Mises for approx-
imating the largest eigenvalue (in absolute terms) ofP . The algorithm is also referred to
as thepower iterationmethod.

As a precondition, the algorithm requires thatP be diagonizable. This implies that
we haven different eigenvalues�1; : : : ; �n and each eigenvalue�i with multiplicity of
�i has�i linear independent eigenvectors. Without loss of generality, we assume that the
eigenvalues are given in decreasing orderj�1j � j�2j � : : : � j�kj. The algorithm further
requires that the start vectorN (0) have a representation in the basis of eigenvectors in
which no coefficient according to�1 is trivial.

We distinguish the following two cases:j�1j > j�2j � : : : � j�kj and j�1j =
j�2j > : : : � j�kj. In the first case we obtain that (independent of the choice of
j 2 f1; : : : ; kg) the value oflimd!1N

(d)
j =N

(d�1)
j equalsj�1j. Similarly, in the second

caselimd!1N
(d)
j =N

(d�2)
j is in fact�2

1
. The casesj�1j = : : : = j�lj > : : : � j�kj for l > 2

are dealt with analogously. The outcome of the algorithm and therefore the limit in the
number of nodes in layers with differencel is j�1jl, so that once more the geometric mean
turns out to bej�1j.

We indicate the proof of the first case only. Diagonizability implies a basis of eigen-
vectorsb1 : : : ; bk. Due toj�1j > j�2j � : : : � j�nj the quotient ofj�i=�1jd converges
to zero for large values ofd. If the initial vectorN (0) with respect to the eigenbasis is
given asx1b1+x2b2+ : : :+xkbk applyingP d yieldsx1P db1+x2P

db2+ : : :+xkP
dbk by

linearity ofP , which further reduces tox1b1�d1 + �d
2
x2b2 + : : :+ �dnxkbk by the definition

of eigenvalues and eigenvectors. The termx1b1�d1 will dominate the sum for increasing
values ofd. Factorizing�d

1
in the numerator and�d�11 in denominator of the quotient of

N
(d)
j =N

(d�1)
j results in an equation of the formx1b1�1 + R wherelimd!1R is bounded

by a constant, since except of the leading termx1b1�1 both numerator and denominator
in R only involve expressions of the formO(j�i=�1jd). Therefore, to find the asymptotic
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branching factor analytically, it suffices to determine the set of eigenvalues ofP and to
take the largest one. This corresponds to the results of the asymptotic branching factors
in the(n2 � 1)-Puzzles.

In the Eight-Puzzle the ratioN (d)
1 =N

(d�2)
1 is equal to 8 ford > 3 and, therefore,

approximates�2
1
. The valuen(d)=

p
8
d

alternates between3=4 and1=
p
2. Hence,

p
8
d

approximates the search tree growth.
For the Fifteen-Puzzle for increasing depthd the valueN (d)

1 =N
(d�1)
1 equals 1, 3, 13/5,

45/13, 47/15, 461/141, 1485/461, 4813/1485, 15565/4813, 50381/15565, 163021/50381,
527565/163021 = 3.236178161, etc., a sequence approximating1 +

p
5 = 3:236067978.

Moreover, the ratio ofn(d) and(1 +
p
5)d quickly converges to

1=50
�
7=2 + 3=2

p
5
� �
�5 + 3

p
5
�p

5 = :5236067984.

In the Twenty-Four-Puzzle the ratioN (d)
1 =N

(d�2)
1 converges to 12 starting with

the sequence 6, 9, 11, 129/11, 513/43, 683/57, 8193/683, 32769/2731, 43691/3641

= 11.99972535, etc. The quotientn(d)=
p
12

d
for larger depth alternates between

:3888888889 and:3849001795 and is therefore bounded by a small constant.
If n is even – as in the Fifteen-Puzzle – the largest eigenvalue is unique and ifn is odd

– as in the Eight- and in the Twenty-Four-Puzzle – we find two eigenvalues with the same
absolute value verifying that every two depths the node sizes will asymptotically increase
by the square of these values.

4.7 Generalizing the Approach

Iterating the algorithm withjjN (d)jj1=jjN (d�1)jj1 instead ofN (d)
j =N

(d�1)
j shows that the

convergence conditions according toG andG are equivalent. This is important, since
other graph properties may alter, e.g. symmetry ofAG is not inherited byAG. Therefore,
we concentrate on diagonizability results ofAG, which are easier to obtain. TheTheorem
of Schurstates that symmetric matrices are indeed diagonizable. Moreover, the eigenval-
ues are real and the matrix to perform the basis transformation has the eigenvectors in its
columns.

For the(n2 � 1)-Puzzle we are done. SinceG is undirected,AG is indeed symmetric.
In the spectrum ofAG power iteration either obtains a unique branching factorb = j�1j
or a branching factor of�2

1
for every two iterations. Therefore, the branching factor is the

spectral radius� = j�1j.

4.7.1 Other Problem Spaces

Since the search tree is often exponentially larger than the problem graph we have reduced
the prediction of the search tree growth to the spectral analysis of the explicit adjacency
representation of the graph. As long as this graph is available, accurate and approximate
predictions for the brute-force and subsequently for the heuristic search tree growth can
be computed.

However, the calculations for large implicitly given graphs are involved such that
reduction of the analysis to a smaller structure is desirable. For the(n2 � 1)-Puzzle we
proposed a compression to a few branching classes. The application of equivalence class
reduction to exactly predict the search tree growth relies on the regular structure of the
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problem space. This technique is available as long as the same branching behavior for
different states is given.

For Rubik's Cubewithout predecessor eliminationN (d) equals18d since all nodes in
the search tree span a complete 18-ary subtree. With predecessor elimination the node
branching factor reduces to 15, since for each of the three twistssingle clockwise, double
clockwise, andcounterclockwisethere is a remainder of five sidesfront, back, right, left,
up, anddownthat are available. If we further restrict rotation of opposite sides to exactly
one order we get the transition matrix((6 6); (9 6)), where the first class is the set of
primary nodes with branching factor 15, and the second class is the class of secondary
nodes with branching factor 12. The eigenvalues are6 + 3

p
6 and6� 3

p
6 and the value

n(d) equals1=2
�
6 + 3

p
6
�d

+1=2
�
6� 3

p
6
�d

. For small values ofd experimental data
as given in [215] matches this analytical study. The observed asymptotic branching factor
is 6 + 3

p
6 = 13:34846923 as expected.

Extending the work to problem domains like the PSPACE-completeSokobanprob-
lem [74] is challenging. It is difficult to derive an accurate prediction, since the branching
behavior of the tree includes almost all state facets. Therefore, a more complicated search
model has to be devised to derive exact or approximate search tree prediction in this do-
main. As Andreas Junghanns has coined in his Ph.D. dissertation [199], the impact of
the search tree node prediction formula

Pc
d=0

n(d)P (c � d) has still to be shown. In the
other PSPACE-complete sliding block gameAtomix [194, 184] simplification based on
branching equivalences do apply and yield savings that are exponential in the number of
atoms, but this void labeling scheme still results in an intractable size of the equivalence
graph structure. Only very small games can be analyzed by this method.

4.7.2 Pruning

When incorporating pruning to the exploration process, symmetry of the underlying graph
structure may be affected. Once again we consider the Eight-Puzzle. The adjacency
matrixApred

G
for predecessor elimination now consists of four classes:cs, sc,mc andcm,

where the classij indicates that the predecessor of aj-node in the search tree is ani node.

A
pred

G
=

0
BBBBBB@

0 1 0 0

1 0 0 1

2 0 0 0

0 0 3 0

1
CCCCCCA

In this case we cannot infer diagonizability according to the set of real numbers. Fortu-
nately, we know that the branching factor is a positive real value since the iteration process
is real. Therefore, we may perform all calculation to predict the search tree growth with
complex numbers, for which the characteristic polynomial factorizes. The branching fac-
tor and the search tree growth can be calculated analytically and the iteration process
eventually converges. In the example, the set of (complex) eigenvalues isi

p
2, �ip2,p

3, and�p3. Therefore, the asymptotic branching factor is
p
3. The vectorN (d) equals
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:

Finally, the total number of nodes in depthd is

n(d) = 1=5
�
1=2 + 1=4 i

p
2
� �
i
p
2
�d

+ 1=5
�
1=2� 1=4 i

p
2
� �
�i
p
2
�d

+

1=10
�
4 + 2

p
3
� �p

3
�d

+ 1=10
�
4� 2

p
3
� �
�
p
3
�d
:

For small values ofd the valuen(d) equals 1, 2, 4, 8, 10, 20, 34, 68, 94, 188 etc.

4.7.3 Non-Diagonizability

Since we assumed diagonizability, the eigenspacesL(�i) according to the values�i have
full rank �i. In general this is not true. Not all matrices are diagonalizable. In this case
the best thing one can do is to transform the matrix intoJordan Formwhich has blocks
on the diagonal, each block beingr � r, with the eigenvalue on the diagonal, 1's above
the diagonal and 0's everywhere else. More precisely, a matrixA hasJordan FormJ for
an invertible matrixT , if J = T�1AT consists of so-called Jordan-blocksJ1; : : : ; Jm.
One Jordan-block has an eigenvalue on the main diagonal and 1s on the diagonal above.
Therefore,T gives a basis of eigenvectors and so-calledmain vectors. Each Jordan-block
Jl of dimensionjl corresponds to one eigenvectort1 andjl � 1 main vectorst2; : : : ; tjl
with (A � �iI)t0 = 0 and(A � �iI)tm = tm�1, m = 2; : : : ; jl. Using the Jordan basis
one can deviseP dN (0) similar to the case above.

4.7.4 Start Vector

The second subtlety arises even if the matrix is diagonalizable. We are interested in
determining the behavior ofP dN (0) for larged, whereP is ann � n matrix andN (0) is
ann � 1 vector. Suppose thatP is diagonalizable, which means that there is a basis of
eigenvectors. Hence,N (0) can be written as a sum of eigenvectors:N (0) = v1 + v2 +

v3 + : : : + vn wherevi is an eigenvector with eigenvalue�i. It follows thatP dN (0) =

�d
1
v1 + �d

2
v2 + �d

3
v3 + ::: + �dnvn So the term with the largest corresponding eigenvalue

will dominate for larged, provided that the eigenvector is non-zero. It may happen that
the initial vectorv has component of zero in the eigenspace of the largest eigenvalue. In
general, the algorithm finds the largest eigenvalue in which the corresponding component
is non-zero. Fortunately, this observation is more theoretical in nature. In the iteration
process this case is very rarely fulfilled. Rounding errors will soon or later lead to non-
zero components. To determine the asymptotic branching factor we have several initial
states to choose from such that at least one has to yield non-zero coefficients.
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4.8 Previous Work

This paper extends the work of Edelkamp and Korf [104] that already derived the asymp-
totic branching factors of the sliding-tile puzzles and Rubik's Cube. However, their ap-
proach lack sufficient convergence conditions. We established the criterion of diagoniz-
ability of the adjacency graph matrix of the problem graph that emerges of the algorithm
of van Mises and showed that this criterion is fulfilled in undirected graphs by the Theo-
rem of Schur. The(n2 � 1)-Puzzles and Rubik's Cube are chosen to illustrate the tech-
niques, since they are inherently difficult to solve and often considered in case studies.

The set of recurrence relations in [104] also showed that the numbers of nodes at
various depths can be calculated in time linear to the product of the number of node
classes and the depth of search tree by numerically iterating the recurrence relations. In
contrast to this finding, the current paper resolves the problem of how to compute a closed
form for the number of nodes. Last but not least, the given mathematical formalization
of equivalence classification, diagonalization and power iteration builds a bridge for more
powerful results in applying known mathematical theorems. At least in theory, generality
to different problem spaces is given, since this approach applies to any problem graph
with a diagonizable matrix and probably to more than that.

4.9 Conclusion and Discussion

In the paper we have improved the prediction of the number of node expansions in IDA*
by an exact derivation of the number of nodes in the brute-force search tree. We have
resolved the question of convergence to explain anomalies in of the asymptotic branching
factor. The asymptotic branching factor is the spectral radius of the successor generation
matrix and can be computed with the power iteration method. The approach extends
to further regular problem spaces and can cope with simple pruning rules. The main
result is that diagonizability is granted in undirected problem graphs, such that exact and
approximate calculation of the brute-force search-tree are mathematically sound. The
technique for establishing a closed form is not standard, and it is hard to suggest other
methodologies to actually solve the set of recurrence relations.

Moreover, given the adjacency matrixP of an undirected graph studuingN (d)
i =N

(d�1)
i

andN (d)
i =N

(d�k)
i , k > 1 of the equationN (d) = N (d�1)P gives the (mean) asymptotic

branching factor. This is in fact the algorithm of van Mises to determine the largest
eigenvalue ofP for whose applicability we have to test ifP is diagonizable. The paper
closes the small gap in literature to accurately predict search tree growth in closed form
and to compute the branching factor both analytically and numerically without relying on
strong experimental assumption on the convergence.

Since for practical problems in which IDA* applies it is very unlikely that the entire
graph structure can be kept in main memory, the approach helps only if some reduction
of the branching behavior with respect to equivalence classes can be obtained. Therefore,
the analysis is limited to the cases where the the successor generator matrix of the original
or the adjacency graph structure can be build. If not, abstractions to the graph structure
have to be found that preserve or approximate information of the branching behavior.

All analyses given in this or precursory papers on search tree prediction do not include
the application of transposition tables, in which visited states together with their best
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encountered state merits (path length plus heuristic estimate) are kept. This in fact is also
a challenge for analysts. One option is the prediction of the search tree growth of IDA*
with respect to bit-state hashing, which turns out to be an improvement to transposition
tables in single-agent games [194] and protocol verification [109]. For this model of
partial search first results on coverage prediction have been found [111].

Exact calculation of the brute-force search tree raises the question if the other source
of uncertainty, namely the heuristic equilibrium distribution, can also be eliminated. As
said, the equilibrium distribution of the estimate can be obtained by random sampling.
However, in some cases of regular search trees exact values can be produced. If the
estimate is given with respect to a pattern database storing pairs of the form (estimated
value, state pattern) by analyzing the pattern database, a histogram of heuristic values
can computed: we determine the number of states that satisfy a pattern with a total to be
computed for each integral heuristic value in a predefined range. For consistent heuristics
this range will be bounded by the heuristic estimate of the start state and the optimal
solution length. At the very far end of this research line there are precise or approximate
predictions for the growth of A*'s and IDA*'s search efforts according to various kinds
of heuristics, node caching strategies and problem domains. This implies an alternative
way of defining heuristics themselves: ranking successor nodes according to the expected
growth of the resulting search tree.
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Abstract

We present solutions of benchmark instances to the solitaire computer game Atomix
found with different heuristic search methods. The problem is PSPACE-complete. An
implementation of the heuristic algorithm A* is presented that needs no priority queue,
thereby having very low memory overhead. The limited memory algorithm IDA* is
handicapped by the fact that, due to move transpositions, duplicates appear very fre-
quently in the problem space; several schemes of using memory to mitigate this weakness
are explored, among those, “partial” schemes which trade memory savings for a small
probability of not finding an optimal solution. Even though the underlying search graph
is directed, backward search is shown to be viable, since the branching factor can be
proven to be the same as for forward search.
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Figure 5.1: Two Atomix problems. The left one—which is Atomix 01 in the list of the
appendix—can be solved with the following 13 moves, where the atoms are numbered
left-to-right in the molecule: 1 down left, 3 left down right up right down left down
right, 2 down, 1 right. The right one—which is level number 43 from the “katomic”
implementation—illustrates a more complex problem; it takes at least 66 moves to solve.

5.1 Introduction

Atomixwas invented in 1990 by Günter Krämer and first published by Thalion Software
for the popular computer systems of that time. The goal is to assemble a given molecule
from atoms (see Fig. 5.1). The player can select an atom at a time and “push” it towards
one of the four directions north, south, west, and east; it will keep on moving until it hits
an obstacle or another atom. The game is won when the atoms form the same constellation
(the “molecule”) as depicted beside the board. A concrete Atomix problem, given by the
original atom positions and the goal molecule, is called alevelof Atomix.

The original game had a time limit and did not count the moves needed; we will
instead focus on the analytical aspect and try to minimize the solution length as a goal.
Note that we are only interested inoptimal solutions; in order to just find any solution
fast, quite different algorithms would be necessary.

An implementation of this Atomix variation for the X Window System is available as
“katomic” from http://games.kde.org . A JavaScript version can be played online
at http://www.sect.mce.hw.ac.uk/ ~peteri/atomix .

Our solver program written in C++ is able to solve 17 of the 30 problems from the
original Atomix and 18 of the 67 problems from katomic optimally. In an appendix, we
list a selection of these findings.

5.2 Heuristic Search

Many common problems and, especially, most solitaire puzzles can be formulated as
a state space searchproblem: given are a start state, a set of goal states and a set of
operators to transform one state into another; wanted is a sequence of operators, also
simply called amove sequence, that transforms the start state into a goal state and that is
of minimal length. A state space can be represented as a graph, with nodes representing
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24-Puzzle Sokoban Atomix

Branching factor 2–4 0–50 12–40
effective 2.3 10 7

Solution Length 80–112 97–674 8–120
typical 100 260 45

Search space size 1025 1018 1021

Graph Undirected Directed Directed

Table 5.1: Search space properties of some puzzles. The effective branching factor is
the number of children of a state, after applying memory-bounded pruning methods (in
particular, not utilizing transposition tables; see Sect. 5.5.3 for the methods applied to
Atomix). For Sokoban and Atomix, the numbers are for typical puzzles from the human-
made test sets; for Sokoban, those problems are about20 � 20 and, for Atomix, about
16� 16 squares large.

states and (directed) edges representing moves. That way, well-known graph algorithms
can be applied. To emphasize this aspect, states generated in a state space search are often
called “nodes”.

For hard combinatorial problems, the use ofheuristicscan often lead to dramatic
improvements for a state space search. Many problems would even be unsolvable without
them. For a state space search, “heuristic” has a well-defined meaning: an estimate of the
moves left from the current state to a goal. Of special interest areadmissibleheuristics:
they never overestimate the number of moves. The well-known algorithms A* and IDA*
can be proven to always find an optimal solution when using an admissible heuristic. An
admissible heuristic judges the “quality” of a states: if g(s) is the number of moves
already applied, andh(s) is the heuristic estimate, thenf(s) := g(s) + h(s) is a lower
bound on the total number of moves. This number, customarily called the “f -value”, can
be used in two ways: to guide the search and to reduce the effective depth of the search.
The first idea naturally leads to the A* algorithm: “promising” states are examined first.
The second is applied in the IDA* algorithm: “hopeless” states are not examined at all.

5.3 Related Puzzles

The following table compares some search space properties of Atomix to other games.
The results are contained in [104, 199, 221].

Due to its close relationships to Atomix (which will become important in the next
section), we discuss the 15- and the 24-puzzle as special instances of the(n2 � 1)-puzzle
in more details.

The 15-puzzle consists of a square tray of size4� 4 with 15 tiles numbered1 through
15 and one empty square. A move consists of sliding one tile adjacent to the empty square
into the empty space. The goal is to obtain the usual ordering of the numbers on the tiles
by some move sequence. The 15-puzzle is likely to be the most thoroughly analyzed
puzzle of this kind [221]. It serves as a kind of “fruit fly” for heuristic search. It is easy
to implement, has an obvious heuristic with the “Manhattan distance”, and not too large
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Figure 5.2: The left problem can be solved in 13 moves. We cannot get a lower bound by
leaving out one atom, as in the right picture; the problem even becomes unsolvable.

a search space. The Manhattan distance heuristic can be calculated by summing up the
number of turns it would take for a tile to get to its goal position if it was the only tile in
the tray. This is obviously a lower bound on the actual number of turns.

Many search methods developed for the 15-puzzle can be easily adapted for Atomix.
One important difference is that the underlying search graph for Atomix is directed; not
every move can be undone.

Improved heuristics for the 15-puzzle make it possible to solve even the extended
“24-puzzle”-variation [221]. Most of them follow the common theme of examining a sub-
problem where only a few tiles are regarded and most are ignored. The “linear conflict
heuristic” [159], for example, tries to find pairs of tiles in a row or column which need
to pass each other to get to the goal position. In such a case, another two moves can be
added to the heuristic given by the Manhattan distance, since one tile will have to move
out of the way and back. The work of Culberson and Schaeffer [75] generalizes this idea
to “pattern databases”: Each possible distribution of the tiles 1–8 on the board is analyzed
and solved, yielding a lower bound which is often better than the Manhattan heuristic with
the linear conflict heuristic, since there are more tile interactions. The same is done for
the other 7 tiles. Unfortunately, these powerful techniques cannot be directly applied to
Atomix, since removing atoms from a state does not necessarily make it easier to solve;
in fact, it can even become unsolvable, see Fig. 5.2.

5.4 Complexity of Atomix

5.4.1 Complexity of Sliding-Block Puzzles

The time complexity of sliding block puzzles was the subject of intense research in the
past. Though seemingly trivial, most variations are at least NP-hard and, some, even
PSPACE-complete. The following table shows some results. The table was basically
taken from Demaine et al. [77], extended by the category of games where the blocks are
pushed by an external agent not represented on the board, into which Atomix falls. The
columns mean:

1. Are the moves performed by a robot on the board, or by an outside agent?

2. Can the robot pull as well as push?

3. Does each block occupy a unit square, or may there be larger blocks?
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4. Are there fixed blocks, or are all blocks movable?

5. How many blocks can be pushed at a time?

6. Does it suffice to move the robot/a special block to a certain target location, instead
of pushingall blocks into their goal locations?

7. Will the blocks “keep sliding” when pushed until they hit an obstacle?

8. The dimension of the puzzle: is it 2D or 3D?

1. 2. 3. 4. 5. 6. 7. 8. 9.
Game Robot Pull Blocks Fixed # Path Slide Dim. Complexity

PushPush3D + � unit � 1 + + 3D NP-hard
PushPush + � unit � 1 + + 2D NP-hard

Push-� + � unit � k � � 2D NP-hard
Sokoban+ + � 1�2 + 2 � � 2D PSPACE-compl.
Sokoban + � unit + 1 � � 2D PSPACE-compl. [74]
15-Puzzle � unit � 1 � � 2D NP-compl. [301]
Rush Hour � 1�{2,3} � 1 + � 2D PSPACE-compl.

Atomix � unit + 1 � + 2D PSPACE-compl. [184]

5.4.2 A Formal Definition of Atomix

We will now give a formal definition of an Atomix problem instance (level).

Definition 1 An Atomix problem instance consists of:

� A finite setA of so-calledatom types.

� A gameboardB = f0; : : : ; w � 1g � f0; : : : ; h� 1g.

� A bit matrixO = (O[p] 2 f0; 1g j p 2 B) of sizew � h (theobstacles). A position
is simply a tuplep = (px; py) 2 B. A states is defined as a subset ofA � B. An
element ofs is also called anatom. Note that the same atom type might appear
several times in a state.

A positionp = (px; py) is said to beemptyfor a states if O[p] = 0 and there is no
a 2 A with (a; (px; py)) 2 s.
Positions outside ofB areassumed not to be empty.

� A stateS (thestart state), which satisfies that, for all(a; p) 2 S,O[p] = 0.

� A stateG (the goal state). For the problem to be solvable, for all(a; p) 2 G,
O[p] = 0 and there must be a bijection betweenS andG where each atom inS
maps onto an atom inG with the same atom type.
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A direction(dx; dy) is a tuple ofx andy offsets, i. e., one of(0;�1), (1; 0), (0; 1) and
(�1; 0). A moveis a tuple of a positionp and a directiond. For a states, a move(p; d) is
only legal if there is an atom(a; p) in s, and(px + dx; py + dy) is empty.

Applying a move(p; d) to a states will yield another states0 in which every atom
has the same position, except the atom(a; p): it will be replaced by(a; p0) with p0 =
(px + �dx; py + �dy), where(px + �0dx; py + �0dy) is empty for all0 < �0 � �, and
(px + (� + 1)dx; py + (� + 1)dy) is not empty. Asolutionis a sequence of moves which,
incrementally applied to the start state, yields the goal state.

The main difference between this formal definition and the informal introduction is
that the goal positions of the atoms are given explicitly. The reason is that this makes the
puzzle both easier to analyze and to implement. Since the number of goal positions is
linear in the board size, this difference does not affect the time complexity significantly.
Our implementation handles different possible goal positions by imposing a move limit
and trying all possible goal positions with that limit, and repeating with an incremented
move limit until a solution is found.1

5.4.3 The Hardness of Atomix

Proposition 1 Atomix on ann� n board is NP-hard.

Proof: Any (n2 � 1)-puzzle instance can be transformed into an Atomix instance by
replacing the numbered tiles with atoms of unique atom types. For the(n2 � 1)-puzzle, a
legal move consists of sliding a tile into the empty space. In the reduction, those are also
the only legal moves, since all atoms not adjacent to the empty square cannot satisfy the
move legality condition, and those adjacent to the empty square can only take its place as
a move. As shown by Ratner and Warmuth, the(n2� 1)-puzzle is NP-complete [301], so
Atomix is NP-hard.

Proposition 2 Atomix on ann� n board is in PSPACE.

Proof: A nondeterministic Turing-machine can solve Atomix by repeatedly applying
a legal move from the start state encoded on its tape until a goal is reached. The number
of possible Atomix states is limited byn2!; hence, the machine can announce that the
puzzle is unsolvable after having applied more moves without finding a solution. Since
an encoding of an Atomix state needs only polynomial space, it follows that Atomix is in
NPSPACE= PSPACE.

Very recently, Holzer and Schwoon [184] showed by reduction fromnon-empty inter-
section of finite automatathat Atomix is even PSPACE-complete. They also provide a
level with an exponentially long optimal solution.

5.5 Searching the State Space of Atomix

Much progress has been made in the area of heuristic search. This is due to: faster
machines with more memory, better heuristics, and better search methods. Of these three,
by far, the largest improvements come from better heuristics.

1As explained later, this incremental approach is already inherent to IDA*, and can be applied to A*
with reasonable overhead.
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5.5.1 Heuristics for Atomix

As is often the case, a heuristic for Atomix can be devised by examining a model with
relaxed restrictions. We drop the condition that an atom slides as far as possible: it may
stop at any closer position. These moves are calledgeneralized moves.2 In order to obtain
an easily computable heuristic, we also allow that an atom may also pass through other
atoms or share a place with another atom. The goal distance in this model can be summed
up for all atoms to yield an admissible heuristic for the original problem.

The following properties are immediate consequences of the definition.

Property 1 The heuristic is admissible.

Property 2 Theh-values of child states can only differ from that of the parent state by0,
+1 or �1.

Property 3 The heuristic ismonotone(consistent) , i. e., thef -value of a child state
cannot be lower than thef -value of the parent state.

Apart from this somewhat obvious heuristic, it proved to be pretty hard to make any
improvements. Two ideas were considered, but not implemented due to their limited
applicability:

If an atom needs a “stopper” at a certain position to make a turn for each optimal path,
but no optimal path of any atom has an intermediate position at the stopper position,h

can be incremented by one.
If an atom is alone in a “cave”, for some positions, one or two moves can be added to

the heuristic (see the example below). A “cave” is an area that contains no goal position
and has only one entry; if an atom is alone in there, it cannot use any stoppers unless
another atom leaves its optimal path. This heuristic has a greater potential, since it can
be added up admissibly for each cave. Unfortunately, only a few levels from our test set
contain caves which could yield improved heuristics.

2 2 0 1 1

0 0 0

0

Figure 5.3: An example for the “cave”-heuristic: if only one atom is in the cave, the
number denoted on its square can be added to the heuristic estimate. For example, an
atom on the light grey square has to take the path marked with a solid line, instead of
the optimal path of generalized moves marked with a dashed line, which is two moves
shorter.

2The variant of Atomix which uses generalized moves has an undirected search graph. Atomix with
generalized moves on ann� n board is also NP-hard but is in PSPACE.
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5.5.2 A*

A* is one of the oldest heuristic search algorithms [161]. It is very time-efficient, but
needs an exponential amount of memory. A* remembers all states ever encountered,
which is the reason for its exponential space complexity. A priority queue holds all states
that have not yet been expanded. It is sorted by thef -value of the states. Nodes are
popped from the queue and expanded afterwards. The children are inserted into the queue
or discarded if they were already encountered. Sometimes, the same state is reached with
a lowerg-value; in that case, its entry in the state table has to be updated and it will be
re-inserted into the queue. With an admissible heuristic, A* will always find an optimal
solution.

The state table is usually implemented as a hash table for fast access and low mem-
ory overhead. The priority queue can be implemented with a bucket for eachf -value,
containing all open states with thatf -value. In Sect. 5.6.2, we present an alternative
implementation that only needs the state table and does without a priority queue.

5.5.3 IDA*

Iterative Deepening A* (IDA*) (see [213]) was the first algorithm that allowed finding
optimal solutions to the 15-puzzle. IDA* performs a series of depth-first searches, with
an increasing move limit. The heuristic is used to prune subtrees where it is known that
the bound will be exceeded, since thef -value is larger than the bound. Each iteration will
visit all nodes encountered in the previous iteration again; but, since the majority of nodes
will be generated in the last iteration, this does not affect the time complexity.

IDA* uses no memory except for the stack, so its memory use is linear in the search
depth. Also, since it needs no intricate data structures, it can be implemented very effi-
ciently. But of course, this comes at a price: IDA* does not detecttranspositionsin the
search graph. If a state is encountered that has already been expanded and dismissed, it
will be expanded again, possibly resulting in the re-evaluation of a huge subtree. There
are two approaches to lessen this weakness: use of problem specific knowledge and use
of memory.

Pruning the Search Space. Several techniques are known for pruning, e. g., predeces-
sor elimination, which disallows to take back moves immediately. For games with undi-
rected underlying graphs like the 15-puzzle, this is an obvious optimization. For Atomix,
it can still be applied, since pushing an atom into the opposite direction immediately after
a move always yields the same state as pushing it in that direction in the first place.

Move Pruning. When examining a solution move sequence for an Atomix level, one
notices that many, though not all moves could be interchanged. Interchanging moves is
not possible in four cases, as is explained in Fig. 5.4.

The idea is to check if a generated move is independent of the previous move (i. e.,
applying them in reversed order would yield the same state) and, if they are independent,
to impose an arbitrary order (the atom with the lower number must move first). This
scheme has proven to be very efficient in avoiding transpositions, reducing running time
by several orders of magnitudes.
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(3)

(1)

(2)

(4)

previous move

Figure 5.4: There are four cases where two moves are dependent, i. e., their order cannot
be interchanged: (1) The current atom would have stopped the previously moved atom
earlier. (2) The current atom uses the previously moved atom as a stopper. (3) The current
atom would stop earlier if the previously moved atom had not been moved. (4) The current
atom was the stopper of the previously moved atom.

5.5.4 Partial IDA*

Analogously to the two-player game search, atransposition tablecan be used to avoid
re-expanding states [305]. States are inserted into a hash table together with theirg-value
as they are generated. Then, for each newly generated state, it is looked up whether it has
already been expanded with the same or a lowerg-value so it can be pruned. If memory
was unlimited, this would avoid all possible transpositions. Many schemes have been
proposed for proper management of the transposition table with limited memory [90];
our implementation simply refuses to insert states into an exhausted table.

A lot of memory can be saved withPartial IDA* [109, 111]. This idea originates in
the field ofprotocol verification, where the objective is to generate all reachable states and
check if they fulfill a certain criterion. A hash table is used to avoid re-expanding states.
Just as for a single-agent search, memory is the limiting resource. Therefore, Holzmann
suggestedbit-state hashing[188]: instead of storing the complete state, only a single bit
corresponding to the hash value is set, indicating that this state has been visited before.
Because of the possibility of hash collisions, states might get pruned erroneously, so this
method can give false positives. When applied to IDA*, states on optimal paths could get
pruned, so the method looses admissibility, but is still useful to determine upper bounds
and likely lower bounds.

For Atomix, initial experiments with Partial IDA* rarely found optimal solutions. The
reason is that just knowing a state has been encountered before is not sufficient, because
if we encounter it with a lowerg-value than previously, it needs to be expanded again.
To achieve this, we includeg into the hash value and look up withg andg � 1. This
means transpositions with betterg will not be found in the table and expanded, as desired.
Transpositions withg worse by 2 or more will also not be detected; experiments showed
that they are rare and the resulting subtrees are shallow, though.

By probing twice (withg andg � 1), we increase the likelihood of hash collisions.
For example, if we declare the table to be full if every 8th bit is set, we have an effective

memory usage of 1 byte per state, and a collision probability of1 �
�
7

8

�2
= 23%. To

improve the collision resistance, one can calculate a second hash value and always set
and check two bits, effectively doubling memory usage but lowering collision probability
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to 1�
�
63

64

�2
= 3%.

A related scheme with better memory efficiency and collision resistance is
hash compaction[350]. It utilizes a hash table where, instead of the complete state, only
a hash signature is saved. In our implementation, we use 1 byte for the signature, and

probe forg andg � 1. This way, we have a collision probability of1 �
�
255

256

�2
= 0:8%,

so even if there is only a single possible solution of length 30, the probability of finding it

is
��

255

256

�2�30
= 79%; and in fact, all 47 solutions found this way were optimal.

Different policies are possible in the case of a hash collision detected by differing
signatures. Usual hash table techniques like chaining or open addressing can be applied.
We tried a much simpler scheme: the old entry gets overwritten. This can be seen as a
special case of thet-limited schemeproposed by Stern and Dill [331] witht = 1. One
disadvantage of this scheme is that entries will already get overwritten before the table
is completely full. Since for the “interesting” (difficult) cases, the state table will fill up
soon anyway, this effect is limited.

5.5.5 Backward Search

Many puzzles aresymmetric, i. e., the set of children of a state equals the set of possible
parents. This is equivalent to the state space graph being undirected. As already men-
tioned, this is the case for the 15-puzzle, but not for Sokoban or Atomix. For Atomix,
it is simple to find all potential parent states, though: they can be found by applying all
legalbackward moves. In a backward move, an atom being pushed may stop moving at
any position, but it can only be pushed in a direction if it is adjacent to an obstacle in the
oppositedirection.

Formally defined, a backward move is a triple of a positionp, a directiond, and a
distance�. It is legal for a states if there is an atom(a; p) in s, and(px � dx; py � dy) is
not empty, and(px + �0dx; py + �0dy) is empty for all0 < �0 � �. Applying a backward
move is analogous to applying a forward move.

Expanding states for backward Atomix is about as easy as for forward Atomix, and
the same heuristic can be used, since the generalized moves from Sect. 5.5.1 comprise
backward moves. Hence, the crucial point is the branching factor.

Lemma 1 The sum of possible forward moves and the sum of possible backward moves
of all states of a level are identical and, therefore, the average number of children for
backwards expansion is exactly the same as for forward expansion.

Proof: We first show the equality for a single atom by structural induction. On a board
with no empty squares, the equation is trivially true. We show it also remains true when
removing an obstacle. The change in the number of moves depends on the pattern of
empty squares around the obstacle being removed; we examine all possible patterns (up
to symmetry, and omitting the trivial case of 4 obstacles), as illustrated in Fig. 5.5, with
a; b; c andd being the number of empty squares in each direction.

(a) 3 adjacent obstacles:1� b + b+ 1 = 1 + 1 = 2.

(b) 2 adjacent obstacles, where the obstacles are diagonally adjacent:
1� b+ b + d+ 2� d+ 1 = 1 + 2 + 1 = 4.
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Figure 5.5: The light grey obstacle in the center is being removed. The upper left corner of
each square denotes the number of backward moves that are lost or gained by this change
for an atom on this square. The lower right corner denotes the number of new forward
moves. Squares which are skipped in the sketches (denoted by dots) have zero gain with
respect to both forward and backward moves.
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(c) 2 adjacent obstacles, where the obstacles are opposite:
c+ 2� b+ 0� c+ b + 2 = 1 + 2 + 1 = 4.

(d) 1 adjacent obstacle:c+ 2� b + d+ 1� c + b+ 2� d+ 1 = 1 + 3 + 1 + 1 = 6.

(e) no adjacent obstacles:
d+ 2� a+ c+ 2� b+ 0� c+ b+ 2� d+ a+ 2 = 1 + 1 + 4 + 1 + 1 = 8.

Now, let us consider the contribution of one atom to the possible moves. Each possible
distribution of the other atoms can be considered as a pattern of obstacles. With the
observation just made, the sum of possible forward and backward moves is the same
when summing up over all possible positions of the considered atom; so the sum over all
possible distributions of the other atoms is also identical and, since this equality holds for
each atom, the lemma is true.

In practice, the branching factors can differ substantially, since the generated states
are not random; the move operators make certain states more likely than others, and
states close to the goal where (by convention) all atoms are close together are much more
likely. In our experiments, we observed differences up to 30% in forward and backward
branching factors.

5.6 Implementation

5.6.1 Identical Atoms

The presence of undistinguishable atoms (i. e., atoms with identical atom types) poses
problems for an implementation: The heuristic cannot simply perform a table lookup to
find a lower bound for an atom, since it is not clear which atom should go to which goal
position. To find a good lower bound, aminimum cost perfect matchinghas to be done
for each set of identical atoms to find the cheapest assignment of atoms to goal positions.
Minimum cost perfect matching for a bipartite graph can be solved using minimum cost
augmentation in time quadratic in the number of identical atoms [226].

5.6.2 A*

An implementation of A* needs the following operations: check if a state has been en-
countered before and with whichg-value, find an open state with optimalf -value, mark
an open state as closed, and update theg-value of a saved state to a lower value.

This is usually implemented with a hash table and a priority queue which stores all
open states. We will show that if the heuristic is monotone, no priority queue is actu-
ally needed: an optimal open state can be found efficiently without any additional data
structures. Our algorithm is easy to implement and time and space efficient.

Initially, the available memory is allocated for two tables: thestate tableand the
hash table. As states are generated, they are appended to the end of the state table; states
never get deleted. The states are tagged with anopen-bit and with theg-value. The hash
table stores a pointer into the state table at the position corresponding to the hash value
of the state; this allows a quick lookup of states. A linear displacement scheme is used to
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resolve hash collisions. The monotonicity of the heuristic implies thatfopt, the currently
optimalf -value of an open state, is also monotone over the run of A*. To find an optimal
open state, a linear search on the state table is performed until an open state withf = fopt

is found. The following proposition shows that this can be done efficiently:

Proposition 3 In A* with a monotone heuristic with a hash table and no additional data
structure, a state with optimalf -value can be found in amortized time O(branching fac-
tor).

Proof: To achieve this, we need to ensure that, for eachfopt-value, when we reach
the end of the state table, we have expanded all states withf = fopt, so we don' t have
to go through the table again. This can be ensured by not upgrading a state in place if
it is re-encountered with lowerg, but to append it at the end like new states. States with
f < fopt will never be reopenened [115], so this suffices to ensure the desired property.

Two kinds of states will be skipped because theirf -value differs fromfopt:

� Closed states withf < fopt. We keep a pointer to the very first open state, so only
closed states withf = fopt�1 or f = fopt�2 have to be skipped; for any branching
factor greater than 1, this can be at most twice as many as states withf = fopt and,
with a higher branching factor, their number even becomes negligible.

� Open states withf > fopt. They must have been generated by states withf = fopt

or f = fopt� 1, so their number is linear in the number of states withf = fopt and
the branching factor.

Our implementation with this scheme is several times faster than a naïve implementa-
tion using the C++ STLpriority_queue andset , which are based on heaps, resp.,
binary trees, with a memory overhead of about 30 bytes per state. On a Pentium III with
500 MHz, it can generate around a million states per second.

A disadvantage of this scheme is that it is not possible to further discriminate among
optimal states. A common idea to speed up A* is to sort among states with equalf -values
those closer to the top that are further advanced.

To trade time for memory, the A* implementation works iteratively: similarly to
IDA*, an artificial upper bound on the number of moves is applied and, if thef -value
of a generated state exceeds this bound, it is pruned. If then the search fails, it is restarted
with the bound increased by one. This also allows us to take multiple goal positions into
account. Due to the exponential behavior, this slows down the search only by a constant
factor.

5.7 Conclusions

Atomix proved itself to be a challenging puzzle; this is corroborated by the recent
PSPACE-completeness proof. The classic algorithms A* and IDA* have been imple-
mented and adapted to the problem domain; we have found optimal solutions for many
problems from our benchmark set. Our A* implementation with a single data structure
for theopenandclosedset can solve “smaller” puzzles very efficiently. With Partial IDA*
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based on hash compaction, we have presented a memory-bounded scheme that makes ex-
cellent use of the available memory and has low runtime overhead; improved bounds on
the error probability would be useful, though. Further progress is likely to come from
improved heuristics rather than from better search methods, since our current heuristic is
rather uninformed. We have shown that while the search graph is directed, the backward
branching factor does not differ from the forward branching factor; this makes Atomix an
interesting testbed for bidirectional algorithms.

5.8 Experimental Results

The experiments were performed on a Pentium III with 500 MHz, utilizing 128 MB
of main memory and imposing a time limit of one hour. The source can be found at
http://www-fs.informatik.uni-tuebingen.de/ ~hueffner .

Level Atoms Goals Man A* IDA* IDA*-tt IDA*-r PIDA*

Atomix 01 3 17 = 13 = 13 = 13 = 13 = 13
Atomix 02 5 6 = 21 = 21 = 21 = 21 = 21
Atomix 03 6 4 = 16 = 16 = 16 = 16 = 16
Atomix 04 6 2 � 23 � 22 = 23 = 23 = 23
Atomix 05 9 2 � 34 � 34 � 35 � 35 � 37
Atomix 06 8 4 = 13 = 13 = 13 = 13 = 13
Atomix 07 9 1 � 25 � 26 = 27 � 25 = 27
Atomix 09 7 1 = 20 = 20 = 20 = 20 = 20
Atomix 10 10 2 � 28 � 28 � 28 � 27 � 30
Atomix 11 5 14 = 14 = 14 = 14 = 14 = 14
Atomix 12 9 4 = 14 = 14 = 14 = 14 = 14
Atomix 13 8 1 = 28 = 28 = 28 = 28 = 28
Atomix 15 12 1 � 35 � 36 � 37 � 37 � 37
Atomix 16 9 2 � 26 � 26 � 27 � 25 � 28
Atomix 18 8 4 = 13 = 13 = 13 = 13 = 13
Atomix 22 8 3 � 24 � 24 � 25 � 23 � 27
Atomix 23 4 20 = 10 = 10 = 10 = 10 = 10
Atomix 26 4 17 = 14 = 14 = 14 = 14 = 14
Atomix 28 10 1 � 28 � 29 � 29 � 26 � 29
Atomix 29 8 2 = 22 = 22 = 22 = 22 = 22
Atomix 30 8 4 = 13 = 13 = 13 = 13 = 13
Unitopia 01 3 41 11 = 11 = 11 = 11 = 11 = 11
Unitopia 02 4 5 22 = 22 = 22 = 22 = 22 = 22
Unitopia 03 5 12 16 = 16 = 16 = 16 = 16 = 16
Unitopia 04 6 5 20 = 20 = 20 = 20 = 20 = 20
Unitopia 05 6 7 21 = 20 = 20 = 20 = 20 = 20
Unitopia 06 9 2 33 � 29 � 30 � 30 � 30 � 31
Unitopia 07 10 1 36 � 33 � 33 � 34 � 32 � 35
Unitopia 08 7 4 25 = 23 = 23 = 23 = 23 = 23
Unitopia 10 8 2 41 � 36 � 36 � 37 � 38 � 40
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Man Best result found by participants of an online game
IDA*-tt IDA* with transposition table
IDA*-r IDA* backward search with transposition table
PIDA* Partial IDA* with hash compaction to 1 byte

Time performance. A* runs out of memory usually much before a runtime of one hour
and, so, can establish less stringent bounds. The advantage of using a transposition table
for IDA* outweighs its runtime overhead and yields better results in all cases. Reverse
search performs similar to forward search, as founded by the theroretical findings. Partial
IDA* consistently beats IDA* with conventional hash tables because of better memory
utilization and less runtime overhead. Note that most of these differences are expected to
be more significant if the time limit is increased.
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Abstract

In this paper we present a general-purposed algorithm for transforming a planning
problem specified in Strips into a concise state description for single state or symbolic
exploration.

The process of finding a state description consists of four phases. In the first phase
we symbolically analyze the domain specification to determine constant and one-way
predicates, i.e. predicates that remain unchanged by all operators or toggle in only one
direction, respectively.

In the second phase we symbolically merge predicates which lead to a drastic re-
duction of state encoding size, while in the third phase we constrain the domains of the
predicates to be considered by enumerating the operators of the planning problem. The
fourth phase combines the result of the previous phases.

89
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6.1 Introduction

Single-state space search has a long tradition in AI. We distinguish memory sensitive
search algorithms like A* [161] that store the explored subgraph of the search space and
approaches like IDA* and DFBnB [213] that consume linear space with respect to the
search depth. Especially on current machines memory sensitive algorithms exhaust main
memory within a very short time.

On the other hand linear search algorithms explore the search tree of generating paths,
which might be exponentially larger than the underlying problem graph. Several tech-
niques such as transposition tables [305], finite state machine pruning [337], and heuristic
pattern databases [75] have been proposed. They respectively store a considerable part
of the search space, exhibit the regular structure of the search problems, and improve
the lower bound of the search by retrieving solutions to problem relaxations. Last but
not least, in the last decade several memory restricted algorithms have been proposed
[90, 311]. All memory restricted search approaches cache states at the limit of main
memory.

Since finite state machine pruning is applicable only to a very restricted class of sym-
metric problems, single-state space search algorithms store millions of fully or partially
defined states. Finding a good compression of state space is crucial. The first step is to
efficiently encode each state; if we are facing millions of states we are better off with a
small state description length.

The encoding length is measured in bits. For example one instance to the well-known
Fifteen Puzzle can be compressed to 64 bits, 4 bits for each tile.

Single-state algorithms have been successful in solving “well-informed domains”, i.e.
problems with a fairly elaborated lower bound [199, 215], for good estimates lead to
smaller parts of the search tree to be considered. In solving one specific problem, man-
ually encoding the state space representations can be devised to the user. In case of AI
planning, however, we are dealing with a family of very different domains, merely shar-
ing the same, very general specification language. Therefore planners have to be general-
purposed. Domain-dependent knowledge has either to be omitted or to be inferred by the
machine.

Planning domains usually have large branching factors, with the branching factor be-
ing defined as the average number of successors of a state within planning space. Due
to the resulting huge search spaces planning resists almost all approaches of single-state
space search. As indicated above automated finite state pruning is generally not available
although there is some promising research on symmetry leading to good results in at least
some domains [130].

On the other hand, domain-independent heuristic guidance in form of a lower bound
can be devised, e.g. by counting the number of facts missing from the goal state. How-
ever, these heuristics are too weak to regain tractability. Moreover, new theoretical results
in heuristic single-state search prove that while finite state machine pruning can effec-
tively reduce the branching factor, in the limit heuristics cannot [104, 219]. The influence
of lower bounds on the solution length can best be thought of as a decrease in search
depth. Therefore, even when incorporated with lower bound information, the problem
of large branching factors when applying single-state space searching algorithms to plan-
ning domains remains unsolved. As a solution we propose a promising symbolic search
technique also favoring a small binary encoding length.
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6.2 Symbolic Exploration

Driven by the success of model checking in exploring search spaces of1020 states and
beyond, the new trend in search is reachability analysis [259]. Symbolic exploration by-
passes the typical exponential growth of the search tree in many applications. However,
the length of the state description severely influences the execution time of the relevant al-
gorithms. In symbolic exploration the rule of thumb for tractability is to choose encodings
of not much more than 100 bits.

Edelkamp and Reffel have shown that and how symbolic exploration leads to promis-
ing results in solving current challenges to single-agent search such as the Fifteen Puzzle
and Sokoban [112]. Recent results show that these methods contribute substantial im-
provements to deterministic planning [113].

The idea in symbolically representing a setS is to devise a boolean function�S with
input variables corresponding to bits in the state description that evaluates to true if and
only if the inputa is the encoding of one elements in S. The drawback of choosing
boolean formulae to describe�S is that satisfiability checking is NP-complete. The unique
representation with binary decision diagrams (BDDs) can grow exponentially in size, but,
fortunately, this characteristic seldom appears in practice [50].

BDDs allow to efficiently encode sets of states. For example letf0; 1; 2; 3g be the set
of states encoded by their binary value. The characteristic function of a single state is the
minterm of the encoding, e.g.�f0g(x) = x1^x2. The resultingBDD has two inner nodes.
The crucial observation is that theBDD representation ofS increases by far slower than
jSj. For example theBDD for �f0;1g = x1 consists of one internal node and theBDD for
�f0;1;2;3g is given by the 1-sink only.

An operator can also been seen as an encoding of a set. In contrast to the previous
situation a member of the transition relation corresponds to a pair of states(s0; s) if s0 is
a predecessor ofs. Subsequently, the transition relationT evaluates to 1 if and only ifs0

is a predecessor ofs. Enumerating the cross product of the entire state space is by far too
expensive. Fortunately, we can set upT symbolically by defining which variables change
due to an operator and which variables do not.

Let Si be the set of states reachable from the start state ini steps, initialized byS0 =
fsg. The following equation determines�Si given both�Si�1

and the transition relation:
�Si(s) = 9s0 (�Si�1

(s0) ^ T (s0; s)). In other words we perform breadth first search with
BDDs. A state s belongs toSi if it has a predecessor in the setSi�1 and there exists an
operator which transformss0 into s. Note that on the right hand side of the equation�

depends ons0 compared tos on the left hand side. Thus, it is necessary to substituteswith
s0 in theBDD for �Si. Fortunately, this substitution corresponds to a simple renaming of
the variables.

Therefore, the key operation in the exploration is therelational product9v(f ^ g) of
a variable vectorv and two boolean functionsf andg. Since existential quantification of
one boolean variablexi in the boolean functionf is equal to disjunctionf jxi=0_f jxi=1, the
quantification ofv results in a sequence of subproblem disjunctions. Although computing
the relational product is NP-hard in general, specialized algorithms have been developed
leading to an efficient determination for many practical applications.

In order to terminate the search we test, if a state is contained in the intersection of
the symbolic representation of the setSi and the set of goal statesG. This is achieved by
evaluating the relational productgoalReached= 9x (�Si ^ �G). Since we enumerated
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S0; : : : ; Si�1 in casegoalReachedevaluates to 1,i is known to be the optimal solution
length.

6.3 Parsing

We evaluate our algorithms on the AIPS' 98 planning contest problems1, mostly given
in Strips [126]. An operator in Strips consists of pre- and postconditions. The latter,
so-called effects, divide into an add list and a delete list.

Extending Strips leads to ADL with first order specification of conditional ef-
fects [289] and PDDL, a layered planning description domain language. Although sym-
bolic exploration and the translation process described in this paper are not restricted to
Strips, for the ease of presentation we will keep this focus.

A PDDL-given problem consists of two parts. In the domain specific part, predicates
and actions are defined. A predicate is given by its name and its parameters, and actions
are given by their names, parameters, preconditions, and effects. One example domain,
Logistics, is given as follows2.

(define (domain logistics-strips)
(:predicates (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc)

(AIRPLANE ?plane) (CITY ?city) (AIRPORT ?airport)
(at ?obj ?loc)
(in ?obj ?obj)
(in-city ?obj ?city))

(:action LOAD-TRUCK
:parameters (?obj ?tru ?loc)
:precondition (and (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc)

(at ?tru ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?tru)))

(:action UNLOAD-TRUCK
:parameters (?obj ?tru ?loc)
:precondition (and (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc)

(at ?tru ?loc) (in ?obj ?tru))
:effect (and (not (in ?obj ?tru)) (at ?obj ?loc)))

(:action DRIVE-TRUCK
:parameters (?tru ?loc-from ?loc-to ?city)
:precondition (and (TRUCK ?tru) (LOCATION ?loc-from)

(LOCATION ?loc-to) (CITY ?city)
(at ?tru ?loc-from)
(in-city ?loc-from ?city)
(in-city ?loc-to ?city))

:effect (and (not (at ?tru ?loc-from)) (at ?tru ?loc-to)))
...
)

1http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html .
2Dots (... ) are printed if source fragments are omitted.
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The problem specific part defines the objects to be dealt with and describes initial and
goal states, consisting of a list of facts (instantiations to predicates).

(define (problem strips-log-x-1)
(:domain logistics-strips)
(:objects package6 package5 package4 package3 package2 package1

city6 city5 city4 city3 city2 city1
truck6 truck5 truck4 truck3 truck2 truck1
plane2 plane1
city6-1 city5-1 city4-1 city3-1 city2-1 city1-1
city6-2 city5-2 city4-2 city3-2 city2-2 city1-2)

(:init (and (OBJ package1) (OBJ package2)
...
(at package6 city3-1)
... )

)
(:goal (and (at package6 city1-2)

... )
)

)

Using current software development tools, parsing a PDDL specification is easy. In
our case we applied the Unix programsflex andbison for lexically analyzing the input
and parsing the result into data structures. We used the standard template library, STL for
short, for handling the different structures conveniently. The information is parsed into
vectors of predicates, actions and objects. All of them can be addressed by their name or
a unique numeric identifier, with STL maps allowing conversions from the former ones
to the latter ones. Having set up the data structures, we are ready to start analyzing the
problem.

6.4 Constant and One-Way Predicates

A constant predicateis defined as a predicate whose instantiations are not affected by
any operator in the domain. Since Strips does not support types, constant predicates are
often used for labeling different kinds of objects, as is the case for theTRUCKpredicate
in the Logistics domain. Another use of constant predicates is to provide persistent links
between objects, e.g. thein-city predicate in the Logistics domain which associates
locations with cities. Obviously, constant predicates can be omitted in any state encoding.

Instantiations ofone-waypredicates do change over time, but only in one direction.
There are no one-way predicates in the Logistics domain; for an example consider the
Grid domain, where doors can be opened with a key and not be closed again. Thus
locked andopen are both one-way predicates. Those predicates need to be encoded
only for those objects that are not listed as open in the initial state. In PDDL neither
constant nor one-way predicates are marked and thus both have to be inferred by an al-
gorithm. We iterate on all actions, keeping track of all predicates appearing in any effect
lists. Constant predicates are those that appear in none of those lists, one-way predicates
are those that appear either as add effects or as delete effects, but not both.
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6.5 Merging Predicates

Consider the Logistics problem given above, which serves as an example for the remain-
ing phases. There are 32 objects, six packages, six trucks, two airplanes, six cities, six
airports, and six other locations. A naive state encoding would use a single bit for each
possible fact, leading to a space requirement of6 � 32+3 � 322 = 3264 bits per state, since
we have to encode six unary and three binary predicates. Having detected constant pred-
icates, we only need to encode theat andin predicates, thus using only2 � 322 = 2048
bits per state. Although this value is obviously better, it is far from being satisfying.

A human reader will certainly notice that it is not necessary to consider all instanti-
ations of theat predicate independently. If a given packagep is at locationa, it cannot
be at another locationb at the same time. Thus it is sufficient to encodewherep is lo-
cated, i.e. we only need to store an object number which takes onlydlog 32e = 5 bits per
package. How can such information be deduced from the domain specification? To tell
the truth, this is not possible, since the information does not only depend on the operators
themselves but also on the initial state of the problem. If the initial state included the facts
(at p a) as well as(at p b), thenp could be at multiple locations at the same time.

However, we can try to prove that the number of locations a given object is at can-
not increase over time. For a given state, we define#at2(p) as the number of ob-
jects q for which the fact(at p q) is true. If there is no operator that can increase
this value, then#at2(p) is limited by its initial value, i.e. by the number of corre-
sponding facts in the initial state. In this case we say thatat is balancedin the sec-
ond parameter. Note that this definition can be generalized forn-ary predicates, defin-
ing #predi(p1; : : : ; pi�1; pi+1; : : : ; pn) as the number of objectspi for which the fact
(pred p1 : : : pn) is true. If we knew thatat was balanced in the second parameter,
we would be facing one of the following situations:

� #at2(p) = 0: We have to store no information about the location ofp.

� #at2(p) = 1: The location ofp can be encoded by using an object index, i.e. we
needdlog oe bits, whereo denotes the number of objectsp can be assigned to in our
problem.

� #at2(p) > 1: In this case, we stick to naive encoding.

So can we prove that the balance requirement forat is fulfilled? Unfortunately we
cannot, since there are some operators that increase#at2, namely theUNLOAD-TRUCK
operator. However, we note that whenever#at2(p) increases,#in2(p) decreases, and
vice versa. If we were to mergeat and in into a new predicateat+in , this predicate
would be balanced, since#(at + in)2 = #at2 +#in2 remains invariant no matter what
operator is applied.

We now want to outline the algorithm for checking the balance of#predi for a given
predicatepred and parameteri: For each actiona and each of its add effectse, we check
if e is referring to predicatepred . If so, we look for a corresponding delete effect, i.e.
a delete effect with predicatepred and the same argument list ase, except for thei-th
argument which is allowed to be (and normally will be) different. If we find such a delete
effect, it balances the add effect, and there is no need to worry.

If there is no corresponding delete effect, we search the delete effect list for any effect
with a matching argument list (again, we ignore parameteri), no matter what predicate
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it is referring to. If we do not find such an effect, our balance check fails. If we do
find one, referring to predicateother , then we recursively call our algorithm with the
merged predicatepred+other . Note that “matching argument list” does not necessarily
mean thatother takes its arguments in the same order aspred , which makes the actual
implementation somewhat more complicated.

It is even possible to matchother if that predicate takes one parameter less than
pred , since parameteri does not need to be matched. This is a special case in which
#otheri(p1; : : : ; pi�1; pi+1; : : : ; pn) can either be 1 or 0, depending on whether the corre-
sponding fact is true or not, since there is no parameterpi here. Examples of this situation
can be found in the Gripper domain, wherecarry ?ball ?gripper can be merged
with free ?gripper .

If there are several candidates forother , all of them are checked, maybe proving
balance of different sets of merged predicates. In this case, all of them are returned by
the algorithm. It is of course possible that more than two predicates are merged in order
to satisfy a balance requirement since there can be multiple levels of recursion. This
algorithm checks thei-th parameter of predicatepred . Executing it for all predicates in
our domain and all possible values ofi and collecting the results yields an exhaustive list
of balanced merged predicates.

In the case of the Logistics domain, our algorithm exhibits that mergingat and in
gives us the predicateat+in which is balanced in the second parameter. Looking at the
initial facts stated in the problem specification, we see that we can store the locations of
trucks, airplanes and packages by using six bits each, since#(at + in)2 evaluates to one
for those objects, and that we do not need to encode anything else, since the other objects
start off with a count of zero.

Note thatdlog 32e = 5 bits are not sufficient for encoding locations at our current level
of information, since we not only have to store the index of the object we are referring
to, but also which of the two predicatesat or in is actually meant. Thus our encoding
size can be reduced to(6 + 6 + 2) � 6 = 84 bits, which is already a reasonable result and
sufficient for many purposes.

6.6 Exploring Predicate Space

However, we can do better. In most cases it is not necessary to allow the full range of
objects for the balanced predicates we have detected, since e.g. a package can only be at
a location or in a vehicle (truck or airplane), but never at another package, in a location,
and so on.

If a fact is present in the initial state or can be instantiated by any valid sequence of
operators, we call itreachable, otherwise it is calledunreachable.

Many facts can be proven to be unreachable directly from the operators themselves,
since actions likeLOAD-TRUCKrequire the object the package is put into to be a truck.
However, there are some kinds of unreachable facts we do not want to miss that cannot
be spotted that way.

For example,DRIVE-TRUCKcan only move a truck between locations in the same
city, since for a truck to move froma to b, there must be a cityc, so that(in-city a c)

and(in-city b c) are true. Belonging to the same city is no concept that is modeled
directly in our Strips definition.
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For those reasons, we do not restrict our analysis to the domain specification and
instead take the entire problem specification into account. What we want to do is an
exploration of predicate space, i.e. we try to enumerate all instantiations of predicates
that are reachable by beginning with the initial set of facts and extending it in a kind of
breadth-first search.

Note that we are exploring predicate space, not search space. We do not store any kind
of state information, and only keep track of which facts we consider reachable. Thus, our
algorithm can do one-side errors, i.e. consider a fact reachable although it is not, because
we do not pay attention to mutual exclusion of preconditions. If a factf can be reached
by an operator with preconditionsg andh, and we already considerg andh reachable,
thenf is considered reachable, although it might be the case thatg andh can never be
instantiated at the same time. This is a price we have to pay and are willing to pay for
reasons of efficiency. Anyway, if we were able to decide reliably if a given combination
of facts could be instantiated at the same time, there would hardly remain any planning
problem to be solved. We tested two different algorithms for exploring predicate space,
Action-Based ExplorationandFact-Based Exploration.

6.6.1 Action-Based Exploration

In the action-centered approach, the set of reachable facts is initialized with the facts
denoted by the initial state. We then instantiate all operators whose preconditions can
be satisfied by only using facts that we have marked as reachable, marking new facts as
reachable according to the add effect lists of the instantiated operators. We then again
instantiate all operators according to the extended set of reachable facts. This process is
iterated until no further facts are marked, at which time we know that there are no more
reachable facts.

Our implementation of the algorithm is somewhat more tricky than it might seem,
since we do not want to enumerate all possible argument lists for the operators we are
instantiating, which might take far too long for difficult problems (there are e.g.847 �
3 � 1013 different possible instantiations for thedrink operator in problem Mprime-14
from the AIPS' 98 competition).

To overcome this problem, we apply a backtracking technique, extending the list of
arguments one at a time and immediately checking if there is an unsatisfied precondition,
in which case we do not try to add another argument. E.g., considering theLOAD-TRUCK
operator, it is no use to go on searching for valid instantiations if the?obj parameter has
been assigned an objecto for which (OBJo) has not been marked as reachable.

There is a second important optimization to be applied here: Due to the knowledge we
already have accumulated, we know thatOBJ is a constant predicate and thus there is no
need to dynamically check if a given object satisfies this predicate. This can be calculated
beforehand, as well as other preconditions referring to constant predicates.

So what we do is to statically constrain the domains of the operator parameters by
using our knowledge about constant and one-way predicates. For each parameter, we pre-
compute which objects possibly could make the corresponding preconditions true. When
instantiating operators later, we only pick parameters from those sets. Note that due to
this pre-computation we do not have to check preconditions concerning constant unary
predicates at all during the actual instantiation phase.

For one-way predicates, we are also able to constrain the domains of the corresponding
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parameters, although we cannot be as restrictive as in the case of constant predicates.
E.g., in the Grid example mentioned above, there is no use in trying to open doors that are
already open in the initial state. However, we cannot make any assumption about doors
that are closed initially.

There are two drawbacks of the action-based algorithm. Firstly, the same instantia-
tions of actions tend to be checked multiple times. If an operator is being instantiated
with a given parameter list, it will be instantiated again in all further iterations. Secondly,
after a few iterations, changes to the set of reachable facts tend to become smaller and
less frequent, but even if only a single fact is added to the set during an iteration, we
have to evaluate all actions again, which is bad. Small changes should have less drastic
consequences.

6.6.2 Fact-Based Exploration

Therefore we shift the focus of the exploration phase from actions to facts. Our second
algorithm makes use of a queue in which all facts that are scheduled to be inserted into
the set of reachable facts are stored. Initially, this queue consists of the facts in the initial
state, while the set of reachable facts is empty. We then repeatedly remove the first fact
f from the queue, add it to the set of reachable facts and instantiate all operators whose
preconditions are a subset of our set of reachable factsand includef . Add effects of these
operators that are not yet stored in either the set of reachable facts or the fact queue are
added to the back of the fact queue. This process is iterated until the fact queue is empty.
Although it does not look as if much was gained at first glance, this algorithm is a big
improvement to the first one.

The key difference is that when instantiating actions, only those instantiations need
to be checked for whichf is one of the preconditions, which means that we canbind all
parameters appearing in that precondition to the corresponding values off , thus reducing
the number of degrees of freedom of the argument lists. Of course, the backtracking and
constraining techniques mentioned above apply here as well. The problem of multiple
operator instantiations does not arise. We never instantiate an operator that has been
instantiated with the same parameter list before, since we requiref to be one of the
preconditions, and in previous iterations of the loop,f was not regarded a reachable fact.

Returning to our Logistics problem, we now know that a package can only be at a
location, in a truck or in an airplane. An airplane can only be at an airport, and a truck
can only be at a location which must be in the same city as the location the truck started
at.

6.7 Combining Balancing and Exploration

All we need to do in order to receive the encoding we are aiming at is to combine the re-
sults of the previous two phases. Note that these results are very different: While predicate
space exploration yields information about the facts themselves, balanced predicates state
information about therelationshipbetween different facts. Both phases are independent
of each other, and to minimize our state encoding, we need to combine the results.

In our example, this is simple. We have but one predicate to encode, theat+in pred-
icate created in the merge phase. This leads to an encoding of 42 bits (cf. Table 6.1),
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(5 bits) package6
at city6-1 city5-1 city4-1 city3-1 city2-1 city1-1

city6-2 city5-2 city4-2 city3-2 city2-2 city1-2
in truck6 truck5 truck4 truck3 truck2 truck1

plane2 plane1
...
(5 bits) package1

at city6-1 city5-1 city4-1 city3-1 city2-1 city1-1
city6-2 city5-2 city4-2 city3-2 city2-2 city1-2

in truck6 truck5 truck4 truck3 truck2 truck1
plane2 plane1

(1 bit) truck6
at city6-1 city6-2

...
(1 bit) truck1

at city1-1 city1-2
(3 bits) plane2

at city6-2 city5-2 city4-2 city3-2 city2-2 city1-2
(3 bits) plane2

at city6-2 city5-2 city4-2 city3-2 city2-2 city1-2

Table 6.1: Encoding the Logistics problem 1-01 with 42 bits.

which is the output of our algorithm. However, there are cases in which it is not ob-
vious how the problem should be encoded. In the Gripper domain (constant predicates
omitted) the merge step returns the balanced predicatesat-robby , carry+free , and
at+carry ; at-robby is an original operator, whilecarry+free andat+carry
have been merged.

We do not need to encode each of the merged predicates, since this would mean encod-
ing carry twice. If we had already encodedcarry+free and now wanted to encode
theat+carry predicate for a given objectx, with n facts of the type(at x y) andm
facts of the type(carry x y), we would only needdlog(n + 1)e bits for storing the
information, since we only have to know which of theat -facts is true, or if there is no
such fact. In the latter case, we know that some fact of the type(carry x y) is involved
and can look up which one it is in the encoding ofcarry+free . However, encoding
at+carry first, thus reducing the space needed bycarry+free is another possibility
for encoding states, and is in fact the better alternative in this case. Since we cannot know
which encoding yields the best results, we try them out systematically.

Although there is no need for using heuristics here since the number of conflicting
possibilities is generally very small, we want to mention that as a rule of thumb it is
generally a good idea to encode predicates that cover the largest number of facts first.

Predicates that are neither constant nor appear in any of the balanced merge predicates
are encoded naively, using one bit for each possible fact. Those predicates are rare. In
fact, in the considered benchmark set we only encountered them in the Grid domain, and
there only for encoding thelocked state of doors which obviously cannot further be
compressed.
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6.8 Experimental Results

In this section we provide data on the achieved compression to the state descriptions of
the AIPS' 98 planning competition problems. The problem suite consists of six different
Strips domains, namelyMovie, Gripper, Logistics, Mystery, Mprime, andGrid. In Ta-
ble 6.1 we have exemplarily given the full state description for the first problem in the
Logistics suite. The exhibited knowledge in the encoding can be easily extracted in form
of state invariants, e.g. a package is either a location in a truck or in an airplane, each
truck is restricted to exactly one city, and airplanes operate on airports only.

Table 6.2 depicts the state description length of all problems in the competition. Man-
ually encoding some of the domains and comparing the results we often failed to devise a
smaller state description length by hand.

Almost all of the execution time is spent on exploring predicate space. All the other
phases added together never took more than a second of execution time. The time spent on
exploring predicate space is not necessarily lost. When symbolically exploring planning
space using BDDs, the operators need to be instantiated anyway for building the transition
function, and if we keep track of all operator instantiations in the exploration phase this
process can be sped up greatly.

6.9 Related Work and Conclusion

There is some work in literature dealing with reformulation of planning problems. How-
ever, research mainly concentrates on inferring state invariants instead of minimizing the
state description length.

Fox and Long, for example, have contributed several suggestions that have been im-
plemented in the plannerStan(for STate ANalysis) [243]. The project is based on Graph-
plan [39] and uses a variety of techniques to exhibit domain-dependent information. In
this context the automatic inference of state invariants is important. The pre-processorTim
(Type Inference Module) explores planning domains in order to find typings of untyped
parameters [129]. The information is found by an algorithm starting with a projection of
actions to their parameters establishing so-calledproperties, i.e. predicates together with
the argument position filled by the objects. Given the properties and operators, transition
rules are inferred (e.g.on1 ! on1 in Logistics) which constitute a finites state machine
corresponding to the property exchanges. Types are found by exploration of membership
patterns starting with the initial set.

Given the inferred type specification, in an additional analysis step three major state
invariants can be found:identity invariants, membership invariantsand unique state
invariants. E.g in Blocks Worldwe have invariants of the form8x; y; z on(y; x) ^
on(z; x)! y = z, 8x 9y on(y; x)_clear (x), and8x :(9y on(y; x)^clear (x)) Fur-
thermore,Tim inferscardinality constraintssuch asjfxjat-robot (x)gj = 1 in Gripper.
Tim is sound but not complete, i.e., it will find correct invariants but not all of them. Very
recent unpublished work by Fox and Long focusMobile Analysis, which constructs maps
of locations that can be navigated by a mobile through an operator schema that gives the
mobility.

The problem of finding state invariants is also addressed by Gerevini and Schu-
bert [141]. Their plannerDiscoplandiscovers two kinds of invariance rules,single-valued
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and implicative constraints. For example we haveon(x; y) ^ y 6= z ) :on(x; z) and
on(x; y) ^ y 6= table ) :clear (y) in Blocks World. While Tim improves explo-
rations inGraphplan, in case ofDiscoplanthe invariants improve satisfiability planning
such as inSatplan[204]. Satplan itself is closely related to our approach of symbolically
exploring planning space with BDDs, since both algorithms rely on a specification of the
problem with boolean formulae.

The information gathered byTim andDiscoplancan be compared to our approach
of balanced predicates and constraining the domains of predicates, since the presented
algorithms exhibit domain-dependent knowledge leading to problem invariants as shown
in the given example. As highlighted above the encoding inLogisticsapparently give
identity invariants. membership invariantsandunique state invariantsas well as some
single-valuedand implicative constraints. Evencardinality constraintscan be extracted
from the encodings.

We conjecture that it is possible to extract the same invariants as in Tim and Discoplan
from our encodings and that the knowledge inferred by our algorithms is more detailed,
but there is an extraction process required to obtain the invariants from the encodings and
to prove the assertion. On the other hand we think that the binary encoding length is
probably the best performance measure to compare the inferred knowledge of different
precompilers.

Literature reveals that an information gathering phase prior to search takes time.
Through the efficiency of our approaches the time spent on these efforts is by far shorter
than the time needed for constructing the transition function and the symbolic search
phase itself. Automatically inferring problem-dependent knowledge in planning prob-
lems is challenging but an inevitable necessity for current state space search engines. The
paper contributes efficient new algorithms based on symbolical manipulation and search.
The promising results of BDD-based exploration according to the achieved encodings are
given in [113]. We conclude that our approach to automatically infer compressed state
descriptions mainly tailored to symbolic exploration reflects current research and could
have a strong impact on current planning systems.
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Movie Gripper Logistics Mystery Mprime Grid
problem bits sec bits sec bits sec bits sec bits sec bits sec

1-01 6 <1 11 <1 42 <1 28 <1 32 <1
1-02 6 <1 15 <1 56 <1 117 <1 121 <1
1-03 6 <1 19 <1 98 <1 77 <1 89 <1
1-04 6 <1 23 <1 115 <1 50 <1 63 <1
1-05 6 <1 27 <1 35 <1 86 <1 96 <1
1-06 6 <1 31 <1 174 <1 148 <1 179 <1
1-07 6 <1 35 <1 95 <1 82 <1 126 1
1-08 6 <1 39 <1 254 1 90 <1 142 <1
1-09 6 <1 43 <1 184 <1 83 <1 93 <1
1-10 6 <1 47 <1 162 <1 291 <1 315 <1
1-11 6 <1 51 <1 104 1 52 1 61 1
1-12 6 <1 55 <1 195 <1 42 <1 56 <1
1-13 6 <1 59 <1 287 1 291 <1 323 1
1-14 6 <1 63 <1 282 1 320 1 346 1
1-15 6 <1 67 <1 144 <1 184 <1 210 1
1-16 6 <1 71 <1 205 <1 90 <1 120 <1
1-17 6 <1 75 <1 190 <1 188 <1 202 <1
1-18 6 <1 79 <1 270 1 112 1 160 1
1-19 6 <1 83 <1 256 <1 129 <1 163 <1
1-20 6 <1 87 <1 264 2 144 <1 169 2
1-21 6 <1 300 1 205 <1 230 <1
1-22 6 <1 530 3 234 1 283 1
1-23 6 <1 166 <1 157 <1 186 <1
1-24 6 <1 336 <1 229 <1 263 1
1-25 6 <1 343 5 23 <1 26 <1
1-26 6 <1 382 3 67 <1 86 <1
1-27 6 <1 604 4 63 <1 67 <1
1-28 6 <1 818 <1 38 <1 41 <1
1-29 6 <1 566 1 74 <1 86 <1
1-30 6 <1 470 8 109 <1 117 1
2-01 26 <1 120 <1 67 <1
2-02 28 <1 84 <1 83 <1
2-03 39 <1 269 <1 93 <1
2-04 64 <1 129 <1 107 <1
2-05 63 <1 46 <1 139 1

Table 6.2: Length of state encodings and elapsed time of the AIPS' 98 benchmark set. The
data was generated on a Sun Ultra Sparc Station.
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Abstract

MIPS is a planning system that applies binary decision diagrams to compactly repre-
sent world states in a planning problem and efficiently explore the underlying state space.
It was the first general planning system based on model checking methods. It can han-
dle the STRIPS subset of the PDDL language and some additional features from ADL,
namely negative preconditions and (universal) conditional effects. At the AIPS 2000 con-
ference, MIPS was one of five planning systems to be awarded for “Distinguished Per-
formance” in the fully automated track. This article gives a brief introduction to BDDs
and explains the basic planning algorithm employed by MIPS, using a simple logistics
problem as an example.
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With the Model Checking Integrated Planning System MIPS, model checking has
eventually approached classical AI planning. It was the first planning system based on for-
mal verification techniques that turned out to be competitive with the various Graphplan-
or SAT-based approaches on a broad spectrum of domains.

MIPS uses binary decision diagrams (BDDs, introduced by Bryant [50]) to compactly
store and operate on sets of states. More precisely, it applies reduced ordered binary
decision diagrams, which we will refer to simply as BDDs for the rest of this article.

Its main strength compared to other, similar approaches lies in its precompiling phase,
which infers a concise state representation by exhibiting knowledge that is implicit in the
description of the planning domain [101]. This representation is then used to carry out an
accurate reachability analysis without necessarily encountering exponential explosion of
the representation.

The original version of MIPS, presented at ECP99, was capable of handling the
STRIPS subset of PDDL. It was later extended to handle some important features of
ADL, namely domain constants, types, negative preconditions and universally quantified
conditional effects.

Other extensions include two additional search engines based on heuristics, one incor-
porating a single-state hill-climbing technique very similar to Hoffmann's FF, the other
one making use of BDD techniques, thus combining heuristic search with symbolic repre-
sentations. However, as the former does not contribute many new ideas, its merits mainly
lying in the combination of Hoffmann's heuristic estimate with the preprocessing tech-
niques of MIPS, we won' t dwell on it.

Neither will we say much about the symbolic heuristic search techniques included
in MIPS, namely the BDDA* and Pure BDDA* algorithms, as those were disabled in
the AIPS 2000 planning competition in favor of the original MIPS planning algorithm,
partly because it turned out to perform better on some domains, partly because it always
yields optimal (sequential) plans, which we consider an important property of the planner
that counterbalances some of its weaknesses in performance compared to other current
planning systems such as FF. Readers interested in those parts of the MIPS planning
system are referred to Edelkamp and Helmert [102].

So in the following sections we will cover the core of MIPS, illustrating its basic
techniques with a very simple example.

7.1 BDDs: Why and For What?

MIPS is based on satisfiability checking. This is indeed not a new idea. However, MIPS
was the first SAT-based planning system to make use of binary decision diagrams to avoid
(or at least lessen) the costs associated with the exponential blowup of the Boolean for-
mulae involved as problem sizes get bigger. Since the early days of MIPS, other planning
systems based on BDDs have emerged, most notably Fourman's PROPPLAN and Störr's
BDDPLAN. We believe that the key advantage of MIPS compared to those systems lies
in its preprocessing algorithms.

So it looks like BDDs are currently considered an interesting topic in AI Planning.
Why is that? There is no doubt about the usefulness of this data structure. Nowadays,
BDDs are a fundamental tool in various research areas, such as model checking and the
synthesis and verification of hardware circuits. In AI Planning, they are mainly useful
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Figure 7.1: Two equivalent BDDs, a non-reduced and a reduced one. The “1” sink can
only be reached by following the edges labeled “1” fromA andB, thus the represented
boolean function (A;B) evaluates to true if and only ifA andB are true.

because of their ability to efficiently represent huge sets of states commonly encountered
in state-space search.

Without going into too much detail, a BDD is a data structure for efficiently represent-
ing Boolean functions, mapping bit strings of a fixed length to either “true” or “false”. A
BDD is a directed acyclic graph with a single root node and two sinks, labeled “1” and
“0”, respectively. For evaluating the represented function for a given input, a path is traced
from the root node to one of the sinks, quite similar to the way decision trees are used.
What distinguishes BDDs from decision trees is the use of certain reductions, detecting
unnecessary variable tests and isomorphisms in subgraphs, leading to a unique represen-
tation that is polynomial in the length of the bit strings for many interesting functions.
Figure 7.1 provides an example.

Among the operations supported by current BDD packages are all usual Boolean con-
nectors such as “and” and “or”, as well as constant time satisfiability and equality check-
ing. MIPS uses the "Buddy" package by Jørn Lind-Nielsen, which we considered par-
ticularly useful for our purposes because of its ability to form groups of several Boolean
variables to easily encode finite domain integers.

In MIPS, BDDs are used for two purposes: Representing sets of states and represent-
ing state transitions.

7.2 BDDs for Representing Sets of States

Given a fixed-length binary code for the state space of a planning problem, BDDs can be
used to represent the characteristic function of a set of states (which evaluates to true for
a given bit string, i.e. state, if and only if it is a member of that set). The characteristic
function can be identified with the set itself.

Unfortunately, there are many different possibilities to come up with an encoding of
states in a planning problem, and the more obvious ones seem to waste a lot of space
which often leads to bad performance of BDD algorithms. It seems worthwhile to spend
some effort on finding agoodencoding, so this is where the preprocessing of MIPS enters
the stage.

Let us consider a very simple example of a planning problem where a truck is sup-
posed to deliver a package from Los Angeles to San Francisco. The initial situation in
PDDL notation is given by (PACKAGE package), (TRUCK truck), (LOCATION los-



106 PAPER 7. THE MODEL CHECKING INTEGRATED PLANNING SYSTEM

A

B

C

1 0

0

0

0

1

1
1

B

C

0 1

0

1

0 1

Figure 7.2: BDDs for the characteristic functions of the initial state,init(A;B;C) =

:A ^ :B ^ :C, and of goal states,goal(A;B;C) = :B ^ C.

angeles), (LOCATION san-francisco), (AT package los-angeles), and (AT truck los-ange-
les). Goal states have to satisfy the condition (AT package san-francisco). The domain
provides three action schemata named LOAD to load a truck with a certain package at a
certain location, the inverse operation UNLOAD, and DRIVE to move a truck from one
location to another.

The first preprocessing step of MIPS will detect that only the AT (denoting the pres-
ence of a given truck or package at a certain location) and IN predicates (denoting that a
package is loaded in a certain truck) are fluents and thus need to be encoded. The labeling
predicates PACKAGE, TRUCK, LOCATION are not affected by any operator and thus
do not need to be specified in a state encoding.

In a next step, some mutual exclusion constraints are discovered. In our case, we will
detect that a given object will always be at or in at most one other object, so propositions
such as (AT package los-angeles) and (IN package truck) are mutually exclusive.

This result is complemented by what we call fact space exploration: Ignoring nega-
tive (delete) effects of operators, we exhaustively enumerate all propositions that can be
satisfied by any legal sequence of actions applied to the initial state, thus ruling out il-
legal propositions such as (IN los-angeles package), (AT package package) or (IN truck
san-francisco).

Now all the information that is needed to devise an efficient state encoding schema
for this particular problem is at the planner's hands. MIPS discovers that three Boolean
variablesA, B, andC are needed. The first one is required for encoding the current
city of the truck, whereA is set if (AT truck san-francisco) holds true, andA is cleared
otherwise, i.e. if (AT truck los-angeles) holds true. The other two variablesB andC
encode the status of the package: both are cleared if it is at Los Angeles,C but notB is
set if it is at San Francisco, andB but notC is set if it is inside the truck.

We can now rephrase initial state and goal test as Boolean formulae, which can in turn
be represented as BDDs::A ^ :B ^ :C denotes the initial situation, and the goal is
reached in every state where:B ^C holds true. The corresponding BDDs are illustrated
in Figure 7.2.
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7.3 BDDs for Representing State Transitions

What have we achieved so far? We were able to reformulate the initial and final situations
as BDDs. As an end in itself, this does not help too much. We are interested in a sequence
of actions (ortransitions) that transforms an initial state into one that satisfies the goal
condition.

Transitions are formalized as relations, i.e. as sets of tuples of predecessor and suc-
cessor states, or alternatively as the characteristic function of such sets, Boolean formulae
using variablesA, B, C for the old situation andA0, B0, C 0 for the new situation. For
example, the action (DRIVE truck los-angeles san-francisco), which is applicable if and
only if the truck currently is in Los Angeles, and has as its effect a change of location
of the truck, not altering the status of the package, can be formalized using the Boolean
formula:A ^ A0 ^ (B $ B0) ^ (C $ C 0).

By conjoining this formula with any formula describing a set of states using variables
A,B andC introduced before and querying the BDD engine for the possible instantiations
of (A0, B0, C 0), we can calculate all states that can be reached by driving the truck to San
Francisco in some state from the input set. This, put shortly, is the relational product
operator that is used at the core of MIPS to calculate a set of successor states from a set
of predecessor states and a transition relation. Of course, we have more than one action
at our disposal (otherwise planning would not be all that interesting), so rather than using
the transition formula denoted above, we will build one such formula for each feasible
action (adding a no-op action for technical reasons) and calculate the disjunction of those,
illustrated in Figure 7.3.

Doing this in our example, starting from the set containing only the initial state, we get
a set of three states (the initial state, one state where the truck has moved and one where
the package was picked up), represented by a BDD with three internal nodes. Repeating
this process, this time starting from the state set just calculated, we get a set of four states
represented by a BDD with a single internal node, and a third iteration finally yields a
state where the goal has been reached (Figure 7.4). This can be tested by building the
conjunction of the current state set and goal state BDDs and testing for satisfiability.

By keeping the intermediary BDDs, a legal sequence of states linking the initial state
to a goal state can then easily be extracted, which in turn can be used to find a correspond-
ing sequence of actions.

7.4 Evaluation of the MIPS Algorithm

It is not hard to see that, given enough computational and memory resources, MIPS will
find a correct plan if one exists. As it performs a breadth-first search in the state space,
the first solution found will consist of a minimal number of steps. If no solution exists,
this will also be detected - the breadth first search will eventually reach a fixpoint, which
can easily be detected by comparing the successor BDD to the predecessor BDD after
calculating the relational product. Thus, the algorithm is complete and optimal.

However, it is not blindingly fast, so various efforts were made to speed it up, mostly
well-known standard techniques in symbolic search such as forward set simplification.
A bigger gain in efficiency was achieved by using bidirectional search, which can be
incorporated into the algorithm in a straight-forward fashion. One problem that arises in
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this context is that in some planning domains, backward iterations are far more expensive
than forward iterations, and it is not trivial to decide when to perform which. We tried
three different metrics to decide on the direction of the next exploration step: BDD size,
number of states encoded, and time spent on the last exploration step in that direction. In
our experiments, the last metric turned out to be most effective.

7.5 Outlook

As for the basic exploration algorithm, big improvements leading to a dramatically better
performance are not to be expected for the near future, with the possible exception of
transition function splitting, which still needs to be incorporated into the system.

From the algorithmic repertoire of MIPS, the heuristic symbolic search engine, which
up to now has produced promising results but is still lacking in some domains, is getting
most attention at the moment [41]. It might also be worthwhile to investigate the issue of
optimal parallel plans, building on the work done by Haslum and Geffner for HSP [163].

Another research aim is the development of precomputed, informative and admissible
estimates for explicit and symbolic search based on heuristic pattern databases.

The single most important area of interest, however, is certainly the extension of MIPS
to more general flavours of planning such as conformant or strong cyclic planning where
the strengths of symbolic methods are much more apparent than in the classical scenario
[62, 63].



110 PAPER 7. THE MODEL CHECKING INTEGRATED PLANNING SYSTEM



Paper 8

Directed Symbolic Exploration and its
Application to AI-Planning

Stefan Edelkamp.
Institut für Informatik,
Universität Freiburg,
Georges-Köhler-Allee 51,
D-79110 Freiburg
eMail: edelkamp@informatik.uni-freiburg.de

In AAAI-Spring Symposium on Model-based Validation of Intelligence, pages 84–92,
2001.

Abstract

In this paper we study traditional and enhanced BDD-based exploration procedures
capable of handling large planning problems. On the one hand, reachability analysis and
model checking have eventually approached AI-Planning. Unfortunately, they typically
rely on uninformedblind search. On the other hand, heuristic search and especially lower
bound techniques have matured in effectively directing the exploration even for large
problem spaces. Therefore, with heuristic symbolic search we address the unexplored
middle ground between single state and symbolic planning engines to establish algorithms
that can gain from both sides. To this end we implement and evaluate heuristics found in
state-of-the-art heuristic single-state search planners.
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8.1 Introduction

One currently very successful trend in deterministic fully-automated planning is heuris-
tic search. The search space incorporates states as lists of instantiated predicates (also
called atoms or fluents). The success of the heuristic search correlates with the quality
of the estimate; the more informed the heuristic the better the achieved results. Heuris-
tic search planners have outperformed other approaches on a sizable collection of deter-
ministic domains. In the fully automated track of the AIPS-2000 planning competition
(http://www.cs.toronto.edu/aips2000 ) chaired by Fahim Baccus the Sys-
tem FF (by Hoffmann) was awarded for outstanding performance while HSP2 (by Geffner
and Bonet), STAN (by Fox and Long), and MIPS (by Edelkamp and Helmert) were placed
shared second.

Historically, the first heuristic search planner was HSP [42], which also competed
in AIPS-1998. HSP computes the heuristic values of a state by adding (or maximizing)
depth values for each fluent for an overestimating (or admissible) estimate. These values
are retrieved from the fix point of a relaxed exploration. Since the technique is similar to
the first phase of building the layered graph structure in GRAPHPLAN [39], HSPr [41]
extends the approach by regression/backward search and excludesmutualssimilar to the
original planning graph algorithm. In the competition version HSP2 of the planner the
max-pair heuristiccomputes a distance value to the goal for each pair of atoms. The
underlying search algorithm is a weighted version of A* [287] implementing a higher in-
fluence of the heuristic by the cost of non-optimal solutions. Due to the observed overhead
at run-time, high-order heuristics have not been applied yet.

HSP has inspired the planners GRT [302] and FF [177] and influenced the develop-
ment of the planners STAN and MIPS. In AIPS-2000 the heuristic of GRT was too weak
to compete with the improvements applied in HSP2 and in FF (for fast-forward plan-
ning). FF solves a relaxed planning problem foreveryencountered state in a combined
forward and backward traversal. Therefore, theFF-Heuristic is an elaboration to the
HSP-Heuristic, since the latter only considers the first phase. The efforts in computing
a very accurate heuristic estimate correlates with data in solving Sokoban [199], which
applies aO(n3) estimate, and suggests that even involved work for improving the heuris-
tic pays off. Withenforced hill climbingFF further employs another search strategy and
reduces the explored portion of search space. It makes use of the fact that phenomena like
big plateaus or local minima do not occur very often in benchmark planning problems.
STAN is a hybrid of two strategies: The GRAPHPLAN-based algorithm and a forward
planner using a heuristic function based on the length of the relaxed plan (as in HSP
and FF). STAN performs a domain analysis techniques to select between these strate-
gies.Generic Typesautomatically choose an appropriate algorithm for problem instance
at hand [244].

An orthogonal approach in tackling huge search spaces is a symbolic representation
of sets of states. The SATPLAN approach by Kautz and Selman [204] has shown that
representional issues can be resolved by parsing the planning domain into a collection of
Boolean formulae (one for each depth level). The system BLACKBOX, a hybrid planner
based on merging SATPLAN with GRAPHPLAN, performed well on AIPS-1998, but
failed to solve as many problems as the heuristic search planners on the domains in AIPS-
2000. However, it should be denoted that the results of SATPLAN (GRAPHPLAN) are
optimal in the number of sequential (parallel) steps, while heuristic search planners tend
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to overestimate in order to cope with state space sizes of1020 and beyond.
Although efficient satisfiability solvers have been developed in the last decade, the

blow-up in the size of the formulae even for simple planning domains calls for a concise
representation. This leads to reduced ordered binary decision diagrams (BDDs) [50], an
efficient data structure for Boolean functions. Through their unique representation BDDs
are effectively applied to the synthesis and verification of hardware circuits [49] and in-
corporated within the area ofmodel checking[51]. Nowadays BDDs are a fundamental
tool in various research areas of computer science and very recently BDDs are encoun-
tering AI-research topics likeheuristic search[112] andplanning [145]. The diverse
research aspects oftraditional STRIPS planning[113], non-deterministic planning[60],
universal planning[63], andconformant planning[62] indicate the wide range of BDD-
related planning.

The planner MIPS [102] uses BDDs to compactly store and maintain sets of propo-
sitionally represented states. The concise state representation is inferred in an analysis
prior to the search and, by utilizing this representation, accurate reachability analysis and
backward chaining are carried out without necessarily encountering exponential repre-
sentation explosion. MIPS was originally designed to prove that BDD-based exploration
methods are an efficient means for implementing a domain-independent planning sys-
tem with some nice features, especially guaranteed optimality of the plans generated. If
problems become harder and information on the solution length is available, MIPS in-
vokes its incorporated heuristic single state search engine (similar to FF), thus featuring
two entirely different planning algorithms, aimed to assist each other on the same state
representation. The other two BDD planners in AIPS-2000, BDDPLAN [182] and PROP-
PLAN [128], lack the precompiling phase of MIPS. Therefore, these approaches were too
slow for traditional STRIPS problems. Moreover, a single state extension to their plan-
ners has not being provided. In the generalized ADL settings, however, PROPPLAN has
proven to be effective compared with the FF approach, which solves more problems in
less time, but fails to find optimal solutions.

This paper extends the idea of BDD representations and exploration in the context
of heuristic search. The heuristic estimate is based on subpositions (called patterns) cal-
culated prior to the search. Therefore, the heuristic is a form of a pattern database with
planning patterns corresponding to (one or a collection of) fluents. This heuristic will be
integrated into a BDD-based version of the A* algorithm, called BDDA*. Moreover, we
alter the concept of BDDA* topure heuristic searchwhich seems to be more suited at
least to some planning problems. Thereby, we allow non-optimistic heuristics and sacri-
fice optimality but succeed in searching larger problem spaces. The paper is structured
as follows. First of all, we give a simple planning example and briefly introduce BDDs
basics. Thereafter, we turn to the exploration algorithms, starting with blind search then
turning to the directed approach BDDA*, its adaption to planning, and its refinement for
pure heuristic search. We end with some experimental data and draw conclusions.

8.2 BDD Representation

Let us consider an example of a planning problem. A truck has to de-
liver a package from Los Angeles to San Francisco. In STRIPS nota-
tion the start state is given by(PACKAGE package) , (TRUCK truck) ,
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(LOCATION los-angeles) , (LOCATION san-francisco) , (AT package
los-angeles) , and (AT truck los-angeles) while the goal is specified by
(AT package san-francisco) . We have three operator schemas in the domain,
namelyLOAD(for loading a truck with a certain package at a certain location),UNLOAD
(the inverse operation), andDRIVE (a certain truck from one city to another). The opera-
tor schemas are expressed in form of preconditions and effects.

The precompiler to infer a small state encoding consists of three phases [101]. In
a first constant predicatephase it observes that the predicatesPACKAGE, TRUCKand
LOCATIONremain unchanged by the operators. In the nextmergingphase the precom-
piler determines thatat and in should be encoded together, since aPACKAGEcan ex-
clusively be at aLOCATIONor in aTRUCK. By fact space exploration(a simplified but
complete exploration of the planning space) the following fluents are generated:(AT
package los-angeles) , (AT package san-francisco) , (AT truck
los-angeles) , (AT truck san-francisco) , and(IN package truck) .
This leads to a total encoding length of three bits. Using two bitsx0 and x1 the
fluents(AT package los-angeles) , (AT package san-francisco) , and
(IN package truck) are encoded with 00, 01, and 10, respectively, while the
variable x2 represents the fluents(AT truck los-angeles) and (AT truck
san-francisco) .

Therefore, a Boolean representation of the start state is given byx0 ^ x1 ^ x2 while
the set of goal states is simply formalized with the expressionx0 ^ x1. More generally,
for a set of statesS thecharacteristic function�S(a) evaluates totrue if a is the binary
encoding of one statex in S. As the formula for the set of goal states indicate, the
symbolic representation for a large set of states is typically smaller than the cardinality of
the represented set.

Since the satisfiability problem for Boolean formulae is NP hard, binary decision di-
agrams are used to for their efficient and unique graph representation. The nodes in the
directed acyclic graph structure are labeled with the variables to be tested. Two outgoing
edges labeledtrue andfalsedirect the evaluation process with the result found at one of
the two sinks. We assume a fixed variable ordering on every path from the root node to
the sink and that each variable is tested at most once. The BDD size can be exponential
in the number of variables but, fortunately, this effect rarely appears in practice. The sat-
isfiability test is trivial and given two BDDsGf andGg and a Boolean operator
, the
BDD Gf
g can be computed efficiently. The most important operation for exploration is
therelational productrelational productof a set of variablesv and two Boolean functions
f andg. It is defined as9v (f ^ g). Since existential quantification of one variablexi in
a Boolean functionf is equal to disjunctionfxi _ fxi , the quantification ofv results in a
sequence of subproblem disjunctions. Although computing the relational product is NP-
hard, specialized algorithms have been developed leading good results for many practical
applications.

An operator can also be seen as an encoding of a set. Thetransition relationT
is defined as the disjunction of the characteristic functions of all pairs(x0; x) with x0

being the predecessor ofx. For the example problem,(LOAD package truck
los-angeles) corresponds to the pair(00j0; 10j0) and (LOAD package truck
san-francisco) to (01j1; 10j1). Subsequently, theUNLOADoperator is given by
(10j0; 00j0) and(10j1; 10j1). TheDRIVE action for the truck is represented by the strings
(00j�; 00j�) (01j�; 01j�), and(10�; 10j�) with � 2 f0; 1g. For a concise BDD representa-
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tion (cf. Figure 8.1) the variable ordering is chosen that the set of variable inx0 andx are
interleaved, i.e. given in alternating order.
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Figure 8.1: The transition relation for the example problem. For the sake of clarity, the
falsesink has been omitted. Dashed lines and solid lines indicate edges labeledfalseand
true, respectively.

8.3 BDD-Based Blind Search

Let Si be the set of states reachable from the initial states in i steps, initialized byS0 =
fsg. The following equation determines�Si given both�Si�1

and the transition relation:

�Si(x) = 9x0 (�Si�1
(x0) ^ T (x0; x)):

The formula calculating the successor function is a relational product. A statex belongs to
Si if it has a predecessorx0 in the setSi�1 and there exists an operator which transformsx0

into x. Note that on the right hand side of the equation� depends onx0 compared tox on
the left hand side. Thus, it is necessary to substitutexwith x0 in �Si beforehand, which can
be achieved by a simple textual replacement of the node labels in the diagram structure.
In order to terminate the search, we successively test, whether a state is represented in the
intersection of the setSi and the set of goal statesG by testing the identity of�Si ^ �G
with the trivial zero function. Since we enumeratedS0; : : : ; Si�1 the iteration indexi is
known to be the optimal solution length.

Let Openbe the representation of the search horizon andSuccthe BDD for the set of
successors. Then the algorithm can be realized as the pseudo-code Figure 8.2 suggests.

This simulates a breadth-first exploration and leads to three iterations for the example
problem. We start with the initial state represented by a BDD of three inner nodes for the
functionx0 ^ x1 ^ x2. After the first iteration we get a BDD size of four representing
three states and the function(x0 ^ x1) _ (x0 ^ x1 ^ x2). The next iteration leads to
four states in a BDD of one internal node forx1, while the last iteration results in a BDD
containing a goal state.
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procedure Breadth-First Search
Open �fsg
do

Succ 9x0 (Open(x0) ^ T (x0; x))
Open Succ

while (Open^ �G � 0)

Figure 8.2: Breadth-first search implemented with BDDs.

8.3.1 Bidirectional Search

In backward search we start with the goal setB0 and iterate until we encounter the start
state. We take advantage of the fact thatT has been defined as a relation. Therefore,
we iterate according to the formula�Bi

(x0) = 9x (�Bi�1
(x) ^ T (x0; x)). In bidirectional

breadth-first search forward and backward search are carried out concurrently. On the
one hand we have the forward search frontierFf with F0 = fsg and on the other hand
the backward search frontierBb with B0 = G. When the two search frontiers meet
(�Ff ^ �Bb

6� 0) we have found an optimal solution of lengthf + b. With the two
horizonsfOpenandbOpenthe algorithm can be implemented as shown in Figure 8.3.

procedure Bidirectional Breadth-First Search
fOpen �fsg; bOpen �G
do

if (forward)
Succ 9x0 (fOpen(x0) ^ T (x0; x))
fOpen Succ

else
Succ 9x (bOpen(x) ^ T (x0; x))
bOpen Succ

while (fOpen^ bOpen� 0)

Figure 8.3: Bidirectional BFS implemented with BDDs.

8.3.2 Forward Set Simplification

The introduction of a listClosedcontaining all states ever expanded is an apparent very
common approach in single state exploration to avoid duplicates in the search. The mem-
ory structure is realized as a transposition table. For symbolic search this technique is
calledforward set simplification(cf. Figure 8.4).

The effect in the given example is that after the first iteration the number of states
shrinks from three to two while the new BDD for(x0 ^ x1 ^ x2) _ (x0 ^ x1 ^ x2)

has five inner nodes. For the second iteration only one newly encountered state is left
with three inner BDD nodes representingx0 ^ x1 ^ x2. Forward set simplification
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procedure Forward Set Simplification
Closed Open �fsg
do

Succ 9x0 (Open(x0) ^ T (x0; x))
Open Sucĉ : Closed
Closed Closed_ Succ

while (Open^ �G � 0)

Figure 8.4: Symbolic BFS withforward set simplification.

terminates the search in case of a complete planning space exploration. Note that any set
in between the successor setSuccand the simplified successor setSucc� Closedwill be
a valid choice for the horizonOpenin the next iteration. Therefore, one may choose a
setR that minimizes the BDD representation instead of minimizing the set of represented
states. Without going into details we denote that such image size optimizing operators are
available in several BDD packages [71].

8.4 BDD-Based Directed Search

Before turning to the BDD-based algorithms for directed search we take a brief look at
Dijkstra's single-source shortest path algorithm,Dijkstra for short, which finds a solution
path with minimal length within a weighted problem graph [80].Dijkstra differs from
breadth-first search in ranking the states next to be expanded. A priority queue is used, in
which the states are ordered with respect to an increasingf -value. Initially, the queue
contains only the initial states. In each step the state with the minimum meritf is
dequeued and expanded. Then the successor states are inserted into the queue according
to their newly determinedf -value. The algorithm terminates when the dequeued element
is a goal state and returns the minimal solution path.

As said, BDDs allow sets of states to be represented very efficiently. Therefore, the
priority queueOpencan be represented by a BDD based on tuples of the form (value,
state). The variables should be ordered in a way which allows the most significant vari-
ables to be tested at the top. The variables for the encoding ofvalueshould have smaller
indices than the variables encodingstate, since this leads to small BDDs and allows an
intuitive understanding of the BDD and its association with the priority queue.

Let theweighted transition relationT (w; x0; x) evaluates to 1 if and only if the step
from x0 to x has costsw (encoded in binary). The symbolic version of Dijkstra (cf.
Figure 8.5) now reads as follows. The BDDOpen is set to the representation of the
start state with value zero. Until we find a goal state in each iteration we extractall
states with minimalf -value fmin, determine the successor set and update the priority
queue. Successively, we compute the minimalf -valuefmin, the BDDMin of all states
in the priority queue with valuefmin, and the BDD of the remaining set of states. If no
goal state is found, the variables inMin are substituted as above before the (weighted)
transition relationT (w; x0; x) is applied to determine the BDD for the set of successor
states. To attach newf -values to this set we have to retain the oldf -valuefmin and in
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procedure Symbolic-Version-of-Dijkstra
Open(f; x) (f = 0) ^ �S0(x)
do
fmin = minff j f ^Open 6= ;g
Min(x) 9f (Open^ f = fmin)
Rest(f; x) Open^ : Min
Succ(f; x) 9x0; w (Min(x0) ^

T (w; x0; x) ^ add(fmin; w; f))
Open Rest_ Succ

while (Open^ �G � 0)

Figure 8.5: Dijkstra's single-source shortest-path algorithm implemented with BDDs.

order to calculatef = fmin + w. Finally, the BDDOpenfor the next iteration is obtained
by the disjunction of the successor set with the remaining queue.

It remains to show how to perform the arithmetics using BDDs. Since thef -values are
restricted to a finite domain, the Boolean functionaddwith parametersa, b andc can be
built beingtrue if c is equal to the sum ofa andb. A recursive calculation ofadd(a; b; c)
should be prefered:

add(a; b; c) = ((b = 0) ^ (a = c)) _

9 b0; c0 (inc(b0; b) ^ inc(c0; c) ^ add(a; b0; c0));

with inc representing all pairs of the form(i; i+1). Therefore, symbolic breadth-first
search can be applied to determine the fixpoint ofadd.

8.4.1 Heuristic Pattern Databases

For symbolically constructing the heuristic function a simplificationT 0 to the transition
relationT that regains tractability of the state space is desirable. However, obvious sim-
plification rules might not be available. Therefore, in heuristic search we often consider
relaxations of the problem that result in subpositions. More formally, a statev is asubpo-
sitionof another stateu if and only if the characteristic function ofu logically implies the
characteristic function ofv, e.g.,�fug = x1 ^x2 ^x3 ^x4 ^x5 and�fvg = x2 ^x3 results
in �fug ) �fvg. As a simple example take the Manhattan distance in sliding tile solitaire
games like the famous Fifteen-Puzzle. It is the sum of solutions of single tile problems
that occur in the overall puzzle.

More generally, aheuristic pattern databaseis a collection of pairs of the form (value,
pattern) found by optimally solving problem relaxations that respect the subposition prop-
erty [75]. The solution lengths of the patterns are then combined to an overall heuristic
by taking the maximum (leading to an admissible heuristic) or the sum of the individual
values (in which case we overestimate).

Heuristic pattern databases have been effectively applied in the domains of Sokoban
[199], to the Fifteen-Puzzle [75], and to Rubik's Cube [215]. In single-state search heuris-
tic pattern databases are implemented by hash table, but in symbolic search we have to



8.4. BDD-BASED DIRECTED SEARCH 119

construct the estimator symollically, only using logical combinators and Boolean quan-
tification.

Since heuristic search itself can be considered as the matter of introducing lower
bound relaxations into the search process, in the following we will maximize the re-
laxed solution path values. The maximizing relationmax(a; b; c), evaluates to 1 ifc is the
maximum ofa andb and is based on the relationgreater, since

max(a; b; c) = (greater(a; b) ^ (a = c)) _

(:greater(a; b) ^ (b = c)):

The relationgreater(a; b) itself might be implemeted by existential quantifying the
add relation:

greater(a; b) = 9t add(b; t; a)

Next we will find a way to automatically infer the heuristic estimate. To combine
n fluent patternp1; : : : ; pn with estimated distancesd1; : : : ; dn to the goal we usen + 1
additional slack variablest0; : : : ; tn which are existenially quantified later on. We define
subfunctionsHi of the form

Hi(ti; ti+1; state) = (: pi ^ (ti = ti+1))_

(pi ^ max(di; ti; ti+1));

with Hi(ti; ti+1; state) denoting the following relation: If the accumulated heuristic
value up to fluenti is ti, then the accumulated value including fluenti is ti+1. Therefore,
we can combine the subfunctions to the overall heuristic estimate as follows.

H(value,state) = 9 t1; : : : ; tn

(t0 = 0) ^ H(tn; value,state) ^
n�1^
i=0

Hi(ti; ti+1; state):

In some problem graphs subpositions or patterns might constitute a feature in which
every position containing it is unsolvable. Thesedead-endsare frequent in directed search
problems like Sokoban and can be learned domain or problem specifically. Dead ends are
heuristic patterns with an infinite heuristic estimate. Therefore, a dead end tableDT is the
disjunction of the characteristic functions according to subpositions that are unsolvable.
The integration ofdead-end tablesin the search algorithm is quite simple. For the BDD
for DT we assign the new horizonOpenas

Open^ :(Open) DT) = Open^ :DT:

The simplest patterns in planning are fluents. The estimated distance of each single
fluentp to the goal is a heuristic value associated withp. We examine two heuristics.

HSP-Heuristic:

In HSP the values are recursively calculated by the formulah(p) = minfh(p); 1+h(C)g
whereh(C) is the cost of achieving the conjunctC, which in case of HSPr is the list of
preconditions. For determining the heuristic the planning space has been simplified by
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omitting the delete effects. The algorithms in HSP and HSPr are variants of pure heuristic
search incorporated with restarts, plateau moves, and overestimation.

The exploration phase to minimize the state description length in our planner has been
extended to output an estimateh(p) for each fluentp. Since we avoid duplicate fluents
in the breadth-firstfact-space exploration, with each encountered fluent we associate a
depth by adding the value 1 to its predecessor. The quality of the achieved distance values
are not as good as in HSPr since we are not concerned about mutual exclusions in any
form. Giving the list of value/fluent pairs a symbolic representation of the sub-relations
and the overall heuristic is computed.

In the example(AT ball los-angeles) and(AT truck los-angeles)
have distance 0 from the initial state(AT truck san-francisco) (IN ball
truck) have a depth of one and(AT ball san-francisco) has depth two. Fig-
ure 8.6 depicts the BDD representation of the overall heuristic function.

h0

h1 h1

x0 x0 x0

x1 x1 x1 x1 x1

x2 x2

1

Figure 8.6: The BDD representation for the heuristic function in the example problem. In
this case the individual pattern values have been maximized.

FF-Heuristic:

FF solves the relaxed planning problem (delete-facts omitted) with GRAPHPLAN on-
line for each state. For estimation FF builds the plan graphand extracts a simplified
solution by counting the number of instantiated operators that at least have to fire Since
the branching factor is large (one state has up to hundreds of successors) by determining
helpful actions, only a relevantpart of all successors is considered. The overall search
phase is entitledenforced hill climbing. Until the next smaller heuristic value is found a
breadth-first search is invoked. Then the search process iterates with one state evaluating
to this value.

In our planner we have (re-)implemented the FF-approach both to have an efficient
heuristic single-state search engine at hand and to build an improved estimate for symbolic
search. Since the FF approach is based on states and not on fluents, we cannot directly
infer a symbolic version of the heuristic. We have to weaken the state-dependent character
of the heuristic down to fluents. Moreover, simplifying the start state to a fluent may give
no heuristic value at all, since the goal will not necessarily be reached by the relaxed
exploration. Therefore, the estimate for each fluent is calculated by partitioning the goal
state instead. Since we get improved distance estimates with respect to the initial state, we
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obtain a heuristic for backward search. However this is no limitation, since the concept
of STRIPS operators can be inverted, yielding a heuristic in the usual direction.

8.4.2 BDDA*

In informed searchwith every state in the search space we associate a lower bound esti-
mateh. By reweighting the edges the algorithm of Dijkstra can be transformed into A*.
The new weight̂w is set to the old onew minus theh-value of the source nodex0, plus the
value of the target nodex resulting in the equation̂w(x0; x) = w(x0; x) � h(x0) + h(x).
The length of the shortest paths will be preserved and no new negative weighted cycle is
introduced [70]. More formally, if we denote�(s; g) for the length of the shortest path
from s to a goal stateg in the original graph, and̂�(s; g) the shortest path in the reweigthed
graph thenw(p) = �(s; g) if and only if ŵ(p) = �̂(s; g):

The rank of a node is the combined valuef = g + h of the generating path lengthg
and the estimateh. The informationh allows us to search in the direction of the goal and
its quality mainly influences the number of nodes to be expanded until the goal is reached.

In the symbolic version of A*, called BDDA*, the relational product algorithm deter-
mines all successor states in one evaluation step. It remains to determine their values. For
the dequeued statex0 we havef(x0) = g(x0) + h(x0). Since we can accessf , but usually
notg, the new valuef(x) of a successorx has to be calculated in the following way

f(x) = g(x) + h(x) = g(x0) + w(x0; x) + h(x) =

f(x0) + w(x0; x)� h(x0) + h(x):

The estimatorH can be seen as a relation of tuples (value, state) which is true if
and only if h(state)=value. We assume thatH can be represented as a BDD for the
entire problem space. The cost values of the successor set are calculated according to the
equation mentioned above. The arithmetics forformula(h0; h; w; f 0; f) based on the old
and new heuristic value (h0 andh, respectively), and the old and new merit (f 0 andf ,
respectively) are given as follows.

formula(h0; h; w; f 0; f) = 9 t1; t2 add(t1; h0; f 0) ^

add(t1; w; t2) ^ add(h; t2; f):

The implementation of BDDA* is depicted in Figure 8.7. Since all successor states
are reinserted in the queue we expand the search tree in best-first manner. Optimality and
completeness is inherited by the fact that given an optimistic heuristic A* will find an
optimal solution.

Given a uniform weighted problem graph and a consistent heuristic the worst-
case number of iterations in BDDA* isO(f �2), with f � being the optimal solution
length [112]. In (a moderately difficult instance to) the Fifteen-Puzzle, the4 � 4 ver-
sion of the well-known sliding-tile(n2 � 1)-Puzzles, a minimal solution was found by
BDDA* within 176 iterations. With a breadth-first search approach it was impossible to
find any solutions because of memory limitations. Already after 19 iterations more than
1 million BDD-nodes were needed to represent more than 1.4 million states.

To find the minimal solution in the first problem to Sokoban (6 balls) the BDDA*
algorithm was invoked with a very poor heuristic, counting the number of balls not on a
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procedure BDDA*
Open(f; x) H(f; x) ^ �S0(x)
do
fmin = minff j f ^Open 6= ;g
Min(x) 9f (Open^ f = fmin)
Rest(f; x) Open^ : Min
Succ(f; x) 9w; x0 (Min(x0) ^ T (w; x0; x) ^
9h0 (H(h0; x0) ^ 9h (H(h; x) ^
formula(h0; h; w; fmin; f))))

Open Rest_ Succ
while (Open^ �G � 0)

Figure 8.7: A* implemented with BDDs.

goal position. Breadth-first search finds the optimal solution with a peak BDD of 250,000
nodes representing 61,000,000 states in the optimal number of 230 iterations. BDDA*
with the heuristic leads to 419 iterations and to a peak BDD of 68,000 nodes representing
4,300,00 states. Note that even with such a poor heuristic, the number of nodes expanded
by BDDA* is significantly smaller than in a breadth-first-search approach and their rep-
resentation is more memory efficient. The number of represented states is up to 250 times
larger than the number of BDD nodes.

8.4.3 Best-First-Search

A variant of BDDA*, calledSymbolic Best-First-Search, can be obtained by ordering the
priority queue only according to theh values. In this case the calculation of the successor
relation simplifies to9x0 (Min(x0) ^ T (x0; x) ^H(f; x)) as shown in Figure 8.8. The old
f -value are replaced.

procedure Best-First-Search
Open H(f; x) ^ �S0
do
fmin = minff j f ^Open 6= ;g
Min(x) 9f Open^ f = fmin

Rest(f; x) Open^ : Min
Succ 9x0 (Min(x0) ^ T (x0; x) ^ H(f; x))

Open Rest_ Succ
while (Open^ �G � 0)

Figure 8.8: Best-first search implemented with BDDs.

Unfortunately, even for an optimistic heuristic the algorithm is not admissible and,
therefore, will not necessarily find an optimal solution. The hope is that in huge problem



8.5. EXPERIMENTS 123

spaces the estimate is good enough to lead the solver into a promising goal direction.
Therefore, especially heuristics with overestimizations can support this aim.

On solution paths the heuristic values eventually decrease. Hence, Best-first search
profits from the fact that the most promising states are in the front of the priority queue,
have a smaller BDD representation, and are explored first. This compares to BDDA* in
which the combined merit on the solution paths eventually increases. A good trade-off
between exploitation and exploration has to be found. In FF breadth-first search for the
next heuristic estimate consolidates pure heuristic search for a complete search strategy.

Figure 8.9 depicts the different dequeued BDDsMin together with the encoded heuris-
tic in the exploration phase ofPureBDDA* for the example problem.
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Figure 8.9: Backward exploration of the example problem inPureBDDA*. In each iter-
ation step the BDDMin with associatedh-value is shown. Note that when using forward
set simplification these BDDs additionally correspond to a snapshot of the priority queue
Open.

8.5 Experiments

From given results on the different heuristic search planners [177] it can be obtained that
heuristics pay off best in theGripperand theLogisticsdomain.

8.5.1 Gripper

The effect of forward set simplification and optimization can best be studied in the scal-
ableGripper domain depicted in Table 8.11 When the problem instances get larger the
additional computations pay off. InGripper bidirectional search leads to no advantage
since due to the symmetry of the problem the climax of the BDD sizes is achieved in
the middle of the exploration. This is an important advantage to BDD-based exploration:
Although the number of states grows continuously, the BDD representation might settle
and become smaller. The data further suggests that optimizing the BDD structure with
the proposed optimization is helpful only in large problems.Gripper is not a problem to
BDD-based search, whereas it is suprisingly hard for GRAPHPLAN.

1The CPU-times in the experiments are given in seconds on a Linux-PC (Pentium III/450 MHz/128
MByte).
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Solution Length BFS +B +BF +BFO

1-1 11 0.00 0.01 0.01 0.01
1-2 17 0.01 0.01 0.02 0.02
1-3 23 0.02 0.03 0.02 0.02
1-4 29 0.03 0.03 0.04 0.04
1-5 35 0.04 0.04 0.07 0.07
1-6 41 0.06 0.06 0.08 0.08
1-7 47 0.08 0.08 0.11 0.14
1-8 53 0.12 0.13 0.19 0.20
1-9 59 0.35 0.36 1.33 1.58

1-10 65 0.72 1.93 2.06 2.15
1-11 71 1.27 2.33 2.36 2.43
1-12 77 1.95 3.21 3.05 3.13
1-13 83 2.80 3.91 3.48 3.49
1-14 89 3.80 5.04 4.28 4.36
1-15 95 4.93 6.26 5.29 5.43
1-16 101 6.32 7.21 6.41 6.07
1-17 107 7.72 8.94 7.26 7.52
1-18 113 9.82 10.91 8.65 8.61
1-19 119 24.73 26.11 15.28 15.35
1-20 125 34.59 36.73 20.41 20.08

Table 8.1: Solution lengths and computation times in solving Gripper with breadth-first
bidirectional search, forward set simplification and optimization;B abbreviatesbidirec-
tional search,O denotes BDD imageoptimization, andF is forward set simplification.

8.5.2 Logistics

Due to the first round results in AIPS-2000 it can be deduced that FF's, STAN's and
MIPS's heuristic single search engine are state-of-the-art in this domain, but Logistics
problems turn out to be suprisingly hard for BDD exploration and therefore a good
benchmark domain for BDD inventions. For example Jensen's BDD-based planning sys-
tem, called UMOP, fails to solve any of the AIPS-1998 (first-round) problems [196] and
breadth-first search inMIPS yields only two domains to be solved optimally. This is
due to high parallelism in the plans, since optimal parallel (Graphplan-based) planners,
like IPP (by Köhler), Blackbox (by Kautz and Selman), Graphplan (by Blum and Furst),
STAN (by Fox and Long) perform well on Logistics. Note, that heuristic search planners,
such as (parallel) HSP2 with an IDA* like search engine loose their perfomance gains
when optimality has to be preserved.

With best-first-search and the FF-Heuristic, however, we can solve 11 of the 30 prob-
lem instances. The dauting problem is that – due to the large minimized encoding size
of the problems – the transition function becomes too large to be build. Therefore, the
Logistics benchmark suite in theBlackboxdistribution and in AIPS-2000 scale better. In
AIPS-2000 we can solve the entire first set of problems with heuristic sybolic search and
Table 8.2 visulizes the effect of best-first search for theLogisticssuite of theBlackbox
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distribution, in which all 30 problems have encodings of less than 100 bits. We measured
the time, and the length of the found solution.HHSP

add andHHSP
max abbreviate best-first

search according to theaddand themaxrelation in the HSP-heuristic, respectively.HFF
add

andHFF
max are defined analogously. The depicted times are not containing the efforts for

determining the heuristic functions, which takes about a few seconds for each problem.
Obviously, searching with themax-Heuristic achieves a better solution quality, but on the
other hand it takes by far more time. The data indicates that on average theFF-Heuristic
leads to shorter solutions and to smaller execution times. This was expected, since the
average heuristic value per fluent inHFF is larger than inHHSP , e.g. in the first problem
it increases from 2.96 to 4.43 and on the whole set we measured an average increase of
41.25 % for the estimate.

The backward search component - here applied in the regression space (thus
corresponding to forward search in progression space) is used as a breadth-first
target enlargement. With higher search tree depths this approach definitely profits from
the symbolic representation of states.

In best-first-search forward simplification is used to avoid recurrences in the set of
expanded states. However, if the set of reachable states from the first bucket in the priority
queue returns with failure, we are not done, since the set of goal states according to the
minimum may not be reachable.

8.5.3 Planning as Model Checking

The model checking problem determines whether a formula is true in a concrete model
and is based on the following issues [145]:

1. A domain of interest (e.g, a computer program or a reactive system) is described by
a formal model.

2. A desired property of finite domain (e.g. a specification of a program, a safety re-
quirement for a reactive system) is described by a formula typically using temporal
logic.

3. The fact that a domain satisfies a desired property (e. g. that a reactive system never
ends up in a dangerous state) is determined by checking whether or not the formula
is true in the initial state of the model.

The crucial observation is that exploring (deterministic or non-deterministic) plan-
ning problem spaces is in fact a model checking problem. In model checking the assumed
structure is described as a Kripke structure(W;W0; T; L), whereW is the set of states,
W0 the set of initial states,T the transition relation andL a labeling function that as-
signs to each state the set of atomic propositions which evaluate totrue in this state. The
properties are usually stated in a temporal formalism like linear time logic LTL (used
in SPIN) or branching time logic CTL eventually enhanced with fairness constraints. In
practice, however, the characteristics people mainly try to verify are simple safety prop-
erties expressible in all of the logics mentioned above. They can be checked through a
simple calculation of all reachable states. An iterative calculation of Boolean expressions
has to be performed to verify the formulaEF Goal in the temporal logic CTL which is
dual to the verification ofAG:Goal. The computation of a (minimal) witness delivers a
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solution. BDD-based planning approaches are capable of dealing with non-deterministic
domains [63]. Due to the non-determinism the authors refer to plans as complete state
action tables. Therefore, actions are included in the transition relation, resulting in a rep-
resentation of the formT (�; x0; x). The concept ofstrong cyclic plansexpresses that from
each state on a path a goal state is eventually reachable.

8.6 Conclusion and Outlook

Symbolic breadth-first search and BDDA* have been applied to the areassearch[112] and
model checking[303]. The experiments in(heuristic) searchindicate the potential power
of the symbolic exploration technique (in Sokoban) and the lower bound information (in
the Fifteen Puzzle). Inmodel checkingwe encounter a real-world problem of finding
errors in hardware devices. BDD sizes of 25 million nodes reveal that even with symbolic
representations we operate at the limit of main memory. However, this study of domain
independentplanningproves the generality of BDDA*.

The BDD representation of the space allows to reduce the planning problem to model
checking: reachability analysis verifies the formulaEF Goal in the temporal logic CTL.

The directed BDD-based search techniques bridge the gap between heuristic search
planners and symbolic methods. Especially, best-first search and the FF-heuristic seem
very promising to be studied in more detail and to be evaluated in other application ar-
eas. Due to off-line computation and restriction to one atom in the planning patterns, the
symbolic HSP- and FF-heuristics are not as informative as their respective single-state
correspondants in FF and HSP2, but, nevertheless, lead to good results.

The extension of the approach to planning patterns with more than one encoded atom
is challenging. One possibility is a regressive breadth-first exploration through an abstrac-
tion of the state-space to build a pattern-estimate data-base. In [95] we show how this
approach leads to a very good admissible estimate in explicite search. We have experi-
mented with an extension to themax-pair heuristicwith a weighted bipartite minimum-
matching, but explicite pattern databases lead to better results. Together with the wide
range of applicability, we expect that with the same heuristic information a symbolic
planner is competitive with a explicite one if at least moderate-sized sets of states have to
be explored. In future we will also consider other symbolic heuristic search algorithms
such asSymbolic Hill-ClimbingandSymbolic Weighted A*.
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BFS HHSP
add HHSP

max HFF
add HFF

max

1 25 0.66 30 0.06 25 1.05 30 0.92 25 0.49
2 24 121 27 5.33 24 129 31 1.27 26 3.52
3 - - 29 3.30 26 35.98 28 1.18 26 30.22
4 - - 59 6.53 52 37.10 59 3.49 52 22.74
5 - - 52 5.64 42 4.56 51 3.11 43 3.41
6 42 72 63 7.22 51 67.18 64 2.45 52 11.37
7 - - 83 14.89 - - 80 11.87 - -
8 - - 84 19.14 - - 80 15.05 - -
9 - - 84 13.07 - - 80 8.94 - -

10 - - 47 13.93 40 484 45 8.15 40 421
11 - - 54 10.10 - - 52 7.30 - -
12 - - 37 1.19 - - 36 3.90 - -
13 - - 77 15.18 - - 78 9.89 - -
14 - - 74 18.58 - - 83 13.36 - -
15 - - 64 17.16 - - 68 10.08 - -
16 39 580 49 7.19 41 4.64 46 2.78 40 1.73
17 43 277 51 9.97 43 3.91 50 2.60 43 3.38
18 - - 56 21.53 - - 54 15.76 - -
19 - - 53 12.85 - - 57 8.01 - -
20 - - 101 20.42 - - 95 13.58 - -
21 - - 73 16.16 - - 69 10.47 - -
22 - - 94 18.45 - - 87 14.54 - -
23 - - 72 13.95 - - 71 10.81 - -
24 - - 79 14.18 - - 75 9.50 - -
25 - - 73 14.81 - - 66 9.03 - -
26 - - 60 14.23 - - 61 9.35 - -
27 - - 81 15.31 - - 80 12.72 - -
28 - - 87 27.15 - - 89 23.74 - -
29 - - 51 21.58 - - 52 16.70 - -
30 - - 59 13.41 - - 59 9.61 - -

Table 8.2: Solution lengths and computation times in solving Logistics with best-first
search.
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Abstract

Heuristic search planning effectively finds solutions for various benchmark planning
problems, but since the estimates are either not admissible or too weak, optimal solutions
are found in rare cases only. In contrast, heuristic pattern databases are known to sig-
nificantly improve lower-bound estimates for optimally solving challenging single-agent
problems like the 24-Puzzle and Rubik's Cube.

This paper studies the effect of pattern databases in the context of deterministic plan-
ning. Given a fixed state description based on instantiated predicates, we provide a gen-
eral abstraction scheme to automatically create admissible domain-independent memory-
based heuristics for planning problems, where abstractions are found in factorizing the
planning space. We evaluate the impact of pattern database heuristics in A* and hill
climbing algorithms for a collection of benchmark domains.
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9.1 Introduction

General propositional planning is PSPACE complete [53], but when tackling specific
benchmark planning instances, improving the solution quality usually reveals the intrin-
sic hardness of the problems. For example, plan existence of Logistic and Blocks World
problem instances is polynomial, but minimizing the solution lengths for these planning
problems is NP-hard [168]. On the other hand for some benchmark domains likeSokoban
andMysteryeven plan existence is NP-hard. Therefore, we propose a planner that is able
to find optimal plans and, if challenging planning problems call for exponential resources,
the planner approximates the optimal solution.

9.1.1 Optimal Planning Approaches

Graphplan[39] constructs a layered planning graph containing two types of nodes, action
nodes and proposition nodes. In each layer the preconditions of all operators are matched,
such thatGraphplanconsiders instantiated actions at specific points in time.Graphplan
generates partially ordered plans to exhibit concurrent actions and alternates between two
phases:graph extensionto increase the search depth andsolution extractionto terminate
the planning process.Graphplanfinds optimal parallel plans, but does not approximate
solution lengths; it simply exhausts the given resources.

Another optimal planning approach is symbolic exploration simulating a breadth-first
search according to the binary encoding of planning states. The operators unfold the
initial state over time and an efficient theorem prover then searches for a satisfying truth
assignment. A Boolean formulaft describes the set of states reachable int steps. Ifft
contains a goal state, the problem is solvable with the minimalt as the optimal solution
length.

Two approaches have been proposed.Satplan[204] encodes the planning problem
with a standard representation of Boolean formulae as a conjunct of clauses.

The alternative in the plannerMips[103] is to apply binary decision diagrams (BDDs);
a data structure providing a unique representation for Boolean functions [50]. The BDD
planning approach is in factreachability analysisin model checking [65]. It applies to
both deterministic and non-deterministic planning and the generated plans are optimal
in the number of sequential execution steps. Usually, symbolic approaches cannot ap-
proximate except for recent preliminary results with domain abstractions [196] and with
symbolic best-first search [114]. Though promising, the solution quality is not as good as
in explicit search.

9.1.2 Heuristic Search Planning

Directed search is currently the most effective approach in classical AI-planning: four of
five honored planning systems in the general planning track of the AIPS-2000 competition
at least partially incorporate heuristic search. However, in traversing the huge state spaces
of all combinations of grounded predicates, all planners rely on inadmissible estimates.
The currently fastest deterministic planner, FF [181], solves a relaxed planning problem
for each state to compute an inadmissible estimate. Furthermore, non-general pruning
rules in FF such ashelpful action cutsand goal ordering cutshelp to avoid plateaus
and local optima in the underlying hill-climbing algorithm. Completeness in undirected
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problem graphs is achieved by breadth-first searching improvements for the estimate and
by omitting pruning in case of backtracks. Nevertheless, the daunting problem for FF are
directed problem graphs with dead-ends from which its move committing hill-climbing
algorithm cannot recover.

The best admissible estimate that has been applied to planning is themax-pairheuris-
tic [163] implemented in the HSP planner. However, even by sacrificing optimality due
to scaling, in AIPS-2000 this estimate was too weak to compete with the FF-heuristic.
Moreover, own experiments with an improvement tomax-pairaccording to a minimum
matching on a graph weighted with fact-pair solution lengths were discouraging.

This paper proposes a pre-computed admissible heuristic that easily outperformsmax-
pair and by scaling the influence of the heuristic even the state-of-the-art FF-heuristic
is beaten. To build the database we exhaustively search all state-to-goal distances in
tractable abstractions of the planning state-space that serve as lower bound estimates for
the overall problem. After studying the pattern database framework, we present experi-
ments with a sizable number of benchmark planning problems of AIPS-1998 and AIPS-
2000 and draw concluding remarks.

9.2 Planning Space Representation

For the sake of simplicity we concentrate on the STRIPS formalism [126], in which each
operator is defined by a precondition listP , an add listA, and a delete listD, but the pre-
sented approach can be extended to various problem description languages which can be
parsed into a fixed state encoding. We refer to state descriptions and lists as sets/conjuncts
of groundedpredicates also calledfactsor atoms. This is not a limitation since all state-
of-the-art planners perform grounding; either prior to the search or on the fly.

Definition 2 LetF be the set of grounded predicates andO be a set of grounded STRIPS
operators. The resultS 0 of an operatoro = (P;A;D) 2 O applied to a stateS � F is
defined asS 0 = (S nD) [ A in caseP � S. Inverse STRIPS operatorso�1 are given by
o�1 = ((P nD) [ A;D;A).

We exemplify our considerations in the Blocks World domain of AIPS-2000, specified
with the four operatorspick-up , put-down , stack , andunstack . For example, the
grounded operator(pick-up a) is defined as

P = f(clear a) ; (ontable a) ; (handempty) g,
A = f(holding a) g, and
D = f(ontable a) , (clear a) ; (handempty) g

The goal of the instance 4-1 is defined byf(on d c),(on c a),(on a b) g
and the initial state is given byf(clear b) (ontable d) , (on b c) , (on c a) ,
(on a d) g.

The first step to construct a pattern database is a domain analysis prior to the search.
The output aremutex groupsof mutually exclusive facts. In every state (reachable from
the initial state), exactly one of the atoms in each group will be true. In general this
construction is not unique such that we minimize the state description length over all
possible partitionings as proposed for the MIPS planning system [101]. In the example
problem we find the following nine mutex-groups.
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� G1 = f(on c a) ; (on d a) ; (on b a) ; (clear a) ; (holding a) g,

� G2 = f(on a c) ; (on d c) ; (on b c) ; (clear c) ; (holding c) g,

� G3 = f(on a d) ; (on c d) ; (on b d) ; (clear d) ; (holding d) g,

� G4 = f(on a b) ; (on c b) ; (on d b) ; (clear b) ; (holding b) g,

� G5 = f(ontable a) ; true g,

� G6 = f(ontable c) ; true g,

� G7 = f(ontable d) ; true g,

� G8 = f(ontable b) ; true g, and

� G9 = f(handempty) ; true g,

wheretrue refers to the situation, when none of the other atoms is present in a given
state description.

Definition 3 LetG = fG1; : : : ; Gkg withGi � F [ ftrue g for i 2 f1; : : : ; kg be the
set ofmutex groups, i.e. fi 6= fj for fi 2 Gi n ftrue g andfj 2 Gj n ftrue g. A stateis
a conjunctf1 ^ : : : ^ fk of factsfi 2 Gi, i 2 f1; : : : ; kg. All represented states span the
planning space1 P.

9.3 Pattern Databases

A recent trend in single-agent search is to calculate the estimate with heuristic pattern
databases (PDBs) [75]. The idea is to generate heuristics that are defined by distances in
space abstractions. PDB heuristics are consistent2 and have been effectively applied to
solve challenging(n2� 1)-Puzzles [218] and Rubik's Cube [215]. In the(n2� 1)-Puzzle
a pattern is a collection of tiles and in Rubik's Cube either a set of edge-cubiesor a set of
corner-cubiesis selected.

For all of these problems the construction of the PDB has been implemented problem-
dependently, i.e. by manual input of the abstraction for the puzzles and its storage by
suitable perfect hash functions. In contrast, we apply the concept of PDBs to general
problem-independent planning and construct pattern databases fully automatically.

1The planning spaceP is in fact smaller than the set of subsets of grounded predicates, but includes the
set of states reachable from the initial state.

2Consistent heuristic estimates fulfillh(v)�h(u)+w(u; v) � 0 for each edge(u; v) in the underlying,
possibly weighted, problem graph. They yield monotone meritsf(u) = g(u) + h(u) on generating paths
with weightg(u). Admissible heuristics are lower bound estimates which underestimate the goal distance
for each state. Consistent estimates are indeed admissible.
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9.3.1 State Abstractions

State space abstractions in the context of PDBs are concisely introduced in [183]: A state
is a vector of fixed length and operators are conveniently expressed by label sets, e.g.
an operator mappinghA;B; i to hB;A; i corresponds to a transposition of the first two
elements for any state vector of length three. The state space is the transitive closure of
the seed stateS0 and the operatorsO. A domain abstractionis defined as a mapping�
from one label setL to another label setK with jKj < jLj such that states and operators
can be simplified by reducing the underlying label set. Astate space abstractionof the
search problemhS0; O; Li is denoted ash�(S0); �(O); Ki. In particular, the abstraction
mapping is non-injective such that the abstract space (which is the image of the original
state space) is therefore much smaller than the original space.

The framework in [183] only applies to certain kinds of permutation groups, where in
our case the abstract space is obtained in a more general way, since abstraction is achieved
by projecting the state representation.

Definition 4 Let F be the set of grounded predicates. Aplanning space abstraction� is
a mapping fromF to F [ ftrue g such that for each groupG either for all f 2 G :

�(f) = f or for all f 2 G : �(f) = true :

Since planning states are interpreted as conjuncts of facts,� can be extended to map
each planning state of the original spaceP to one in the abstract spaceA. In the example
problem instance we apply two planning space abstractions�odd and�even. The mapping
�odd assigns all atoms in groups of odd index to the trivial valuetrue and, analogously,
�even maps all fluents in groups with even index value totrue . All groups not containing
a atoms in the goal state are also mapped totrue 3. In the example, the goal is partitioned
into �even(G) = f(on c a) g and�odd(G) = f(on a b) ; (on d c) g, since the
groupsG4 toG9 are not present in the goal description.

Abstract operators are defined by intersecting their precondition, add and delete lists
with the set of non-reduced facts in the abstraction. This accelerates the construction of
the pattern table, since several operators simplify.

Definition 5 Let � be a planning space abstraction and��(S1; S2) be the graph-
theoretical shortest path between to two statesS1 andS2 inA. Furthermore, letS0 be the
start andSt be the set of goal states inP. A planning pattern database(PDB) according
to � is a set of pairs, with the first component being an abstract planning stateS and the
second component being the minimal solution length in the abstract problem space, i.e.,

PDB(�) = f(S; ��(S; �(St))) j S 2 Ag:

PDB(�) is calculated in a breadth-first traversal starting from the set of goals in ap-
plying the inverse of the operators. Two facts about PDBs are important. When reducing
the state description lengthn to �n with 0 < � < 1 the state space and the search tree
shrinks exponentially; e.g.2n bit vectors correspond to an abstract space of 2�n elements.

The second observation is that once the pattern database is calculated, accessing the
heuristic estimate is fast by a simple table lookup (cf. Section 9.3.3). Moreover, PDBs

3To include mutex-groups into PDB calculations which are not present in the goal state, we may generate
all possible instancesfor the fact set. In fact, this is the approach that is applied in our implementation.
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((clear a) ,1)
((holding a) ,2)
((on b a) ,2)
((on d a) ,2)

((on d c)(clear b) ,1) ((on a b)(clear c) ,1)
((on d c)(holding b) ,2) ((clear c)(clear b) ,2)
((on d c)(on d b) ,2) ((on a b)(holding c) ,2)
((on a c)(on a b) ,2) ((clear c)(holding b) ,3)
((clear b)(holding c) ,3) ((on a c)(clear b) ,3)
((on d b)(clear c) ,3) ((holding c)(holding b) ,4)
((on b c)(clear b) ,4) ((on a c)(holding b) ,4)
((on c b)(clear c) ,4) ((on d b)(holding c) ,4)
((on a c)(on d b) ,4) ((on b c)(holding b) ,5)
((on a b)(on b c) ,5) ((on d b)(on b c) ,5)
((on c b)(holding c) ,5) ((on a c)(on c b) ,5)
((on c b)(on d c) ,5)

Table 9.1: Pattern databasesPDB(�even) andPDB(�odd) for the example problem.

can be re-used for the case of different initial states.PDB(�even) andPDB(�odd) accord-
ing to the abstractions�even and�odd of our example problem are depicted in Table 9.1.
Note that there are only three atoms present in the goal state such that one of the pattern
databases only contains patterns of length one. Abstraction�even corresponds toG1 and
�odd corresponds to the union ofG2 andG4.

9.3.2 Disjoint Pattern Databases

Disjoint pattern databases add estimates according to different abstractions such that the
accumulated estimates still provide a lower bound heuristic.

Definition 6 Two pattern databasesPDB(�1) and PDB(�2) are disjoint, if the sum of
respective heuristic estimates always underestimates the overall solution length, i.e.,

��1(�1(S); �1(St)) + ��2(�2(S); �2(St)) � �(S; St); 8S 2 P:

PDBs are not always disjoint. Suppose that a goal contains two atomsp1 andp2,
which are in groups 1 and 2, respectively, and that an operatoro makes bothp1 andp2
true. Then, the distance under abstraction�1 is 1 (because the abstraction ofo will make
p2 in group 2 true in one step) and the distance under�2 is also 1 (for the same reason).
But the distance in the original search space is also 1.

Definition 7 An independent abstraction setI is a set of group indices such that no oper-
ator affects both atoms in groups inI and atoms in groups that are not inI. The according
abstraction�I that maps all atom groups not inI to true is called anindependent abstrac-
tion.
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Theorem 3 A partition of the groups into independent abstractions sets yields disjoint
pattern databases.

Proof: Each operator changes information only within groups of a given partition and
an operator of the abstract planning space contributes one to the overall estimate only
if it changes facts in available fact groups. Therefore, by adding the solution lengths of
different abstract spaces each operator on each path is counted at most once.

For some domains like Logistics operators act locally according to any partition into
groups so that the precondition of Theorem 3 is trivially fulfilled.

9.3.3 Perfect Hashing

PDBs are implemented as a (perfect) hash table with a table lookup in time linear to the
abstract state description length.

According to the partition into groups a perfect hashing function is defined as fol-
lows. LetGi1 ; Gi2; : : : ; Gik be the selected groups in the current abstraction andoffset(k)
be defined asoffset(k) =

Qk
l=1
jGil�1

j with jGi0 j = 1. Furthermore, letgroup(f) and
position(f) be the group index and the position in the group of factf , respectively. Then
the perfect hash valuehash(S) of stateS is

hash(S) =
X
f2S

position(f) � offset(group(f)):

Since perfect hashing uniquely determines an address for the stateS, S can be recon-
structed givenhash(S) by extracting all corresponding group and position information
that define the facts inS. Therefore, we establish a good compression ratio, since each
state in the queue for the breadth-first search traversal only consumes one integer. The
breadth-first-search queue is only needed for construction and the resulting PDB is a
plain integer array of sizeoffset(k + 1) encoding the distance values for the correspond-
ing states, initialized with1 for patterns that are not encountered. Some states are not
generated, since they are not reachable, but the above scheme is more time and space ef-
ficient than ordinary hashing storing the uncompressed state representation. Since small
integer elements consume only a few bytes, on current machines we may generate PDBs
of a hundred million entries and more.

9.3.4 Clustering

In the simple example planning problem the combined sizes of groups and the total size of
the generated pattern databasesPDB(�even) andPDB(�odd) differ considerably. Since we
perform a complete exploration in the generation process, in larger examples the require-
ments in time and space resources for computing PDBs might be exhausted. Therefore,
an automatic way to find a suitable balanced partition according to given memory limita-
tions is required. Instead of a bound on the total size of all PDBs together, we globally
limit the size of each pattern database, which is in fact the number of expected states.
The restriction is not crucial, since the number of different pattern databases is small in
practice. The threshold is the parameter to tune the quality of the estimate. Obviously,
large threshold values yield optimal estimates in small problem spaces.
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Figure 9.1: Time performances and numbers of expansions of A* and hill climbing in the
Logistics domain with respect to the PDB and FF heuristic on a logarithmic scale. PDB
construction time is included in the overall search time.

We are confronted with a Bin-Packing variant: Given the sizes of groups, the task is
to find the minimal number of pattern databases such that the sizes do not exceed a certain
threshold value. Notice that the group sizes are multiplied in order to estimate the search
space size. However, the corresponding encoding lengths add up. Bin-Packing is NP-hard
in general, but good approximation algorithms exist. In our experiments we applied the
best-fit strategy.

9.4 Results

All experimental results were produced on a Linux PC, Pentium III CPU with 800 MHz
and 512 MByte. We chose the most efficient domain-independent planners as competi-
tors. In Logistics, the program FF is chosen for comparison and in Blocks World, the
pattern database approach is compared to the optimal plannerMips.

9.4.1 Logistics

We applied PDBs to Logistics and solved the entire problem set of AIPS-2000. The
largest problem instance includes 14 trucks located in one of three locations of the
14 cities. Together with four airplanes the resulting state space has a size of about
314 � 144 � 6042 � 8:84223 � 1085 states. All competing planners that have solved the entire
benchmark problem suite are (enforced) hill-climbers with a variant of the FF heuristic
and the achieved results have about the same characteristics [178]. Therefore, in Table 9.1
we compare the PDB approach with the FF-heuristic. In the enforced hill climbing algo-
rithm we allow both planners to apply branching cuts, while in A* we scale the influence
of the heuristic with a factor of two. The effects of scaling are well-known [287]: weight-
ening A* possibly results in non-optimal solution, but the search tends to succeed much
faster. In the AIPS-2000 competition, the scaling factor 2 has enhanced the influence of
themax-pairheuristic in the planner HSP. However, even with this improvement it solves
only a few problems of this benchmark suite.

The characteristics of the PDB and FF heuristics in Figure 9.1 are quite different.
The number of expanded nodes is usually larger for the former one but the run time is



9.4. RESULTS 137

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

So
lu

tio
n 

L
en

gt
h

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

180

190

200

210

220

230

240

250

260

270

280

30 32 34 36 38 40 42 44

So
lu

tio
n 

L
en

gt
h

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

Figure 9.2: Overall and magnified solution quality of A* and enforced hill climbing in
the Logistics domain with respect to to the PDB and FF heuristic.

much shorter. A* search with PDBs outperforms FF with hill climbingand branching
cuts. The savings are about two orders of magnitude with respect to FF and A* and one
order of magnitude with respect to FF and hill climbing, while the effect for the number of
expansions is the exact opposite. In the example set the average time for a node expansion
in PDB-based planning is smaller by about two orders of magnitude compared to FF.

On the other hand, in larger problem instances enforced hill climbing according to the
PDB heuristic generates too many nodes to be kept in main memory. In a few seconds
the entire memory resources were exhausted. This suggests applying memory limited
search algorithm like thresholding in IDA* and alternative hashing strategies to detect
move transpositions in high search depths.

We summarize that hill climbing is better suited to the FF heuristic while weighted
A* seems to perform better with PDBs. The solution qualities are about the same as
Figure 9.2 deptics. Even magnification to larger problem instances fails to establish a
clear-cut winner.

Blocks World Achieving approximate solutions in Blocks World is easy; 2-
approximations run in linear time [327]. Moreover, different domain-dependent cuts dras-
tically reduce the search space. Hence, TALPlanner [229] with hand-coded cuts and FF
with hill climbing, helpful action and goal ordering cuts find good approximate solutions
to problems with fifty Blocks and more.

FF using enforced hill climbing without cuts is misguided by its heuristic, backtracks
and tends to get lost in local optima far away from the goal. We concentrate on optimal
solutions for this domain. Since anyn-Tower configuration is reachable from the initial
state state, the state space grows exponentially inn, and indeed, optimizing Blocks World
is NP-hard. Graphplan is bounded to about 9 blocks and no optimal heuristic search
engine achieves a better performance, e.g. HSP withmax-pair is bounded to about 6-
7 blocks. Model checking engines like BDD exploration inMips and iterative Boolean
satisfiability checks inSatplanare best in this domain and optimally solve problems with
up to 12-13 blocks. Table 9.3 depicts that PDBs are competitive and that the solution
lengths match.

Moreover, better scaling in time seems to favor PDB exploration. However, in both
approaches space consumption is more crucial than time. In the bidirectional symbolic
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Figure 9.3: Time performance and solution quality of BDD expoloration and optimal
PDB planning in Blocks World. PDB construction time is included in the overall search
time.

breadth-first search engine of Mips the BDD sizes grow very rapidly and large pattern
databases with millions of entries still lead to millions of node expansions. When search-
ing for optimal solutions to 13-block benchmark problems this thrashes the memory re-
sources in both planning approaches. In summary, optimal solving Blocks World is still
hard for general planning engines.

9.4.2 Other Domains

Gripper (AIPS-1998) spans an exponentially large but well-structured search space such
that greedy search engines finds optimal solutions. On the other hand, Gripper is known
to be hard forGraphplan. Both FF with hill-climbing and cuts and PDB with weighted
A* find optimal solutions in less than a second.

Like Logistics, the NP-hard [168]Mysterydomain (AIPS-1998) is a transportation
domain on a road map. Trucks are moving around this map and packages are being
carried by the mobiles. Additionally, variouscapacityand fuel constraintshave to be
satisfied. Mystery is particularly difficult for heuristic search planning, since some of
the instances contain a very high portion of undetected dead-ends [178]. In contrast to
the most effective heuristic search planner GRT [302], the PDB planning algorithm does
not yet incorporate manual reformulation based on explicit representation of resources.
However, experiments show that PDB search is competitive: problems 1-3, 9, 11, 17, 19,
25-30 were optimally solved in less then 10 seconds, while problem 15 and 20 required
about 5 and 2 minutes, respectively. At least problem 4,7, and 12 are not solvable. Time
performance and the solution qualities are better than in [302] Scaling reduces the number
of node expansion in some cases but has not solved any new problem.

The start position ofSokobanconsists of a selection of balls within a maze and a des-
ignated goal area into which the balls have to be moved. A man, controlled by the puzzle
solver, can traverse the board and push balls onto adjacent empty squares. Sokoban has
been proven to be PSPACE complete and spans a directed search space with exponentially
many dead-ends, in which some balls cannot be placed onto any goal field [199]. There-
fore, hill climbing will eventually encounter a dead-end and fail. Only overall search
schemes like A*, IDA* or best-first prevent the algorithm from getting trapped. In our ex-
periments we optimally solved all 52 automatically generated problems [274] in less than
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five seconds each. The screens were compiled to PDDL with a one-to-one ball-to-goal
mapping so that some problems become unsolvable. Since A* is complete we correctly
establish unsolvability of 15 problems in the test set. Note that the instances span state
spaces much smaller than the 90 problem suite considered in [199] with problems cur-
rently too difficult to be solved with domain independent planning.

As expected, additional results in Sokoban highlight that in contrast to the PDB-
heuristic, the FF-heuristic, once embedded in A*, yields good but not optimal solutions.
BDD exploration in Mips does find optimal solutions, but for some instances it requires
over a hundred seconds for completion.

9.5 Conclusion

Heuristic search is currently the most promising approach to tackle huge problem spaces
but usually does not yield optimal solutions. The aim of this paper is to apply recent
progress of heuristic search in finding optimal solutions to planning problems by devising
an automatic abstraction scheme to construct pre-compiled pattern databases.

Our experiments show that pattern database heuristics are very good admissible esti-
mators. Once calculated our new estimate will be available in constant time since the esti-
mate of a state is simply retrieved in a perfect hash table by projecting the state encoding.
We will investigate different pruning techniques to reduce the large branching factors in
planning. There are some known general pruning techniques such asFSM pruning[337],
Relevance CutsandPattern Searches[199] that should be addressed in the near future.

Although PDB heuristics are admissible and calculated beforehand, their quality can
compete with the inadmissible FF-heuristic that solves a relaxed planning problem for
everyexpanded state. The estimates are available in a simple table lookup, and, in contrast
to the FF-heuristic, A* finds optimal solutions. Weighting the estimate helps to cope with
difficult instances for approximate solutions. Moreover, PDB heuristics in A* can handle
directed problem spaces and prove unsolvability results.

One further important advantage of PDB heuristics is the possibility of a symbolic im-
plementation. Due to the representational expressiveness of BDDs, a breadth-first search
(BFS) construction can be completed with respect to larger parts of the planning space
for a better quality of the estimate. The exploration yields a relationH(estimate; state)
represented with a set of Boolean variables encoding the BFS-level and a set of variables
encoding the state. Algorithm BDDA*, a symbolic version of A*, integrates the symbolic
representation of the estimate [114]. Since PDBs lead to consistent heuristics the number
of iterations in the BDDA* algorithms is bounded by the square of the solution length.
Moreover, symbolic PDBs can also be applied to explicit search. The heuristic estimate
for a state can be determined in time linear to the encoding length.
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Abstract

This paper invents symbolic pattern databases (SPDB) to combine two influencing as-
pects for recent progress in domain-independent action planning, namely heuristic search
and model checking. SPDBs are off-line computed dictionaries, generated in symbolic
backward traversals of automatically inferred planning space abstractions.

The entries of SPDBs serve as heuristic estimates to accelerate explicit and symbolic,
approximate and optimal heuristic search planners. Selected experiments highlight that
the symbolic representation yields much larger and more accurate pattern databases than
the ones generated with explicit methods.
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10.1 Introduction

Heuristic search is one of the most effective search techniques to cope with very large
problem spaces. The guidance for search algorithms like A* [161] and IDA* [213] are
estimators that approximate the remaining distance to the goal.

The additional information focuses the search into the direction of the goal and its
quality mainly influences the number of states to be expanded; the better the estimate, the
larger the reduction in search efforts.

Planning problems implicitly generate weighted problem graphs by applying operator
sequences to their seed states. By changing operator costs, A* can be casted as a variant
of Dijkstra's single-source shortest path algorithm: the new costs of the operators are set
to the old ones minus the heuristic value of the expanded state, plus the estimate of the
successor state [115]. Admissible heuristics are lower bound problem relaxations, yield
optimal solutions, but may introduce negative weights calling for re-openings of already
expanded states [287].

Pattern databases (PDBs) are dictionaries of heuristic values that have been originally
applied to the Fifteen Puzzle [75]. In this context, PDBs are generalizations of the Man-
hattan distance heuristic, that corresponds to subproblem solutions of moving each tile
onto its goal position. The PDB representation is a selection of look-up tables memoriz-
ing the goal distances of each tile at any board location. Since the subproblems are inde-
pendent (only one tile can move at a time), the minimum numbers of moves to solve the
individual puzzles can be added; still providing an admissible heuristic. Refined PDBs
take not only one but a selection of interacting tiles (the pattern) into account. A large
hash table stores their combined goal distances on a simplified board with all other tiles
removed. PDBs are generated in complete backward explorations, starting from the set of
abstract goals.

The PDB approach has been extended to find first optimal solutions to random Rubik's
Cube problems [213], where a pattern corresponds to a selection of side or corner cubies.
Independence of PDBs has been exploited to solve the 24-Puzzle [218]. In all cases
the abstractions for PDB construction were hand-tailored and domain dependent. The
effectiveness of PDBs in form of a space-time trade-off reveals that PDBs size is inversely
correlated to the resulting search effort [183].

Steps towards the automated creation of PDB heuristics base on local search in the
space of PDBs [173] and change the abstraction level according to the predicted search
efforts. However, the approach is currently limited to moderate state-space sizes, or re-
stricted to easier exploration tasks like the computation of macro operators.

Explicit PDB heuristics that have been proposed for domain-independent action plan-
ning [95] share similarities with PDBs in sliding-tile puzzles and challenge even on-line
computed estimates like the FF-heuristic [180]. The rough idea is to interpret the set
propositional atoms as tiles, so that a planning pattern is a selection of them. The ap-
proach first infers groups of mutually exclusive facts. In every reachable state exactly one
of the atoms in each group is true. The group information is exploited to derive planning
abstractions and to infer perfect hash functions for pattern storage. Automated cluster-
ing partitions the state space into a set of abstractions with state spaces that fit into main
memory. Planning PDBs are not always independent, but suitable partitions into groups,
where all operators affect only atoms in the specified set, always yield independent PDBs.

In this paper we propose symbolic pattern databases (SPDBs) instead of explicit ones.
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A SPDB is Boolean functionH of tuples(v; S). For a given planning stateS with value
v, formulaH evaluates totrue if and only if the estimate ofS equalsv. Through an
efficient representation of Boolean functions, larger PDBs and more accurate estimates
can be inferred and utilized.

The structure of the paper is as follows. First we give a concise introduction to PDBs
together with proofs of some important properties. Then we turn the to symbolic represen-
tation of planning states and operators. Next we introduce symbolic backward exploration
to generate SPDBs and integrate this representation of the heuristic estimate into directed
explicit and symbolic search search engines. This algorithmic treatment is followed by a
discussion the influence of SPDBs to search tree growth and exploration efforts. We eval-
uate the impact of the algorithms, taking Blocks World as a selected case study. Finally,
we discuss related work, and finish with a few concluding remarks.

10.2 Pattern Databases in AI-Planning

For the sake for simplicity, throughout the paper we consider grounded propositional plan-
ning problems in STRIPS notation [126] and stick to sequential plan generation. However,
the framework also applies to more general planning domain description languages [131].

10.2.1 Grounded Propositional Planning

Most successful planners perform grounding.

Definition 1 A grounded propositional planning problemis a finite state space problem
P =< S;O; I;G >, whereS � 2A is the set of states,2A is the power set of set of pro-
positionsA, I 2 S is the initial state,G � S is the set of goal states, andO is the set of
operators that transform states into states. Operatorso = (�; �) 2 O have propositional
preconditions�, and propositional effects� = (�a; �d), where� � A is the precondition
list, �a � A is the add list and�d � A is the delete list. Given a stateS with � � S then
its successor isS 0 = S [ �a n �d.

Sequential plans are defined as follows.

Definition 2 A sequential plan� = (O1; : : : ; Ok) is an ordered sequence of operators
Oi 2 O, i 2 f1; : : : ; kg, that transforms the initial stateI into one of the goal states
G 2 G, i.e. there exists a sequence of statesSi 2 S, i 2 f0; : : : ; kg, withS0 = I, Sk = G

andSi is the outcome of applyingOi to Si�1, i 2 f1; : : : ; kg. The length of a plan� is k,
and the minimalk is the optimal sequential plan length�(I).

10.2.2 Abstract Planning problems

Instead of the PDB definition based on fact groups [95], in this paper we prefer a formal
treatment that directly builds upon the above state space characterization.

Definition 3 LetR � A be a set of propositional atoms. Arestriction�R is a mapping
from2A into 2A defined as�R(P ) = fa 2 P j a 2 Rg. For �R(P ) we also writeP jR.
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Restrictions imply planning problem abstractions.

Definition 4 An abstract planning problemPjR = < SjR;OjR; IjR;GjR > of a
grounded propositional planning problem< S;O; I;G > with respect to a set of propo-
sitional atomsR is defined by

1. SjR = f�R(S) j S 2 Sg,
2. IjR = �R(I),
3. GjR = f�R(G) j G 2 Gg,
4. OjR = f�R(O) j O 2 Og, with �R(O) for O = (�; (�a; �d)) 2 O defined as
�R(O) = (�jR; (�ajR; �djR)).

Sequential abstract plans for the abstract planning problemPjR are denoted by�R
and optimal abstract sequential plan length is denoted by�R.

Abstract operators are fixed by intersecting their precondition, add and delete lists with
the set of non-reduced facts in the abstraction. Restriction of operators in the original
space may yieldvoid operators�R(O) = (;; (;; ;)) in the abstract planning problem,
which are discarded from the operator setOjR.

The next result shows that our definition of abstraction is sound.

Lemma 2 LetR be a set of propositional atoms. Restriction�R is solution preserving,
i.e., for any sequential plan� for the grounded propositional planning problem
P = < S;O; I;G > there exists a sequential plan�R for the planning state abstraction
PjR = < SjR;OjR; IjR;GjR >.

Moreover, an optimal sequential abstract plan�optR for PjR is always shorter than an
optimal sequential plan�opt for P, i.e. �R(SjR) � �(S), for all S 2 S.

Proof: Let � = (O1; : : : ; Ok) be a sequential plan for< S;O; I;G >. Then�jR =

(O1jR; : : : ; OkjR) is a solution forPjR = < SjR;OjR; IjR;GjR >.
Now suppose, that�R(SjR) > �(S) for someS 2 S and let�opt = (O1; : : : ; Ot) be

the optimal sequential plan fromS to G in the original planning spaceP then�optjR =

(O1jR; : : : ; OtjR) is a valid plan inPjR with plan length less or equal tot = �(S). This is
a contradiction to our assumption.

Strict inequality�R(SjR) < �(S) is given if some operatorsOijR are void, or if there
are alternative even shorter paths in the abstract space.

10.2.3 Planning Pattern Databases

The above setting allows a precise characterization of planning PDBs.

Definition 5 A planning PDBPDBR with respect to a set of propositionsR and a
grounded propositional planning problem< S;O; I;G > is a collection of pairs(v; S)
with v 2 IN andS 2 SjR, such thatv = �R(S). Therefore,

PDBR = f(�R(S); S) j S 2 SjRg:
In other words, a PDB is look-up table, addressed by the abstract planning state pro-

viding its minimal abstract solution length.
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10.2.4 Disjoint Pattern Databases

Disjoint PDBs are important to derive admissible estimates.

Definition 6 Two planning PDBsPDBR andPDBQ with respect toR;Q � A,R\Q =

; are disjoint, if for all O0 2 OjR, O00 2 OjQ we have��1R (O0) \ ��1Q (O00) = ;, where
��1R (O0) = fO 2 O j �R(O) = O0g.

Lemma 3 Two disjoint planning PDBsPDBR andPDBQ for a grounded propositional
planning problem< S;O; I;G > and sets of propositionsP andQ are additive: for all
S 2 S we have�P (SjR) + �Q(SjQ) � �(S).

Proof:
Let < SjR;OjR; IjR;GjR > and < SjQ;OjQ; IjQ;GjQ > be abstractions of
P =< S;O; I;G > according toP andQ, respectively, and let� = (O1; : : : ; Ok) be
an optimal sequential plan forP. Then, the abstracted plan�jR = (O1jR; : : : ; OkjR) is a
solution for the state space problem< SjR;OjR; IjR;GjR > and�jQ = (O1jQ; : : : ; OkjQ)
is a plan for< SjQ;OjQ; IjQ;GjQ >. We assume that all void operators in�jQ and�jR,
if any, are removed. LetkQ andkR be the resulting respective lengths of�jQ and�jR.

Since the PDBsPDBR andPDBQ are disjoint,O0 2 �jR and allO00 2 �jQ we have
��1R (O0) \ ��1Q (O00) = ;. Therefore,�R(SjR) + �Q(SjQ) � kR + kQ � �(S).
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Figure 10.1: Illustration of a Planning PDBPDBR and Two Disjoint Planning PDBs
PDBR andPDBQ.

In Figure 10.1 we have illustrated (disjoint) planning PDBs with respect to the given
underlying setA of propositions to encode a state.

In practice some operators remain non-void in different abstraction. For example,
in our abstractions Logistics always yields disjoint PDBs, while in Blocks World some
interdependent operators remain, since operators in Logistics modify either the location
of a package, a truck or an airplane without affecting the others, while in Blocks World a
stackoperation changes both the status of the hand and the block.

In order to retain admissible estimates for the latter case, during construction con-
flicting operators can be assigned to cost zero for all but one PDB. Nevertheless, this
technique of enforcedadmissibilitymay reduce the quality of the inferred estimate.
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10.2.5 Partitions and Storage

Next, we consider sets of pattern databases.

Definition 7 A partitionQ = fQ1; : : : ; Qkg is a collection of propositional setsQi,
i 2 f1; : : : ; kg, with Qi \ Qj = ;, 1 � i < j � k and

Sk
i=1

Qi = A. A
planning space partitionPQ according to a partitionQ is a collection of planning prob-
lems< SjQi

;OjQi
; IjQi

;GjQi
>,Qi � Q, i 2 f1; : : : ; kg.

The following result is an immediate generalization of Lemma 3.

Lemma 4 Pairwise disjoint planning PDBs according to planning space partitionPQ
for a grounded propositional planning problem< S;O; I;G > and a partitionQ =

fQ1; : : : ; Qkg areadditive, i.e. for allS 2 S we have�Q1
(SjQ1

)+: : :+�Qk
(SjQk

) � �(S).

Finding a suitable partition that leads to pairwise disjoint or to almost pairwise dis-
joint planning PDBs is not trivial. For two databases the task is a variant of the graph
partitioning problem (GPP), which divides the vertices of a given graph into two equally
sized subsets, so that the number of edges from one subset the other one is minimized.
In our setting, vertices correspond to atoms and edges to operators. Since GPP is NP
complete and the number of atoms is considerably large, we mimic the approach of [95],
which simplifies the problem of finding a suitable partition of the set of facts to a form of
bin-packing (BPP). For this case, interdependencies are neglected. A group can be added
to an already existing abstraction, if the combined state space still fits into main memory.
BPP is NP complete but has several efficient approximation algorithms. Currently, we
study how goal fact dependencies can improve the established partition.

In explicit PDB construction, the PDBs themselves and the transposition tables [305]
are represented as hash tables. Therefore, the limit for PDB construction is the number
of (abstract) states that can be hold in main memory. For improving memory consump-
tion, [95] proposes perfect hash-tables, with a hash function that assigns each state to a
unique number. In our simpler setting, each stateSjR =

S
i2I ai, for the index setI and

atom list(ai)i2I , is hashed to
P

i2I 2
i, for a maximum of2jRj hash addresses.

10.3 Symbolic Pattern Databases

We abstract from the internal representation of sets of states as binary decision diagram
(BDDs) [50]. It suffices to know that there BDDs are unique, space-efficient data struc-
tures for representing and manipulating Boolean formulae.

10.3.1 States and Operators

Boolean formulae may represent sets of states.

Definition 8 A symbolic representationfor a stateS 2 S withS � 2A is a set of boolean
variablesb1; : : : ; bjAj, with bi encoding the truth of propositional atomai in a given state,
i 2 N = f1; : : : ; jAjg.

If S =
S
i2I ai, then its encoding is(

V
i2I bi) ^ (

V
i2NnI :bi). Sets of states

S
j2J Sj

are encoded as
W
j2J ((

V
i2Ij

bij) ^ (
V
i2NnIj

:bij)).
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Transitions relations are Boolean expressions for operator application. They encode
all valid (state, successor state) pairs utilizing twice the number of Boolean state vari-
ables;2 � jAj in our case. In practice, the transition relation is generated as the disjunct
of the representations of all grounded operators, which in turn are defined as Boolean
expressions of their precondition, add and delete lists.

Definition 9 The transition relationT (b; b0) of a set of operatorsO 2 O is the disjunct
T (b; b0) =

W
O2O TO(b; b

0). For O = (�; (�a; �d)) we haveTO(b; b0) = (
V
ai2�

bi) ^
(
V
aj2�a b

0
j) ^ (

V
ak2�d

:b0k) ^ frame(b; b0), whereframeencodes that all other atoms are
preserved, i.e.frame(b; b0) =

V
aj =2�[�a[�b

(bj � b0j).
Similarly, the relaxedtransition relationT jR according the set of propositionR is

constructed with respect to the set of operatorsOjR = (�jR; (�ajR; �djR))

The imageI of the state setFrom with respect to the transition relationT is com-
puted asI(b0) = 9b0 (T (b; b0) ^ From(b0)). In this image computation,T (b; b0)
is not required to be built explicitly, since withT (b; b0) =

W
O2O TO(b; b

0) we have
I(b0) =

W
O2O(9b0 TO(b; b0) ^ From(b0)).

Therefore, the monolithic construction ofT (b; b0) can be bypassed. Our current imple-
mentation organizes the image computation in form of a balanced tree. Through the suc-
cess of conjunctive partitioning and reordering techniques in hardware verification [263],
refined disjunctive partitioning approaches are an apparent issue for future research.

10.3.2 Pattern Database Construction

Complete symbolic breadth-first search (BFS) is one form of reachability analysis of the
planning space. LetSi be the set of planning states reachable from the initial stateS in i
steps, initialized byS0 = I. An encoded stateS belongs toSi if it has a predecessorS 0

in the setSi�1 and there exists an operator which transformsS 0 into S. All sets of states
are identified by their respective characteristic formulae.

We apply backward symbolic exploration for SPDB construction as follows. The
symbolic PDBPDBjR, is initialized toGjR and, as long as there are newly encountered
states, we take the current list of horizon nodes and generate the predecessor list with
respect toT jR. Then we attach the current BFS level to the new states, merge them with
the set of already reached state states and iterate. In the following algorithmConstruct
Symbolic Pattern Database, Reachedis the set of visited states,Openis current search
horizon, andPred is the set of predecessor states.

Algorithm Construct Symbolic Pattern Database
Input: Planning space abstraction

PjR = < SjR;OjR; IjR;GjR >
Output: Symbolic Pattern DatabasePDBjR

Reached(b0) Open(b0) GjR(b0)
i 0

while (Open6� ;)
Pred(b) 9b0 Open(b0) ^ T jR(b; b0)
Pred(b0) Pred(b) [b$ b0]

Open(b0) Pred(b0) ^ : Reached(b0)
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PDBjR  PDBjR _ (v = i ^ Open(b0))
Reached(b) Reached(b) _ Open(b)
i i + 1

return PDBjR
Weightening the heursitic estimate according to a factor is achieved by setting(v =

i) to (v = i).
Note that beside the capability to represent large sets of states in the exploration,

symbolic PDB have one further advantage to explicit ones: fast initialization. In the
definition of most planning problemsG is not given as a collection of states, but as a
smaller selection of atomsai, i 2 I 0 � I. In explicit PDB construction all statesG 2
G have to be generated and to be inserted into the BFS queue, while for the symbolic
construction, initialization is immediate.

10.4 Explicit Pattern Database Search

SPDBs can easily be incorporated to any explicit heuristic search engine, e.g. Algorithm
Explicit Pattern Database Searchillustrates A* exploration with SPDBs.

Algorithm Explicit Pattern Database Search
Input: Planning spaceP =< S;O; I;G >,

Symbolic Pattern DatabasePDBjR
Output: Solution length�(I)

Insert(Open; (I;PDBjR(I)))
while (Open6= ;)
S  DeleteMin(Open)
if (S 2 G) return g(S)
for all successorsS 0 of S
f(S 0) f(S) + 1 + PDBjR(S 0)� PDBjR(S)
if (Search(Open; S))

if (f 0(S) < f(S))
DecreaseKey(Open; (S; f 0(S))

elseInsert(Open; (S; f 0(S))

The set of horizon nodesOpenis represented as a priority queue with usual access
operationsDeleteMin, Insert, andDecreaseKey. For the sake of brevity, we have omitted
re-opening and concentrate on only one PDB, since generalizations to planning pattern
partitionsPDBjQ are easy to obtain.

For each extracted stateS we havef(S) = g(S)+h(S), whereg is the actual distance
to stateS. The newf -value of a successorS 0 is calculated asf(S 0) = g(S 0) + h(S 0) =
g(S) + 1 + h(S 0) = f(S) + 1 + (h(S 0)� h(S)).

Apparently, the design of explicit search algorithms with symbolic PDB heuristics is
not different to the design of algorithms for any other incorporated estimate. The only
change is the computation of the estimateh(S) for stateS with respect toPDBjR.

To query the symbolic PDBPDBjR with stateS =
S
i ai, denoted asPDBjR(S),

we first compute the symbolic representation
V
i bi of S. Then we determine the conjunct
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of
V
i bi with PDBjR. The operation yields(

V
j vj) ^ (

V
i bi), where(

V
j vj) encodes

the estimate. Last but not least, the formula(
V
j vj) is converted back to an ordinary

numerical quantity. Since
V
i bi is already simple, computing its conjunct withPDBjR

is fast in practice. Conversion would not be necessary at all, if instead of BDDs – as in
our implementation – arithmetic decision diagrams (ADDs) were used. For this case, the
heuristic estimate is determined in time linear to the encoding length. If several SPDs
Q1; : : : ; Qk are addressed, we compute the estimateh(S) = h1(S) + : : : + hk(S) with
respect toh1(S) = PDBjQ1

(S), h2(S) = PDBjQ2
(S), . . . ,hk(S) = PDBjQk

(S).

10.5 Symbolic Pattern Database Search

In the symbolic version of heuristic search the algorithm determines all successor states
for a set of successors in one evaluation step. The heuristic is represented as a binary
relation of estimate and state variables. In the exploration algorithm the open list of
generated nodes is represented as an encoded set of buckets with bucketf containing all
states in open with meritf = g + h .

Algorithm Explicit Pattern Database Searchstarts with the Boolean representation
of the initial state, attaches its estimate and similarly to the explicit case, it iterates state
extraction and successor set generation until the goal has been found. However, in contrast
to the setting above, we extract sets of statesMin with minimumf -valuefmin and compute
their respective successor setsSuccby applying the transition relation. To find thef -
value for the successor states we apply symbolic representation of the heuristic estimator
PDBjR to the pre-image and the image of transition relation application. The correctly
associated valuesh, h0 are then quantified to yield the successorf -value(f = fmin+h

0�
h + 1). For best-first search the formula simplies tof = h0.

The superimposed distributionPDBjR+Q of two PDBsPDBjR andPDBjQ approx-
imatesPDBjR[Q. It can be computed beforehand to be conjuncted withMin andSucc
in the algorithm. The alternative avoids the pre-computation ofPDBjR+Q and combines
PDBjR andPDBjQ with Min andSuccduring the execution. Our implementation allows
both options.

Given a uniform weighted problem graph and a consistent heuristic (h(v) � h(u) +
w(u; v) � 0) the worst-case number of iterations has been shown to beO(�2(I)) [112].

Algorithm Symbolic Pattern Database Search
Input: Planning spaceP =< S;O; I;G >,

Symbolic Pattern DatabasePDBjR
Output: Solution length�(I)

Open(f; b) PDBjR(f; b) ^ I(b)
do
fmin = minff j f ^Open(f; b) 6= ;g
Min(f) 9f (Open(f; b) ^ f = fmin)

Rest(f; b) Open(f; b) ^ : Min(b)
Min(h; b) PDBjR(h; b) ^ Min(b)
Succ(h; b0) 9b T (b; b0) ^ Min(h; b)
Succ(h; b) Succ(h; b0) [b$ b0]

Succ(h; h0; b) PDBjR(h0; b) ^ Succ(h; b)
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Succ(h; h0; f; b) Succ(h; h0; b) ^ f = fmin

Succ(f 0; b) 9h; h0; f
Succ(h; h0; f; b) ^ (f 0 = f + h0 � h + 1)

Succ(f; b) Succ(f 0; b) [f $ f 0]

Succ(f; b) Succ(f; b) ^ : Reached(b)
Open(f; b) Rest(f; b) _ Succ(f; b)
Succ(b) 9f Succ(f; b)
Reached Reached(b) _ Succ(b)

while (Open^ G � ;)
return fmin

10.6 Search Tree Prediction

Heuristic PDBs are also an efficient mean for heuristic search tree prediction, since they
approximate the overall distribution of heuristic estimates in the state space. Assuming
that patterns occur equally likely in the search space, the overall probability of estimateh

being less than or equal tok is

P (h � k) = jfP 2 PDB j h(P ) � kgj=jPDBj:
To predict the heuristic search tree expansion of the problem graph that is labeled with

node costsf = g + h, the main result in [220] states that the expected total number of
tree nodes according to cost threshold� is approximately equal to

�X
d=0

n(d)P (h � � � d) ; (10.1)

wheren(d) is the number of states in the brute-force search tree with depthd andP is
the equilibrium distribution, defined as the probability distribution of heuristic values in
the limit of large depth. In the framework of spectral analysis,n(d) can be computed in
closed form [96].

Since Equation 10.1 is a very good predictor for the number of nodes in IDA* and
yields at least a good trend for A*'s exploration effort, it has been used for evaluating the
effectiveness of PDBs [173]. For the sake of simplicity we focus on the mean heuristic
valueh =

P
k k � jfP 2 PDB j h(P ) = kgj=jPDBj: In the limit of large�, the branching

factor b, i.e. the ratio of search tree nodes with respect to two consecutive threshold
values, converges [96]. The effect of the heuristic is to reduce the search tree size from
O(bd) toO(bd�c) for some constantc � h [215].

Therefore, heuristics are best thought of as offsets to the search depth. The higher the
average heuristic value, the smaller theeffective search tree depth, i.e., the shallower the
search with respect to the brute-force search tree. The following case study displays the
effect of explicit and symbolic PDBs onh.

10.7 Case Study

As a case study we chose Blocks World, since finding optimal plans is still a challenge
for domain-independent planners. No form of knowledge was added to the planner, we
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switched off all branching cuts. Cuts significantly speed up exploration, but most pro-
posed control knowledge in planning is domain-dependent or apply to certain sets of
benchmark domains only.

10.7.1 Pattern Database Construction

In Tables 10.1 and 10.2 we present the results on constructing symbolic PDBs in se-
lected Blocks World problems of the AIPS-2000 set. The total number of patterns in the
databases and the respective averaged heuristic estimatesh are shown. As the problems
sizep gets larger, more and more PDBs were generated (separated by /).

p s h

4 108 6.20
5 1,029 8.85
6 12,288 11.49
7 26,244/8 11.72/1.62
8 50,000/80 11.26/3.57
9 87,846/968 11.69/6.37

10 145,152/13,824 11.35/8.59
11 228,488/228,488 11.38/11.39
12 27,440/27,440/2,156 8.64/8.64/5.79
13 37,125/37,125/37,125 8.66/8.66/8.66
14 49,152/49,152/49,152/158.03/8.03/8.03/1.80
15 63,869/63,869/63,869/2558.69/8.69/9.35/3.75

Table 10.1: Number of Statess and Mean Heuristic Valueh in Blocks World PDBs
according tom = 220.

p s h

4 1,08 6.20
5 1,029 8.85
6 12,288 11.49
7 1,777,147 14.14
8 3e+06 16.80
9 5.84e+07 19.47

10 1.43e+08 19.55/1.72
11 2.89e+07/1,690 17.05/6.47
12 5.27e+07/27,440 16.29/8.05
13 9.11e+07/506,250 16.89/10.93
14 1.50e+08/1.04e+0716.56/13.77
15 2.41e+08/2.41e+0816.59/16.56

Table 10.2: Number of Statess and Mean Heuristic Valueh in Blocks World PDBs
according tom = 230.
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The averaged heuristic estimates increase significantly when moving fromm = 220

tom = 230, while the number of PDBs shrinks accordingly.
Table 10.3 compares the growth of the symbolic representation with respect to the

number of states. We took the first PDB in Blocks World Problem 15 withm = 230

as an example. The predicted state space size is 410,338,673. Since this corresponds to
maximum perfect hash table capacity, explicit exploration was no longer available.

d t b s

0 0.00s 35 1
2 0.01s 103 39
4 0.01s 311 586
6 0.03s 858 5,792
8 0.13s 2,576 55,911

10 0.66s 6,879 538,771
12 2.56s 14,583 4.01e+06
14 7.60s 24,547 1.87e+07
16 12.60s 30,238 4.51e+07
18 10.69s 22,592 4.14e+07
20 4.48s 7,655 1.02e+07
22 0.45s 993 467,551

Table 10.3: Node Countb and Number of Statess for Constructng a SPDB in Blocks-
World Problem 15.

Table 10.3 depicts the node and state counts for each iteration in the construction
phase. The results indicate that by far more states are encountered than BDD nodes were
necessary to represent them. In this case the effect of symbolic representation corresponds
memory gains of up to about two orders of magnitude. Withm = 240, for which explo-
ration was still possible, the effect increases up to about four orders of magnitude. We
also observe that the peak node count for the is also established earlier then the peak state
count.

10.7.2 Explicit Search

Table 10.4 compares the CPU times1 of explicit and symbolic PDB construction with the
exploration time in explicit search. We took the same heuristic estimate andm = 220.
Since the qualities of the different PDBs match, the same set of states was considered.
The search algorithm we chose was A* with weight 2 (f = g+2h). Besides the problem
number, the depth of the solution and the number of expanded nodes, we also displayed
PDB construction timetc and explicit search timets with respect to explicit pattern and
symbolic PDBs, subscripted bye ands.

1Most of the experiments were run on a Sun UltraSparc Workstation with 248 MHz. Since exact
running-times reflect too many issues of the current implementation, for the interpretation of results we
are mainly interested in comparing performance growth. Memory was restricted as follows. The pattern
databases were either limited tom = 220 states orm = 230 states; for explicit search we chose 2,000,000
stored states as the exploration bound. For symbolic exploration we allocated at most 8,000,000 BDD
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p d e tce tse tcs tss
4 6 7 0.01s 0.00s 0.03s 0.00s
5 12 15 0.05s 0.00s 0.04s 0.00s
6 12 13 0.49s 0.00s 0.30s 0.00s
7 24 40 1.39s 0.00s 0.52s 0.01s
8 20 1,590 2.98s 0.10s 0.67s 0.40s
9 32 34,316 6.18s 3.75s 0.81s 13.92s

10 34 47,657 12.55s 5.72s 1.23s 16.35s
11 38 7,941 0.91s 3.09s 1.80s 3.04s
12 38 34,323 4.67s 5.31s 1.73s 13.24s
13 - - 10.55s - 2.45s -
14 40 254,769 15.16s 58.23s 3.32s 150.43s
15 - - 21.88s - 5.51s -

Table 10.4: Time for PDB Construction and Explicit Search in Blocks World.

In the result we obtain a trade-off between explicit and symbolic search. While sym-
bolic PDB construction is significantly faster, search time is larger. As indicated above, an
ADD implementation for the heuristic lessens the per-node retrieval overhead for SPDBs.

10.7.3 Symbolic Search

In this set of experiments we measured the performance of the symbolic search algorithm.
We used forward heuristic search with respect to the provided SPDBs, accompanied by a
symbolic backward traversal. The search direction was chosen in favor to the exploration
side that used less time in the previous iteration. The memory bound was set tom = 230,
so at most 2 PDBs were constructed. By the choice of dependent PDBs, the results in
Table 10.5 were not necessarily optimal. The headings are read as follows:p is the
problem number,d is the depth of the solution,if andib are the number of forward and
backward iterations,tcs is the PDB construction time,tcs is the symbolic search time, and
tb is time for bidirectional symbolic BFS.

The peak PDBs size atp = 11 reflects that the maximum number of patterns in
the database is roughly equal to the state space size. As the comparison oftss with tb
shows, we can obtain better results as with bi-directional symbolic BFS, which besides
SAT enumeration [204], is state-of-the-art in optimal sequential plan generation. Another
observation is that in case of failure, symbolic heuristic search with PDBs never runs out
of memory but out of time. For symbolic engines this is a very unusual behavior. In
Problem 13 time was exceeded in exploration, while for Problem 15 the time threshold
was encountered when merging the two PDBs into a combined one.

PDBs have also been successfully applied to other challenging propositional planning
domains [95]. The results do transfer to the symbolic setting. In simple domains like
Gripper, all running times (for A* and best-first explicit and symbolic exploration with
explicit and symbolic PDBs) were bounded by far less than a minute. Table 10.6 dis-
plays the CPU performance of explicit search with (S)PDBs in Logistics. In symbolic

nodes.
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p d if ib tcs tss tb
4 6 6 0 0.02s 0.21s 0.17s
5 12 12 0 0.04s 0.30s 0.30s
6 12 12 0 0.30s 0.43s 1.09s
7 20 20 0 3.95s 0.76s 11.34s
8 18 9 11 0.67s 0.40s 2.80s
9 30/32 25 12 0.81s 13.92s 38.16s

10 34 60 12 66.16s 58.02s 297.51s
11 32/38 52 11 1,218s 261.76s 742.14s
12 34/36 142 15 38.57s 224.13s 1,059s
13 - 147 17 48.88s time memory
14 -/38 52 11 59.05s 150.92s memory
15 - - - time - memory

Table 10.5: CPU Performance for PDB Construction and Symbolic Search in Blocks
World.

best-first search (f = h) we solved each problem in less than a minute, while symbolic
A* ( f = g + h) and symbolic BFS (f = g) failed in larger problem instances. The
space bound is220 and, once more, the search algorithm is A* with weight 2. The savings

p d e tce tse tcs tss
4 20 21 1.52s 0.00s 0.11s 0.00s
5 27 33 0.70s 0.01s 0.08s 0.02s
6 25 30 5.90s 0.00s 0.10s 0.07s
7 37 48 27.54s 0.01s 0.64s 0.06s
8 34 50 26.99s 0.02s 2.33s 0.06s
9 36 43 27.62s 0.01s 0.91s 0.08s

10 36 81 52.97s 0.04s 1.01s 0.12s
12 44 79 53.02s 0.02s 1.14s 0.11s
13 75 138 22.92s 0.08s 4.18s 0.42s
14 66 143 22.99s 0.09s 4.42s 0.36s
15 84 186 23.39s 0.15s 4.81s 0.51s

Table 10.6: Time for PDB Construction and Explicit Search in Logistics.

in explicit database search time are counter-balanced by acorresponding increase in con-
struction time. One interesting observation in Logistics and Gripper is that through the
highly asynchronous problem structure even very small databases lead to good accumu-
lated estimates. Therefore, very large problems can effectively be solved with PDB.

We have not considered metric planning problems, where PDBs are to be constructed
according to their shortest-path distances to the goal. Since the awarded, 2002 competi-
tion version of MIPS2 schedules sequential plans, we integrated (S)PDB for sequential
plan generation with mixed results.

2Seewww.informatik.uni-freiburg.de/ �mmips.
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10.8 Related Work

In the Model-Based Planner, MBP, the paradigm of planning as symbolic model check-
ing [145] has been implemented fornon-deterministic planningdomains [63], which clas-
sifies in weak, strong, and strong-cyclic planning, with plans that are represented as com-
plete state-action tables. Forpartial observable planning, exploration faces the space of
belief states; the power set of the original planning space. Therefore, in contrast to the
successor set generation based on action application, observations introduce “And” nodes
into the search tree [32]. Since the approach is a hybrid of symbolic representation of
belief states and explicit search within the “And”-“Or” search tree, simple heuristic have
been applied to guide the search. The need for heuristics that trade information gain for
exploration effort is also apparent need inconformant planning[31]. The authors label
the obtained search algorithms as a new paradigm ofheuristic-symbolicsearch and report
savings in orders of magnitudes with respect to BFS. In contrast to our approach, where
Boolean function encode perfect knowledge, the symbolic representation compensates
partial knowledge of the current state. Moreover, Bertoli et al. consider heuristics for
guiding the choice of the belief states with no symbolic heuristic estimates as in our case.
Since the first estimate was rather trivial – it preferred belief states with low cardinality –
recent work [30] proposes improved heuristic for belief space planning. Nevertheless, we
view unpublished work on abstraction [61] closest to our approach of symbolic PDBs. It
origins in Abstrips abstractions, but lacks experimental results.

The awarded model checking integrated planning system MIPS [103] is a competitive
deterministic planning system based on model checking methods. The planner incorpo-
rates symbolic, explicit and metric heuristic planning strategies [100]. Its type-inference
mechanism and fact enumeration algorithm groups mutually exclusive facts to infer a
concise state endoding [101]. Heuristic symbolic search with the (weighted) BDDA* al-
gorithm has shown a significant time and space reduction for planning problems that were
intractable for breadth-first symbolic exploration [93]. As a symbolic heuristic, the goal
was splitted into atoms and either a relaxed plan or thesingle-atomheuristic was com-
puted and accumulated. The approach could not compete with state-of-the art planners,
and, different to SPDBs, the pre-compiled symbolic estimates provided no information
gain to accelerate explicit heuristic search planners.

The UMOP system parses a non-deterministic agent domain language that explicitly
defines a controllable system in an uncontrollable environment [196]. The planner also
applies BDD refinement techniques such as automated transition function partitioning.
New result for the UMOP system extends the setting of weak, strong and strong cyclic
planning to adversarial planning, in which the environment actively influences the out-
come of actions. In fact, the proposed algorithm joins aspects of both symbolic search
and game playing. Jensen also reports some preliminary and unpublished successes on
planning with domain abstractions. As one drawback, the loss of solution quality seemed
to be significant.

With SetA*, [197] provide an improved implementation of the symbolic heuristic
search algorithm BDDA* [112] and Weighted BDDA* [93]. Based on supplied source
code the consise state encoding and themax-atomheuristic function of MIPS could be
reproduced3. One major surplus is to maintain a finer granularity of the sets of states in

3In their paper, the authors compare SetA* with the implementation of BDDA* in MIPS of early 2001.
While the results in Logistics seem plausible, unfortunately, we cannot reproduce the bad behavior of our
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the search horizon kept in a matrix according to matchingg- andh- values. This contrasts
the plain bucket representation of the priority queue based onf -values. The heuristic
function is implicitly encoded with value differences of grounded actions. Since sets of
states are to be evaluated and some heuristics are state rather than operator dependent
it has still to be shown how general this approch is. As above the considered planning
benchmarks are seemingly simple for single-state heuristic search exploration [180, 169].
We expect better and more general results when applying SPDBs.

Recent, yet unpublished work of Hansen, Zhou, and Feng [158] also re-implemented
BDDA* and suggest that symbolic search heuristics and exploration schemes are prob-
ably better to be implemented with algebraic decision diagrams (ADDs), as available in
Somenzi's CUDD package. Although the authors achieved no improvement to [112] to
solve the(n2�1)-Puzzle, the established generalization to guide a symbolic version of the
LAO* exploration algorithm [157] forprobabilisticor Markov decision process (MDP)
planning, results in a remarkable improvement to the state-of-the-art [124]. Since its input
– as in our case – is a symbolic representation of the estimate, the contributed progress in
estimate quality calls for generalizations of SPDBs to probabilistic planning.

In BDD-based hardware verification, guided search and prioritized model checking
are emerging technologies. [352] used BDD-based symbolic search based on the Ham-
ming distance of two states. This approach has been improved in [303], where the BDD-
based version of A* for the�cke model checker outperforms symbolic BFS exploration
for two scalable hardware circuits. The heuristic is determined in a static analysis prior
to the search taking the actual circuit layout and the failure formula into account. The
approach of symbolic guided search in CTL model checking documented in [38] ap-
plies `hints' to avoid sections of the search space that are difficult to represent for BDDs.
This permits splitting the fix-point iteration process used in symbolic exploration into
two parts yielding under- and over-approximation of the transition relation. Benefits of
this approach are simplification of the transition relation, avoidance of BDD blowup and
a reduced amount of exploration for complicated systems. However, in contrast to our
approach providing `hints' requires user intervention. Also, this approach is not directly
applicable to explicit exploration, which is our main focus. Prioritized traversals are also
concerned for formal hardware verification at IBM [133]. The approach bases on the work
of [54] and splits the symbolic search frontier into parts to ease approximate reachability.

10.9 Conclusion

This paper puts forth the idea of PDB construction to improve the computed average of
the admissible heuristic, which in turn corresponds to a relative decrease in search depth.
We have also seen a sound formal treatment for PDBs in planning for both explicit and
symbolic construction. The experiments highlight that with symbolic representation and
reachability analysis, very large databases can be constructed, for which explicit methods
necessarily fail.

The approach improves one of the three major classes of heuristics in plan-
ning, namely Plan abstraction. The other two are: Plan relaxation, as imple-
mented in the FF planner [181], which is a informative on-line computed estimate,

implementation in the Gripper domain.
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and Bellman approximation, as implemented in themax-atomand max-pair heuris-
tics for HSP, which also consideres groups of atoms. In contrast to this paper
Bellman approximationsimplifies the exploration without simplifying the operator rep-
resentation [163].

PDBs consider subproblem interactions of larger groups and include more knowledge
into the estimate than themax-pairheuristic. On the other hand, since FF and the PDB
heuristics are very different in their characteristics, the natural question arises of how to
combine the two for an even better estimate. Even though node expansion is more time
consuming for the relaxed plan graph estimate, it yields better information on groups that
do not appear in the goal description.

Our implemented proposal is to group the number of add atoms that match the back-
ward plan extraction of the relaxed plan graph in FF according to the obtained group
partitioning. With respect to each planning space abstraction the better FF or PDB, value
can be selected. Since FF's heuristic is somewhat misguided in Blocks World, yielding
very low estimates in states far away from the goal state, we can achieve almost arbitrary
large improvements for A*-like searches.

Our approach accelerates both explicit and symbolic search. Explicit heuristic search
planners can now access better off-line estimates and by weighting the symbolic heuristic
search algorithm we can scale the solution quality. Symbolic heuristic search planning
– possibly better to be implemented with ADDs – now appears as a real competitor for
blind symbolic breadth-first exploration. Moreover, the paper provides a bridge from ex-
plicit to symbolic search. In both planning and model checking there are two distinctive
research branches according to the chosen representation. We have established an effec-
tive interplay between these methods by combining state-of-the art techniques from both
fields. Future research on checking safety property will try to consolidate these findings
in model checking domains.
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Abstract

The Model Checking Integrated Planning System (MIPS) has shown distinguished
performance in the second and third international planning competitions. With its object-
oriented framework architecture MIPS clearly separates the portfolio of explicit and sym-
bolic heuristic search exploration algorithms from different on-line and off-line computed
estimates and from the grounded planning problem representation.

In 2002, the domain description language for the benchmark problems has been ex-
tended from pure propositional planning to include rational state resources, action dura-
tions, and plan quality objective functions. MIPS has been the only system that produced
plans in each track of every benchmark domain. This article presents and analyzes the
algorithmic novelties necessary to tackle the new layers of expressiveness.

The planner extensions include critical path analysis of sequentially generated plans to
generate optimal parallel plans. The linear time algorithm bypasses known NP hardness
results for partial ordering with mutual exclusion by scheduling plans with respect to
the set of actionsand the imposed causal structure. To improve exploration guidance
approximate plans are scheduled for each encountered planning state.

One major strength of MIPS is its static analysis phase that grounds and simplifies
parameterized predicates, functions and operators, that infers single-valued invariances to
minimize the state description length, and that detects symmetries of domain objects. The
aspect of object symmetry is analyzed in detail. The paper shows how temporal plans of
any planner can be visualized in Gannt-chart format in a client-server architecture. The
frontend turns also be appropriate for concise domain visualization.

159
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11.1 Introduction

The Model Checking Integrated Planning System MIPS has participated twice in the inter-
national planning competition: in the second planning competition at AIPS-2000 in Beck-
enridge (USA) and in the third planning competition at AIPS-2002 in Toulouse (France).
As the name indicates, the MIPS project targets the integration of model checking tech-
niques into a domain-independent action planner.

Model checking[65] is the automated process to verify if a formal model of a system
satisfies an specified temporal property or not. As an illustrative example, take an elevator
control system together with a correctness property that requires an elevator to eventually
stop on every call of a passenger or that guarantees that the door is closed, while the
elevator is moving.

Although the success in checking correctness is limited, model checkers found many
subtle errors in current hardware and software designs. Models often consists of many
concurrent sub-systems. Their combination is either synchronous, as often met in hard-
ware design verification, or asynchronous, as frequently given in communication and se-
curity protocols, or in multi-threaded programming languages like Java.

Exploration of model checking domains spans very large spaces of all reachable sys-
tem states. This effect is usually denoted as thestate explosion problem, even if the sets
of generated states rather than the states themselves grow that quickly.

An error that shows a safety property violation, like a deadlock or a failed assertion,
corresponds to one of a set of target nodes in the state space graph. Roughly speaking,
something bad has occured. A liveness property violation refers to a (seeded) cycle in
the graph. Roughly speaking,something good will never occur. For the case of the
elevator example, eventually reaching a target state where a request button was pressed is
a liveness property, while certifying closed doors refers to a safety property.

In this paper we refer to safety properties only, since goal achievement in traditional
and competition planning problems have yet not been extended with temporal properties.
However, temporally extended goals are of increasing research interests [200, 294, 230].

The two main validation processes in model checking are explicit and symbolic
search. In explicit-state model checking each state refers to a fixed memory location
and the state space graph is implicitly generated by successive expansions of state.

In symbolic model checking [259, 66], fixed-length binary encodings of states are usu-
ally seen as mandatory, so that each state can be represented by its characteristic Boolean
function. The function evaluates to true if and only if all state variables are assigned to
according bit values. Sets of states are expressed by the disjunct of the individual charac-
teristic functions. On the other hand satisfiability and uniqueness of Boolean formulae is
NP hard.

The unique symbolic representation of sets of states as Boolean formulae through
binary decision diagrams (BDDs) [50] is often much smaller than the explicit one. BDDs
are (ordered) read-once branching programs with nodes corresponding to variables, edges
corresponding to variable outcomes, and each path corresponding to an assignment to
the variables with the resulting evaluation at the leaves. One reason of the succinctness
of BDDs is that directed acyclic graphs may express exponentially many paths. Since
states are encoded in binary, the transition relation is defined on two state variable sets.
It evaluates to true, if and only if an operator exists that transforms a state into a valid
successor. In some sense, BDDs exploit regularities of the state set and often appear
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better suited to regular hardware systems, in contrast to many software system that inherit
a highly asynchronous and irregular structure, so that the straight use BDD with their
fixed variable ordering is probably not flexible enough.

For symbolic exploration a set of states is combined with the transition relation to
compute the set of all possible successor states, i.e. the image. Starting with the initial
state, iteration of image computations eventually explores the entire reachable state space.
To improve the efficiency of image computations, transition relations are often provided
in partitioned form.

The correspondence of action planning and model checking can be roughly charac-
terized as follows. Similar to model checkers, action planners implicitly generate large
state spaces, and both exploration approaches base on applying parameterized operators
to the current state. States in model checking and in planning problems are both labeled
by (propositional state) predicates. The satisfaction of a specified property on the one
side and the arrival at a certain goal state on the other, leads to a slight difference in the
according search objective. With this respect, the goal in action planning is a safety error
and the corresponding (error) trail is interpreted as a plan. In the elevator example, the
goal of a planning task is to reach a state, in which the doors are open and the elevator
is moving. For a formal treatment on the embedding of planning problems into model
checking terminology, we refer the reader to [145].

Model checkers perform either symbolic or explicit exploration. To the contrary MIPS
features both and allows to combines symbolic and explicit search planning. It applies
heuristic search; a search acceleration technique that has let to considerable gains in both
communities. In the last few years, heuristic search planners frequently outperform other
domain-independent planning approaches, e.g. [181], and heuristic search model checkers
turn out to significantly improve state-of-the-art, e.g. [105].

Including resource variables (like the fuel level of a vehicle or the distance between
locations) and action duration (i.e. the time passed during execution of the planning op-
erator) are relatively new aspects for action planning, at least in form of an accepted
domain description accessible for competitive planning [131]. The competition input
format PDDL2.1 is not restricted to variables of finite domain, but also includes spec-
ification of rational (floating-point) variables in both precondition and effects. Similar
to a set of atoms described by a propositional predicate, a set of numerical quantities
can be described by a set of parameters. Through the notation of PDDL2.1, we refer to
parameterized numerical quantities as functions. For example, the fuel level might be
parameterized by the vehicle that is present in the problem instance description.

In the 2002 competition, domains were provided in different tracks according to dif-
ferent layers of language expressiveness:i) pure propositional planning,ii) planning with
numerical resources,iii) planning with numerical resources and constant action duration,
iv) planning with numerical resources and variable action duration, and, in some cases,v)

more complex problems usually combining time and numbers in more interesting ways.
MIPS competed as a fully automated system and performed remarkably well in all five
tracks; it solved a high number of problems and was the only system that produced solu-
tions in each track of every benchmark domain.

In this paper the main algorithmic aspects totamerational numbers, objective func-
tions, and action duration are described. The article is structured as follows. First, we re-
call the development of the MIPS system and assert its main contributions to the planning
community. Then we address the object-oriented heuristic search framework architecture
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of the system. Subsequently, we fix some terminology that allows to give a formal defi-
nition of the syntax and the semantics of a grounded mixed numerical and propositional
planning problem instance.

We then introduce the core contributions: critical path scheduling for concurrent
plans, and efficient methods for detecting and using symmetry cuts. PERT scheduling
produces optimal parallel plans given a sequence of operators and a precedence rela-
tion among them in linear time. The paper discusses pruning anomalies and handling of
different optimization criteria. We analyze the correctness and efficiency of symmetry
detection in detail. Afterwards, a TCP/IP client-server visualization system for sequen-
tial and temporal plans is presented. The article closes with related work and concluding
remarks.

11.2 The Development of MIPS

The competing versions of MIPS refer to initial findings [114] of heuristic symbolic ex-
ploration with the�cke model checker [35] that already lead to good performance in puz-
zle solving [112] and in hardware verification [303]. For general propositional planning,
our concise BDD libraryStaticBdd1 has been used. During the implementation process
we changed the BDD representation to improve performance mainly for small planning
examples and chose the public domainc++ BDD package Buddy by Jørn Lind-Nielsen.
In the beginning the variable encodings were provided by hand, while the representa-
tion of all possible operator descriptions were established by enumerating all possible
parameter instantiations. Once the encoding and transition relation were fixed, symbolic
exploration in form of a reachability analysis of the state-space could be executed. At that
time, we were not aware of any other work in BDD-based planning like [60], which is
probably the first link to planning via (symbolic) model checking.

Since the above approach was criticized not to be fully automated, we subsequently
developed a parser and static analyzer to cluster atoms into groups in order to minimize
the length of the state encoding [101]. The outcome of the analyzer allowed to specify
states and transition functions in Boolean terms, which in turn were included into a bidi-
rectional BDD exploration and solution extraction procedure. In the end, MIPS was the
first automated planning system based on symbolic model checking.

In the second international planning competition MIPS [103] could handle the
STRIPS [126] subset of the PDDL language [258] and some additional features from
ADL [289], namely negative preconditions and (universal) conditional effects. MIPS was
one of five planning systems to be awarded for “Distinguished Performance” in the fully
automated track. The competition version [102] already included explicit heuristic search
algorithms based on a bit-vector state representation and the relaxed planning heuristic
(RPH) [181] and symbolic heuristic search based on the HSP-Heuristic [41] and a one-
to-one atom RPH-derivate [102].

For the 2002's international planning competition new levels of the planning domain
description language [131] have been designed to specify problems that include actions
with durations and resources. The agreed input language definition is referred to as PDDL
2.1. While Level 1 considers pure propositional planning, Level 2 also includes numerical
resources and objective functions to be minimized, and Level 3 additionally allows to

1Seehttp://www.informatik.uni-freiburg.de/ ~edelkamp/StaticBdd
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specify actions with durations. Consequently, MIPS2 has been extended to cope with
these new forms of expressiveness.

In [94] first results of MIPS in planning PDDL 2.1 problems are presented. The pre-
liminary treatment exemplifies the parsing process in two simple benchmark domains.
Moreover, propositional heuristics and manual branching cuts were applied to accelerate
sequential plan generation. This work was extended in [97], where two approximate ex-
ploration techniques to bound and to fix numerical domains, symmetry detection based
on fact groups, critical path scheduling, an any-time wrapper to produce optimal plans
and a numerical extension to the RPH were presented. Due to possible involved calcu-
lations, enumerating variable domains and the any-time wrapper were excluded from the
competition version of MIPS. Our approach to extend RPH with numerical information
establishes plans even in challenging numerical domains likeSettlersand was developed
independently from Hoffmann's work on his competing plannerMetric-FF [179]. The
main contributions of this paper are

� a formal definition of grounded propositional and numerical planning and an index
scheme for grounding predicate, functions, and actions;

� the object-oriented framework architecture for a planner to choose and combine
different heuristics with different search algorithms and storage structures;

� an intermediate interface with grounded and simplified planning domain instances;

� a static analyzer that applies efficient fact-space exploration to distinguish constant
from variable atoms and resource variables, that clusters facts into groups and infers
static symmetries;

� optimal temporal planning enumeration algorithms based on an precedence rala-
tion and PERT scheduling of sequentially generated plans together with an concise
analysis of correctness and optimality;

� the integration of scheduling already in the estimate computation as a floating point
estimate for optimal parallel plan length;

� different pruning methods, especially dynamic symmetry detection, hash and trans-
position cuts, and a throughout study of object symmetries, their complexities and
the implemented trade-off;

� different strategies for optimizing objective functions and further implementation
tricks that made the system efficient;

� a web-interface for visualization: a wrapper for temporal plans to be presented
in Gannt-chart format and a domain-dependent frontend for executing sequential
plans.

2A recent version of MIPS is available in source code at
www.informatik.uni-freiburg.de/ ~edelkamp
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Figure 11.1: An Instance to theZeno-TravelDomain: Start State (left) and Goal State
(right).

11.3 Terminology

Our running example is the following instance of a simple PDDL 2.1 problem in
Zeno-Traveland illustrated in Figure 11.1. The initial configuration is drawn to the left of
the figure and the goal configuration to its right. Some global and local numerical variable
assignment are not shown.

In Figures 11.2 and 11.3 we provide the according textual domain and problem spec-
ifications3. The instance asks for a temporal plan to fly passengers (dan , scott , and
ernie ) located somewhere on a small map (including the citiescity-a , city-b ,
city-c , andcity-d ) with an aircraft (plane ) to their respective target destinations.
Boarding and debarking takes a constant amount of time. The plane has a determined ca-
pacity of fuel. Fuel and time are consumed according to the distances between the cities
and with respect to two different travel speeds. Since fuel can be restored by refueling the
aircraft, the total amount of fuel is also maintained as a numerical quantity.

11.3.1 Sets and Indices

Table 11.1 displays the basic terminology for sets used in this paper. As most currently
successful planning system, MIPS grounds parameterized information present in the do-
main description.

For all sets we infer a suitable array embedding, indicated by a mapping� from this
set to a finite domain and vice versa. This embedding is important to deal with unique
identifiers of entities instead of their textual or internal representation. The arrays con-
taining the corresponding information can then be accessed in constant time. Almost all
planners that perform grounding prior to the search address instantiations by identifiers.

For sets that occur in the domain or problem specification without any parameteriza-
tion like CONST ;PRED;FUNC;ACT ; T YPE ;ACT , andOBJ , the index� refers
to the position of occurrence. Letk(p), k(f), andk(a) denote the arity (the number of
parameters) of predicatep 2 PRED, functionf 2 FUNC, anda 2 ACT , respectively.
The index for an instantiated predicate(p o1 : : : ok(p)) 2 IPRED is computed as

3[...] denotes that source fragments were omitted for the sake of brevity. In the given example these
are the action definitions for debarking a passenger and flying an airplane..
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(define (domain zeno-travel)
(:requirements :durative-actions :typing :fluents)
(:types aircraft person city)
(:predicates (at ?x - (either person aircraft) ?c - city)

(in ?p - person ?a - aircraft))
(:functions (fuel ?a - aircraft) (distance ?c1 - city ?c2 - city)

(slow-speed ?a - aircraft) (fast-speed ?a - aircraft)
(slow-burn ?a - aircraft) (fast-burn ?a - aircraft)
(capacity ?a - aircraft) (refuel-rate ?a - aircraft)
(total-fuel-used) (boarding-time) (debarking-time))

(:durative-action board
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration boarding-time)
:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))
:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))
[...]
(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (/ (distance ?c1 ?c2) (fast-speed ?a)))
:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a) (* (distance ?c1 ?c2) (fast-burn ?a)))))
:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))
(at end (increase total-fuel-used

(* (distance ?c1 ?c2) (fast-burn ?a))))
(at end (decrease (fuel ?a)

(* (distance ?c1 ?c2) (fast-burn ?a))))))
(:durative-action refuel

:parameters (?a - aircraft ?c - city)
:duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))
:condition (and (at start (< (fuel ?a) (capacity ?a)))

(over all (at ?a ?c)))
:effect (at end (assign (fuel ?a) (capacity ?a))))

)

Figure 11.2: Zeno-Travel Domain Description in PDDL2.1.

�((p o1 : : : ok(p))) =  (p) +
k(p)X
i=1

�(oi)jOBJ ji�1;

where (p) =
P�(p)�1

i=1 jOBJ jk(pi) is the offset of predicatep 2 PRED andjOBJ j
is the cardinality of setOBJ . TakingjOBJ j as the radix is a rather coarse value for all
parameter instantiations; one could refine the index by using parameter type information.

Indices for instantiated functions(f o1 : : : ok(f)) 2 IFUNC are determined analo-
gously. Instantiated actionsa 2 IACT with parametersp1; : : : ; pk(a) are consequently
addressed by the following index

�((a p1 : : : pk(a))) =  (a) +
k(a)X
i=1

�(pi)jOBJ ji�1:

After static analysis has established a superset of all occurring fluentsF , operatorsO
and variablesV, in MIPS the index range is reduced to a minimum, thereby refining�

to �0. In the following we keep� as a descriptor, and assume that�(p) 2 f1; : : : ; jPjg,
�(f) 2 f1; : : : ; jVjg, and�(a) 2 f1; : : : ; jOjg.



166 PAPER 11. TAMING NUMBERS AND DURATIONS IN MIPS

(define (problem zeno-travel-1)
(:domain zeno-travel)
(:objects plane - aircraft

ernie scott dan - person
city-a city-b city-c city-d - city)

(:init (= total-fuel-used 0) (= debarking-time 20) (= boarding-time 30)
(= (distance city-a city-b) 600) (= (distance city-b city-a) 600)
(= (distance city-b city-c) 800) (= (distance city-c city-b) 800)
(= (distance city-a city-c) 1000) (= (distance city-c city-a) 1000)
(= (distance city-c city-d) 1000) (= (distance city-d city-c) 1000)
(= (fast-speed plane) (/ 600 60)) (= (slow-speed plane) (/ 400 60))
(= (fuel plane) 750) (= (capacity plane) 750)
(= (fast-burn plane) (/ 1 2)) (= (slow-burn plane) (/ 1 3))
(= (refuel-rate plane) (/ 750 60))
(at plane city-a) (at scott city-a) (at dan city-c) (at ernie city-c))

(:goal (and (at dan city-a) (at ernie city-d) (at scott city-d)))
(:metric minimize total-time)

)

Figure 11.3: Zeno-Travel Problem Instance.

Set Descriptor Example(s)
OBJ objects dan , city-a , plane , . . .
T YPE object types aircraft , person , . . .
PRED predicates (at ?a ?c) , (in ?p ?a) , . . .
FUNC numerical functions (fuel ?a) , (total-time) , . . .
ACT parameterized actions(board ?a ?p) , (refuel ?a) , . . .
IACT instantiated actions (board plane scott) , . . .

O � IACT fluent operators (board plane scott) , . . .
IPRED instantiated predicates (at plane city-b) , . . .

F � IPRED fluents (at plane city-b) , . . .
IFUNC instantiated funtions (distance city-a city-b) , . . .

V � IFUNC variables (fuel plane) , (total-time) , . . .

Table 11.1: Basic Set Definitions.

In the following we first give the formal description of a grounded planning problem
and then turn to the static analyzer that infers the according and supplementary informa-
tion.

11.3.2 Grounded Planning Problem Instances

As many other planners MIPS refers to grounded planning problem representations.

Definition 10 (Grounded Planning Instance) Agrounded planning instanceis a quadru-
ple P = hS; I;O;Gi, whereS is the set of planning states,I 2 S is the initial state,
G � S is the set of goal states. In mixed propositional and numerical planning problem
the state spaceS is given by

S � 2F � IRjVj;

where2F is the power set ofF . Therefore, a stateS 2 S is a pair (Sp; Sn) with proposi-
tional partSp 2 2F and numerical partSn 2 IRjVj.
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For the sake of brevity, we assume the operators to be innormal form, by means that
propositional parts (preconditions and effects) satisfy standard STRIPS notation [126] and
numerical parts are given in form of arithmetic treest taken from the set of all treesT with
arithmetic operations in the nodes and numerical variables and evaluated constants in the
leaves. WithLeafVariables(t), t 2 T , we denote the set of all leaf variables in the tree
t. However, there is no fundamental difference to more general preconditions and effects
representations. The current implementation in MIPS takes a generic precondition tree,
thereby including comparison symbols, logical operators (in the nodes) and arithmetic
subtrees.

Definition 11 (Syntax of Grounded Planning Operator) An operatoro 2 O in nor-
mal form o = (�; �; ; �) has propositional preconditions� � F , propositional ef-
fects � = (�a; �d) � F2, numerical preconditions, and numerical effects�. A
numerical preconditionc 2  is a triple c = (hc;
; tc), where hc 2 V, 
 2
f�; <;=; >;�g, and tc 2 T . A numerical effectm 2 � is a triplem = (hm;�; tm),
wherehm 2 V,� 2 f ; "; #g andtm 2 T .

Obviously,
 2 f�; <;=; >;�g represents the associated comparison relation, while
 denotes an assigment to a variable, while" and# indicate a respective increase or
decrease operation to it. This allows to formalize the application of planning operators to
a given state.

Definition 12 (Semantics of Grounded Planning Operator Application) An operatoro =

(�; �; ; �) 2 O applied to a stateS = (Sp; Sn), Sp 2 2F and Sn 2 IRjVj, yields a
successor stateS 0 = (S 0p; S

0
n) 2 2F � IRjVj as follows.

We say that a vectorSn = (S1; : : : ; SjVj) of numerical variablessatisfiesa numerical
constraintc = (hc;
; tc) 2  if s�(hc) 
 eval(Sn; tc) is true, where eval(Sn; tc) 2 IR is
obtained by substituting allv 2 V in tc byS�(hc) followed by a simplification oftc.

If � � Sp andSn satisfiesall c 2  thenS 0p = Sp [ �a n �d and the vectorSn is
updatedfor all m 2 � . We say that the vectorSn = (S1; : : : ; SjVj) is updatedto vector
S 0n = (S 0

1
; : : : ; S 0jVj) by modifierm = (hm;�; tm) 2 �, if

� S 0�(hm)
= eval(Sn; tm) for � = ,

� S 0�(hm)
= S�(hm) + eval(Sn; tm) for � = ", and

� S 0�(hm)
= S�(hm) � eval(Sn; tm) for � = #.

The propositional updateS 0p = Sp [ �a n �d is defined as in standard STRIPS. The
set of goal statesG is often given asG = (Gp;Gn) with a partial propositional state des-
crition Gp � F , andGn as a set of numererical preconditionsc = (hc;
; tc). Moreover,
the arithmetic treestc usually collaps to simple leaves labeled with numerical constants.
Hence, we might assume thatjGnj � jVj.

11.3.3 Static Analysis

The static analyzer takes the domain and problem instance as an input, grounds its propo-
sitional state information and infers different forms of planner independent static infor-
mation.
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� Parsing: Our simple Lisp parser generates a tree of Lisp entities. It reads the input
files and recognizes the domain and problem name. To cope with typing we tem-
porarily assert constant typed predicates to be removed together with other constant
predicates in a further pre-compiling step. Thereby, we infer a type hierarchy and
an associated mapping of objects to types.

� Indexing: Based on the number of counted objects, first indices for the grounded
predicates, functions and actions are devised. Since in our example problem we
have eight objects and the predicatesat andin have two parameters, we reserve
2 � 8 � 8 = 128 index positions. Similarly, the functiondistance consumes 64
indices, whilefuel , slow-speed , fast-speed , slow-burn , fast-burn ,
capacity , andrefuel-rate each reserve eight index positions. For the quan-
tities total-fuel-used , boarding-time , debarking-time only a sin-
gle fact identifier is needed. Last but not least we interpret duration as an additional
quantitytotal-time .

� Flattening Temporal Identifiers: According to our assumption of finite branching in
this phase we interpret each action as in integral entity, so that all timed proposi-
tional and numerical preconditions can be merged. Similarly, all effects are merged,
independent of their happening. Invariance conditions like(over all (at ?a
?c)) in the actionboard are included into the precondition set. We will discuss
the rationale of this step in Section 11.5.

� Grounding Propositions: Fact-space exploration is a relaxed enumeration of the
planning problem to determine a superset of all reachable facts. Algorithmically, a
FIFO fact queue is comprised. Successively extracted facts at the front of the queue
are matched to the operators. Each time all preconditions of an operator are fulfilled,
the resulting atoms according to the positive effect (add) list are determined and
enqueued. This allows to distinguish constant from fluent facts, since only the latter
are reached by exploration.

� Grouping Atoms: For a concise encoding of the propositional part we group flu-
ent facts in sets of mutually exclusive groups, so that each state in the planning
space can be expressed as a conjunct of (possibly trivial) facts drawn from each
fact group [101]. More formally, let#pi(o1; : : : ; oi�1; oi+1; : : : ; on) be the number
of objectsoi for which the fact(p o1 : : : on) is true. We establish a single-valued
invariance ati if #pi(o1; : : : ; oi�1; oi+1; : : : ; on) = 1. All fix object oj, j 6= i, are
representative of the invariance and label the group. To allow for a better encoding,
some predicates likeat andin are merged. In the example three groups determine
the unique position of the persons (one of five) and one group determines the posi-
tion of the plane (one of four). Therefore,3 � dlog 5e+ 1 � dlog 4e = 11 bits suffice
to encode the encountered 19 fluent facts.

� Grounding Actions: Fact-space exploration also determines all grounded operators.
Once all preconditions are met and grounded, the symbolic effect lists are instan-
tiated. In our case we determine 98 instantiated operators, which, by some further
simplifications that eliminate duplicates and void operators, are reduced to 43.
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� Grounding Functions: Synchronous to fact space exploration of the proposi-
tional part of the problem all heads of the numerical formulae in the effect
lists are grounded. In the example case only three instantiated formulae are
fluent: fuel plane with initial value 750 as well astotal-fuel-used
and total-time both initialized with zero. All other numerical predicates
are in fact constants that can be substituted in the formula-bodies. For ex-
ample, the numerical effect inboard dan city-a reduces to(increase
(total-time) 30) , while zoom plane city-a city-b has the fol-
lowing numerical effects:(increase (total-time) 150) , (increase
(total-fuel-used) 300)) , and (decrease (fuel plane) 300) .
Refueling, however, does not reduce to a single rational number, e.g. the effects in
refuel plane city-a only simplify to(increase (total-time) (/
(- (750 (fuel plane)) / 12.5))) and (assign (fuel plane)
750) . To evaluate the former assignment variabletotal-time has to be in-
stantiatedon-the-fly. This is due to the fact that the value of the quantityfuel
plane is not constant and itself changes over time.

11.4 Architecture of MIPS

Figure 11.4 depicts the main components of MIPS and the data flow from the input defi-
nition of the domain and the problem instance to the resulting temporal plan in the output.

The planning process can be coarsely grouped into two stages, static analysis and
(heuristic search) planning.

The intermediate textual format of the static analyzer in annotated grounded PDDL-
like representation serves as an interface e.g. for other planners or model checkers and
as an additional resource for plan visualization. Figures 11.5 and 11.6 depict an example
output for the intermediate representation in theZeno-Travelexample.

The object-oriented framework design of MIPS allows different heuristic estimates
to be combined with different search strategies, access data structures, and scheduling
options.

11.4.1 Heuristics

MIPS incorporates more than six different estimates.

� Relaxed planning heuristic (RPH): Approximation of the number of planning steps
needed to solve the propositional planning problem with all delete effects re-
moved [181]. The heuristic is constructive, i.e. it returns the set of operators that
appear in the relaxed plan.

� Numerical relaxed planning heuristic (numerical RPH): Our numerical extension
to RPH is a combined propositional and numerical forward and backward approx-
imation scheme, also allowing for multiple operator application. Our version for
integrating numbers into the relaxed planning heuristic is sound, but not as general
as Hoffmann's contribution [179]: it restricts to variable-to-constant comparisons,
and lacks the simplification of linear constraints.
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problem.pddldomain.pddl

static analyzer

numerical

relaxed plan

sequential plan
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symbolic PDBs explicit PDBs

intermediate representation

symbolic search explicit search
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RPH
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scheduling
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RPH
BDD-BFSBDDA*, A*, IDA*,

Figure 11.4: Architecture of MIPS

� Pattern databases heuristic (explicit PDB heuristic): Explicit PDBs were already
mentioned in the historical overview of MIPS. The different abstractions are found
in a greedy best-fit bin-packing manner, yielding a selection of large PDBs in form
of perfect hash tables that fit into main memory. If necessary, PDBs can be designed
to be disjoint yielding an admissible estimate [95].

� Symbolic pattern database heuristic (symbolic PDB heuristic): Symbolic PDBs ap-
ply to both explicit and symbolic heuristic search engines. Due to the succinct
BDD-representation of sets of states the averaged heuristic estimate can be in-
creased while decreasing the number of nodes to be explored in the overall search.
Symbolic PDBs are often orders of magnitudes larger than explicit ones. Due to
state conversion into a Boolean representation the retrieval of a heuristic estimate is
slower than hashing, but still linear in the state description length [99],

� Scheduling relaxed plan heuristic (scheduling RPH, SRPH): Critical-path analysis
by PERT scheduling may also guide the plan finding phase. Different to the RPH
heuristics, which computes the length of the greedily extracted plan, SRPH also
takes the sequence of operators into account and searches for a good parallel ar-
rangement. Adding PERT-schedules for the path to a state and for the sequence of
actions in the relaxed plan is not as accurate as the PERT-schedule of the combined
paths. Therefore, the classical merit function of A*-like search enginesf = g + h
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(define (grounded zeno-travel-zeno-travel-1)
(:fluents

(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)
(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)
(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d)
(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)
(in dan plane) (in ernie plane) (in scott plane))

(:variables (fuel plane) (total-fuel-used) (total-time))
(:init

(at dan city-c) (at ernie city-c) (at plane city-a) (at scott city-a)
(= (fuel plane) 750) (= (total-fuel-used) 0) (= (total-time) 0))

(:goal (at dan city-a) (at ernie city-d) (at scott city-d))
(:metric minimize (total-time) )
(:group dan

(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)
(in dan plane))

(:group ernie
(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)
(in ernie plane))

(:group plane
(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d))

(:group scott
(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)
(in scott plane))

Figure 11.5: Grounded Representation ofZeno-TravelDomain.

of generating path lengthg and heuristic estimateh is not immediate. We define
the heuristic value of SRPH as the parallel plan length of the combined path minus
the parallel plan length of the generating path.

� One suitable combination of the PDB heuristic and RPH heuristics that is also im-
plemented in MIPS, compares the retrieved result of the PDBs with the set of op-
erators in the plan graph that respect the abstraction. The intuition is to slice the
relaxed plan graph. If in the backward exploration an add-effect is selected the
match will be assigned to its fact group. If the number of matches in an abstraction
is smaller than the retrieved PDB value it will be increased by the lacking amount.

In the competition, except for numerical domains we chose pure RPH for sequential
plan generation and scheduling PRH for temporal domains. Only in pure numerical prob-
lems we used numerical RPH. We have experimented with (symbolic) PDBs with mixed
results. Since in our implementation PDBs are purely propositional and do not allow
the retrieval of the corresponding operator sets of the optimal abstract plan, we have not
included PDB search in the competition version of MIPS.

11.4.2 Exploration Algorithms

The algorithm portfolio includes:

� Weighted A* (weighted A*/A*): The A* algorithm [161] can be casted as a derivate
of Dijkstra's SSSP exploration on a re-weighted graph. For lower bound heuristics,
original A* can be shown to generate optimal plans [287]. Weightening the in-
fluence of the heuristic estimate may accelerate solution finding, but also affects
optimality [295]. The set of horizon nodes are maintained in a priority queueOpen,
while the settled nodes are kept inClosed.
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(:action board dan plane city-a
:condition

(and (at dan city-a) (at plane city-a))
:effect

(and (in dan plane) (not (at dan city-a))
(increase (total-time) (30.000000))))

[...]
(:action zoom plane city-a city-b

:condition
(and

(at plane city-a)
(>= (fuel plane) (300.000000)))

:effect
(and (at plane city-b) (not (at plane city-a))

(increase (total-time) (60.000000))
(increase (total-fuel-used) (300.000000))
(decrease (fuel plane) (300.000000))))

[...]
(:action refuel plane city-a

:condition
(and

(at plane city-a)
(< (fuel plane) (750.000000)))

:effect
(and

(increase (total-time) (/ (- (750.000000) (fuel plane)) (12.500000)))
(assign (fuel plane) (750.000000))))

[...]
)

Figure 11.6: Grounded Representation ofZeno-TravelDomain (cont.).

In MIPS, Weighted A* is implemented with a Dial or a Weak-Heap priority queue
data structure [79, 116]. The former is used for propositional planning only, while
the latter applies to general planning with scheduling estimates. Arrays have been
implemented as a dynamic table that double their sizes if they become filled. MIPS
stores all generated and expanded states in a hash table. An alternative, yet not
implemented, but more flexible storage structure is collection of persistent trees as
in the TL planning system [17], one for each predicate. In the best case queries and
update times to the structure are logarithmic in the number of represented atoms.

� Weighted Iterative-Deepening A* ((W)IDA*): The memory-limited variant of
(Weighted) A* is well-suited to large exploration problems with efficient evaluation
functions of small integer range [213]. In MIPS, IDA* is extended with bit-state
hashing [111] to improve duplicate detection with respect to ordinary transposition
tables [305]. This form of partial search effectively trades state-space coverage for
completeness. For a further compression of the planning state space, all variables
that appear in the objective function are neglected from hash address calculations
and state comparisons.

� Enforced Hill Climbing (EHC): The approach is another compromise between ex-
ploration and exploitation. EHC searches with an improved evaluation in breadth-
first manner and commits established decisions as final [177]. EHC is complete in
undirected problem graphs and seems to have a slight advantage to Weighted A*
when combined with RPH and other pruning cuts. On the other hand, it can be mis-
guided in unstructured planning domains and is likely to get lost in problem graphs
with dead-ends.
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� Bidirectional Symbolic Breadth-First-Search (BDD-BFS): The implementation
performs bidirectional blind symbolic search, choosing the next search direction
in favor to the faster executions of the previous iterations [101].

� Weighted Symbolic A* (BDDA*): The algorithm performs guided symbolic search
and takes a (possibly partitioned) symbolic representation of the heuristic as an ad-
ditional input. Given a consistent estimate for a uniformly weighted graph, BDDA*
performs at mostO(f �2) iterations, wheref � is the optimal solution length, where
consistent estimates keep the accumulatedf -values on each exploration path mono-
tonical increasing.

� Weak and Strong Planning: These two symbolic exploration algorithms suited to
non-deterministic planning have been added to MIPS [63], but due to the lack of an
agreed standard for a domain description language, the implementation was only
tested on deterministic samples in which the above symbolic algorithms clearly
perform better. The encoding scheme directly transfers to the non-deterministic
scenario, where plans were stored in a form of state-action tables.

In the competition we applied Weighted A* with weight 2, e.g. the merit for all
statesS 2 S was fixed asf(S) = g(S) + 2 � h(S), yielding good but not necessarily
optimal plans. In temporal domains we introduced an additional parameter� to scale the
influence between propositional estimates (fp(S) = gp(S) + 2 � hp(S)) and scheduled
ones(fs(S) = gs(S) + 2 � hs(S)). More precisely, we altered the comparison function
for the priority queue, so that a comparison of parallel length priorities was invoked if
the propositional difference of values was not larger than� 2 IN0. A higher value of�
refers to a higher influence of the SRPH, while� = 0 indicates no scheduling at all. In
the competition we produced data with� = 0 (Pure MIPS), and� = 2 (optimized MIPS).

11.5 Temporal Planning

PDDL 2.1 domain descriptions include temporal modifiersat start, over all, and
at end, where labelat start denotes the preconditions and effects at invokation time of
the action,over all refers to an invariance condition andat endto the finalization condi-
tions and consequences of the action.

11.5.1 Temporal Model

In Figure 11.7 we show two different options to flatten this information back to planning
with preconditions and effects to derive its semantic.

In the first case (top right), the compound operator is split into three smaller parts,
one for action invocation, one for invariance maintenance, and one for action termination.
This is the semantic suggested by [131].

As expected there are no effects in the invariance pattern, i.e.B0 = ;. Moreover,
we found that in the benchmarks it is uncommon that new effects inat-start are
preconditioned for termination control or invariance maintenance, i.e.A0 \ (B [ C) = ;.

Therefore, in MIPS the simpler second operator representation model was chosen
(bottom right). The intermediate format of the example problem in Figures 11.5 and 11.6
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cond:

eff:
pre:

pre: pre: eff: pre: eff:

eff:

eff:
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Figure 11.7: Compiling Temporal Modifiers into Operators.

implicitly assumed this simpler temporal model. At least for sequential plan finding we
have not observed any deficiencies by assuming this temporal model, in which each action
starts immediately after a previous one has terminated.

This simple temporal model motivates the definition of the first plan objective: the
sequential plan.

Definition 13 (Sequential Plan) Asequential plan�s = (O1; : : : ; Ok) is an ordered se-
quence of operatorsOi 2 O, i 2 f1; : : : ; kg, that transforms the initial stateI into one
of the goal statesG 2 G, i.e., there exists a sequence of statesSi 2 S, i 2 f0; : : : ; kg,
with S0 = I, Sk = G andSi is the outcome of applyingOi to Si�1, i 2 f1; : : : ; kg.

Minimizing sequential plan length was the only objective in the first and second plan-
ning competition. SinceGraphplan-like planners [39] like IPP [212] and STAN [243]
already produced parallel plans, this was a indeed a limiting aspect to evaluate plan qual-
ity. The most important reason for this artificial restriction was that total-ordered plans
were easier accessible for automated validation, a necessity for evaluating correctness in
a competitive scenario.

11.5.2 Operator Dependency

The formal definition of operator dependency allows to avoid the transpositioned genera-
tion of independent actions and, more importantly, enables optimal schedules of sequen-
tial plans with respect to the generated action sequence and its causal structure. If all
operators are dependent (or void with respect to the optimizer function), the problem is
inherent sequential and no schedule leads to any improvement.

Definition 14 (Dependency/Mutex Relation) Two grounded operatorso = (�; �; ; �)

ando0 = (�0; � 0; 0; �0) inO aredependent/mutex, if one of the following three conditions
holds:

1. The propositional precondition set of one operator has a non-empty intersection
with the add or the delete lists of the other one, i.e.,� \ (� 0a [ � 0d) 6= ; or (�a [
�d) \ �0 6= ;.

2. The head of a numerical modifier of one operator is contained in some condition of
the other one, i.e. there exists ac0 = (h0c;
; t0c) 2 0 and am = (hm;�; tm) 2 �
with hm 2 LeafVariables(t0c) [ fh0cg or there exists ac = (hc;
; tc) 2  and a
m0 = (h0m;�; t0m) 2 �0 withh0m 2 LeafVariables(tc)[fhcg. Intuitively, an operator
modifies variables that appear in the condition of the other. This may be referred to
as adirect conflict.
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3. The head of the numerical modifier of one operator is contained in the formula
body of the modifier of the other one, i.e., there exists am = (hm;�; tm) 2 � and
m0 = (h0m;�; t0m) 2 �0 with hm 2 LeafVariables(t0m) or h0m 2 LeafVariables(tm).
This may be referred to as anindirect conflict.

The dependence relation may be refined according to the PDDL 2.1 guidelines for
mutual exclusion [131], but for our purposes for improving sequential plans this approach
is sufficient. In our implementation (at least for temporal and numerical planning) the
dependence relation is computed beforehand and tabulated for constant time access. To
improve the efficiency of pre-computation, the set of leaf variables is maintained in an
array, once the grounded operator is constructed.

To detect domains for which any parallelization leads to no improvement, a planning
domain is said to beinherently sequentialif all operators in any sequential plan are depen-
dent or instantaneous (i.e. with zero duration). The static analyzer checks this by testing
each operator pair. While some benchmark domains likeDesert-RatsandJugs-and-Water
are inherently sequential, others likeZeno-TravelandTaxi are not.

Operator independence also indicates transpositions of two operatorso1 and o2 to
safely prune exploration in sequential plan generation.

Definition 15 (Parallel Plan) Aparallel plan�c = ((O1; t1); : : : ; (Ok; tk)) is a schedule
of operatorsOi 2 O, i 2 f1; : : : ; kg, that transforms the initial stateI into one of the
goal statesG 2 G, whereOi is executed at timeti.

[18] clearly distincts partial ordered plans(O1; : : : ; Ok;�), with the relation� �
fO1; : : : ; Okg2 being a partial order (reflexive, transitive, and antisymmetric), from paral-
lel plans(O1; : : : ; Ok;�;#), with # � (� [ ��1) (irreflexive, symmetric) expressing,
which actions must not be executed in parallel.

Definition 16 (Precedence Ordering) A ordering�d induced by the set of operators
fO1; : : : ; Okg and a dependency relation is given byOi �d Oj, if Oi andOj are de-
pendent and1 � i < j � k.

Precedence is not a partial ordering, since it is neither reflexive nor transitive. By
computing the transitive closure of the relation, however, precedence could be extended
to a partial ordering. A sequential planO1; : : : ; Ok produces an acyclic set of precedence
constraintsOi �d Oj, 1 � i < j � k, on the set of operators. It is also important to
observe, that the constraints are already topologically sorted according to�d by taking
the node orderingf1; : : : ; kg.

Definition 17 (Respecting Precedence Ordering in Parallel Plan) Letd(O) for O 2
O be theduration of operatorO in a sequential plan. For a parallel plan�c =
((O1; t1); : : : ; (Ok; tk)) that respect�d, we haveti + d(Oi) � tj for Oi �d Oj,
1 � i < j � k.

For optimizing plans [18] definesparallel execution timeasmaxfti + d(Oi) j Oi 2
fO1; : : : ; Okgg, so that ifOi � Oj, then ti + d(Oi) � tj, and ifOi#Oj, then either
ti + d(Oi) � tj or tj + d(Oj) � ti. These two possible choices in# are actually not
apparent in practice, since we already have a precedence relation at hand and just seek
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ProcedureCritical-Path
Input: Sequence of operatorsO1; : : : ; Ok, precedence ordering�d

Output: Optimal parallel plan lengthmaxfti + d(Oi) j Oi 2 fO1; : : : ; Okgg
for all i 2 f1; : : : ; kg

e(Oi) = d(Oi)
for all j 2 f1; : : : ; i� 1g

if (Oj �d Oi)

if e(Oi) < e(Oj) + d(Oi)

e(Oi) e(Oj) + d(Oi)

return max1�i�k e(Oi)

Table 11.2: Algorithm to Compute Critical Path Length.

the optimal arrangement of operators. In contrast we assert that only one option, namely
ti + d(Oi) � tj can be true, reducing# to�d. More importantly, [18]'s work introduces
unnecessary time complexity, since optimized scheduling a set of fixed-timed operators
is already an NP-complete problem.

Definition 18 (Optimal Parallel Plan) An optimal parallel plan with respect to a
sequence of operatorsO1; : : : ; Ok and precedence ordering�d is a parallel plan
�� = ((O1; t1); : : : ; (Ok; tk)) with minimal parallel execution timeOPT = maxfti +
d(Oi) j Oi 2 fO1; : : : ; Okgg among all parallel plans�c = ((O1; t

0
1
); : : : ; (Ok; t

0
k)) that

respect�d.

Many algorithms have been suggested to convert sequential plans into partial ordered
ones [288, 304, 344]. Most of them interpret a total ordered plan as a maximal con-
strained partial ordering� = f(O1; Oj) j 1 � i < j � kg and search for least constraint
plans. However, the problem of minimum constraint “deordering” has also been proven
to be NP-hard, except if the so-called validity check is polynomial [18], where deorder-
ing maintains validity of the plan by lessening its constraintness, i.e.�0�� for a new
ordering�0.

Since we have an explicit model of dependency and time, optimal parallel plans will
not change the ordering relation�d at all.

11.5.3 Critical Path Analysis

TheProject Evaluation and Review Technique(PERT) is a critical path analysis algorithm
usually applied to project management problems. The critical path is established, when
the total time for activities on this path is greater than any other path of operators. A delay
in any tasks on the critical path leads to a delay in the project. The heart of PERT is a
network of tasks needed to complete a project, showing the order in which the tasks need
to be completed and their dependencies between them. As shown in Table 11.2, PERT
scheduling reduces to a derivate of Dijkstra's single shortest path algorithm within acyclic
graphs [70].
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In the algorithm,e(Oi) is the tentative earliest end time of operatorOi, i 2 f1; : : : ; kg,
while the earliest starting timesti for all operators in the optimal plan are given byti =
e(Oi)� d(Oi).

Theorem 4 (PERT Scheduling) Given a sequence of operatorsO1; : : : ; Ok and a prece-
dence ordering�d an optimal parallel plan�� = ((O1; t1); : : : ; (Ok; tk)) can be com-
puted in optimal timeO(k + j �d j).

Proof: The proof is done by induction oni 2 f1; : : : ; kg. The induction hypothesis
is that after iterationi the valuee(Oi) is correct, e.g.e(Oi) is the earliest end time of
operatorOi. This is clearly true fori = 1, sincee(O1) = d(O1). We now assume that the
hypothesis is true1 � j < i and look at iterationi. There are two choices. Either there is a
j 2 f1; : : : ; i� 1g with (Oj �d Oi). For this case after the inner loop is completed,e(Oi)
is set tominfe(Oj) + d(Oj) j Oj �d Oi; j 2 f1; : : : ; i � 1gg. On the other hand,e(Oi)

is optimal, sinceOi cannot start earlier thanminfe(Oj) j Oj �d Oi; j 2 f1; : : : ; i� 1gg,
since all valuese(Oj) are already the smallest possible by induction hypothesis. If there is
noj 2 f1; : : : ; i�1gwith (Oj �d Oi), thene(Oi) = d(Oi) as in the base case. Therefore,
at the endmax1�i�k e(Oi) is the optimal parallel path length.

The time and space complexities of the algorithmCritical-Pathare clearly inO(k2),
wherek is the length of the sequential plan. Using an adjacency list representation these
efforts can be reduced to time and space proportional to the number of vertices and edges
in the dependence graph, which are of sizeO(k + j �d j). The bound is optimal, since
the input consists of�(k) operators and�(j �d j) dependencies among them.

11.5.4 Graphplan Distances

In this section we restrict the planning model tovalid STRIPS plansas in the original
article ofGraphplan[39], where the execution cost of each operator is 1 and the semantics
of a parallel plan are as follows.

For each time stepi, i 2 f1; : : : ; lg, a stateSi 2 S is generated by applying all
operators with time stampi � 1 to Si�1, whereS0 = I. An optimal parallel plan is a
parallel plan of minimal lengthl. The namedependencyis borrowed from the notion of
partial order reduction in explicit-state model checking [65], where two operatorsO1 and
O2 areindependentif for each stateS 2 S the following two properties hold:

1. Enablednessis preserved, i.e.O1 andO2 do not disable each other.

2. O1 andO2 arecommutative, i.e. executed in any orderO1 andO2 lead to the same
state.

Two actionsinterfere, if they are dependent. The originalGraphplandefinition is very
closed to ours, which fixes interference as� 0d \ (�a [ �) 6= ; and(� 0a [ �0) \ �d 6= ;.
Lemma 5 If �d � � and� 0d � �0, operator inference in theGraphplanmodel is implied
by the propositional MIPS model of dependence.

Proof: If �d � � and� 0d � �0, for two independent operatorso = (�; �) ando0 =
(�0; � 0): �\(� 0a[� 0d) = ; implies�d\(� 0a[� 0d) = ;, which in turn yields�a\� 0d = ;. The
condition� 0a \ �d = ; can be inferred analogously by exchanging primed and unprimed
variables.
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Theorem 5 Two independent STRIPS operatorso = (�; �) ando0 = (�0; � 0) in O with
�d � � and� 0d � �0 are enabledness preservingandcommutative, i.e. for all states in
S � 2jAj we haveo(o0(S)) = o0(o(S)).

Proof: Since�d � � and� 0d � �0, we have�a \ � 0d = ; and� 0a \ �d = ; by
Lemma 5. LetS 0 be the state((S n�d)[�a) and letS 00 be the state((S n� 0d)[� 0a). Since
(� 0a [ � 0b) \ � = ;, o is enabled inS 00, and since(�a [ �b) \ �0 = ;, o0 is enabled inS 0.
Moreover,

o(o0(S)) = (((S n � 0d) [ � 0a) n �d) [ �a
= (((S n � 0d) n �d) [ � 0a) [ �a
= S n (� 0d [ �d) [ (� 0a [ �a)
= S n (�d [ � 0d) [ (�a [ � 0a)
= (((S n �d) n � 0d) [ �a) [ � 0a
= (((S n �d) [ �a) n � 0d) [ � 0a = o0(o(S))

A less restrictive notion of independence, in which several actions may occur at the
same time even if one deletes an add-effect of another is provided in [209].

All three models of valid plans are restrictive, since they assume that for each par-
allel plan there exist at least one corresponding total ordered plan. In general, however,
this is not true. Consider the simple STRIPS planning problem domain withI = fBg,
G = ffA;Cgg, andO = f(fBg; fAg; fBg); (fBg; fCg; fBg)g. Obviously, both oper-
ators are needed for goal achievement, but there is no sequential plan of length 2, since
B is deleted in both operators. However, a parallel plan could be executed, since all
precondition are fulfilled at the first time step.

11.5.5 Full Enumeration Algorithms

Even though full state-space enumaration is far from being practical they provide a basis
for heurisitic search engines. In optimal parallel plans, each operator either starts or ends
at the start or end time of another operator. Therefore, for a fixed number of operators,
we can assume a possibly exponential but finite number of possible parallel plans.

This immediately leads to the following plan enumeration algorithmENUM-1. For all
jOji operator sequences of lengthi, i 2 IN, generate all possible partial orderings, check
for each individual schedule if it transforms the initial state into one of the goals, and take
the sequence with smallest parallel plan length. Since all parallelizations are computed
we have established the following result.

Theorem 6 If the number of operators for an optimal parallel plan is bounded, ENUM-1
is complete and computes optimal parallel plans.

Note that the firsti with a matching solution does not necessarily yield an optimal
parallel path, since longer operator sequences might rise better parallel solutions. ENUM-
1 can also generate non-valid plans in theGraphplanmodel. For a better distinction
between the objectives for parallel plans, we keep the notion of validity in this section.
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Assuming only valid plans implies that each parallel plan corresponds to at least one
(possible many) sequential ones. Viewed from the opposite side, each partial-ordered plan
can be established by generating a totally-ordered plan first and then apply a scheduling
algorithm to it to find its best partial-order. Therefore, the next two enumeration schemes
produce valid plans only.

Enumeration algorithmENUM-2 generates all feasible sequential plans of lengthi

with increasingi 2 IN, and computes their optimal schedule with respect to the number
of operators and dependency property. Since optimal parallelization of all valid operator
sequences are computed we have established the following theorem.

Theorem 7 If the number of operators for an optimal parallel plan is bounded, ENUM-2
is complete and computes a valid optimal parallel plan.

A complete enumeration scheme of all sequential plans that transform the initial state
into one goal state is also still computationally expensive, but ruling out impossible oper-
ator applications drastically reduces the vast number ofjOji operator sequences of length
i. Bäckström's result for deriving partial orders has shown, that given the sequence of
operators in a sequential plan, to infer an optimized partial order that respects a set of mu-
texes is NP-hard, so that even for the second phase no polynomial-time algorithm is to be
expected. Therefore, at least for STRIPS we have restricted the PSPACE-hard planning
task [53] to an NP-hard problem for each generated sequential plan.

When the concept of mutual exclusion is extended to a precedence relation between
operators, there exist at least one sequential plan that respects the set of operators and the
set of precedence constraints. From the opposite point of view, for each sequential plan
there exist at least one parallel plan that respects both the number of operators and the
imposed set of precedence constraints.

Algorithm ENUM-3 is a straight variant ofENUM-2 that simply applies PERT
scheduling for finding the optimal parallel plan, with the main difference that it addi-
tionally maintains the causal structure.

We have seen thatENUM-1may generate parallel plans thatENUM-2cannot produce.
Are there also valid plans thatENUM-2can produce, butENUM-3cannot? The answer
is no. If ENUM-2 terminates with an optimal schedule, we generate a corresponding
sequential plan while preserving the causal structure. Optimal PERT-scheduling of this
plan with respect to the set of operators and the imposed precedence relation will yield
back the optimal parallel plan. Since all sequential paths are eventually generated, the
given partial will also be found byENUM-3. This proves the following result.

Theorem 8 If the number of operators for an optimal parallel plan is bounded, ENUM-3
is complete and computes a valid optimal parallel plan.

In the following, we interpret optimized parallel plans as nodes in a weighted directed
graphG = (V;E; w). Edges correspond to possible extensions of the plans with an addi-
tional operator, which can be found by a sequentialization of the parallel plan followed by
a PERT scheduling operation. The weight function denotes the difference in parallel plan
length. Since the set of operators and the precedence set is enlarged, all weights will be
greater than or equal to 0. If only a finite number of actions can be executed in parallel,
then any infinite path inG has unbounded cost. Therefore, we can traverseG in shortest
path ordering using Dijkstra's algorithm to finally yield an optimal parallel plan.
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The argument for optimality is that Dijkstra's algorithm is complete, i.e., it cannot exit
with failure, since if the horizon list becomes becomes empty there is no solution at all.
If the horizon is not empty, there is at least one node on an optimal solution path, which
has to be selected before any goal node with larger cost.

Theorem 9 If only a finite number of actions can be executed in parallel, Dijkstra's short-
est path enumeration is complete and computes a valid optimal parallel plan.

11.5.6 Heuristic Search Enumeration

The enumeration algorithms in the previous section are sound, complete and optimal in
theory. On the other hand enumeration schemes do not contradict known undecidability
results in numerical planning [170]. If we have no additional information like a bound to
the maximal number of actions in a plan or on the number of actions that can be executed
in parallel, we cannot say if the enumeration will terminate or not.

The main drawback of the above approaches is that they are seemingly too slow for
practical planning. Heuristic search algorithms like A* and IDA* reorder the traversal
of states in the planning problem, and an admissible estimate does not affect complete-
ness and optimality. The reason for completeness in finite graphs is that the number of
acyclic paths inG is finite and with every node expansion, A* adds new links to its traver-
sal tree. Each newly added link represents a new acyclic path, so that the reservoir of
path must eventually be exhausted. The argument is valid for any best-first strategy that
prunes cyclic paths, but by their move-committing nature, hill-climbing algorithms are
not complete.

[287] has shown that A* is complete even on infinte graphs, demanding that the cost
of every infinite path is unbounded. A deeper investigation shows that given an admissible
estimate there must always be a node in the current search horizon with optimal priority.
Actually to preserve this condition for admissible but not necessarily consistent estimates,
already expanded node may have to be reconsidered (re-opening). Hence, A* must also
terminate with an optimal solution.

Theorem 10 If the cost of every infinite plan is unbounded, A* enumeration with an
admissible parallel plan length estimate computes a valid optimal parallel plan.

Note that the assumption of unbounded sequential plan costs is not true in all bench-
mark problems, since there may be an infinite sequence of instantaneous events that do not
contribute to the plan objective. For example, loading and unloading tanks inDesert-Rats
does not affecttotal-fuel consumption, which is to be minimized in one benchmark
instance.

As a matter of fact, informative admissible parallel plan length estimates are not easy
to obtain. This was the reason in MIPS to chose sequential plan generation first, because
very effective heuristics are known to generate sequential plans quickly. With the SRPH
we choose a parallel plan length approximation, but since it extends PRH, it is known to
be not admissible.
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0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
130: (board ernie plane city-c) [30]
160: (refuel plane city-c) [40]
200: (zoom plane city-c city-a) [100]
300: (debark dan plane city-a) [20]
320: (board scott plane city-a) [30]
350: (refuel plane city-a) [40]
390: (zoom plane city-a city-c) [100]
490: (refuel plane city-c) [40]
530: (zoom plane city-c city-d) [100]
630: (debark ernie plane city-d) [20]
650: (debark scott plane city-d) [20]

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
100: (board ernie plane city-c) [30]
100: (refuel plane city-c) [40]
140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]
240: (board scott plane city-a) [30]
240: (refuel plane city-a) [40]
280: (zoom plane city-a city-c) [100]
380: (refuel plane city-c) [40]
420: (zoom plane city-c city-d) [100]
520: (debark ernie plane city-d) [20]
520: (debark scott plane city-d) [20]

Figure 11.8: A Sequential Plan forZeno-Travel(left) and its PERT Schedule (right).

11.5.7 Pruning Anomalies

Other acceleration techniques like sequential plan hashing, symmetry and transposition
cuts have to be chosen carefully to maintain parallel plan length optimality.

Take for example sequential state memorization, i.e. the memorization of states in the
sequential plan generation process. This approach does affect parallel optimality, as the
following example shows.

Consider the sequences

(zoom city-a city-c plane) , (board dan plane) , (refuel plane) ,
(zoom city-c city-a plane) , (board scott) , (debark dan) ,
(refuel plane) ,

and

(board scott) ,(zoom city-a city-c plane) ,(board dan plane) ,
(refuel plane) , (zoom city-c city-a plane) , (debark dan) ,
(refuel plane)

in theZeno-Travelproblem. The set of operators is the same and so is the resulting
(sequentially generated) state.

However, the PERT schedule for the first sequence is shorter than the schedule for the
second one, since in the previous case the time for boardingscott is compensated by
the remaining two operators.

For small problems, such anomalies can be avoided by avoided duplicate pruning at
all. As an example Figure 11.8 depicts a sequential plan for the example problem instance
and its PERT schedule, which turns out to be the overall optimal parallel plan.

In order to generate sequential solutions for large planning problem instances, in the
competition version of MIPS we have introduced cuts that affect optimality but reduce
the number of expansions significantly.

11.5.8 Arbitrary Plan Objectives

In PDDL 2.1 different plan metrics can be devised. In Figure 11.9 we depict
two plans found by MIPS when modifying the objective function from minimizing
total-time to minimize total-fuel-used , and to minimize the compound(+
(* 10 (total-time)) (* 1 (total-fuel-used))) .

For the first case we computed an optimal value of 1,333.33, while for the second case
we established 7,666.67 as the optimized merit. When optimizing time, the ordering of
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0: (board scott plane city-a) [30]
30: (fly plane city-a city-c) [150]

180: (board ernie plane city-c) [30]
180: (board dan plane city-c) [30]
210: (fly plane city-c city-a) [150]
360: (debark dan plane city-a) [20]
360: (refuel plane city-a) [53.33]

413.33: (fly plane city-a city-c) [150]
563.33: (fly plane city-c city-d) [150]
713.33: (debark ernie plane city-d) [20]
713.33: (debark scott plane city-d) [20]

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
100: (board ernie plane city-c) [30]
100: (refuel plane city-c) [40]
140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]
240: (board scott plane city-a) [30]
240: (refuel plane city-a) [40]
280: (fly plane city-a city-c) [150]
430: (fly plane city-c city-d) [150]
580: (debark ernie plane city-d) [20]
580: (debark scott plane city-d) [20]

Figure 11.9: Optimized Plans inZeno-Travelaccording to different Plan Objectives.

board and zoom actions is important. When optimizingtotal-fuelwe reduce speed to save
fuel consumption to 333.33 per flight but we may board the first passenger immediately.
We also save two refuel actions with respect to the first case.

When increasing the importance of time we can trade refueling actions for time, so
that both zooming and flight actions are chosen for the complex minimization criterion.

We first thought, that we could simply substitute the plan objective in the PERT
scheduling process. However, the results did not match with the ones produced by the
validator [245], in which the final time is substituted in the objective function after the
plan has been build.

The way we evaluate objective functions that include time is as follows. First we
schedule the (relaxed or final) sequential plan. Then we temporarily substitute the
total-time value in the state with the parallel plan length and evaluate the formula
to get the objective function value. To avoid conflicts in subsequent expansions, after-
wards we set the valuetotal-time back to the optimal one in the sequential plan.

11.6 Symmetry

An important feature of parameterized predicates, functions and action descriptions in the
domain specification file is that actions are transparent to different bindings of parameters
to objects. Disambiguating information is present in the problem instance file.

In case of typed domains, many planners, including MIPS, compile all type informa-
tion into additional predicates, attach additional preconditions to actions and enrich the
initial states by suitable object-to-type atoms.

As a consequence, a symmetry is viewed as a permutation of objects that is present in
the current state, in the goal representation, and transparent to the set of operators.

There aren!, n = jOBJ j, possible permutations of the set of objects. Taking into
account all type information reduces the number of all possible permutation to

 
n

t1; : : : ; tk

!
=

n!

t1! � : : : � tk! :

whereti is the number of objects with typei, i 2 f1; : : : ; k = jT YPESjg. In a moderate
sized logistic domain with 10 cities, 10 trucks, 5 airplanes, and 15 packages, this results
in 40!=(10! � 10! � 5! � 15!) � 1020 permutations.

To reduce the number of potential symmetries to a tractable size we restrict symme-
tries to object transpositions, for which we have at mostn(n� 1)=2 2 O(n2) candidates.
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Including type information this number further reduces to

kX
i=1

 
ti

2

!
=

kX
i=1

ti(ti � 1)=2:

In the following, the set of typed object transpositions is denoted bySYMM. For
the example, we havejSYMMj = 45 + 45 + 10 + 105 = 205.

11.6.1 Static Symmetries

We generate a set of object pairs(o; o0) 2 SYMM, indistinguishable with respect to the
set of instantiated operators and the goal specification.

Definition 19 (Object Transpositions for Fluents, Variables, and Operators) A transpo-
sition of objects(o; o0) 2 SYMM applied to a fluentf = (p o1; : : : ; ok(p)) 2 F , written
asf [o$ o0], is defined as(p o0

1
; : : : ; o0k(p)), with o0i = oi if oi =2 fo; o0g, oi = o0 if oi = o,

andoi = o if oi = o0, i 2 f1; : : : ; k(p)g. Object transpositions[o$ o0] applied to a vari-
ablev = (f o1; : : : ; ok(f)) 2 V or to an operatorO = (a o1; : : : ; ok(a)) 2 O are defined
analogously.

By definition we have

Lemma 6 For all f 2 F , v 2 V, O 2 O, and (o; o0) 2 SYMM: f [o $ o0] =
f [o0 $ o], v[o $ o0] = v[o0 $ o], O[o $ o0] = O[o0 $ o], f [o $ o0][o $ o0] = f ,
v[o$ o0][o$ o0] = v, andO[o$ o0][o$ o0] = O.

The time complexity for checkingf [o$ o0] is of orderO(k(p)). By precomputing a
O(jSYMMj � jFj) sized table containing the index off 0 = f [o $ o0] for all (o; o0) 2
SYMM, this time complexity can be reduced toO(1).

Definition 20 (Object Transpositions for States) Anobject transposition[o$ o0] applied
to stateS = (Sp; Sn) 2 S with Sn = (v1; : : : ; vk), k = jVj, written asS[o$ o0], is equal
to (Sp[o$ o0]; Sn[o$ o0]) with

Sp[o$ o0] = ff 0 2 F j f 2 Sp ^ f 0 = f [o$ o0]g

and Sn[o $ o0] = (v0
1
; : : : ; v0k) with vi = v0j if ��1(i)[o $ o0] = ��1(j) for i; j 2

f1; : : : ; kg.

The time complexity to computeSn[o $ o0] isO(k), since testing��1(i)[o $ o0] =

��1(j) is available in timeO(1) by building anotherO(jSYMMj � jVj) sized precom-
puted look-up table. We summarize the complexity issues as follows.

Lemma 7 The time complexity to computeS[o $ o0] for stateS = (Sp; Sn) 2 S and
(o; o0) 2 SYMM isO(jSpj+ jVj) usingO(jSYMMj � (jFj+ jVj) space.

Definition 21 (Object Transpositions for Domains) A planning problem
P = hS;O; I;Gi is symmetric with respect to the object transposition[o $ o0],
abbreviated asP[o$ o0], if I[o$ o0] = I and for allG 2 G: G[o$ o0] 2 G.
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Applying Lemma 7 for all(o; o0) 2 SYMM yields

Theorem 11 Assuming a description complexityO(jGpj + jVj) for the set of goalsG,
checking whether a planning problemP = hS;O; I;Gi is symmetric with respect to the
object transpositions[o$ o0], with (o; o0) 2 SYMM can be done in timeO(jSYMMj�
(jGpj+ jIpj+ jVj)).
Lemma 8 If operatorO is applicable inS and S = S[o $ o0] thenO[o $ o0] is
applicable inS and

O(S)[o$ o0] = O[o$ o0](S)

Proof: If O is applicable inS theO[o  o0] is applicable inS[o  o0]. Since
S = S[o$ o0],O[o$ o0] applicable inS, and

O[o$ o0](S) = O[o$ o0](S[o$ o0]) = O(S)[o$ o0]:

Lemma 8 indicates how symmetry will be used to reduce exploration. If a planning
problem with current stateC 2 S is symmetric with respect to the operator transposition
[o $ o0] then either the application of operatorO 2 O or the application of operator
O[o$ o0] is neglected, significantly reducing the branching factor.

11.6.2 Dynamic Symmetries

One problem is that symmetries that are present in the initial state may vanish or reappear
during exploration. In theDesert-Ratsdomain, for example, the initial set of supply tanks
is indistinguishable so that only one should be loaded into the truck. Once the fuel level of
the supply tanks decrease or tanks are transported to another location, formerly existing
symmetries are broken. However, when two tanks in one location are emptied they can
once more be considered as being symmetric.

In a forward chaining planner goal conditions do not change over time, only the initial
stateI transforms to the current stateC. Therefore, in a precompiling phase we refine the
setSYMM to

SYMM0 := f(o; o0) 2 SYMM j 8 G 2 G : G[o$ o0] = Gg :
Usually jSYMM0j is by far smaller thanjSYMMj. For theZeno-Travelinstance,

the symmetries left inSYMM0 are the ones of the location ofscott andernie .

Theorem 12 Checking whether an induced planning problemP = hS;O; C;Giwith cur-
rent stateC = (Cp; Cn) 2 S is symmetric with respect to the object transpositions[o$ o0],
(o; o0) 2 SYMM0, can be performed in timeO(jSYMM0j � (jCpj+ jVj)).

Therefore, we can efficiently compute set

SYMM00(C) := f(o; o0) 2 SYMM0 j C[o$ o0] = Cg
of symmetries that are present in the current state. In the initial state of the example

problem ofZeno-TravelSYMM00(C) = ;, but oncescott andernie share the same
location in a stateC 2 S this object pair would be included inSYMM00(C).
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By precomputing aO(jSYMMj � jOj) sized table the index of operatorO0 = O[o$
o0] can be determined in timeO(1) for each(o; o0) 2 SYMM0.

Let �(S) be the set of operators that are applicable in stateS 2 S.

Definition 22 The pruning set�(S;SYMM00(C)) � �(S) is defined as the set of
all operators that have a symmetric operator and that are not of minimal index, i.e.,
�(S;SYMM00(C)) =

fO 2 �(S) j 9 O0 2 �(S) : �(O0) > �(O) and9 (o; o0) 2 SYMM00(C) : O0 = O[o$ o0]g :
The symmetry reductionof �(S;SYMM00(C)) � �(S) with respect to the set
SYMM00(C) is defined as�(S;SYMM00(C)) = �(S) n�(S;SYMM00(C)).

To shorten notation, in the following we write�0(C) for �(S;SYMM00(C)) and
�0(C) for �(S;SYMM00(C)). Determining�0(C) can be performed in timeO(j�(S)j),
since findingO0 = O[o$ o0] and the indices�(O0) and�(O) are all available in constant
time.

Theorem 13 Reducing the operator set�(C) to �(S;SYMM00(C)) during the explo-
ration of planning problemP = hS;O; I;Gi preserves completeness and sequential op-
timality for all expanded statesC.

Proof: Suppose that for some expanded stateC, reducing the operator set�(C) to
�0(C) during the exploration of planning problemP = hS;O; I;Gi does not preserve
completeness and sequential optimality. Furthermore, letC be the state with this property
that is maximal in the exploration order.

Then there is a sequential plan� = fO1 : : : ; Okg in P = hS;O; C;Gi with interme-
diate state sequenceS0 = C; : : : ; Sk � G. Obviously,Oi 2 �(Si�1), i 2 f1; : : : ; kg. By
the choice ofC we haveO1 62 �0(S0). SinceO1 62 �0(S0) butO1 2 �(S0) we have that
O1 2 �(S0;SYMM00(S0)). By the definition of the pruning set�0(S0) there existsO0

1
,

�(O0
1
) > �(O1) and(o; o0) 2 SYMM00(S0) with O0

1
= O1[o $ o0] 2 �0(S0) that is

applicable inS0. By Lemma 8 we haveO0
1
(S0) = S1[o$ o0].

SinceP = hS;O; C;Gi = P[o $ o0] = hS;O; C[o $ o0] = C;G[o $ o0] = Gi ,
we have a sequential planO1[o $ o0]; : : : ; Ok[o $ o0] with state sequenceS0[o $ o0] =

S0; S1[o$ o0]; : : : ; Sk[o$ o0] = Sk that reaches the goalG.
Sequential plan objectives are devised on parameterized predicates and functions, so

that any cost function onO1[o$ o0]; : : : ; Ok[o$ o0] will be the same as onO1; : : : ; Ok.
This contradicts the assumption that reducing the operator set�(C) to �0(C) does not
preserve completeness and optimality for allC.

If the plan objective is defined on instantiated predicates and objects, it can be sym-
metry breaking and to preserve optimality should be checked as an additional requirement
similar toG andI.

11.6.3 Symmetry Reduction in MIPS

The main purpose of the refined implementation in MIPS is to reduce the time for dynamic
symmetry detection fromO(jSYMM0j � (jCpj+ jVj)) to timeO(jCpj+ jSYMM0j � jVj)
by loosing some but not all structural properties.
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The key observation is that symmetries are also present in fact groups according to
their object representatives. Fact groupsGi � F , i 2 f1; : : : ; lg implicitly define projec-
tionsPji of the (propositional) planning spaceP byPji = hSji;Oji; Iji;Gjii, with Sji =
Gi, Iji = I \ Gi, Gji = S

G2G G \Gi, andOji = f(�a; �b) 2 O j (�a [ �b) \ Sji 6= ;g.
By construction for allS 2 S we have exactly one fact in each group true, such thatS

can be partitioned intofS1; : : : ; Slg, with Si 2 Sji, i 2 f1; : : : ; lg.
Let Ri � OBJ be the set of object representatives for groupGi. If S[o $ o0] = S

thenSji[o$ o0] = Sjj in a groupGj with representativeRi[o$ o0]. Hence, in MIPS we
devise a symmetry relationSYMM not on objects but on fact groups, i.e.

SYMM = f(i; j) j 1 � i < j � l : Ri[o$ o0] = Rjg:
Many objects, e.g. the objects of typecity in Zeno-Travel, were not selected as rep-
resentatives for a single attribute invariance to build a group. These were neglected in
MIPS, since we expect no symmetry on them. This reduces the set of objectsOBJ that
MIPS considers to a considerably smaller subsetOBJ 0 =

S
f1�i�lgRi. In the example

problemjOBJ j = 7, andjOBJ 0j = 4.
It may also happen that more than one group has a representativeo 2 OBJ 0. How-

ever, if all fluent predicatesp have arityk(p) � 2, which is frequently met in the bench-
mark domains, alljRij were equal to one for alli, so for all objects we get a finite parti-
tioning into representatives, i.e.OBJ 0 = _S

i2f1;:::;lgRi.
MIPS takes this conservative assumption and may leave other symmetries uncaught.

It computesSYMM by analyzing the subproblem structuresPji, i 2 f1; : : : ; lg instead
of P itself. In case of an object symmetry[Ri $ Rj] the groupsGi andGj necessarily
have to be isomorphic, and we can establish a bijective mapping : Pji ! Pjj with
subcomponents S : Sji ! Sjj and O : Oji ! Ojj.

As above, static symmetries based on non-matching goal predicates were excluded,
yielding a refinementSYMM0 of SYMM. Dynamic symmetries are detected for each
expanded stateS. The current state representation is mapped to the subgraphsPji. The
list of possibly symmetric groupsSYMM0 is traversed to select pairs which obey the
current instantiation. MIPS marks the groups with larger index asvisited. This guarantees
that operators of at least one group are executed. The complexity of this phase is bounded
by jSpj and bySYMM0 and yields a listSYMM00.

Testing the propositional partSp = (S1; : : : ; Sl) of a stateS for all symmetries re-
duces to test, whether S(Si) = Sj for each(i; j) 2 jSYMM0j and can be performed in
timeO(jSpj + jSYMM0j). The comparison of variablesv 2 V is implemented as de-
scribed in the previous section such that for the numerical partSn we check the remaining
symmetries, for total timeO(jSpj+ jSYMM0j � jVj) to fix SYMM00 in form of visited
markings.

For each expanded stateS and each matching operatorO 2 �(S) the algorithm
checks, whether an applied operator is present in a visited group, in which case it is
pruned. The time complexity is inO(j�(S)j), since operator group containment can be
preprocessed and checked in constant time.

11.7 Visualization

For visualization of plans we extended an existing animation system for our purposes.
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Vega [175] is implemented as a Client-Server architecture that runs an sorce-code an-
notated algorithm on server side to be visualized on client side in a Java frontend. The
client is used both as the user front-end and the visualization engine. Thus, it allows
server and algorithm selection, input of data, running and stopping algorithms, and cus-
tomization of the visualization.

It can be used toi) manipulate scenes with hierarchically named objects — either in
the view or in an object browser that displays the object tree,ii) view algorithm lists at
the server and display algorithm information,iii) apply algorithms to selected data in a
view, control the algorithm execution using a VCR-like panel or the execution browser,
iv) adjust view attributes directly or using the object browser, show several algorithms
simultaneously in multiple scenes and open different views for a single scene, andv)

load and save single scenes, complete runs, and attribute lists, export scenes in xfig or gif
format.

Vega allows on-line and off-line presentations. The main purpose of the server is to
make algorithms accessible through TCP/IP. The server is able to receive commands from
multiple clients at the same time. It allows the client to choose from the list of available
algorithms, to retrieve information about the algorithm, to specify input data, to start it
and to receive output data. The server maintains a list of installed algorithms. This list
may be changed without the need of stopping and restarting the server.

We have extended Vega with two respects, and call it Vepa forVi-
sualization of Efficient Planning Algorithms to emphasize the plan-
ning aspect. It can be run as an interactive applet available at
www.informatik.uni-freiburg.de/ mmips/visualization .

Figure 11.10: Visualization a Plan in Gannt Chart Format.

The first program that we added isVepaServerwhich wraps plan execution and vi-
sualizes Gannt Charts of plans, see Figure 11.10. Gannt Charts are a well known repre-
sentation for schedules in which a horizontal open oblong is drawn against each activity
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indicating estimated duration. The tool can be adapted to any planner that writes plans
in planning competition format to standard I/O. The user may choose the planner, the
domain, and the problem file.

Figure 11.11: Visualization of a Planning Problem Instance of Settlers.

The second program (suite) isVepaDomainfor domain-dependent visualization of
sequential plans. Figure 11.10 shows an example for theSettlersdomain. VepaDomain
includes (almost) instance independent visualizations for all competition domains all with
less than 100 lines of code. The gifs for the objects were collected with an image web
search engine. The planner MIPS writes propositional and numeric state facets and action
sequences into a header-file, which in turn is compiled together with generic c-file to
visualize the sequential plan sequence.

11.8 Related Work

Solving planning problems with numerical preconditions and effects as allowed in Level
2 and Level 3 problems is undecidable in general [170]. However, the structures of the
provided benchmark problems are simpler than the general problem class, so that these
problems are in fact solvable.

11.8.1 Problem Classes and Methods

According to the PDDL-hierarchy we indicate three problem classes:

1. Propositional Planning. STRIPS problems have been tackled with different plan-
ning techniques, most notably by SAT-planning, e.g. [204], IP-planning, e.g. [205],
CSP-planning, e.g. [307], graph relaxation, e.g. [39], and heuristic search planing,
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e.g. [41]. The major quality measurements are the numbers of sequential and paral-
lel steps. ADL generalizations [289] like conditional effects and negative precondi-
tions are more expressive in general, but can usually be resolved during grounding.

2. Numerical Effects. Numerical variables in the effect lists can include time and
resources. If numerical effects do not bound integral values, infinite state spaces are
likely to be generated. However, by assuming finitely many interesting events the
problem class becomes tractable and is effectively dealt by schedulers that usually
minimize themake-spanof concurrent actions.

3. Numerical Preconditions. We distinguish finite and infinite branching problems.
With finite branching, execution time of an action is not parameterized, while with
infinite branching, an infinite number of actions can be applied. These problems
have ever since been confronted to model checking. Some subclasses of infinite
branching problems like timed automata exhibit a finite partitioning through a sym-
bolic representation of states [292]. By the technique of shortest-path reduction a
unique and reduced normal form can be obtained. We have implemented this con-
straint network data structure, since this is the main data structure when exploring
timed automata as done by the model checker Uppaal [292]. For this to work, all
constraints must have the formxi � xj � c or xi � c. For example, the set of
constraintsx4 � x0 � �1, x3 � x1 � 2, x0 � x1 � 1, x5 � x2 � �8, x1 � x2 � 2,
x4 � x3 � 3, x0 � x3 � �4, x1 � x4 � 7, x2 � x5 � 10, andx1 � x5 � 5 has the
shortest-path reductionx4 � x0 � �1, x3 � x1 � 2, x5 � x2 � �8, x0 � x3 � �4,
x1�x4 � 7, x2�x5 � 10, andx1�x5 � 5. If the constraint set is over-constraint,
the algorithm will determine unsolvability, otherwise a feasible solution is returned.
The absence of partitioning is current research [349].

Critical path analysis for timed precedence networks is one of the simpler cases for
scheduling. We have achieved a simplification by solving the sequential path problem
first. Several scheduling techniques apply the presented critical path analyses as a sub-
component [335].

Most previously achieved results in symmetry reduction, e.g. [153], neglect the com-
binatorial explosion problem and tend to assume that the information on existing symme-
tries in the domain is supplied by the user. Our approach shares similarities with the ap-
proach of [130, 132] in inferring symmetry information automatically, which bases on the
TIM inference module [129]. Since no additional information on the current symmetry
level in form of matrix is stored, our approach consumes less space per state. Moreover,
we can give correctness proofs and efficiency guarantees.

11.8.2 Competing Planners

The on-line presentation of IPC-34 provides aspects of the input language, domains, re-
sults and other resources, e.g links to competing planners and the history of the event. In
the following we briefly present the successful approaches at AIPS-2002. In AIPS-1998
most successful planners besides HSP [41] andSatplan[204] wereGraphplanderivates,

4http://www.dur.ac.uk/d.p.long/competition.html
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e.g. IPP [212] and STAN [243]. In 2000, the field was dominated by the success of heuris-
tic search planning as in FF [181], HSP-2 [163], and in some hybrids, like STAN4 [246],
and MIPS. System R [238] used backward regression.

Metric-FF [179] extends FF [181] and is a forward chaining heuristic state space plan-
ner. It performed best in the numerical track and was the only system besides MIPS
that solved instances toSettlers. The main heuristic of relaxed plans bases on the HSP-
heuristic [41]. Metric-FF deals with PDDL 2.1 level 2, combined with ADL. The key
difference is the definition of the relaxation. In STRIPS, the task is relaxed by ignoring
all delete lists. However, numerical constraints are not monotonic: while one constraint
(e.g. x > 2) might prefer higher values of a variablex, another constraint (e.g.x < 2)
might prefer lower values. Opposed to that, the conditions in the purely logical case
all preferhighervalues of the propositional variables: negative conditions are compiled
away as a pre-process, and thus it is always preferable to have more propositional facts
true. The observation exploited in Metric-FF is that the same methodology can be applied
in the numerical setting, at least in a subset of the language. The task is pre-processed
such that all numerical constraints are monotonic, i.e., for any constraintc, if c is true in
a state S thenc is true in any stateS 0 where, for all variablesx, x(S 0) � x(S). The relax-
ation is then simply to ignore all effects that decrease the value of the affected variable,
and the relaxed task can be solved in Graphplan-style. To achieve the monotonicity prop-
erty, one needs, in the numerical constraints and effects, expressions that are monotonic in
all variables. In the current implementation, Numerical-FF restricts to linear expressions
which obviously have this property.

LPG (Local search for Planning Graphs) [143] is the only planner that was compet-
itive with MIPS at AIPS-2002 in the temporal domains. It bases on local search and
planning graphs that handles PDDL 2.1 domains involving numerical quantities and du-
rations. The system can solve both plan generation and plan adaptation problems. The
basic search scheme of LPG was inspired by Walksat, an efficient procedure to solve
SAT-problems. The search space of LPG consists ofaction graphs[142], particular sub-
graphs of the planning graph representing partial plans. The search steps are certain graph
modifications transforming an action graph into another one. LPG exploits a compact
representation of the planning graph to define the search neighborhood and to evaluate its
elements using a parametrized function, where the parameters weight different types of
inconsistencies in the current partial plan, and are dynamically evaluated during search
using discrete Lagrange multipliers. The evaluation function uses some heuristics for
estimate thesearch costand theexecution costof achieving a (possibly numeric) precon-
dition. Action durations and numerical quantities (e.g., fuel consumption) are represented
in the actions graphs, and are modeled in the evaluation function. In temporal domains,
actions are ordered using aprecedence graphthat is maintained during search, and that
took into account the mutex relations of the planning graph.

TP4 [164] is in fact a scheduling system based on grounded problem instances. For
these cases all formula trees in numerical conditions and assignments reduce to constants.
Utilizing admissible heuristics TP4 minimize the plan objective of optimal parallel plan
length. Our planner has some distinctive advantages: it handles numerical preconditions,
instantiates numerical conditions on the fly and can cope with complex objective func-
tions. Besides input restriction, in the competition, TP4 was somewhat limited by is focus
to produce optimal solutions only.

SAPA [83] is a domain-independent time and resource planner that can cope with met-
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rics and concurrent actions. It adapts the forward chaining algorithm of [16]. Both plan-
ning approaches instantiate actions on the fly and can, therefore, in principle be adapted
to at least mixed propositional and numerical planning problems. The search algorithm
of SAPA extends partial concurrent plans. It uses a relaxed temporal planning graph for
the yet unplanned events for different heuristic evaluation functions. In the competition
SAPA was the only system besides MIPS that produced plans for the complex domains,
which was the only one it submitted solutions to.

11.8.3 Symbolic Model Checking based Planners

In the 2000 competition, two other symbolic planner took part: PropPlan [128], and BD-
DPlan [182]. Although they were not awarded for performance, they show interesting
properties. PropPlan performs symbolic forward breadth first search to explore propo-
sitional planning problems with propositions for generalized action preconditions and
generalized action effects. It performed well in the full ADL Micsonic-10 elevator do-
main [211]. ProbPlan is written in the Poly/ML implementation of SML and the standart
C-BDD library5. BDD-Plan bases on solving the entailment problem in the fluent calcu-
lus with BDDs. At that time the authors acknowledged that a concise domain encoding
and symbolic heuristic search as found in MIPS provides a large space for improvements.

In the Model-Based Planner, MBP6, the paradigm of planning as symbolic model
checking [145] has been implemented fornon-deterministic planningdomains [63],
which classifies in weak, strong, and strong-cyclic planning, with plans that are repre-
sented as complete state-action tables. Forpartial observable planning, exploration faces
the space of belief states; the power set of the original planning space. Therefore, in con-
trast to the successor set generation based on action application, observations introduce
“And” nodes into the search tree [32]. Since the approach is a hybrid of symbolic rep-
resentation of belief states and explicit search within the “And”-“Or” search tree, simple
heuristic have been applied to guide the search. The need for heuristics that trade in-
formation gain for exploration effort is also apparent need inconformant planning[31].
Recent work [30] proposes improved heuristic for belief space planning. MBP has not
yet participated in a planning competition, but plan to do in 2004.

The UMOP system parses a non-deterministic agent domain language that explicitly
defines a controllable system in an uncontrollable environment [196]. The planner also
applies BDD refinement techniques such as automated transition function partitioning.
New result for the UMOP system extends the setting of weak, strong and strong cyclic
planning to adversarial planning, in which the environment actively influences the out-
come of actions. In fact, the proposed algorithm joins aspects of both symbolic search
and game playing. UMOP has not participated yet in a planning competition.

More recent developments in symbolic exploration are expected to influence auto-
mated planning in near future. With SetA*, [197] provide an improved implementation of
the symbolic heuristic search algorithm BDDA* [112] and Weighted BDDA* [93]. One
major surplus is to maintain a finer granularity of the sets of states in the search horizon
kept in a matrix according to matchingg- andh- values. This contrasts the plain bucket
representation of the priority queue based onf -values. The heuristic function is implicitly

5http://www-2.cs.cmu.edu/ modelcheck/bdd.html
6http://sra.itc.it/tools/mbp
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encoded with value differences of grounded actions. Since sets of states are to be evalu-
ated and some heuristics are state rather than operator dependent it has still to be shown
how general this approch is. As above the considered planning benchmarks are seemingly
simple for single-state heuristic search exploration [180, 169]. [158] also re-implemented
BDDA* and suggest that symbolic search heuristics and exploration algorithms are prob-
ably better to be implemented with algebraic decision diagrams (ADDs), as available in
Somenzi's CUDD package. Although the authors achieved no improvement to [112] to
solve the(n2 � 1)-Puzzle, the established generalization to guide a symbolic version of
the LAO* exploration algorithm [157] forprobabilistic(MDP) planning, results in a re-
markable improvement to the state-of-the-art [124].

11.9 Conclusions

With the competing planning system MIPS, we have contributed an object-oriented archi-
tecture for a forward chaining, heuristic search explicit and symbolic planner that finds
plans in finite-branching numerical problems. The planner parses, pre-compiles, solves,
and schedules all current benchmark problem instances, including complex ones with
duration, resource variables and different objective functions.

Model checking aspects have always been influencing to the development of MIPS,
e.g in the static analysis to minimize the state description length, in symbolic exploration
and plan extraction, in the dependence relation for PERT schedules according to a given
partial order, in bit-state hashing for IDA*, etc. The successes of planning with MIPS
were also exported back to model checking, as the development of a heuristic search
explicit-state model checker HSF-SPIN [105] indicates.

MIPS instantiates numerical pre- and postconditions on-the-fly and produces opti-
mized parallel plans. Essentially planning with numerical quantities and durative actions
is planning with time and resources. The given framework of mixed propositional and nu-
merical planning problems problems and the presented intermediate format can be seen
as a normal form for temporal and metric planning.

For temporal planning, MIPS generates sequential (totally ordered) plans and effi-
ciently schedules them with respect to the set of actions and the imposed causal structure,
without falling into known NP-hardness traps for optimized partial-ordering of sequen-
tially generated plan. For smaller problems the enumeration approach guarantees optimal
solutions. To improve solution quality in approximate enumeration, the (numerical) esti-
mate for the number of operators was substituted by scheduling the relaxed plan in each
state.

Other contributions besides the new expressivity were refined static analysis tech-
niques to simplify propositionally grounded representation and to minimize state encod-
ing, automated state-based dynamic symmetry detection, as well as effective hashing and
transposition cuts.

In the main part of paper we have analyzed completeness and optimality of different
forms of exploration and have given a troughout theoretical treatment of PERT scheduling
and symmetry detection, proving correctness results and studying run-time complexities.
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Abstract

This paper analyzes the effect of heuristic search algorithms like A* and IDA* to
accelerate proof-state based theorem provers.

A functional implementation of possibly weighted A* is proposed that extends Dijk-
stra's single-source shortest-path algorithm. Efficient implementation issues and possible
flaws for both A* and IDA* are discussed in detail.

Initial results with first and higher order logic examples inIsabelle indicate that
directed automated theorem provingis superior to other known general inference mecha-
nisms and that it can enhance other proof techniques like model elimination.
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12.1 Introduction

Theorem proving is at the computational core of many Artificial Intelligence (AI) systems
to draw inferences in logical models of the real world. Proof-state based systems implic-
itly span large and infinite state-spaces by generating successor proof-states through the
application of encoded rules in the theory. Inference even in simpler theories like first-
order logic (FOL) is semi-decidable [140], calling for user interaction, language limita-
tion, domain-specific knowledge, or incomplete inference procedures.

Due to the amount of user intervention,theorem provingis often contrasted to
model checkingand toaction planning, where the inference process is claimed to be
push-button. However, the gap is smaller than expected on the first glance, since model
checking stop-watch automata [172], or temporal and numerical planning [170] also face
undecidability results and call for the design of enumerating inference procedures. More-
over, additional hand-coded control rules significantly improve run time [17].

This paper addressesautomated theorem proving(ATP), where proof-finding is en-
capsulated in form of a general proof-independent search procedure. Semi-automated
techniques that provide control knowledge assist exploration in form oftacticsandrule
subsets, restricting the range of applicable rules to a manageable one, in turn pruning
exploration space.

The paper is structured as follows. First, it introduces heuristic graph search, es-
pecially A* and IDA*, and their implementation in a functional programming language.
Next it addresses design and properties of different heuristic functions. Initial experiments
oppose blind to heuristic search and evaluate the effect of the proposed estimates to ac-
celerate automated proof generation in theIsabelletheorem proving system. We indicate
flaws inIsabelle's implementation of thebest-firstprocedure for the restricted class of fi-
nite graphs. Furthermore, we have integrated A* in a model elimination reasoner to solve
challenging instances from the TPTP problem library. We relate our results to specified
proof methods like resolution and tableaux and to earlier findings in guided exploration.
Additionally, recent work inmodel checkingandaction planningcertifies the importance
of guided traversals in large state spaces indicating possible cross-fertilizations. Finally,
we draw conclusions.

12.2 Functional Heuristic Search

Theorem proving distinguishes between backward regression (or top-down) and forward
progression (or bottom-up) proofs. This paper is restricted to top-down proofs, since
generic search algorithms are better suited to this case. Pure and efficient bottom-up
procedures require restrictions like Horn clause reasoning or bounding the instantiations
of formulae. Bottom-up reasoning lacks goal information and, therefore, does not fit
well to directed inference. The usual exploration scheme for top-down proof procedures
depth-first search (DFS) blindly explores the state-space and, if successful, often finds
proofs in very large depths of a search tree. The depth of the exploration is sometimes
thresholded to terminate exploration and to find shorter solutions. Choosing the right
bound prior to the search is difficult and successively increasing the depth bound – known
asiterative deepening– is computationally expensive.

We model (proof-) state space search as an implicit graph traversal. Hence, we assume
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the existence of an underlying weighted graphG = (V;E; w), likely to be too large to be
fully traversed and, moreover, to be infinite in many cases.

Heuristic search algorithms take additional search information in form of an evalua-
tion function into account that returns a number for each node to describe the desirability
of expanding it. When the nodes are ordered so that the one with the best evaluation value
is expanded first and if the evaluation function estimates the cost of the cheapest path
from the current state to a desired one, the resulting greedy best-first search strategy (BF)
often finds solutions quickly. However, it may suffer from the same defects as DFS – it is
not optimal and may be stuck in dead-ends or local minima. Breadth-first search (BFS),
on the other hand, is complete and optimal but very inefficient.

BFS and BF are the two extremes of the A* algorithm [161]. A* combines the cost
of the generating pathg(u) and the estimated cost of the cheapest pathh(u) to the goal
yielding the cost valuef(u) = g(u) + h(u) of the cheapest solution throughu. Weighted
A* [287] scales the influence ofg andh, fixing f aswgg + whh. If wg = 1� wh = 0 we
obtain BF and ifwh = 1� wg = 0 we get BFS.

Algorithm A* is best understood as a refinement of the single-source shortest
path (SSSP) algorithm of Dijkstra [80], in which Bellmann's relaxationf(v)  
minff(v); f(u) + w(u; v)g on edge(u; v) is substituted byf(v)  minff(v); f(u) +
w(u; v)+h(v)�h(u)g. Therefore, A* mimics Dijkstra exploration in a graph, where the
edges(u; v) are re-weighted with offseth(v)� h(u). Frequently, the original graphG is
uniformly weighted (w � 1), so that the cost of a solution equals its length. In contrast
to Dijkstra's algorithm, already expanded nodes are placed back into the priority queue
representing the search frontier, if edge weights become negative by re-weighting.

Table 12.1 depicts the implementation of A* based on a priority queue data struc-
ture Openand a dictionary of expanded nodesClosed. The node expansion function
generates the successor set of a given node and predicategoal identifies the reached goal.

If h is a lower bound, it underestimates the minimal distance to a goal at every node.
In this caseh is calledadmissible. For admissible heuristics and finite graphs, A* is
complete and optimal. In infinite graphs, for A* to be complete and optimal, the costs of
each infinite path have to be infinite [287].

The iterative deepening variant of A*, IDA* [214], explores the tree-expansion of the
problem graph and tackles the problem of limited memory with increased exploration
time. Table 12.1 shows the implementation of IDA* with stack data structureS, where
U is the threshold for the current iteration andU 0 is the threshold for the next iteration.
For better performance, transposition tables [306] may maintain the heuristic information
of the set of explored nodes and reduce the number of re-expansions of nodes due to
uncaught duplicates. Since IDA* simulates A* exploration for each possible threshold
value, it is also complete and optimal given an admissible estimate.

In functional implementations of heuristic search algorithms, one input parameter is
the heuristic functionh. Furthermore, the successor generation and goal functions, and
the initial state are passed to the algorithms as parameters.

Table 12.2 depicts pseudo-code implementations of A* and IDA* in a functional pro-
gramming language like Scheme, Haskell or ML. For A*, the priority queueOpen is
represented by a list of triples(g; f; u), sorted by ascendingf -values. We ommit re-
opening of already expanded nodes on shorter generating paths. If the heuristic function
h is consistent, i.e. h(v) � h(u) + 1 � 0 for all (u; v) 2 E, this is no restriction. In this
case, on every path the priorityf is monotonic increasing. All re-weighted edges are pos-
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proc A* (s)
Open f(s; h(s))g; Closed fg
while (Open6= ;)
(u; f(u)) deleteMin(Open)
insert(Closed,u,f(u))
if (goal(u)) then return u
for all v in (u)
f 0(v) f(u) + h(v)� h(u) + 1
if (search(Open,v))
f(v) retrieve(Open; v)
if (f 0(v) < f(v)) then

decreaseKey(Open; (v; f 0(v))
elsif (search(Closed; v)) then
f(v) retrieve(Closed; v)
if (f 0(v) < f(v)) then

delete(Closed; v)
insert(Open; (v; f 0(v))

elseinsert(Open; (v; f 0(v))

proc IDA* (s)
Push(S; s; h(s))
U  U 0  h(s)
while (U 0 6=1)
U  U 0

U 0  1
while (S 6= ;)
(u; f(u)) Pop(S)
if (goal(u)) then return u
for all v in (u)
f 0(v) f(u) + h(v)� h(u) + 1
if (f 0(v) > U ) then

if (f 0(v) < U 0) then
U 0  f 0(v)

else
Push(S; v; f 0(v))

Table 12.1: Imperative implementation of A* (left) and IDA* (right).

itive, and the correctness argument of Dijkstra's algorithm applies. All extracted nodes
will have correctf -values. The implementation of A* in Table 12.2 uses simultanuous
recursion, while IDA* destincts its main loop from the subloops by explicit maintenance
of the stack content.

In difference to the imperative implementation, in functional A*insert implements
dictionary updates within the set of horizon nodes. If the state is already contained in
the priority queue, no insertion takes place, thus avoiding duplicates within the queue.
However, since theClosedlist of already expanded states is not modeled, even on finite
graphs the functional BF derivate, i.e.f(v) = (g; h(v); v) is no longer complete. An
example for this anomaly is given in Fig. 12.1.

h = 4 h = 4 h = 5 h = 0

s0 s1 s2 st

Figure 12.1: Anomaly in which BF withoutClosedlist is trapped in an infinite loop.

Starting with states0, BF will oscillate betweens0 ands1. In contrast, for finite state
spaces, A* even without duplicate elimination preserves completeness according to the
following observation. The total cost of a cycle in the graph is invariant to re-weighting.
Let C = (v0; : : : ; vk = v0) be a cycle of lengthk, w the edge weight before, andw0 the
edge weight after re-weighting. Then

w0(C) =
kX
i=1

w(vi; vi�1) + h(vi)� h(vi�1) =
kX
i=1

w(vi; vi�1) = w(C):
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func A* (s; goal; h; ) =
let func relax(succs; t; g) =

let func f(v) = (g; g + h(v); v);
l (filter goal succs)

in if (l 6= []) then l else
Open(foldr (insert,(mapfsuccs); t))

end
and

func Open [] = [] j
Open ((g; f; u) :: t) =

relax ((u); t; g + 1)

in
relax ((s); [ ]; 0)

end

func IDA* (s; goal; h; ) =
let func depth (U; U 0; []) =

depth(U 0;1; [(h(s); (s))]) j
depth (U; U 0; (f; [] ) :: t) = depth(U; U 0; t)j
depth (U; U 0; (f; succs) :: t) =

if (f > U) then depth(U;min(U 0; f); t)

else letv  hd succs; succs0  tl succs
l (filter goal succs)

in if (l 6= []) then l else
depth(U; U 0; (f + h(v)� h(u) + 1;

(v)) :: (f; succs0) :: t)
end

in
depth(0; h(s); [])

end

Table 12.2: Functional implementation of A* and IDA*. Keywords and function declara-
tions are set in bold and variables, function invocations are set in italics.

Therefore, infinite paths have infinite costs. This forcesf to exceed any given bound and
to eventually generate a final proof-state.

Global expanded node maintenance inClosedis integrated in the pseudo codes of
Table 12.2 as follows: setClosedis supplied as an additional parameter: in A* to therelax
function, and in IDA* to thedepthfunction. In A*, Closedis initialized to the empty list
at the very beginning, while in IDA*,Closedis emptied in each iteration. Instead of (map
f succs) visited states are first eliminated by (mapf eliminate(Closed; succs)).

The dictionary forClosedcan be implemented through lists, balanced trees, or low
level hash tables. A sorted list implementation for the priority queueOpenis not time
optimal. Nevertheless, more efficient implementations of priority queues like Fibonacci
Heaps [134] are challenging. A refined purely functional implementation of a priority
queue is provided in [46].

12.3 Heuristics for Automated Theorem Proving

Standard TP procedures draw inferences on a set of clauses� ! �, with � and� as
multisets of atoms� = fA1; : : : ; Akg and� = fB1; : : : ; Blg for k; l � 0. The antecedent
� represents negative literals where the succedent� represents positive literals. When
abbreviatingfg ! A byA andA! fg by :A, �! � can be rewritten as:A1 _ : : : _
:Ak _B1 _ : : : _ Bl.

The main inference rule1 is resolution, formally denoted by

�1 ! A;�1 B;�2 ! �2

�1�;�2� ! �1�;�2�

deriving the conclusion (bottom) from given premises (top), with� being the most general

1We neglect factoring of a clause.
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unifier (mgu) ofA andB. A top-down proof creates a proof tree, where the node label
of each interior node corresponds to the conclusion, and the node labels of its children
correspond to the premises of an inference step. Leaves of the proof tree are either axioms
or instances of proven theorems.

A proof state represents the outer fragment of a proof tree: the top-node, representing
the goal and all leaves, representing the subgoals of the proof state. All proven leaves can
be discharged, because they are not needed for further considerations. If all subgoals have
been solved, the proof is successful.

One estimate for the remaining distance to the goal is the number of internal nodes
of the current proof-state. An illustrative competitor is the string length of a proof state
representation.

Theorem 14 For the internal node heuristicand thestring length heuristicthe number of
proof states with fixed heuristic valuek is finite.

Proof: The number of trees withk internal nodes and the number of strings with
lengthk are both finite.

Theorem 14 is the basis for the design of guided search algorithms with guaranteed
progress. At the first glance, heuristic search according to the representation size of a
theorem seems not to be a good choice, since it exploits very poor knowledge to prove
difficult theorems. Take Fermats theoreman + bn = cn, n � 3 as an illustrative example.
But as we will see in the experiments, even these vague parts of information speed up
computation by magnitudes.

The last heuristic we apply is the number of open subgoals in the current proof state.
This heuristic is the only one, which is admissible. Recall that all consistent estimates are
admissible.

Theorem 15 Theopen subgoal heuristicis consistent.

Proof: We have to show that for nodeu and successorv, h(v) + 1 � h(u). This,
however, is obvious, since the number of unsatisfied subgoals can not decrease by more
than 1.

In contrast to theinternal node heuristicand thestring length heuristicby the limited
range of information, theopen subgoal heuristiccan have infinite plateaus of states with
the same estimate value. In this case, BF often fails to terminate. For regular state spaces,
even weaker heuristics often yield fast solutions in BF. Hence, studying heuristics also
yield information on the problem structure and ATP systems characteristics.

12.4 Isabelle

There are different state-of-the art generic higher-order logic (HOL) theorem proving
systems to which directed search appears applicable, e.g. HOL [150], PVS [281], and
COQ [21]. We chose the ML proof-state systemIsabelledeveloped at Cambridge Uni-
versity and TU Munich [279] for our experiments.

Isabelle has a rising application focus as projects on compositional reasoning about
concurrent programs and on verifying eCommerce protocols show. We worked with the
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current Isabelle-20022, which is distributed with a wide range object logics, like higher-
order logic, classical and intuitionistic first-order logic, set theory (ZF), Horn logic for
Prolog programming, just to name a few. There are many specialized logics and Isabelle
allows the user to specify their own object logics.

Isabelle is an interactive and tactical theorem prover, supporting forward and back-
ward proofs. In a forward proof axioms and already proven theorems are combined to
gain new theorems. In a backward proof, one starts with the theorem to prove, which is
step by step reduced to new subgoals. With a tactic, basic inference steps are combined
to larger case-sensitive and proof-searching rules using axioms, memorized theorems or
assumptions.

For increasing performance in some basic object logics, tableau theorem provers have
been integrated into Isabelle, but their inference is not generic for all object logics. The
inference process is hidden in theauto/blasttactic.

A recent self-contained introduction to interactive proof in Isabelle is [279]. Isabelle
is generic, i.e., logics are not hard-wired, but formulated in Isabelle's own meta logic; a
fragment of intuitionistic higher order logic.

The only documented heuristic search algorithm inIsabelleis BF. As said, this greedy
strategy, which always expands the state with minimal evaluation function value, is much
attracted by local minima and is not optimal. Even worse, the implementation of BF in
Isabelle3 is not complete on finite graphs. It can be trapped by the anomaly described
in Fig. 12.1. In contrast, DFS and BFS are complete. DFS uses global memory to store
already proven subgoals and BFS omits all pruning of duplicate states.

Norbert Völker implemented an unpublished version of A* inIsabelle. He used a pri-
ority queue representation based on linear lists and also omits theClosedlist. Völker [346]
denoted that the initial set of experiments led to no substantial success and that, up to his
knowledge, no researcher except him has looked closer to that code.

The implementation of IDA* in Isabelle is specialized. First, it applies the number of
subgoals as a fixed heuristic. Then it adjusts the search thresholds within a larger range
to allow accelerations for smaller values, e.g.U is initialized to 5 and increased by the
minimum of 10 and the value of the best node exceeding the current fringe by twice the
heuristic estimate. Moreover, Isabelle's implementation performsrigid ancestor pruning,
a form of a branching cut for the case a nodev with predecessoru is reached withh(v)�
h(u) < 0 andf(v) + h(v) � U , for (u; v) 2 E. Rigid ancestor pruning is related to
dynamic transposition table updates, but specialized to the case that the open subgoal
heuristic is chosen.

12.5 Experiments

In our first implementation of A*,I1 for short, we extended Völker's code to allow arbi-
trary weighting of the heuristic estimate and the generating path length. This immediately
yields BF and BFS. Note that DFS cannot be modeled by a different cost function. In the
second implementation of A*,I2 for short, we re-implemented A* from scratch using the
internal heap priority queue representation [280]. In contrast to Völker's approach, we

2available atwww.cl.cam.ac.uk/Research/HVG/Isabelle
3all top-level inference procedures inIsabelleare specified in the fileProof/search
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Name Inference Rule
disjI1 ?P )?P j?Q
disjI2 ?Q)?P j?Q
disjE [j?P j?Q; ?P )?R; ?Q)?Rj])?R
impI (?P )?Q))?P !?Q

conjunct1 ?P&?Q)?P
allI (!!x:?P (x))) 8x:?P (x)
exE [j9x:?P (x); !!x:?P (x))?Rj])?R
mp [j?P !?Q; ?P j])?Q
spec 8 x:?Px)?P ?x

Table 12.3: Some FOL inference rules in Isabelle.

avoid maintainingg-values and computef 0(v) = f(u)� h(u) + h(v) + 1. The third im-
plementationI3 additionally maintains the setClosedin form of a balanced tree dictionary
avoiding to be trapped by the anomaly described above. The specialized IDA* algorithm
in Isabelle is referred to as ID+(C;R; h3),C for constant initial and subsequent offsets,R

for rigid ancestor pruning andh3 for the subgoal heuristic, while our generic implemen-
tation is denoted by ID(A*). Heuristich1 refers to the interior node size of the theorem
(size_of_thm ), h2 to its string representation length (size o string_of_thm ),
andh3 to the number of open subgoals (nprems_of ).

In the first experiment we chose the tautologyP & Q j R ! P j R in FOL taken
from [279]. Each node corresponds to an Isabelle proof state. The successor nodes are
generated by applying the following tactic

val app_tac = ((assume_tac 1)
APPEND (resolve_tac [disjI1,disjI2,disjE,impI,conjunct1] 1));

The combined tactic is always applied to the first subgoal of a state and the possible
outcomes are collected. Other orderings are feasible but have not been considered so
far. Additionally, we tried to solve the subgoal by assumption. Table 12.3 depicts a
selected subset of FOL inference rules in Isabelle notation; where “)" denotes meta
logic implication, while “!" denotes object level implication, and question mark prefixed
characters are meta logic variables.

Table 12.4 lists our results for this problem. All CPU results were computed on a
Sun Ultra Workstation with 248 MHz and 1.5 GB memory. Time is given in seconds,
#n denotes the number of expanded nodes (A*) and total number of generated nodes
(ID(A*)); t.o meanstime outandn.ddenotesnot defined.

First of all, DFS is not competitive, since it fails to find a proof. Because of this
bad performance, we dropped DFS from further considerations. BF is also not a very
good choice for this problem. The approach generates very long proofs and performs
much work in deeper levels of the search tree. BFS finds a proof, but neither Isabelle's
implementation norI1 are efficient. The reason is that theIsabelle's implementation of
BFS does not track duplicates in the search. WhileI2 memorizes duplicates, the list-like
priority queue data structure is very slow. Only the BFS derivate ofI2 is competitive.
A* is fast in all three implementations. For all heuristics, A* performs better than BF.
With h3 we achieved results improving Isabelle's top time performance by two orders of
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Isabelle I1 I2 I3
time #n time #n time #n time #n

DFS t.o t.o n.d n.d n.d n.d n.d n.d
BFS 31s 14,587 443s 9,619 6s 3,200 14s 3,196

A*+h1 n.d. n.d. 3.2s 2,299 1.7s 2,174 1.0s 596
BF+h1 117s 51,231 t.o t.o 108s 51,231 23s 7,006
A*+h2 n.d. n.d. 11s 1,492 12s 1,456 4.7s 470
BF+h2 17s 2,449 20s 2,550 21s 2,449 6.2s 709
A*+h3 n.d. n.d. 0.2s 231 0.2s 203 0.2s 195
BF+h3 t.o t.o t.o t.o t.o t.o t.o t.o

time #n

ID+(C;R; h3) 0.4s 3,555
ID 563.2s 72,305

IDA* +h1 18.4s 8,549
IDA* +h2 54.4s 12,265
IDA* +h3 11.0s 3,249

Table 12.4: Results in provingP&QjR! P jR .

magnitudes. Heuristich3 is consistent, so that A* simplifies to Dijkstra's algorithm on
positive weighted graphs. BF withh3 fails, since it introduces an infinite number of new
variables in ruleconjunct1 . The implementation of IDA* also shows the effectiveness
of heuristic search. Moreover, node expansions are more expensive in the new implemen-
tation, indicating possible code tuning, e.g. by refined transposition tables with smaller
initialization time.

Our next example(8x: P (x) ! Q) ! (9x: P (x)) ! Q is also taken from the
introductory book for Isabelle [279]. The set of tactics that we have applied is

val app_tac = ((assume_tac 1)
APPEND (resolve_tac [disjI1,disjI2,disjE,impI,allI,conjunct1] 1)
APPEND (eresolve_tac [exE,mp] 1) APPEND (dresolve_tac [spec] 1));

The rules are distinguished by structural properties. For example,elimination rules
consume assumptions in premises, yielding one-step resolutions, instantiations, and dele-
tions of meta-assumptions for many cases. Therefore, the tacticeresolve , a specializa-
tion of resolve, can be used for those rules, e.g. forexE. The tacticalAPPENDconcate-
nates lists of tactic functions to a new one, i.e., generating the list of all successful tactic
applications for a given subgoal.

Even though the second example looks more complicated, proving is easier as our
results in Table 12.5 show. The interpretation of the results is limited, since most runs
finished within a second. As in the above example, evaluating the string length inh2
decreases the performance by about one magnitude. Moreover, BF withh3 still poses a
problem for exploration, while A* performs well in all cases. The new iterative deepening
implementation beats the specialized one in the number of generated nodes but not in CPU
time.

Our HOL example isCantor's Theorem

8f :: �) �) bool: 9S :: �) bool: 8x :: �:f x 6= S
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Isabelle I1 I2 I3
time #n time #n time #n time #n

BFS 2.23s 1,241 3.60s 927 0.40s 238 0.71s 238
A*+h1 n.d. n.d. 0.02s 29 0.02s 30 0.02s 26
BF+h1 0.05s 46 0.02s 47 0.03s 46 0.04s 42
A*+h2 n.d. n.d. 0.23s 30 0.27s 30 0.24s 26
BF+h2 0.50s 46 0.24s 34 0.25s 34 0.23s 30
A*+h3 n.d. n.d. 0.05s 68 0.03s 41 0.04s 41
BF+h3 0.03s 46 t.o t.o 0.03s 46 0.04s 42

time #n

ID+(C;R; h3) 0.1s 578
ID 66.31s 9,074

IDA* +h1 0.1s 151
IDA* +h2 0.2s 70
IDA* +h3 1.3s 520

Table 12.5: Results in proving(8x:P (x)! Q)! (9x:P (x))! Q.

stating that every set has more subsets than it has elements. It is taken from the manual
Isabelle's Logics:HOLand refers to the context of set theory. The set of inference rules
for this case (cf. Table 12.6) is

val app_tac = ((assume_tac 1) APPEND (contr_tac 1)
APPEND (resolve_tac [notI] 1) APPEND (swap_res_tac [CollectI] 1)
APPEND (eresolve_tac [rangeE,equalityCE] 1)
APPEND (dresolve_tac [CollectD] 1));

Despite that the results in Table 12.7 show that on this suite of tactics the theorem
is even simpler than the one above, it highlights the generality of the directed search
approach.

To harden the exploration task with a larger branching factor we integrated some ad-
ditional4 HOL rules to theeresolve tactic (cf. Table 12.6):

[False_neq_True,allE,all_dupE,conjE,contrapos_nn,ex1E,fun_cong,
iffD2,major,minor,mp,notE,spec,ssubst,subst,sym,theI]

The results are shown in Table 12.8. While for A* and BF little differences can be
observed, BFS and ID have severe exploration problems. The reason is an exceeded
unification bound for higher order variables. Heuristich2 has an advantage, because full
information of the proof states including higher order variables keeps the exploration
efforts small.

The last set of examples is devoted to more complicated proofs and the integration
of our A* implementation in a model-elimination reasoner. We took the MESON im-
plementation of Lawrence Paulson in the Isabelle system as a wellcome original source
(meson.ML ). We randomly chose 3 hard examples from the TPTP library suite (in Is-
abelle), namely LDA003, MSC006, and PUZ025. Original MESON applies the algorithm
ID(C;R; h3) as a subroutine. We changed the specialized iterative deepening variant with
A* in implementationI3 and heuristich1-h3. Table 12.9 shows that A* yields a significant

4We established the set by a simple UNIX fgrep oferesolve in theHOL/ex directory.
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Name Inference Rule
rangeI ?f?x : range?f
notI (?P ) False)) ?P

CollectI ?P ?a)?a : Collect?P
rangeE [j?b : range?f ; !!x:?b =?fx)?P j])?P

equalityCE [j?A =?B; [j?c :?A; ?c :?Bj])?P ; [j?c :?A; ?c :?Bj])?P j])?P
CollectD ?a : Collect?P )?P ?a

False_neq_True False= True)?P
allE [j8 x:?Px; ?P ?x)?Rj])?R

all_dupE [j8 x:?Px; [j?P ?x; 8 x:?Pxj])?Rj])?R
conjE [j?P&?Q; [j?P ; ?Qj])?Rj])?R

contrapos_nn [j ?Q; ?P )?Qj]) ?P
ex1E [j9x:?Px; !!x:[j?Px; 8 y:?Py! y = xj])?Rj])?R

fun_cong ?f =?g)?f?x =?g?x
iffD2 [j?P =?Q; ?Qj])?P
major 9 x:P 0x[:]
minor P ) P [:]
notE [j ?P ; ?P j])?R
ssubst [j?t =?s; ?P ?sj])?P ?t
subst [j?s =?t; ?P ?sj])?P ?t
sym ?s =?t)?t =?s
theI [j?P ?a; !!x:?Px) x =?aj])?P (The?P )

Table 12.6: Some HOL inference rules in Isabelle.

improvement in the first two examples, while its efficiency falls off in the last one. In all
terminating cases, A* yields a smaller number of inference steps. Although the number
of generated nodes is always larger than the number of expanded nodes, the difference in
values of#n is still large.

12.6 Related Work

The combination of classical heuristic search with general proof-state-based ATP can
seldom be found in literature. The closest match is probably the projectlearning search
heuristics for theorem provingof the DFG research programmeDeduktion. However, we
are not aware of any work that applied A* to ATP.

The basic meta inference rule, which is used in all Isabelle examples is resolution.
More specialized resolution calculi restrict inference by global restrictions (e.g. ordered
resolution, hyperresolution) or local conditions (e.g. clausal selection function). With this
respect, the use of heuristic evaluation functions on proof states also guides the inference
process for proof construction. Heuristic can determine global as well as local preferences
in order to reach the goal.

Model elimination [248] is known to be space efficient. The refutation complete cal-
culus for first order logic is the basic inference procedure of some modern theorem provers
[332, 235]. Unsatisfiability of a clause set is shown by expanding branches of literal la-
beled trees. The initial tree consists of one node labeled with the empty clause. In each
expansion step, a literalL on a branch is unified with a clause, such that the unified clause



206 PAPER 12. DIRECTED AUTOMATED THEOREM PROVING

Isabelle I1 I2 I3
time #n time #n time #n time #n

BFS 0.1s 40 0.1s 40 0.0s 14 0.0s 14
A*+h1 n.d n.d 0.0s 10 0.0s 10 0.0s 10
BF+h1 0.0s 10 0.0s 10 0.0s 10 0.0s 10
A*+h2 n.d n.d 0.2s 29 0.2s 30 0.0s 8
BF+h2 0.4s 46 0.2s 47 0.2s 46 0.0s 8
A*+h3 n.d n.d 0.2s 29 0.2s 30 0.0s 11
BF+h3 0.4s 46 0.2s 47 0.2s 46 0.0s 10

time #n

ID+(C;R; h3) 0.1s 30
ID 0.32s 111

IDA* +h1 0.05s 44
IDA* +h2 0.1s 44
IDA* +h3 0.05s 67

Table 12.7: Results in proving Cantor's theorem.

contains a contrapositive of literalL. For every literal of the unified clause new branches
and literal labels are added to the end of the considered branch. Branches containing
contrapositive literals are closed. A proof is a tree with no open branch.

Model elimination is very space efficient, because on every branch every literal and
its contrapositive occur at most once and it is not necessary to extend branches in paral-
lel. Additional inference rule (reduction, contraction) reduce the tree. The context infor-
mation in each expansion step is the multiset of literals on branches. Nevertheless, the
disadvantage is that backtracking is necessary (in the first-order case). Directed theorem
proving can be used, to keep the number of inferences small by memoizing proof states.

Paulson uses sophisticated iterative deepening to restrict inferences in the Is-
abelle's MESON implementation [286]. He denotes, that the MESON procedure
crushesblast_tac on harder first-order challenge problems. But the tableau-based
blast_tac is not restricted to pure first-order problems.

Harrison [160] shows on a huge set of hard-provable examples from the TPTP library
how different search space restrictions of model elimination, like best-first search, depth-
bounded iterative deepening, and inference-bounded iterative deepening can be used to
solve efficiently many of the problems. In most of the successful cases best-first strategies
perform best.

In general tableaux proof procedures there is no need for backtracking. Therefore
proof-state based memoization and guidance is not immediate for semantic tableaux.

Model checking (MC) [65] validates the truth of a temporal property� within a given
modelM , abbreviated byM j= �. It applies to both software and hardware verification.
In software – especially communication protocol – validation, the model is either directly
specified or transformed into a set of communicating finite state automata. The search for
counter-examples for the subclass of safety-properties is modeled as a search for a path in
the implicitly spanned state-space. The shorter the error trail, the easier for the designer
to trace the error. This objective matches with ATP, where shorter proofs are usually the
better ones.

MC and ATP have much more in common. It is not that all deductions are symbolic
and that only MC explorations use binary decision diagrams. Also the application areas
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Isabelle I1 I2 I3
time #n time #n time #n time #n

BFS t.o t.o t.o t.o 19.2s 42 19.4s 42
A*+h1 n.d n.d 0.1s 69 0.1s 59 0.2s 51
BF+h1 0.0s 69 0.0s 69 0.0s 51 0.1s 51
A*+h2 n.d n.d 0.1s 11 0.1s 11 0.1s 11
BF+h2 0.1s 11 0.1s 11 0.1s 11 0.1s 11
A*+h3 n.d n.d 0.0s 27 0.1s 26 0.0 26
BF+h3 0.0s 69 0.0s 25 0.0s 51 0.1s 51

time #n

ID+(C;R; h3) 0.02s 53
ID t.o t.o

IDA* +h1 0.08s 70
IDA* +h2 0.15s 70
IDA* +h3 22.0s 138

Table 12.8: Extended results in proving Cantor's theorem.

LDA003 MSC006 PUZ025
time #n time #n time #n

MESON+ID(C;R; h3) 297.0s >119,585 17.6s >19,116 75.1s >121,806
MESON+A*+h1 44.1s 4,330 2.05s 479 335.6s 8,822
MESON+A*+h2 256.7s 4,772 13.17s 394 1,764s 10,663
MESON+A*+h3 t.o t.o t.o t.o t.o t.o

Table 12.9: Results of proving 3 hard examples by original Meson procedure and A* with
Meson

like the verification of a security protocols often match. On theFirst World Congress on
Formal MethodsAmir Pnueli gave an invited talk on the differences in ATP and MC. In
his opinion deduction uses a more expressive language leading to succinct representations
of parameterized systems. It is mainly based on induction and requires (at least some) user
ingenuity.

Explicit [109] and symbolic heuristic search [303] have a rising influence to MC. An
example for a directed explicit state model checker is HSF-SPIN5 that extends the SPIN
verification tool with directed search algorithms like A*, IDA* and BF and has led to
drastic reductions in the number of expanded nodes. It separates heuristic that accelerate
error-finding from heuristics that improve error-trails, and is compatible with bit-state
hashing and partial order reduction.

Action planning (AP) [6] searches for a plan as a sequence of actions that transforms
the initial state into one of the goal states. The input divides into a domain and problem
specification, usually given in PDDL syntax.

Most performant domain-independent planners include some form of heuristic search.
Currently, the best estimates are the relaxed planning heuristic [177] and the pattern
database heuristic [95]. In propositional planning due to the highly regular structure of the
domains,enforced hill climbing(EHC) seems to have a slight advantage to A*. Unfor-
tunately, EHC commits decision to successor nodes, so that it can be trapped in directed

5Seehttp://www.informatik.uni-freiburg.de/ edelkamp/software
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search spaces.

12.7 Conclusions and Future Work

Based on the successes in AP and MC the paper re-initiates the research of directed ex-
ploration in ATP. Although the basic idea of guided exploration is indeed not new to the
TP community, the development of guidance in form of heuristic search procedures has
not been elaborated so far.

With the DATP paradigm we confront greedy exploration schemes, like DFS and BF,
with more conservative algorithms, like BFS and A*. The lessons to be learned from our
experiments are that since A* with efficient priority queue data structure is better than any
other search algorithm in most cases, it should be integrated as a standard option to many
automated theorem provers likeIsabelle. Moreover, at least the implementation of BF in
Isabellehas to be thought of. Isabelle's implementation of IDA* is specialized and not
accessible for different heuristics, so that we have provided a generic solution.

The results in the paper present initial findings on a set of benchmark theorems taken
from introductory texts for interactive proving and a few hard problems from the TPTP
library. We generalized the set of possible inference steps in form of a universal successor
generation function. In our HOL example we widened the branching by including addi-
tional proof tactics. Our treatment pinpoints the generality and potential of the approach.

Work on suitable polynomial abstractions to yield refined heuristics for the ATP search
process is a major challenge for future research, likely to be initiated along the following
ideas.

For efficient ATP, grounded representations are essential, since many decision prob-
lems can be reduced to theground entailment problem, i.e., to determine the truth of a
ground formula for a given theory. Given a set of ground Horn clausesN and a ground
clauseC, the entailment problemN j= C is decidable in linear time [86]. We aim to com-
bine such object-logic independent decision procedures for local clause sets [22] with our
general heuristic proof procedures.

Beside Horn abstractions, tableau based methods on suitable first-order abstractions
should also yield better estimate for the overall search process than theorem cardinality.
Obviously, there is much space for the design of elaborated on-line and off-line heuristics.
We expect a large impact in form of a transfer from AP, e.g. by suiting relaxed plans
and pattern databases to ATP. Because the apparent differences in the input, the transfer
will certainly not be one-to-one. On the other hand, the process ofproof-findingand
proof-refinementwill possibly carry over from different design phases in MC.
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Abstract

We present a supervised, interactive learning technique that infers control structures
of computer programs from user-demonstrated traces. A two-stage process is applied:
first, a minimal deterministic finite automaton (DFA)M labeled by the instructions of the
program is learned from a set of example traces and membership queries to the user. It
accepts all prefixes of traces of the target program. The number of queries is bounded
byO(k � jM j), with k being the total number of instructions in the initial example traces.
In the second step we parse this automaton into a high-level programming language in
O(jM j2) steps, replacing jumps by conditional control structures.
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13.1 Introduction

13.1.1 Program Synthesis from Examples

The ultimate goal of program synthesis from examples is to teach the computer to infer
general programs by specifying a set of desired input/output data pairs. Unfortunately,
the class of total recursive functions is not identifiable in the limit [148]. For tractable and
efficient learning algorithms either the class has to be restricted or more information has
to be provided by a cooperative teacher.

Two orthogonal strains of research can be identified [127]. Until the late 1970s, the
focus was on inferring functional (e.g., Lisp) programs based on traces. Since the early
1980s the attention shifted towards model-based and logic approaches.

All functional program synthesis mechanism are based on two phases:
trace generationfrom input/output examples, andtrace generalizationinto a recur-
sive program. Biermann'sfunction merging mechanism[37] takes a one-parameter Lisp
function whose only predicate isatom, and decomposes the output in an algorithmic
way into a set of nested basic functions. Subsequently, they are merged into a minimal
set that preserves the original computations by introducing discriminant predicates.
These mechanisms perform well on predicates that involve structural manipulation of
their parameters, such as list concatenation or reversal. However, their drawbacks are
two-fold. The functional mapping between input and output terms cannot be determined
in this straightforward way for less restrictive applications; on the other hand, manually
feeding the inference algorithm with example traces can be a tedious and error-prone
task. Secondly, the merging algorithms require exponential time in general.

The second direction of research (frequently calledInductive Logic Programming) is
at the intersection between empirical learning and logic programming. A pioneering work
was Shapiro'sModel Inference System[325] as a mechanism for synthesizing Prolog pro-
grams from positive and negative facts. The system explores the search space of clauses
using a configurable strategy. The subsumption relation assists in specializing incorrect
clauses implying wrong examples, and in adding new clauses for uncovered ones. The
critical issues are the undecidability of subsumption in the general case, the large number
of required examples, and the huge size of the search space.

13.1.2 Programming in the Graphical User Interface

The last decades have seen a revolutionary change in human-computer interfaces. Instead
of merely typing cryptic commands into a console, the user is given the illusion of moving
around objects on a “desktop” he already knows from his everyday-life experience. Users
can refer to an action bysimply performingthe action, something they already know how
to do. Therefore, they can more easily handleend user programmingtools.

Many spreadsheet programs and telecommunication programs have built-inmacro
recorders. Similarly to a tape recorder, the user presses the “record” button, performs a
series of keystrokes or mouse clicks, presses “stop”, and then invokes “play” to replay
the entire sequence. Frequently, the macro itself is internally represented in a higher
programming language (such as Excel macros in Visual Basic).

Moreover, the current trends in software development tools show that even program-
ming can profit from graphical support. “Visual computing” aims at relieving conven-
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Figure 13.1: Trace Frame.

tional programming from the need of mapping a visual representation of objects being
moved about the screen into a completely different textual representation of those ac-
tions. In an ideal general-purpose programming scenario, we could think of a domain-
independent graphical representation for standard data structures, such as arrays, lists,
trees, etc. which can be visually manipulated by the user.

Cypher gives an overview of current approaches [76]. Lieberman'sTinkersystem per-
mits a beginning programmer to write Lisp programs by providing concrete examples of
input data, and typing Lisp expressions or providing mouse input that directs the system
how to handle each example. The user may present multiple examples that serve to in-
crementally illustrate different cases in conditional procedures. The system subsequently
prompts the user for a distinguishing test. However, no learning of program structures
takes place.

Based on these observations, we argue that program synthesis from traces could regain
some attraction. The burden of trace generation can be greatly alleviated by a graphical
user interface and thus becomes feasible.

In this paper, we propose an efficient interactive learning algorithm which solves the
complexity problem of the merging algorithm in functional program synthesis. Contrary
to the latter approach, we focus on imperative programming languages. They also reflect
more closely the iterative nature of interaction with graphical user interfaces. The flow
of control in imperative languages is constituted by conditional branches and loops; their
lack in most current macro recorders is an apparent limitation.

13.2 Editing a First Example Trace

Figure 13.1 shows our prototypical graphical support. The user generates a first example
trace by performing a sequence of mouse selections, mouse drags, menu selections, and
key strokes.

Throughout the paper, we will exemplify the inference mechanism with the well-
known bubble-sortalgorithm. The user might start with the sample arraya = [2; 1] of
lengthn = 2. A variable i is introduced to hold the number of remaining iterations,
and is initialized to one (int i=n-1 ). Then he states that the end is not yet reached
(i >0). Subsequently he initializes another variablej to zero, meant as an index for
traversing the array (int j=0 ). Now the array element with index 0 is compared to its
successor (a[j]>a[j+1] ). Since the comparison 1>2 fails (F) he swaps the elements
(swap(j,j+1) ). For ease of exposition, we assume that theswap-procedure has al-
ready been programmed to interchange two values in the array. The user increasesj
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(j++ ) and then observes that the array has been traversed up to positioni (j<i; F ) in
which casei is decremented (i- ). The next iteration starts. But sincei now has reached
the left border (i>0; F ) the sorting is accomplished and the procedure stops (return ).
In summary, the example generated by the end user is given as follows:i=0; i>0; T;
j=0; a[j]<a[j+1]; F; swap(j,j+1); j++; j<i; F; i-; i>0; F; return .

13.3 The ID-Algorithm

Grammar inferenceis defined as the process of learning an unknown grammar given a
finite set of labeled examples. An important, widely used subset of formal languages
are regular grammars, which can be generated and recognized by deterministic finite
automata (DFA). However, given a finite set of positive examples and a finite, possibly
empty set of negative examples, the problem of learning a minimum state DFA equivalent
to the target isNP-hard [149]. Hence, the learner's task has to be simplified by imposing
certain desired criteria on the examples (like structural completeness, characteristic sam-
ples), or by providing the learner with access to sources of additional information, like a
knowledgeable teacher (oracle) who responds to queries generated by the learner.

Our algorithm is based on Angluin's ID-algorithm which is briefly recalled in this
section. It may be skipped in a first reading.

Let � be the set of symbols,�� be the set of strings, and� be the empty string. Fur-
thermore, letM = (Q; �;�; q0; F ) be a DFA according to the usual quintuple definition
andL(M) be the language accepted byM . A stateq in M is alive if it can be reached by
some string� and left with some string� such that�� 2 L(M). In a minimal DFA there
is only one stated0 that is not alive. A set of stringsP is said to belive-completew.r.t.M
if for every live stateq inM there exists a string� 2 P such that�(q0; �) = q. Therefore,
P 0 = P [ fd0g represents all states inM . In order to find a string representation of the
state reached on reading an inputb from the state represented by� we define a function
f : P 0��! ��[fd0g by f(d0; b) = d0 andf(�; b) = �b. Thetransition setT 0 denotes
the set of all elements ofP 0, together with all elementsf(�; b) for all (�; b) 2 P � �.
Analogously toP we defineT = T 0 � fd0g.

The goal of the ID algorithm (Figure 13.2) is to construct a partition ofT 0 that places
all the equivalent elements in one state [11]. The equivalence relation is the Nerode
relation such that the resulting DFA will be minimal [4]. The algorithm starts with an
initial partition of one accepting and one non-accepting state and refines it successively.
In each stepi of ID a stringvi is drawn such that for any two statesq andq0 there exists a
j � i with �(q; vj) 2 F and�(q0; vj) =2 F or vice versa. Thus, we define thei-th partition
Ei as follows:Ei(d0) = ; andEi(�) = fvjjj � i; �vj 2 L(M)g. Then for every two
strings�; � 2 T with �(q0; �) = �(q0; �) we haveEj(�) = Ej(�) for all j � i. For eachi
the algorithm searches for a separating pair�; � and a symbolb such thatEi(�) = Ei(�)
butEi(f(�; b)) 6= Ei(f(�; b)). Let  be any string that is either inEi(f(�; b)) and not
in Ei(f(�; b)) or vice versa. Then we definevi+1 = b and construct the(i + 1)-th
partition as follows. For each� 2 T we query the string�vi+1. If �vi+1 2 L(M) we set
Ei+1 = Ei [ fvi+1g; otherwise, we letEi+1 = Ei unchanged.

We iterate until no separating pair�, � exists and extractM from the setsEi and the
transition setT as follows. The states ofM are the setsEi(�), for � 2 T . The initial
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Input : a live complete setP and a teacher to answer membership queries
Output : a description of the canonical DFAM for the target regular grammar

i = 0; vi = �;V = f�g, T = P [ ff(�; b)j(�; b) 2 P � �g; T 0 = T [ fd0g,E0(d0) = ;;
for each� 2 T

if (� 2 L) E0(�) = f�g elseE0(�) = ;;
while (9�; � 2 P 0 andb 2 � such thatEi(�) == Ei(�) butEi(f(�; b)) 6= Ei(f(�; b)))

let  2 Ei(f(�; b))� Ei(f(�; b))

let vi+1 = b

let V = V [ fvi+1g andi = i+ 1

for each� 2 T
if (�vi 2 L) Ei(�) = Ei�1(�) [ fvig; elseEi(�) = Ei�1(�);

Extract the automatonM for L from the setsEi andT (see text)

Figure 13.2: Angluin's ID-algorithm.

state ofM is Ei(�). The accepting states ofM are the setsEi(�), where� 2 T and
� 2 Ei(�). If Ei(�) = ; then we add self loops on the stateEi(�) for all b 2 �; else we
set the transition�(Ei(�); b) = Ei(f(�; b)) for all � 2 P andb 2 �.

Angluin proved that ID asks no more thann � j�j � jP j queries, wheren is the number
of states inM : the algorithm iterates through thewhile-loop at mostn times, since each
time at least one setEi (corresponding to a state) is partitioned into two subsets. It asks
jT j questions, whereT contains no more thanj�j � jP j elements.

13.4 Customizing ID for Program Traces

13.4.1 Naive Approach

A simple strategy to apply the ID-algorithm to the problem of program inference from
traces goes as follows. The alphabet� consists of all program lines occurring in the
examples. More precisely, we partition� into � [ � [ � [ freturn g, where� is
the set of non-branching instructions (e.g. assignments),� is the set of (boolean) tests
(e.g. numerical comparisons),� = fT;Fg is the set of boolean values, andreturn
signals the end of the procedure. The languageL to be learned is regular and consists of
all prefixes of valid execution traces. Programs are represented as finite state machines,
where transitions are labeled with the respective instructions. LetPr(�) be the set of
all prefixes to�. The live-complete setP for the ID-algorithm can now be fixed as
P = Pr(S) [ f�g, with S being the example trace.

For the initial examples inP , the user is free to choose any data, such as the array
[2; 1] in our case. As a heuristic guideline, the first examples are supposed both not to be
overly lengthy (in order to reduce the number of subsequent questions), but at the same
time cover all states of the automaton (in order to specifyP ). However, this requirement
is not compulsory: in the versionIID of the algorithm [282], the initial set of examples
need not to belive-complete; the user is allowed to incrementally refine the automaton
structure by presenting additional (positive or negative) examples later on.
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Using this scheme, the number of queries (2158) asked for our bubble-sort case is
clearly inacceptably high. Fortunately, the majority of them can immediately be answered
by the system itself.

13.4.2 Pruning

We make the following general assumptions to hold for all execution traces� in ��.

1. If �a 2 L for somea 2 � then also� 2 L. In words: every prefix of a word inL
is itself inL.

2. If �ab 2 L and�ac 2 L wherea 2 � [ � andb; c 2 �, thenb = c. In words:
There is only one instruction that follows a non-branching instruction or a boolean.

3. If �ab 2 L anda 2 � thenb 2 �. In words: A test is only followed by a boolean
denoting its outcome.

4. We have�ab =2 L for a = return and allb 2 �. In words: No instruction may
follow the end statement.

If condition 3. or 4. is violated, the trace is malformed and is hence rejected.
According to condition 1., we can efficiently store both the example traces and the

query traces confirmed by the user in atrie data structure [210]. The bold path in Fig-
ure 13.3 corresponds to the first example trace of Section 13.2. Given a query string�b,
we tentatively insert it into the trie. If it is already contained, the answer is “yes”. If the
new trie forks at a non-branching instruction, condition 2. is violated and thus the answer
is “no”. Otherwise, the user is prompted. Unless his response is positive, the query string
is removed.

For example at branch (3) in Figure 13.3 the system asks:int i=n-1; i>0;T;
int j=0;
a[j]>a[j+1]; T; swap(j,j+1); j++; j<i; T; int i=n-1; 2 L? The user
will answer “no”.

In the further course of the session, the system will eventually “guess” all possible
instructions asb until the correct onea[j]>a[j+1] is found. As a further simplifi-
cation, we can allow the user to edit the question and to immediately type in the right
continuation.

13.4.3 Selection of Example Data

Ideally, the system should present its queries by animating a sequence of instructions for
a suitable instantiation of the variables. Given only the raw code fragments, it might be
difficult for the user to find the correct continuation.

This raises the question of how to select data which is consistent with a given trace,
i.e., how to find an assignment to the variables that makes one choice point true and
another one which makes it false. Two options are conceivable: the user could be asked
to give a pool of examples independently of (prior or alternating to) the learning process,
from which the system can choose some appropriate one. Alternatively, he can provide a
specification to generate random data. E.g., the bubble-sort algorithm should sort every
permutation of the array elements, which we w.l.o.g. fix to be[1; 2; : : : ; n]. For instance,
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(1)

(3)

j++

(2)

(4)

int i = n-1

i>0

int j=0 return

a[j]>a[j+1]

F

swap(j,j+1)

j++

j<i

F

i- -

i>0

a[j]> a[j+1]

T F

int j=0 return

FT

T

T

Figure 13.3: Trie of example traces (bold edges) and query results (thin).

the arraya = [3; 1; 2] of lengthn = 3 leads to the following instantiation for question
(3): int i=2; 2=i>0; T; int j=0; 2=a[0]>a[1]=1; T; swap(0,1); j++;
1=j<i=2; T; i=2; 2 L? The user responds by replacingi=2 by the next step which
compares3 = a[1] > a[2] = 2, i.e., the testa[j]>a[j+1] .

Figure 13.4 depicts the finite state machine for the bubble-sort program inferred by
the ID-algorithm. All states are accepting, and all omitted transitions lead to the dead
stated0.

13.4.4 Query Complexity

Every affirmatively answered membership question and every edited answer string inserts
at least one node into the trie. Incrementally extending the trie in this way contributes to
reduce the number of user questions. The total number is bounded by the size of the final
trie minus that of the the initial one. In our bubble-sort example, this bound corresponds
to the number of thin edges in Figure 13.3. Actually, the user is asked four instead of
2158 times.

Due to the restrictions on well-formed traces, we can specify a tighter upper bound
on the number of user questions, compared to that of Angluin. If� 2 T violates one of
conditions 2. - 4., then�vi =2 L for all distinguishing stringsvi. We count the number of
the remaining valid elements~T .
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a[j]>a[j+1]

T

swap(j,j+1)

F

FT

int j=0

j<i

F
i--

return

i>0

int i=n-1

T
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Figure 13.4: DFA for bubble-sort.

We assume that all given examples inP are complete traces, i.e. end with areturn
statement. Therefore, extensionsf(�; b) 2 T to � 2 P are only available at proper pre-
fixes of elements in the example set. However, if� ends with a non-branching instruction,
restriction 2. constrainsf(�; b) to be in the setP . In case� ends with a test instruction,
condition 3. leaves us with two choicesT andF for b. With k denoting the total number
of tests in the example set, we have thatj ~T j is bounded byk + jP j. Finally, we conclude
that the total number of membership queries is bounded byn � (k + jP j) = O(n � jP j).

13.5 Transforming Automata into Structured Programs

It is straightforward to write down any generated automaton as a program using some
form of jumps (e.g.,goto-statements).

For more complex algorithms such flow charts quickly become confusing. In most
current high-level programming languages, jump statements are either strongly discour-
aged (e.g., in C), or do not exist at all (e.g., in Pascal). Instead, high-level constructs are
available for conditional branching and looping.

Therefore, we do not regard the automaton generated by the ID-algorithm as the final
output, but rather apply a transformation in order to replace jumps by control structures.

Our algorithm transforms the automaton graph step by step by repeatedly collapsing
a subgraph into a new edge, for which we keep track of extra information: its type (e.g.,
simple, test, sequence,while-loop, etc.), possibly its subcomponents, and the set of its
successors.

Two adjacent edges labeled with arbitrary instructions other than tests or booleans can
be merged into asequenceif they are the only inward or outward edges of the enclosed
node. Connected tests can be merged into (compound)conditionscontaining boolean
operators depending on the role of theirT- andF-edges in the obvious way. For example,
if test t1 is connected to testt2 via its T-edge, and theF-edges of botht1 andt2 point to
the same nodev, then a compound conditiont1 ^ t2 is formed whoseT-edge leads to the
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int i=10, j=20;
l1 : i ��;
l2 : if (j ==0) return ;

j ��;
if (i > 0 && j >0) goto l1;
goto l2;

Figure 13.5: Without semantic information unfolding is impossible.

same node pointed to by theT-edge oft2, and whoseF-successor-node isv.
The more interesting cases are the instances where control structures are inferred: a

(simple or compound) condition whoseT-edge leads to a non-test edge with successor
nodev, and whoseF-successor-node is alsov, can be merged into anif-then-statement
pointing tov. Similarly, if the T- and theF-edge lead to different edges with the same
successor node, then the resulting conditional statement additionally contains an else-
part. A while-loop is a condition-edgec whoseT-successor leads to an edge (i.e., the
repeated block) which has, in turn,c as its successor. The resulting edge points to the
destination of theF-successor-edge ofc. If the two edges are interchanged, the condition
in the generatedwhile-statement is negated. Indo-while-loops, the condition follows the
edge for the repeated block.

First, the algorithm initializes the in-degrees of all nodes (in linear time). Then alln

nodes are repeatedly checked for applicable transformation rules. If none is found, we are
done; otherwise the automaton is altered accordingly, and the degree of affected nodes
is adjusted. Both these operations require constant time. Since each transformations
removes at least one node, at mostn iterations are performed, giving an overall worst-
case complexity ofO(n2).

Note that, in principle, it is not always possible to transform jumps into control struc-
tures without reasoning about the semantics of a program or changing the set of variables
(Fig. 13.5 sketches a critical loop structure). In these cases, the system should at least try
to minimize the number of remaininggotos. Such graceful degradation is not covered by
our algorithm and left as a topic for further research.

For our example, Figure 13.6 show the sequence of transformations applied to the
original automaton of Figure 13.4. First, the edges(6; 8), (8; 9), (8; 10), and(9; 10) are
collapsed into anif-then-statement (a). In the next step, the edge labeledj++ is appended
to form asequenceedge (b). Now we create ado-while-loop, since the test edge(11; 12)
appears after the repeated block (c). The two next steps summarizes it, together with the
edges with respective labelsint j=0 andi- , into a sequence (d). We create the outer
while-loop (e), and then concatenateint i=n-1 andreturn to it, such that only one
edge is left corresponding to the final program (f).

13.6 Conclusion and Discussion

We have presented a supervised, interactive learning algorithm which infers control struc-
tures of computer programs from example traces and queries.

First, a deterministic finite automaton is learned by a customized version of the ID-
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Figure 13.6: Transformation of the DFA into a structured program.
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algorithm for regular language inference. By exploiting the syntactical form of programs
and allowing the user to incrementally type in instructions, the number of questions is
reduced from an infeasible to a moderate scale. An upper bound ofO(n�jP j)membership
queries is given. Secondly, the resulting automaton is rewritten in a high-level language
with control structures using anO(n2) algorithm.

An early precursor of this work similar in spirit is presented by Gaines [136]. His
approach infers a DFA by exhaustive and exponential search until an automaton is found
that is consistent with the given traces.

Schlimmer and Hermens describe a note-taking system that reduces the user's typ-
ing effort by interactivly predicting continuations in a button-box interface [318]. An
unsupervised, incremental machine learning component identifies the syntax of the in-
put information. To avoid intractability the class of target languages is constrained to
so-calledk-reversible regular languages for which Angluin proposed anO(n3) inference
algorithm [12]. However, for general proposed languages this class is too restrictive. It
is not hard to find simple programs not covered by zero-reversible FSM's (as in the ex-
amples given in the paper). On the other hand, simply fixingk at a larger value sacrifies
minimality of the generated automaton. Schlimmer and Hermens improve the system's
accuracy by adding a decision tree to each state. However, prediction is not relevant to
our approach since traces are deterministic: A new training example leads to a new FSM.

End users without programming knowledge can take benefit from inference of control
structures. More powerful customization tools (e.g., macro recorders) are able to sup-
port them in solving more of the repetitive routine work which often needs elementary
conditional branching and looping.

For the experienced programmer, the proposed inference mechanism might support
the process of software development, mainly in view of integrity and incremental exten-
sibility.

The final set of execution traces (as depicted by the resulting trie) uniquely determines
the structure of the automaton. All source fragments in the generated program have been
exercised in at least one example. Therefore, no untested code can arise. For recorded
execution traces on concrete sample data, differences between the intended and the actual
meaning of the program will occur by far more infrequently than bugs in programs devel-
oped without the control of explicit variable instantiations. In a way, both stages in the
software development cycle, coding and testing, are performed more efficiently in parallel
rather than in the usual alternating way.

A sequence of examples should start with simple examples and build to more complex
and exceptional cases. Recursive and conditional procedures can be developed incremen-
tally by starting with simple, “incorrect” definitions, and later adding more instances to
handle more complicated and special purpose situations. Maintaining all used examples
and only adding to this set ensures that previous examples are still covered and that with
growing complexity, no new bugs are introduced for cases which have already been suc-
cessfully treated.
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Abstract

The success of model checking is largely based on its ability to efficiently locate
errors in software designs. If an error is found, a model checker produces a trail that
shows how the error state can be reached, which greatly facilitates debugging. However,
while current model checkers find error states efficiently, the counterexamples are often
unnecessarily lengthy, which hampers error explanation. This is due to the use of “naive”
search algorithms in the state space exploration.

In this paper we present approaches to the use of heuristic search algorithms in
explicit-state model checking. We present the class of A* directed search algorithms
and propose heuristics together with bitstate compression techniques for the search of
safety property violations. We achieve great reductions in the length of the error trails,
and in some instances render problems analyzable by exploring a much smaller number
of states than standard depth-first search. We then suggest an improvement of the nested
depth-first search algorithm and show how it can be used together with A* to improve
the search for liveness property violations. Our approach to directed explicit-state model
checking has been implemented in a tool set called HSF-SPIN. We provide experimental
results from the protocol validation domain using HSF-SPIN.
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14.1 Introduction

Model Checking [65] is a formal analysis technique that has been developed to automati-
cally validate1 functional properties for software or hardware systems. The properties are
commonly specified using some sort of a temporal logic or using automata. There are
two primary approaches to model checking. First,symbolicmodel checking [259] uses
a symbolic representation for the state set, usually based on binary decision diagrams.
Property validation in symbolic model checking amounts to symbolic fixpoint computa-
tion. Explicit statemodel checking uses an explicit representation of the system's global
state graph, usually given by a state transition function. An explicit state model checker
evaluates the validity of the temporal properties over the model by interpreting its global
state transition graph as a Kripke structure, and property validation amounts to a partial
or complete exploration of the state space. In this paper we focus on explicit state model
checking and its application to the validation of communication protocols. The protocol
model we consider is that of collections of extended communicating finite state machines
as described, for instance, in [43] and [151]. Communication between two processes
is either realized via synchronous or asynchronous message passing on communication
channels (queues) or via global variables. Sending or receiving a message is an event that
causes a state transition. The system's global state space is generated by the asynchronous
cross product of the individual communicating finite state machines (CFSMs). We follow
the Promela computational model [187].

The use of model checking in system design has one great advantage over the use
of deductive formal verification techniques. Once the requirements are specified and the
model has been programmed, model checking validation can be implemented as a push-
button process that either yields a positive result, or returns an error trail. Two primary
strategies for the use of model checking in the system design process can be observed.

� Complete validationis used to certify the quality of the product or design model by
establishing its absolute correctness. However, due to the large size of the search
space for realistic systems it is hardly ever possible to explore the full state space
in order to decide about the correctness of the system. In these cases, it either takes
too long to explore all states in order to give an answer within a useful time span,
or the size of the state space is too large to be stored within the bounds of available
main memory.

� The second strategy, which also appears to be the one more commonly used, is
to employ the model checker as adebugging aidto find residual design and code
faults. In this setting, one uses the model checker as a search tool for finding vio-
lations of desired properties. Since complete validation is not intended, it suffices
to use hashing-based partial exploration methods that allow for covering a much
larger portion of the system's state space than if complete exploration is needed.

When pursuing debugging, there are some more objectives that need to be addressed.
First, it is desirable to make sure that the length of the counterexample is short, so that
error trails are easy to interpret. Second, it is desirable to guide the search process to

1Within the scope of this paper we use the word “validation” to denote the experimental approach to
establishing the correctness of a piece of software, while we use the word “verification” to denote the use
of formal theorem proving techniques for the same purpose.
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quickly find a property violation so that the number of explored states is small, which
means that larger systems can be debugged this way. To support these objectives we
present our approach todirected model checking, i.e. model checking combined with
heuristic search.

Our model-checker HSF-SPIN extends the SPIN framework with various heuristic
search algorithms to support directed model checking, e.g. A* [161] and iterative deep-
ening A* [213]. Experimental results show that in many cases the number of expanded
nodes and the length of the counter-examples are significantly reduced. HSF-SPIN has
been applied to the detection of deadlocks, invariant and assertion violations, and to the
validation of LTL properties. In most instances the estimates used in the search are derived
from the properties to be validated, but HSF-SPIN also allows some designer intervention
so that targets for the state space search can be specified explicitly in the Promela code.

We propose an improvement of the nested depth-first search algorithm that exploits
the structure of never claims. For a broad subset of the specification patterns described
in [87], such asResponseandAbsence, the proposed algorithm performs less transitions
during state space search and finds shorter counterexamples compared to classical nested
depth-first search. Given a Promelanever claimA the algorithm automatically computes
a partitioning ofA in linear time with respect to the number of states inA. The obtained
partitioning into non-, fully and partially accepting strongly connected components will
be exploited during state space exploration.

Precursory Work. Much of the content of this paper is a revision of work that was
first published in [109] and [107]. The former paper considers safety property analysis
for simple protocols. The latter paper extends this work by providing an approach to
validating LTL-specified liveness properties and experimenting with a larger set of pro-
tocols. Previously unpublished results include the correctness result for the improved
nested depth-first search algorithm as well as an extended experimental evaluation of our
approach.

Structure of Paper. In Section 14.2 we review automata-based model checking. Sec-
tion 14.3 introduces into directed search algorithms, including A*. Heuristic estimate
functions to be used in safety property analysis of communication protocols are sug-
gested in Section 14.4. We describe the HSF-SPIN tool set in Section 14.5 and present
experimental results for safety properties in Section 14.6. In Section 14.7 we propose an
improvement to the nested depth-first search algorithm used in the analysis of liveness
properties and show how this algorithm can be combined with heuristic search. Exper-
imental results on liveness property validation are given in Section 14.8. We discuss
related work in Section 14.9 and conclude in Section 14.10.

14.2 Automata-based Model Checking

In this Section we review the automata theoretic framework for explicit state model check-
ing (c.f. [65]), describe the validation algorithms in use, and present a practical model
checker, the SPIN tool set.
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Figure 14.1: Büchi automaton for response property (top left) and for its negation (bottom
right).

14.2.1 Automata-theoretic Framework

Since we model reactive systems with infinite behaviors, the appropriate formalization for
words over state sequences of these systems are Büchi automata. They inherit the syntac-
tic structure of finite state automata but have a different acceptance condition. An infinite
run of a Büchi automatonA over an alphabet�A of state symbols is accepting if the set
of elements of�A that appear infinitely often in the run has a non-empty intersection with
the set of accepting states ofA. This extends to finite runs by assuming that the final state
will be repeated forever. The languageL(A) � ��

A consists of all accepting runs ofA.
It is sometimes helpful to specify requirements on reactive systems by using some form
of a Temporal Logic. In this paper we use Linear Time Temporal Logic (LTL) as defined
in [252]. In LTL, the operator2 represents the modalityglobally (G) and the operator3
represents the modalityeventually(F ).

In automata-based Model Checking we are interested in determining whether the sys-
temM , represented by Büchi automatonB, satisfies a property specificationS, given
by another Büchi automatonA. A can either be given directly, or it can be automati-
cally derived from an LTL property specification. While this derivation is exponential in
the size of the formula, typical property specifications result in small LTL formulae so
that this complexity is not a practical problem. The Büchi automatonB satisfiesA iff
L(B) � L(A). This is equivalent toL(B) \ L(A) = ;, whereL(A) denotes the comple-
ment ofL(A). Note that Büchi automata are closed under complementation. In practice,
L(A) can be computed more efficiently by deriving a Büchi automaton from the negation
of an LTL formula. Therefore, in the SPIN validation tool LTL formulae representing a
desired property are first negated, and then translated into an equivalent Büchi automaton.
In the terminology of the SPIN model checker [189] and its Promela input language this
automaton is called anever claim, and we will adopt this terminology throughout this
paper.

As an example we consider the commonly usedresponseproperty which states that,
whenever a certain request event occurred, a response event will eventually follow. As-
sume that the state following the occurrence of the request is represented by the state
predicatep, and that a state following the response is denoted byq. The corresponding
LTL formula is � : 2(p ! 3q) and its negation is:� : 3(p ^ 2: q): The Büchi au-
tomaton and the corresponding Promela never claim for the negated response property are
illustrated in Figure 14.1.

The emptiness ofL(B) \ L(A) is determined using an on-the-fly algorithm based on
the synchronous product ofN andB, whereL(N ) = L(A). Assume thatN is in states
andB is in statet. B can perform a transition out oft if N has a successor states0 of s
such that the label of the edge froms to s0 represents a proposition satisfied int. A run of
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Nested-DFS(s)
hash(s)
for all successorss0 of s do

if s0 not in the hash tablethen Nested-DFS(s0)
if accept(s) then Detect-Cycle(s)

Detect-Cycle(s)
flag(s)
for all successorss0 of s do

if s0 onNested-DFS-Stackthen
exit LTL-Property violated

else ifs0 not flaggedthen Detect-Cycle(s0)

Figure 14.2: Nested Depth-First Search

the synchronous product is accepting if it contains a cycle through at least one accepting
state ofN . L(B)\ L(A) is empty if the synchronous product does not have an accepting
run.

We use the standard distinction of safety and liveness properties. Safety properties
refer to states, whereas liveness properties refer to paths in the state transition diagram.
Safety properties can be validated through a simple depth-first search on the system's
state space, while liveness properties require a two-fold nested depth-first search. When
property violations are detected, the model checker will return a witness (counterexample)
which consists of a trace of events or states encountered.

14.2.2 Search Algorithms

For the validation of safety properties a simple complete state graph traversal algorithm
is sufficient. This is usually either a depth-first (DFS) or a breadth-first (BFS) search
algorithm. When a property violating state is encountered, the search stack contains the
witness that will be made available to the user. BFS finds errors with minimal witness
length, but is rather memory inefficient. DFS is more memory efficient, but tends to
produce witnesses of non-optimal length.

Since liveness properties refer to execution paths, a different search approach is
needed. The detection of liveness property violations entails searching for accepting cy-
cles in the state graph. This is typically achieved by nested depth-first search (Nested-
DFS) that can be implemented with two stacks as shown in Figure 14.2. As for safety
properties, the search stacks will be used to construct the witness. In case a property vio-
lation is discovered, the first stack will contain the path into an accepting state, while the
second stack will illustrate the cycle through the accepting state.

14.2.3 The Model Checker SPIN

SPIN [189] is a model checking tool implementing the above discussed approach to
automata-based model checking. Its input language Promela permits the definition of
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concurrent processes, calledproctypesin Promela parlance, as well as synchronous or
asynchronous communication channels and a limited set of C-like data structures. Con-
currency in SPIN is interpreted using an interleaving approach. Properties can be speci-
fied in various ways. To express safety properties, the Promela code can be augmented
with assertions or deadlock state characterizations. In order to express liveness properties,
Promela models can be extended by never claims that express undesired properties of the
model. SPIN also provides an automatic linear temporal logic (LTL) to never claim trans-
lator. SPIN implements the synchronous product construction approach to determine the
emptiness of the intersection of the Promela model and the never claim. SPIN uses on-
the-fly state space exploration algorithms, and implements various optimizations such as,
for instance, partial order reduction. Promela models can be simulated randomly, user-
guided or following an error trail. SPIN has a line-oriented as well as a graphical user
interface, called XSPIN. For a more detailed discussion of SPIN we refer to the literature
on the SPIN web site2.

14.2.4 Error Trails

If property violations are found, error trails contain important debugging information.
Succinctness of these trails is essential for an easy comprehension of the discovered de-
sign faults. Lengthy trails can impede proper error trail interpretation.

We illustrate the impact of long error trails with the following example. We refer to
the preliminary design of a Plain Old Telephony System (POTS) that we first presented
in [202]. This model was generated with the visual modeling tool VIP. It is a “first cut”
implementation of a simple two-party call processing, and we know that it is full of faults
of various kind. However, in [202] we used SPIN to show that this model is actually
capable of connecting two telephones. The model consists of two user processesUserA
andUserB representing the environment behaviour of the switch, as well as two phone
handler processesPhoneHAandPhoneHB representing the software instances that con-
trol the internal operation of the switch according to signals (on-hook, off-hook, etc.)
received from the environment. Due to space constraints we have to rely on an intuitive
understanding of call processing behaviour and the type of signals that are used, for a
more detailed description we refer to [202].

Our objective now is to use SPIN in order to debug the POTS model. We are first
interested in knowing whether certain inconsistent global system states are reachable. For
instance, such an inconsistent state is reached when all user processes and one phone
handler process are inconversationstates, indicating that they presume the two phones
to be connected, while the second phone handler is not in a conversation state. Letp

and q denote state propositions that are true when phone handlers A and B are in the
conversation state, respectively. Letr ands denote state propositions representing the fact
that phones A and B are in the conversation state, respectively. The absence requirement
for this inconsistent global system state, which is a safety property, can be characterized
by the LTL formula

:3(p ^ :q ^ r ^ s):
We used SPIN to validate this property. It turns out not to be valid and SPIN produces an
error trail leading into a global system state violating the property as partially illustrated

2netlib.bell-labs.com/netlib/spin .
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UserA UserB PhoneHA
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PhoneHB
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stopaudiblering disconnect
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... 440 further messages ...

Figure 14.3: POTS example, error trail produced by SPIN. Names in curly brackets denote
local control states reached at the end of the trail.
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Figure 14.4: POTS example, manually generated shorter error trail.

in Figure 14.3. For the engineer experienced in analyzing call processing sequences it
becomes clear that the undesired state is reachable because of race conditions and a lack
of synchronization between theUserB and thePhonHBprocesses, which probably calls
for using synchronous communication at this interface. On the other hand, the error trail
that SPIN produces has a length of 2,765 steps and comprises 462 message exchanges - it
is obvious that analyzing a trail of that length to locate the cause of an error is an arduous
task. The length of the trail is surprising since using some backward analysis, and when
knowing the underlying state machine model, it is easy to come up with a much shorter
trail by hand, for instance the trail comprising just 16 messages given in Figure 14.4.

The trail length phenomenon is partly due to the high degree of nondeterminism in-
side the system which can be attributed to the highly concurrent nature of a telephony
switch. Another contributing factor is the search strategy that SPIN uses when explor-
ing the system's state space. Resolution of nondeterminism in Promela is random, but
SPIN implements this using a fixed priority scheme based on the lexical structure of the
Promela model3. SPIN will first explore many execution sequences that do not lead to
the establishment of a phone call. This means for instance that one phone calls the other,
but then decides to hang up, or both phones try to call each other concurrently, before the
call sequence converges towards the successful establishment of a call. The depth-first
search strategy that SPIN employs will first try to explore all action variants of the first
process, and then try out the next process, and so on. However, the target state would be
reached much more quickly if all processes did a few steps so that a phone call was estab-
lished. In conclusion, SPIN is following a rather uniformed search strategy that neither
takes knowledge about the model nor knowledge about the property to be validated into

3Roughly speaking, this means the lexically first transition in the “first” proctype instance is preferred
over other concurrently enabled transitions.
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account when deciding which of the possible successor states to explore first. If, how-
ever, the state space of thePhoneA, PhoneB andPhoneHA processes were explored
in such a way that every state transition brought them nearer to their own local conversa-
tion state and ifPhoneHB avoided the conversation state, and if globally such transitions
were preferred over non-approximating transitions, then a much shorter error trail into
the property violating state could be expected. It is the objective of this paper to present
guided search algorithms using heuristic guidelines in the state exploration similar to the
one just described. When discussing experimental results, we will see that for the POTS
example the automatically obtained shortest error trail is 1.5 orders of magnitude shorter
than the one generated by SPIN's exploration.

14.3 Heuristic Search Algorithms

In this Section we introduce heuristic search algorithms as alternatives to complete state
space exploration in model checking. We will restrict the discussion to safety property
searches and extend the discussion to liveness properties later on in this paper.

14.3.1 Depth-First, Breadth-First and Best-First Search

The detection of a safety property violation is equivalent to finding a state in which the
property is violated. The algorithms used for finding the property violating states are typ-
ically depth-first and breadth-first searches. Depth-first search (DFS) is memory efficient,
but does not provide optimal solutions. Breadth-first search (BFS), on the other hand, is
complete and optimal but very inefficient.

State space exploration in model checking safety properties can be understood as a
search for a path to a failure state in the underlying problem graph. Since this graph
is implicitly generated by node expansions, in contrast to ordinary graph algorithms the
search terminates once a target state has been found. BFS and DFS explore the state space
without additional knowledge about the search goal. The selection of a successor node
in these algorithms is following a fixed, deterministic selection scheme. Heuristic search
algorithms, however, take additional search information in form of an estimation function
into account. This function returns a number representing the desirability of expanding a
node. When the nodes are ordered so that the one with the best evaluation is expanded
first and if the evaluation function estimates the cost of the cheapest path from the current
state to a desired one, the resulting greedy best-first search (BF) often finds solutions fast.
However, it may suffer from the same defects as depth-first search – it is not optimal and
the search may be stuck in dead ends or local minima.

14.3.2 Algorithm A*

Algorithm A* [161] combines best-first and breadth-first search for a new evaluation func-
tion f(u) by summing the generating path lengthg(u) and the estimated costh(u) of the
cheapest solution starting fromu. Figure 14.5 displays the effect of A* compared to DFS,
BFS and BF and Table 14.1 depicts the algorithm in pseudo code. The node expansion
of u is indicated by access to the successor set�(u). The setCloseddenotes the set of
all already expanded nodes and the listOpencontains all generated but not yet expanded
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Figure 14.5: Different search strategies: DFS (top left), BFS (top right), A* (bottom left)
and BF (bottom right)

nodes. Similar to Dijkstra's single-source shortest path algorithm [80], A* successively
extracts the nodeuwith minimal meritf(u) from the setOpenand terminates if this node
represents a failure state.

As the combined meritf(u) = g(u) + h(u) merely changes the ordering of the nodes
to be expanded, on finite problem graphs A* is complete. Moreover, by changing the
weights of the edges in the problem graph from 1 to1+h(v)�h(u), it can also be observed
that A* in fact performs the same computation as Dijkstra's single-source shortest-path
algorithm on the re-weighted graph. If for all edges(u; v) we have1 + h(v)� h(u) � 0,
optimality of A* is inherited from the optimality of Dijkstra's algorithm. It can also
be shown that the path length for every expanded node is optimal, so that we correctly
terminate the search at the first target node.

If 1 + h(v) � h(u) < 0, negatively weighted edges affect the correctness proof of
Dijkstra's algorithm. In this case we havef(u) + 1 + h(v) � h(u) < f(v) such that
nodes that have already been expanded might be encountered on a shorter path. Con-
trary to Dijkstra's algorithm, A* deals with them by possibly re-inserting nodes from the
set of already expanded nodes into the set ofOpennodes (re-opening). On every path
from s to u the accumulated weights in the two graph structures differ byh(s) andh(u)
only. Consequently, re-weighting cannot introduce negatively weighted cycles so that the
problem remains (optimally) solvable. One can show that given a lower bound estimate
(admissible heuristic) the solution returned by the A* algorithm with re-opening is indeed
a shortest one [115]. The main argument is that there is always a correctly estimated node
on an optimal path in the setOpen. This node has to be considered before expanding any
non-optimal goal node.

Figure 14.6 depicts the impact of heuristic search in a grid graph. Ifh is the trivial
constant zero function, A* reduces to Dijkstra's algorithm, which in case of uniform
graphs further collapses to BFS. Therefore, starting withs all depicted nodes shown are
generated until the goal nodet is expanded. If we useh(u) as the Euclidean distance to
nodet, then only the nodes in the hatched region are ever removed from theOpenset.
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A* (s)
Open fg; Closed fg; f(s) h(s);

Insert(Open; s; f(s))
while (Open6= ;)
u Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Safety Property Violated
for all v in �(u)

f 0(v) f(u) + 1 + h(v)� h(u)
if (Search(Open; v))

if (f 0(v) < f(v))

DecreaseKey(Open; v; f 0(v))
else if(Search(Closed; v))

if (f 0(v) < f(v))

Delete(Closed; v); Insert(Open; v; f 0(v))
elseInsert(Open; v; f 0(v))

Table 14.1: The A* algorithm searching for violations of safety properties.
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Figure 14.6: The effect of heuristic search in a grid graph.
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IDA* (s)
Push(S; s; h(s)); U  U 0  h(s)
while (U 0 6=1)
U  U 0; U 0  1
while (S 6= ;)
(u; f(u)) Pop(S)
if (failure(u)) exit Safety Property Violated
for all v in �(u)

if (f(u) + 1� h(u) + h(v) > U )
if (f(u) + 1� h(u) + h(v) < U 0)
U 0  f(u) + 1� h(u) + h(v)

else
Push(S; v; f(u) + 1� h(u) + h(v))

Table 14.2: The IDA* algorithm searching for violations of safety properties.

14.3.3 Iterative Deepening A*

Algorithm A* has one severe drawback. Once the space resources for storing all expanded
and generated nodes are exhausted, no further progress can be made. Therefore, the
iterative deepening variant of A*, IDA* [213] for short, counterbalances time for space. It
traverses the tree expansion of the problem graph instead of the problem graph itself with
a memory requirement that grows linear with the depth of the search tree. As shown in
the pseudo-code of Table 14.2, IDA* performs a sequence of bounded DFS iterations. In
each iteration, it expands all nodes having a total cost not exceeding thresholdU , which is
determined as the lowest costU 0 of all generated but not expanded nodes in the previous
iteration. IDA* is complete and optimal, since it expands all nodes with an increasing
threshold value for each possible merit value. Since the average number of successors is
often large, the tree expansion grows exponentially with increasing depth. Therefore, the
last iteration in IDA* often dominates the search effort.

Due to the depth-first structure of IDA*, duplicate state expansions may not be de-
tected, resulting in redundancy. Therefore, similar to depth-first and best-first search as
long as memory is available, all generated nodes are kept in a transposition table. To allow
dynamic updates of node information, for each node in the table the shortest generating
path length and the corresponding predecessor are also maintained.

To improve duplicate detection, IDA* can be combined with bit-state hashing [187]
which hashes an entire state vector into a single bit wide table. The bit position indicates
whether the state has been reached before, or not. In single bit-state hashing, a hash
functionh1 maps a stateS to positionh1(S); S is stored by setting the bith1(S) and
searched by queryingh1(S). Double bit-state hashing often improves state space coverage
by applying a second hash-functionh2. A stateS is stored in settingh1(S) andh2(S) and
detected as a duplicate if both bits are set.

Bit-state hashing as shown in Fig. 14.7 implies that a retrieved node might be an
unexpected synonym, since there is no way to distinguish a real duplicate from a false
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h1(S) h2(S)h1(S)

SS

Figure 14.7: Single and double bit-state hashing.

one. False duplicate detection induces an incomplete state space traversal, which can
be compensated by different hash functions in different runs. Therefore, re-expanding a
duplicate inside IDA* is dangerous, since the information of generating path length and
predecessor path length might be false. Subsequently, we avoid reopening and refer to
this variant of IDA* asPartial IDA* . Note that the advantage of Partial IDA* compared
to A* is that it can track the solution path on the recursion stack which means that no
predecessor link is needed. Reopening in IDA* will not be encountered when the heuristic
function is consistent. In this case the prioritiesf = g + h increase on any generating
path, sincef(u) = g(u) + h(u) � g(u) + h(u) + 1 + h(v)� h(u) = g(u) + 1 + h(v) =

g(v) + h(v) = f(v) for all edges(u; v) in the tree expansion of the problem graph.
Most practical heuristics satisfy this criterion. The negative impact of partial state space
coverage due to bitstate search is reduced by repeating the search with restarts on different
hash functions.

14.4 Search Heuristics for Safety Properties

In this Section we introduce search heuristics used by our tool HSF-SPIN in the analysis
of safety properties for Promela models. We useS to denote a global system state of the
model. InS we have a setP(S) � fPi j i � 0g of currently active processes. For the
sake of simplicity we assume a fixed number of processes and writeP instead ofP(S).
For a processPi we usepci to refer to the current local control state.Ti denotes the set of
transitions within the proctype instancePi andSi denotes the set of local states ofPi.

Violation of Invariants. System invariants are state predicates that hold over every
global system stateS. When searching for invariant violations it is helpful to estimate
the number of system transitions until a state is reached where the invariant is violated.
Given a logical global state predicatef , letHf(S) be an estimation of the number of tran-
sitions necessary until a stateS 0 is reached wheref holds, starting from stateS. Similarly,
letHf(S) denote the number of transitions necessary untilf is violated, which is helpful
when validating negations of state predicates. Leta be a Boolean variable, andg andh
logical predicates. We give a recursive definition ofHf as a function off , with the first
part of the definition given in Figure 14.8.

In the definition ofHg^h andHg_h, the use ofplus (+) suggests thatg andh are
independent, which may not be true. Consequently, the estimate is not necessarily a lower
bound, affecting the optimality condition for A*. Since it is our goal to obtain short but
not necessarily optimal paths, we tolerate these inadequacies. To obtain lower bounds,
we may replaceplus(+) with max.

Formulae describing system invariants may contain other terms, such as relational
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f Hf (S) Hf (S)
true 0 1
false 1 0

a if a then 0 else1 if a then 1 else0
:g Hg(S) Hg(S)

g _ h minfHg(S); Hh(S)g Hf(S) +Hg(S)
g ^ h Hg(S) +Hh(S) minfHg(S); Hh(S)g

Figure 14.8: Definition ofHf for Boolean expressionsf .

f Hf (S)
full(q) capacity(q)� length(q)

empty(q) length(q)
q?[t] length of minimal prefix ofq without t

(+1 if q lacks message tagged witht)
a
 b if a
 b then 0, else 1

f Hf (S)
full(q) if full(q) then 1, else 0

empty(q) if empty(q) then 1, else 0
q?[t] if head(q) 6= t then 0,

else maximal prefix oft's
a
 b if a
 b then 1, else 0

Figure 14.9: Definition ofHf for Boolean queue expressions and relational operators in
f .

operators and Boolean functions over queues. We extend the definition ofHf andHf as
shown in Figure 14.9. The functionq?[t] refers to the expression that is true when the
message at the head of queueq is tagged with a message of typet. All other functions are
self-explaining. The symbol
 represents relational operators (=; 6=;�; <;>;�).

Note that the estimate is coarse but nevertheless very effective in practice. It is possible
to refine these definitions for specific cases. For instance,Ha=b can be defined asa� b in
casea � b anda is only ever decremented andb is only ever incremented. However, we
have not pursued these refinements any further.

Another statement that typically appears in system invariants is theat predicate which
expresses that a processP with a process idpid of a given proctypePT is in its local
control states4. We will write this asi@s, with s 2 Si. The corresponding definition is
given in Figure 14.10. We usepci to express the local state of processPi in the current
global stateS. The valueDi(u; v) is the minimal number of transitions necessary for
the finite state machinePi to reach stateu starting from statev, whereu; v 2 Si. The
matrix Di can be efficiently pre-computed with the all-pairs shortest-path algorithm of
Floyd/Warshall inO(jSij3) time [70]. Note thatjSij is small in comparison to the overall
search space.

Violations of Assertions. The Promela statementassert allows to label the model
with logical assertions. Given that an assertiona labels a transition(u; v), with u; v 2 Ti,

4In Promela this is expressed asPT[pid]@s .
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f Hf (S) Hf(S)
i@s Di(pci; s) if pci = s 1, else 0

Figure 14.10: Definition ofHf for control state predicates inf .

label(t) executable(t; S)
q?x , q asynchronous channel :empty(q)
q?t , q asynchronous channel q?[t]
q!m , q asynchronous channel :full(q)

condition c c

Figure 14.11: Functionexecutablefor asynchronous communication operations and
boolean conditions, wherex is a variable, andt is a tag.

then we saya is violated if the formulaf = (i@u) ^ :a is satisfied.

Deadlock Detection. In concurrent systems, a deadlock occurs if at least a subset of
processes and resources is in a cyclic wait situation. In Promela,S is a deadlock state
if there is no possible transition fromS to a successor stateS 0 and at least one of the
processes of the system is not in avalid endstate5. Hence, no process has a statement
that is executable. In Promela, there are statements that are always executable, amongst
others assignments,else statements, andrun statements used to start processes. For
other statements, such as send or receive operations or statements that involve the evalu-
ation of a guard, executability depends on the current state of the system. For example, a
send operationq!m is only executable if the queueq is not full. The following enumera-
tion describes executability conditions for communication statements over asynchronous
channels and for boolean conditions:

1. Asynchronous untagged receive operations (q?x , with x variable) are not exe-
cutable if the queue is empty. The corresponding formula is: empty(q).

2. Asynchronous tagged receive operations (q?t , with t tag) are not executable if
the head of the queue is a message tagged with a different tag thant yielding the
formula: q?[t].

3. Asynchronous send operations (q!m ) are not executable if the queueq is full which
is indicated by the predicate:full(q).

4. Conditions (Boolean expressions) are not executable if the value of the condition
corresponding to the termc is false.

The Boolean functionexecutable, ranging over tuples of Promela statements and
global system states, is summarized for asynchronous operations and boolean conditions
in Figure 14.11. Synchronous communication operations (rendezvous send/receive) over
a synchronous communication channel are only executable if another process is capable

5In Promela, a local control state can be labelled asend to indicate that it is a valid end state, i.e., that
the system may terminate if the process is in that state.
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of executing the inverse communication operation (receive/send) on the same channel. If
this is the case both operations are performed as an atomic system transition.

In order to obtain a formulaf characterizing the executability of a synchronous send
operationq!x of a processPj in a global system stateS we proceed as follows. For
q!x to be executable on a given channelq there must be another processj such that inS
processj has an executable inverseq?x operation. In other words, the formula describes
a disjunction over all processesi 6= j and control locationsu of processi such that there
is an outgoing transition(u; v) labelledq?x :

_
i=1::n;i 6=j; u2Sij9t=(u;v)2Ti^label(t)=q?x

pci(S)@u

The corresponding formula for a synchronous receive operation is obvious.
We now usef for estimating the number of transitions required to execute a syn-

chronous operation by applying it to theHf heuristic estimate function that we defined
above. As result we will obtain the minimum number of local transitions that every pro-
cess requires in order to reach a state in which the inverse operation is executable. Ob-
viously, this number is a lower bound for the number of global sytem state transitions
necessary to perform the synchronous rendez-vous operation.

The negation of the propertyf is likely to appear in the characterization of dead-
locks. Estimating the number of transitions required for reaching a state where a given
synchronous rendez-vous is not enabled will result in computing the sum ofH for each
instancepci(S)@u. The resulting estimate will be the number ofpci(S)@u terms that
evaluate to true in stateS. Since for a giveni at most one of these terms is true, the
estimate will return values between 0 andi� 1. In other words the number of transitions
required for blocking a given synchronous operation will be estimated as the number of
local transitions required for each process to escape from a state where the inverse opera-
tion can be executed.

We now propose estimator functions for the number of transitions necessary from the
current state to reach a deadlock state.

Active Processes. In a deadlock state, all processes are blocked. The active process
heuristics uses the number of active or non-blocked processes in a given stateS:

Hap(S) =
X

Pi2P^active(i;S)

1

whereactive(i; S) is defined as

active(i; S) � _
t=(pci;v)2Ti

executable(t)

Given that the range ofHap is [0::jPj], the active processes heuristic may not be very
informative for protocols involving a small number of processes.

Characterization of Deadlocks. Deadlocks are global system states in which no
progress is possible. Obviously, in a deadlock state each process is blocked in a local
state that does not possess an enabled transition. It is not trivial to define a logical pred-
icate that characterizes a state as a deadlock state which could at the same time be used
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as an input to the estimation functionHf . We first explain what it means for a processPi
to be blocked in its local stateu. This can be expressed by the predicateblockeds which
states that the program counter of processPi must be equal tou and that no outgoing
transitiont from stateu is executable.

blockeds(i; u; S) � pci(S) = u ^
^

t=(u;v)2Ti

:executable(t; S)

Suppose we are able to identify those local states in which a processi can block, i.e., in
which it can perform a potentially blocking operation. LetCi be the set of potentially
blocking states within processi. A process is blocked if its control resides in some of
the local states contained inCi. Hence, we define a predicate for determining whether a
processPi is blocked in a global stateS as the disjunction ofblockeds(i; u; S) for every
local stateu contained inCi:

blocked(i,S)�
_
u2Ci

blockeds(i; u; S)

Deadlocks, however, are global states in whicheveryprocess is blocked. Hence, the
disjunction ofblocked(i,S)for every processPi yields a formula that establish wether a
global stateS is a deadlock state or not:

deadlock(S) =
^

i=1::n

blocked(i; S):

Now we address the problem of identifying those local states in which a process can
block. We call these statesdangerous. A local state is dangerous if the executabily condi-
tion of every outgoing local transition can be false. Note that some transitions are always
executable, for example those corresponding to assignments. To the contrary, conditional
statements and communication operations are not always executable. Consequently, a
local state which has only potentially non-executable transitions should be classified as
dangerous. Additionally, we allow the protocol designer to identify states as dangerous.

The deadlock characterization formuladeadlockis constructed before the verification
starts and is used during the search by applying the estimateHf , with f beingdeadlock.
Due to the first conjunction of the formula, estimating the distance to a deadlock state
is done by summing the estimated distances for blocking each process separately. This
assumes that the behaviour of processes is entirely independent and obviously leads to
a non-optimistic estimate. We estimate the number of transitions required for blocking a
process by taking the minimum estimated distance for a process to reach a local dangerous
state and negate the executability of each outgoing transition in that state. This could lead
again to a non-optimistic estimate since we are assuming that the transitions performed to
reach the dangerous state have no effect on disabling the outgoing transitions of that state.

It should be noted thatdeadlockcharacterizes many deadlock states that could be
never reached by the system. Consider two processesPi; Pj having local dangerous states
u; v, respectively. Assume thatu has an outgoing transition for which the executability
condition is the negation of the executability condition for the outgoing transition from
v. In this particular case it is impossible to have a deadlock in whichPi is blocked in
local stateu andPj is blocked in local statev, since either one of the two transitions
must be executable. As a consequence the estimate could give good values to states
unlikely to lead to deadlocks. Another concern is the size of the resulting formula. In
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an extreme case each state of each process could be dangerous. This results in a formula
of size

Q
i=1::n jSij. The estimate computation for this formula will be rather costly while

providing a poor guide for the search algorithm. We believe that the use of the user-guided
characterization of states as dangerous can be helpful to overcome this problem.

14.5 The HSF-SPIN Tool Set

We chose SPIN as a basis for HSF-SPIN. It inherits most of the efficiency and functional-
ity from the original source of SPIN as well as the sophisticated search capabilities from
the Heuristic Search Framework (HSF) [92]. HSF-SPIN uses a large subset of Promela
as modelling language. HSF-SPIN possesses a refined state description of SPIN to in-
corporate solution length information, transition labels and predecessors for solution ex-
traction. It provides an interface consisting of a node expansion function, initial and goal
specification. In order to direct the search, we implemented different heuristic estimates.
HSF-SPIN writes SPIN-compatible trail information that can be visualized in the XSPIN
interface. As when working with SPIN, the validation of a model with HSF-SPIN is done
in two phases: first the generation of an analyzer of the model, and second the validation
run. The protocol analyzer is generated with the programhsf-spin which is a modifi-
cation of the SPIN analyzer generator. By executinghsf-spin -a <model> several
c++ files are generated. These files are part of the source of the model checker for the
given model. They are compiled and linked with the rest of the implementation, incorpo-
rating, for example, data structures, search algorithms, heuristic estimates, statistics and
solution generation. HSF-SPIN also supportsbit-state hashingby implementing Partial
IDA*. HSF-SPIN can be invoked with different parameters: kind of error to be detected,
property to be validated, algorithm to be applied, heuristic function to be used, weighting
of the heuristic estimator. HSF-SPIN allows textual simulation to interactively traverse
the state space which greatly facilitates in explaining witnesses that have been found.

HSF-SPIN is still a prototype. Therefore, its performance in terms of time and space
cannot compete with SPIN. For example, an exhaustive exploration of the state space
generated by the GIOP protocol parameterized with 2 clients and 2 servers is performed
by SPIN (without partial order reduction) in 226 seconds with a memory consumption
of 236 MB, while our tool requires 341 seconds and about 441 MB of space. Further
experiments show that SPIN achieves a speedup of about factor 3 in comparison to HSF-
SPIN.

14.6 Safety Property Validation Experiments

In this Section we present out experimental results for directed model checking of safety
properties. The experiments have been performed with SPIN version 3.3.10 and HSF-
SPIN version 1.0 and were executed on a SUN workstation, UltraSPARC-II CPU with
248 Mhz under Solaris 5.7. If nothing else is stated the depth bound is set to 10,000 and
no compression technique is used. In the case of deadlock detection in HSF-SPIN,Hap

is the estimation function used, unless indicated otherwise. In all other cases the formula
based heuristicHf is used. When comparing to SPIN it should be noted that this model
checker was invoked with partial order reduction enabled.
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GIOP BFS DFS A* BF SPIN
s 40,847 218 31,066 117 326
e 37,266 218 27,061 65 326
t 151,671 327 108,971 126 364
l 58 134 58 65 134
Philosophers BFS DFS A* BF SPIN
s 3,678 1,341 67 493 1,341
e 2,875 1,341 17 225 1,341
t 15,775 1,772 73 622 1,772
l 34 1,362 34 66 1,362
Optical BFS DFS A* BF SPIN
s 148,591 20 83 83 20
e 110,722 20 14 14 20
t 621,216 20 83 13 20
l 38 44 38 38 44
Marriers BFS DFS A* BF SPIN
a 9,459 10,588 9,208 7,154 2,530
e 9,004 10,588 8,335 4,124 2,530
t 24,064 29,069 22,298 9,710 3,116
l 50 72 50 61 72

Table 14.3: Deadlock detection in various protocols.

14.6.1 Shorter Trails and Computational Effort

The first set of experiments is intended to show that A* always finds shorter trails com-
pared to DFS while requiring less computational effort than BFS, and that in some cases
A* performs better than DFS. By computational effort we mean the sum of the number of
states stored, the number of states expanded and the number of transition performed. An
additional objective is to show that BF can require less computational effort than A*, but
that BF often delivers sub-optimal solutions.

For each kind of safety error we use a representative set of protocol models. Deadlock
detection is performed using the CORBA GIOP protocol [201] with a configuration of 2
clients and 1 server, an 8-philosophers configuration of the dining philosophers problem,
a model of an optical telegraph protocol [187] with 6 stations and a model of a concurrent
program that solves the stable marriage problem [260] with a configuration of 3 suitors.
Assertion violation detection experiments are carried out with Lynch's protocol, with a
model of a relay circuit and with a faulty solution for the mutual exclusion problem (mu-
tex)6. Invariant violation is evaluated using the POTS telephony model [202]7 and using
an elevator protocol8. For the POTS model, the invariant described in Section 14.2.4 was
used. In the elevator model, the invariant was of the form2(:opened _ stopped).

Tables 14.3, 14.4 and 14.5 depict the results of error detection in these protocols with
various search strategies. For each protocol, the number of stored states (s), expanded
states (e), transitions performed (t) and the length of the error trail (l) is shown. Similar

6Available fromnetlib.bell-labs.com/netlib/spin
7The Promela sources and further information about these models can be obtained from

www.informatik.uni- freiburg.de/ lafuente/models/models.html
8Derived from www.inf.ethz.ch/personal/biere/teaching

/mctools/elsim.html
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Relay BFS DFS A* BF SPIN
s 905 342 738 162 342
e 707 342 663 48 342
t 2,701 718 2,262 263 870
l 12 190 12 28 190
Lynch BFS DFS A* BF SPIN
s 80 48 73 49 46
e 77 48 70 46 46
t 94 49 87 59 48
l 29 46 29 29 46
Mutex BFS DFS A* BF SPIN
s 363 202 38 39 202
e 344 202 21 24 202
t 688 363 42 48 363
l 15 54 15 15 54

Table 14.4: Detection of assertion violations in various protocols.

POTS BFS DFS A* BF SPIN
s 24,546 - 6,654 781 148,049
e 17,632 - 3,657 209 148,049
t 99,125 - 18,742 1,067 425,597
l 81 - 81 83 2,765
Elevator BFS DFS A* BF SPIN
s 38,662 279 38,598 2,753 292
e 38,564 279 38,506 2,297 292
t 160,364 356 160,208 5,960 348
l 203 510 203 421 510

Table 14.5: Detection of invariant violations in various protocols.

to SPIN, we count a sequence of atomic steps as one unique transition. The number
of expansion steps in SPIN is the number of stored states. Columns 2 to 5 correspond
to different search strategies of HSF-SPIN, namely breadth-first search (BFS), depth-
first search (DFS), A* and best-first search (BF). The last column corresponds to the
exploration with SPIN's depth-first search (SPIN).

In all examples BFS and A* provide optimal counterexamples. Compared to BFS the
A* algorithm requires less computational effort. The reduction in the number of expan-
sions, states and transitions varies from example to example. This is mainly due to the
quality of the heuristic estimate. For example, in the case of invariant violation detec-
tion for the elevator protocol, the savings in trail length achieved by A* are rather weak.
This can be attributed to the integer range[0::2] of the heuristic estimation function which
is very small considering that the optimal solution has 203 steps. On the other hand,
while detecting the violation of the invariant of the POTS protocol the heuristic function
returns estimates in the range[0::42]. With this range, the estimate function allows for
a much more differentiated successor selection in A* which results in a much more in-
formed search leading to a strong reduction in the computational effort required to detect
the error. As can be expected, DFS finds error trails significantly larger than the optimal
one(s). For example, the trail provided by SPIN's DFS for the invariant violation in the
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UserA UserB PhoneHA PhoneHB

off_hook

dial_tone

dial_digit

audiblering

offhook

onhook

ringtone

connectreq

stopaudiblering

connectack

stopringtone
offhook

{idle}{conversation}{conversation}{conversation}

Figure 14.12: POTS example, error trail generated by HSF SPIN using A* and Hf .

POTS protocol is about 20 times larger than the optimal trail generated by HSF-SPIN
visualized in Figure 14.12. This trail is even superior to the manually generated short trail
in Figure 14.4. However, HSF-SPIN happens to find a different target state than the one
found by SPIN and this target state also corresponds to a different race condition than the
one found by SPIN. Nevertheless, this race condition can also be traced back to a lack of
synchronization between theUserB andPhoneHB processes. While in most cases DFS
performs better than A* in terms of computational effort, in the philosophers problem and
in the POTS protocol the performance of A* is superior to that of DFS. The reason for this
lies in the particular structure of these problems. For both problems it is necessary that
there is a sequence of actions in which every process performs one or a few steps in order
to get closer to the target state. DFS, however, will try to first explore all possibilities for
one process, before it includes the behavior of other processes. As a consequence, DFS
will require more computational effort to reach a target state than A*. It should also be
explained why HSF-SPIN runs out of memory in the POTS example, while the DFS in
SPIN finds a counterexample. This is due to the fact that the implementation of DFS in
SPIN is more efficient, and that we employed partial order reduction. Finally, the exper-
iments highlight that although BF often requires less computational effort than A*, the
established error trails are not optimal.

14.6.2 Heuristic Estimates

In the previous section we have noted the important influence of the heuristic estimate
function on the performance of A*. Now we analyse different heuristic functions pro-
posed for deadlock detection. In particular we compare the heuristic based on the number
of active processesHap with formula based heuristicHf combined with the proposed
method for automatically inferring the deadlock formulaf . With Hf + U we denote
that the user explicitly defines dangerous states. In the example we chose an “optimal”
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Philosophers no Hap Hf Hf + U
e 2,875 17 17 10
r 0..0 0..8 0..10 0..16
Optical no Hap Hf Hf + U
e 110,722 14 342 342
r 0..0 0..12 0..14 0..12
Marriers no Hap Hf Hf + U
e 493,840 432,483 462,235 192,902
r 0..0 0..4 0..25 0..25
GIOP no Hap Hf Hf + U
e 37,266 27,061 28,067 24,859
r 0..0 0..6 0..12 0..25

Table 14.6: Deadlock detection with A* and different heuristic functions.

labelling, i.e., exactly those states are labelled as dangerous so that the resulting global
control state is a deadlock state.

In our experiments we use the deadlock solution to the philosophers problem, the
optical telegraph protocol, the marriers problem and the GIOP protocol. All models have
been configured as in the previous set of experiments. Table 14.6 visualizes the number of
expansions required to find the deadlock state and the range of values (r) that the heuristic
estimate function is defined over. In all cases the optimal solution is being found.

The results show that when applying the inferred deadlock heuristicHf user interven-
tion improves the results in most cases. It is not easy to compare the inferred heuristic
Hf with Hap. Hap seems to perform worse thanHf + U except in the optical telegraph
protocol. In the optical telegraph protocol the estimateHap works well, since the number
of processes in the model is quite high. In the case of the GIOP protocol and the marriers
model the number of processes is rather small andHap produces poor reductions in the
number of expanded states. It should be emphasized that the quality ofHf + U highly
depends on the quality of the designers labelling of dangerous states. In summary, the
experiments indicate the influence of the quality of the heuristic estimate function.

14.6.3 Finding Errors where DFS fails

A further objective of thedirected model checkingapproach is to detect errors in models
where classical depth-first exploration fails due to the exhaustion of memory resources.

We perform a set of experiments with a scalable deadlock solution to the dining
philosophers problem. We let the experiments run without time limitations, but with a
hard memory constraint of 512 MB. Contrary to other experiments, we allow SPIN to
apply bitstate hashing compression in order to emphasize the benefits of directed search.

Table 14.7 shows results on deadlock detection in the philosophers model with a grow-
ing number of philosophers. The first column depicts the number of philosophers in the
model. The labelling of the other columns is obvious.

While A* and BF seem to scale linearly with respect to the increase ofp, BFS and
DFS do not. HSF-SPIN's BFS and DFS exploration are not able to find the deadlock
situation in configurations with more than 13 philosophers. SPIN can go a little further,
but fails in configurations with more than 15 philosophers. The results show that there
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p BFS DFS A* BF SPIN
2 s 9 6 6 6 6

e 7 6 6 4 6
t 10 7 4 6 7
l 10 10 10 10 10

3 s 19 19 12 26 19
e 14 10 7 23 10
t 29 12 13 43 12
l 14 18 14 14 18

4 s 56 45 19 70 45
e 42 45 9 57 45
t 116 62 21 142 116
l 18 54 18 26 54

8 s 3,768 1,341 67 493 1,341
e 2,875 1,341 17 225 1,341
t 15,775 1,772 73 622 1,772
l 34 1,362 34 66 1,362

14 s - - 199 1,660 2,164,280
e - - 29 1,963 2,164,280
t - - 211 684 27,050,400
l - - 58 114 9,998

16 s - - 259 2,201 -
e - - 33 893 -
t - - 273 2,578 -
l - - 66 130 -

Table 14.7: Deadlock detection in the dining philosophers problem.

are models in which A* is able to detect errors and in which depth-first search even if
combined with reduction and compression techniques fails.

14.6.4 IDA* and Bitstate Hashing

We now show that for given memory and time constraints, IDA* in combination with
bitstate hashing is able to detect errors in problems in which A* and IDA* fail. Once
the priority queue is full, A* will run out of memory and once the transposition table is
full, duplicate states will force IDA* to run out of time. We use the GIOP protocol with
a seeded deadlock error and configured with 3 clients and one server. We set the space
limit to 256 MB and the time limit to 120 minutes. Both hash table sizes in A* and IDA*
have been set to the given memory bound. Table 14.8 depicts the number of expansions
performed by A*, IDA*, and IDA* combined with (double) bitstate hashing. To obtain
the data in the table we modify A* to print a snapshot of the expansions every time the
search depth increases, while for the last two methods, the number of state expansions
corresponds to the number of nodes in the current iteration. The results show that only
the combination of IDA* and bitstate hashing is able to find the error in the protocol.
IDA* exceeds the time and A* exceeds the space limit.

A duplicate is a state with different generating paths. Duplicates occur frequently in
typical protocols. As long as the visited lists of A* and IDA* are not full, all duplicate
states are detected. When the memory bound is reached, A* aborts since it is unable to
allocate further states for the open and closed lists. IDA* bypasses the problem by ex-
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Depth A* IDA* IDA*+bitstate
58 150,344 146,625 146,625
59 168,191 164,982 164,982
60 184,872 184,383 184,383
61 - 206,145 206,145
62 - - 229,626
63 - - 255,411
64 - - 282,444
65 - - 311,340
66 - - 341,562
67 - - 373,422
68 - - 407,310
69 - - 442,941
70 - - goal found

Table 14.8: Deadlock detection in the GIOP protocol under memory constraints.

ploring the tree expansion of the underlying graph and possibly re-exploring state space
sub-tree structures. In some cases, there are too many duplicates such that after the trans-
position table is full and IDA* fails to complete the next iteration within the given time
limit. However, IDA* with bitstate hashing prunes off duplicates optimistically, storing
only a finger print (signature) of each state. This reduces the space requirements by some
orders of magnitudes (about 3 in the example case), so that duplicates can be detected
even in large search depths. The loss of states by false positives is marginal: in the exam-
ple no state is wrongly identified with double bitstate hashing until the depth is reached
in which IDA* gives up.

14.7 Liveness Property Validation

One feature of the Nested-DFS algorithm described in Section 14.2 is that a state, once
flaggedwill not be expanded again during the cycle detection. For the correctness of
the algorithm the post-order traversal of the search tree is crucial, such that the second
depth-first traversal only encounters nodes that have already been visited in the main
search routine. The second search can be improved by directed cycle detection search.
Since we are aiming for states that have been placed on the Nested-DFS stack by the first
traversal we can use heuristics to perform a directed search for the cycle-closing states.
Unfortunately, in each of our benchmark examples, there is at most one accepting cycle,
so that there is nothing to improve. The disadvantage of a pre-ordered nested search
approach (search the acceptance state in the never claim and, once encountered, search
for a cycle) is its quadratic worst-case time and linear memory overhead, since the second
search has to be invoked with a newly initialised list of flagged states. To address this
drawback, we developed an improvement of the nested depth-first search algorithm that
exploits the structure of the never claim. This algorithm is applicable to a large set of
practical property specifications, and can be combined with heuristic techniques for more
efficient search performance.
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14.7.1 Classification of Never Claims

Strongly connected components (SCC) partition a directed graph into groups such that
there is no cycle combining two components. A subset of nodes in a directed graph is
strongly connected if for all nodesu andv there is a path fromu to v and a path from
v to u. SCCs are maximal in this sense and can be computed in linear time by applying
Tarjan's algorithm [70].

To illustrate how SCCs can help improve the Nested-DFS algorithm, consider the
never claim of Figure 14.1. We find two strongly connected components: the first is
formed byn0 and the second byna. Furthermore, there is no path from the second SCC
to the first. Accepting cycles in the synchronous product automaton are composed of
states in which the never claim is always in the second SCC. We can conclude that if the
local never claim state corresponding to a cycle-closing synchronous product automaton
state belongs to the second SCC the cycle is accepting. If, however, it belongs to the first
SCC, it is not accepting.

In order to generalize this observation suppose that we have pre-computed all SCCs
of a given never claim. Due to the synchronicity of the product of the model automaton
and the never claim a cycle in the synchronous product is generated by a cycle in exactly
one SCC. If the cycle is accepting, so is the corresponding cycle in the SCC of the never
claim. Suppose that each SCC is either composed only of non-accepting states or only
of accepting states. Then global accepting cycles only contain accepting states, while
non-accepting cycles only contain non-accepting states. Therefore, a single depth-first
search can be used to detect accepting cycles: if a states is found in the stack, then the
established cycle is accepting if and only ifs itself is accepting.

The partitioning rules for SCCs given above can be relaxed according to the following
classification of SCCs:

� We call an SCCacceptingif at least one of its states is accepting, andnon-accepting
(N) otherwise.

� We call an accepting SCCfully accepting(F) if all of its cycles contain at least one
accepting state.

� We call an accepting SCCpartially accepting(P) if there is at least one cycle that
does not contain an accepting state.

If the never claim contains no partially accepting SCC, then accepting cycle detection for
the global state space can be performed by a single depth-first search: if a state is found
in the stack, then it is accepting, if the never state belong to an accepting SCC. A special
case occurs if the never claim has an endstate. When this state is reached, the never claim
is said to be violated and abad sequence has been found. Bad sequences are tackled
similarly to safety properties by standard heuristic search.

The classification of patterns in property specifications proposed in [87] reveals that
an empirically collected database of 555 practically used LTL properties partitions into
Absence (A)(85/555),Universality (U)(119/555),Existence (E)(27/555),Response (R)
(245/555),Precedence (P)(26/555), andOthers(53/555). Using this pattern scheme and
the scope modifiersGlobally (G), Before (B), After (A), Between (B), andUntil (U) we
obtain a partitioning into SSCs according to Table 14.9. We indicate the presence of end-
states with the letterS. Since the specification patterns are given using LTL formulae,



248 PAPER 14. DIRECTED EXPLICIT-STATE MODEL CHECKING

7

9

8

6

54

2

1

0

3

Figure 14.13: Never Claim for a response between property.

G B A B U
A S,N S,N S,N S,N S,N,P
U S,N S,N S,N S,N,P,F S,N,P
E F S,P,N N,F S,N,P S,N,F
R N,F S,N,P,F N,F S,N,P,F S,N,P,F
P S,N,P S,N N,P S,N S,N,P

Table 14.9: SCC classification for LTL specification patterns.

we derive the equivalent never claims using the SPIN built-in LTL to never claim con-
verter. Then, we apply an algorithm that computes the SCCs of the state transition graph
of the never claim automaton and that classifies them into the different classes. For ex-
ample, Figure 14.13 depicts the state transition graph of the never claim corresponding
to a response patternwith betweenscope for which the corresponding LTL formula is
2((q ^ :r ^ �r)! (p! (:rU(s ^ :r)))Ur). The graph is classified as follows: SCCs
f0g, f1g andf6g are of class N,f2; 3g is of class P andf4g of class F. State 9 is and
endstate and the rest of the states aretransientstates.

Our approach is particularly useful for never claims that only contain N and F com-
ponents, as for instance the Response pattern with a global scope. Given the prevalence
of the Response pattern we conclude that our improvement of the Nested-DFS algorithm
is applicable to a large set of practical problems.
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Figure 14.14: Visualization of the different cases in Improved-Nested-DFS.

14.7.2 Improved Nested Depth-First Search

We now present theImproved-Nested-DFS(INDFS) algorithm that is based on the above
ideas, given in Figure 14.15. In this Figure, SCC(s) is the SCC of states, F-SCC(s)
determines if the SCC of states is of type F (fully accepting), P-SCC(s) determines if the
SCC of the state is of type P (partially accepting) andneverstate(s) denotes the local state
of the never claim in the global states.

The algorithm finds acceptance cycles without nested search for all problems which
partition into N- or F-components. Except for P-SCCs it avoids the post-order traversal.
For P-SCCs we guarantee that the second cycle detection traversal is restricted to the
strongly connected component of the seed. The algorithm considers the successors of a
node in depth-first manner and marks all visited nodes with the labelhash. If a successor
s0 is already contained in the stack, a cycleC is found. IfC corresponds to a cycle in a
F-SCC of theneverstateof s0, it is an accepting one. Cycles for the P-SCCs parts in the
never claim are found as in Nested-DFS, with the exception that the successors of a node
are pruned whichneverstatesare outside the component. If an endstate in the never claim
is reached the algorithm terminates immediately. A detailed proof of the correctness of
INDFS is given in Section 14.7.4.

Figure 14.14 depicts the different cases of cycles detected in the search. The main
idea for the correctness of Improved-Nested-DFS is based on the fact that all cycles in the
state-transition graphs correspond to cycles in the never claim. Therefore, if there is no
cycle combining two components in the never claim, so there is none in the overall search
space.

As mentioned above, the strongly connected components can be computed in time lin-
ear to the size of the Never Claim, a number which is very small in practice. Partitioning
the SCCs innon-accepting, partially acceptingandfully acceptingcan also be achieved
in linear time by a variant of Nested-DFS in the never claim.
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Improved-Nested-DFS(s)
hash(s)
for all successorss0 of s do

if s0 in Improved-Nested-DFS-Stackand
F-SCC(neverstate(s0)) then

exitLTL-Property violated
if s0 not in the hash tablethen Improved-Nested-DFS(s0)

if accept(s) and P-SCC(neverstate(s)) then
Improved-Detect-Cycle(s)

Improved-Detect-Cycle(s)
flag(s)

for all successorss0 of s do
if s0 on Improved�Nested�DFS-Stackthen

exit LTL-Property violated
else ifs0 not flaggedand
SCC(neverstate(s)) = SCC(neverstate(s0)) then

Improved-Detect-Cycle(s0)

Figure 14.15: Improved Nested Depth-First Search.

14.7.3 A* and Improved-Nested-DFS

So far we have not considered heuristic search for Improved-Nested-DFS. Once more, we
consider the example ofResponseproperties to be validated. In a first phase, states are
explored by A*. The heuristic estimation function can easily be designed to reach the ac-
cepting cycles in the SCCs faster, since all states that we are aiming at are accepting. This
approach generalizes to a hybrid algorithm A* and Improved-Nested-DFS,A*+INDFS
for short, that alternates between heuristic search in N-SCCs, single-pass searches in F-
SCCs, and Nested-Search in P-SCCs. If a P- or S-component is encounterd, Improved
Nested-DFS is invoked and searches for cycles. The heuristic estimate respects the com-
bination of all F-SCCs and P-SCCs, since accepting cycles are present in either of the two
components. The nodes at the horizon of a F- and P-component lead to pruning of the
sub-searches and are inserted back into theOpen-List of A*, which contains all horizon
nodes with a neverstate in the corresponding N-SCCs. ThereforeA*+INDFScontinues
with directed search, if cycle detection in the F- and P-components fails. Cycle detection
search itself can be accelerated with an estimation function heading back to the states
where it was started.

Figure 14.16 visualizes this strategy for a response property. The never claim has the
following SCCs: SCC0 which is a N-SCC, and SCCa which is F-SCC. The state space can
be seen as divided in two partitions, each one composed of states where the never claim is
a state belonging to one of the SCCs. In a first phase, A* is used for directing the search to
states of the partition corresponding to SCCa. Once a goal state is found, the second phase
begins, where the search for accepting cycles is performed by Improved-Nested-DFS.
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Figure 14.16: Visualization of A* and Improved-Nested-DFS for a response property.

14.7.4 Correctness of INDFS

The nested depth-first search algorithm in model checking validates the emptiness of
Büchi automata. It searches accepting cycles in the problem graph that represents the
state-space of a Büchi automaton and reports non-emptiness if and only if there exists
at least one accepting cycle in the graph. A correctness proof of this algorithm can be
found in [65]. Our improvement to the nested depth-first search algorithm is depicted in
Figure 14.15. To prove the correctness of the algorithm we start with some definitions.

Definition 8 A Büchi automaton is a five tupleh�; Q; �; Q0; F i, where� is a finite al-
phabet,Q is the finite set of states,� � Q � �� Q is the transition relation,Q0 � Q is
the set of initial states, andF � Q is the set of accepting states.

Definition 9 A run of a Büchi automaton over an infinite wordv 2 �� is a mapping
� : f0; 1; ::;1g 7! Q such that a) the first state is an initial state, that is,�(0) 2 Q0, and
b) moving from thei-th state�(i) to the(i + 1)-st state�(i + 1) upon reading thei-th
input letterv(i) is consistent with the transition relation, that is, for alli � 0 we have
(�(i); v(i); �(i) + 1) 2 �.

Definition 10 Let inf(�) be the set of states that appear infinitely often in a run� (when
treating the run as an infinite path). A run� of a Büchi automatonB over an infinite word
is said to beacceptingif and only if some accepting state appears infinitely often in�,
that is, wheninf(�) \ F 6= ;. ThelanguageL(B) accepted by the Büchi automatonB is
then the set of infinite words, over which all runs ofB are accepting.

LetM be a finite state automaton representing the model, and letN be thenever claim.
For this construction the automatonM is interpreted as a Büchi automaton in whichall
states are accepting.
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Definition 11 LetM = h�; QM ; �M ; Q
M
0
; FMi be a Büchi automaton which states are

all accepting, that isQM = FM , and letN = h�; QN ; �N ; Q
N
0
; FNi be another Büchi

automaton. Thesynchronous productM 
 N of M andN is defined as:M 
 N =

h�; Q; �; Q0; F i, whereQ = QM � QN , Q0 = QM
0
� QN

0
, F = FM � FN = QM � FN ,

and((sM ; sN); a; (s0M ; s
0
N)) 2 � if and only if(sM ; a; s0M) 2 �M and(sN ; a; s0N) 2 �N .

Büchi automata can be represented as directed graphs: the set of vertices isQ and the
edges are labelled by the transition relation�. Runs of the automaton over an infinite word
correspond to infinite paths in the graph, and accepting runs to infinite paths containing
infinite accepting cycles. An accepting cycle is defined as a cycle in which at least one
state is accepting.

Definition 12 A strongly connected component (SCC) of a directed graph is a maximal
set of vertices, such that each vertex in the set is reachable from each other vertex of the
set in 1 or more steps9.

It is not difficult to show that pairwise reachability is an equivalence relation such
that the set of nodes can be partitioned into equivalence classes of strongly connected
components. An important consequence of the definition of SCCs is that all vertices of
a cycle belong to the same SCC. In the following we writescc(s) to denote the SCC to
which a states belongs.

Let Q be the set of states ofM 
 N . We define a partition function� from Q onto
f0; : : : ; kg in such a manner that two states belong to the same partition if and only if
the state component ofN belongs to the same SCC in the state transition graph ofN .
More precisely, ifs = (sM ; sN) andi = scc(sN) then�((sM ; sN)) = i. Obviously,�
defines a partition of equivalence classesP0; : : : Pk ofQ, wherePi = fs 2 Q j �(s) = ig,
i 2 f0; : : : ; kg.

Definition 13 A strongly connected component is callednon-acceptingif none of its
states is accepting,full-acceptingeach cycle formed by states of the SCC is accepting,
andpartial-acceptingotherwise.

Definition 14 An equivalence classPi of M 
 N is non-accepting, full-accepting
or partial-acceptingif the corresponding strongly connected componenti in N is
non-accepting, full-acceptingor partial-accepting, respectively.

Lemma 9 If there is a cycleC in Q, then� partitions the states inQ in such a manner
that all states of the cycle belong to the same equivalence class inQ, i.e.,C � Pi for one
i 2 f0; : : : ; kg.

Proof: Let C be a cycle in state transition graph ofQ, that isC = (s0; s1; : : : ; sn) with
sn = s0 and(si; a; si+1) 2 � for all i 2 f0; : : : ; n�1g. Therefore, sincesi = (sMi ; s

N
i ) and

sNi 2 N , i 2 f0; : : : ; ng, a cycleCN = (sN
0
; sN

1
; ::; sNn = sN

0
) exists with(sNi ; a; s

N
i+1

) 2
�N for all i 2 f0; : : : ; ng. Hence, for allsi = (sMi ; s

N
i ) andsj = (sMj ; s

N
j ) in C we have

scc(sNi ) = scc(sNj ). This implies�(si) = �(sj) for all si; sj 2 C such that all states ofC
belong to the same equivalence class.ut

9Requiring reachability in 1 or more steps is not the standard definition of an SCC. However, the mini-
mum path length of 1 is necessary for a concise proof of our algorithm
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Lemma 10 A cycleC in M 
N is accepting if and only if the corresponding cycle inN
is accepting.

This is easy to see, since as defined, a states = (sM ; sN) of M 
 N is accepting if
and only ifsN is an accepting state ofN .

Lemma 11 All cycles in anon-acceptingcomponent are non-accepting, all cycles in a
fully-acceptingcomponent are accepting. Inpartial-acceptingcomponents, there can be
accepting and non-accepting cycles.

Lemma 11 is immediately deduced from Definitions 13 and 14, and Lemma 10.
The following lemma is a well-known property of depth-first search and is essential

for proving the correctness of our algorithm.

Lemma 12 Let s be a vertex that does not appear on any cycle. Then the depth first
search algorithm will backtrack froms only after all the nodes that are reachable froms
have been explored and backtracked from.

It is easy to see that this lemma still holds for the first search in both the original and
in the improved nested depth first search algorithm.

Theorem 16 The improved nested depth first search algorithm returns a counterexample
for the emptiness of the checked automatonM
N exactly whenL(M
N) is not empty.

Proof: We have to showI) that a counterexample returned by the algorithm corre-
sponds in fact to an accepting run of the automaton, andII) that no accepting run is
missed by the algorithm.

I) The first thing to show is that if the algorithm finds an accepting cycle, then the
cycle is in fact accepting. The algorithm closes accepting cycles in the first and in the
second search. When the algorithm closes cycles in the second search, it acts like the
original algorithm. As shown in [65], cycles closed in the second search are accepting,
since the second search is started from accepting states only. On the other hand cycles
closed in the first search correspond only to cycles present in afull-acceptingequivalence
class, and as shown in Lemma 10, every cycle in afull-acceptingcomponent is accepting.

II) The difficult case is to prove that if the algorithm finds no accepting cycle
thenL(M 
 N) is in fact empty. As shown above, accepting cycles can exist only in
full-acceptingcomponent or inpartial-acceptingcomponent. There are two cases if the
algorithm fails to find an existing accepting cycle:IIa) the cycle exists in afull-accepting
component and is missed in the first search, orIIb) the cycle exists in apartial-accepting
component and is missed in the second search.

IIa) Suppose that an accepting cycle exists in afull-acceptingcomponent and that the
first search fails to find it. Lets be the first state visited by the depth first search that
is reachable from itself and that belongs to afull-acceptingcomponent. The first search
misses that cycle if in the moment in which the search is started froms, every path from
s to itself contains a an already visited state. Lets0 be the first such state. Thens0 was
visited by the depth-first search befores and is reachable from itself through the cycle
(s0 ! : : : ! s ! : : : ! s0), ands0 belong to the samefull-acceptingcomponent by
Lemma 9, which contradicts our assumption.
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IIb) Suppose now that an accepting cycle exists in apartial-acceptingcomponent and
that the second search fails to find it. In this case a similar reasoning as in [65] can be
done to show that this cannot be happen. Lets be the first accepting state belonging to a
partial-acceptingcomponent from which the second search starts but fails to find a cycle
even though one exists. In the moment in which the second search starts froms there is
at least one flagged state on a cycle throughs. Let r be the first such state, and lets0 be
the state from which the second search that flaggedr was started. In the algorithm the
second search remains in the same equivalence class from which the search was started.
Therefores, r ands0 must belong to the same component. According to our assumptions,
the second search froms0 was started before the second search froms. There are two
cases:

II 0b: The states0 is reachable froms. Then there is a cycle(s0 ! : : : ! r ! : : : !
s! : : :! s0) that could not have been found previously, otherwise the algorithm would
already have terminated. By Lemma 11, the cycle belongs to apartial-acceptingcompo-
nent. However this contradicts our assumption from which the second search missed a
cycle belonging to apartial-acceptingcomponent.

II 00b : The states0 is not reachable froms. If s0 appears on a cycle, then a cycle was
missed before starting the second search ats and the cycle belongs to apartial-accepting
component, sinces ands0 belong to the same component. According to the assumption,s

is reachable fromr and, subsequently,s is reachable froms0. Thus, ifs0 does not occur on
a cycle, by Lemma 12 we must have discovered and backtracked froms in the first search
before backtracking froms0. Hence, according to the algorithm, we must have started a
second search froms before starting it froms0. This contradicts the assumptions.ut

14.8 Liveness Property Experiments

In this Section we describe experimental results in the validation of liveness properties.
The experimental setup is largely as described in Section 14.6. We compare two algo-
rithms in this section, namely NDFS and INDFS. Both algorithms have been implemented
in HSF-SPIN. We have also implemented INDFS inside SPIN, so that both tools have the
same algorithmic capabilities. Since the results produced by both tools are very similar
in terms of computational effort, we only give the values obtained by HSF-SPIN in this
Section.

14.8.1 INDFS for Validating Correctness

This first set of experiments is intended to show the benefits of INDFS when validating
liveness properties. In the worst case, INDFS performs as many transitions and expan-
sions as NDFS, while in a best case situation INDFS can halve these values. The worst
case occurs when the never claim contains no F-SCCs, while the best case occurs when
the never claim contains exclusively SCCs of this type. Note that all never claims are
generated using SPIN's LTL-to-never-claim translation. We use a model of the leader
election algorithm as test case. As a worst case we check the property32oneLeader for
which the corresponding never claim is formed by a unique P-SCC. For the best case sit-
uation we used the property3elected for which the corresponding never claim is formed
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Figure 14.17: Never claims for32oneLeader (bottom-right) and3elected (top-left).

32oneLeader NDFS INDFS
s 4,779 4,779
e 9,556 9,556
t 42,307 42,307
3elected NDFS INDFS
s 2,380 2,380
e 14,086 7,044
t 4,759 2,380

Table 14.10: Checking correctness of two liveness properties in the leader election algo-
rithm with NDFS and INDFS.

by a unique F-SCC. Figure 14.17 illustrates the never claims that SPIN generates for each
property.

Table 14.10 depicts the results of the experiments. The number of transitions and
expansions is shown. The number of stored states is also included in the table to show
that both algorithms explore exactly the same number of states. The results show that in
the worst case situation both NDFS and INDFS perform the same. On the other hand, in
the best case situation INDFS requires about half of the transitions and expansions that
NDFS requires.

14.8.2 INDFS for Error Detection

Our objective now is to show that INDFS requires less computational effort and provides
better error trails than NDFS. We also test the performance of the hybrid algorithm that
combines NDFS with A*.

We first use a version of the GIOP model configured with 1 server and 3 clients and
with a seeded error that causes the model to violates a response property stating that
when a client sends a request, a reply will always be received. Second, we use a model
of an elevator with 3 floors that violates the response property stating that whenever a
request for the elevator exists in one level, the elevator will eventually stop at that level
and open the door. Table 14.11 shows experimental results on detecting the violation of
LTL formulae. NDFS is compared with INDFS and the algorithm that combines A* and
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Elevator NDFS INDFS A*+INDFS
s 192 187 29,407
e 229 187 28,309
t 280 215 130,211
l 320 311 297
GIOP NDFS INDFS A*+INDFS
s 7,331 7,260 86
e 7,346 7,260 81
t 33,061 32,984 93
l 289 155 155

Table 14.11: Detection of violation of liveness properties in two protocols.

NDFS (A*+INDFS).
The results show that INDFS provides small improvements over NDFS in all cate-

gories. However, only for the GIOP protocol the reduction is significant, INDFS almost
halves the length of the error trail. The hybrid algorithm finds better solutions in all sit-
uations, but its computational effort varies drastically. While in the elevator experiment
it requires about 15 times more state expansions than INDFS, in the GIOP experiment it
performs 89 times less. The reason of this varying behavior is that A*+NDFS directs the
search to the nearest full accepting component of the state space. This component may,
however, be free of cycles. Only after this part of the state space is entirely explored the
nested search returns control to A* which then directs the search into the next full accept-
ing part. While in the case of the GIOP protocol the algorithm finds a component with a
cycle early on in the search, in the elevator example the algorithm first explores parts of
the state space that include accepting states, but no accepting cycles.

14.9 Related Work

In earlier work on the use of directed search in model checking the authors apply best-first
exploration to protocol validation [239]. They are interested in typical safety properties
of protocols, namely unspecified reception, absence of deadlock and absence of channel
overflow. In the heuristics they use an estimate determined by identifyingsendandreceive
operations. In the analysis of the X.21 protocol they obtained savings in the number of
expansion steps of about a factor of 30 in comparison with a typical depth first search strat-
egy. We have incorporated this strategy in HSF-SPIN. The approach in [239] is limited to
the detection of deadlocks, channel overflows and unspecified reception in protocols with
asynchronous communication. To the contrary our approach is more general and handles
a larger range of errors and communication types. While the measures in [239] are merely
stochastic and will not yield optimal solutions, the heuristics we propose are in most cases
lower bound estimators and hence allow us to find optimal solutions.

Recent work [152] applies heuristic search to the verification of java programs. It is
proposing heuristics that increase coverage of the program while disregarding a targeted
search for error states. This approach does not guarantee optimal counterexamples and
accomplishes faster error finding through improved code coverage.

The same holds for recent work [147] that proposes the application of genetic algo-
rithms for finding errors in very large state spaces. Genetic algorithms requirefitness
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functions which are a variant of heuristic evaluation functions. Different heuristics for
deadlock detection and assertion violation based on enabledness of transitions and mes-
sage exchanges are proposed.

The identification of three phases in the verification process is at the heart of work
documented in [68]. Inexploratory modethe system designer tries to find a first
error, in fault-finding modes/he aims at meaningful counterexamples, while in the
maintenance modeone does not expect errors at all. From this point of view, our ap-
proach concentrates on the first two modes. Moreover, the authors in [68] analyse which
algorithm is best-suited for which mode. They use different variants of depth-first search,
breadth-first search and A*. Some of the ideas for the heuristic estimates are similar to
ours, but the authors do not elaborate on the specific heuristic estimates that they use.
Contrary to us, they do not consider IDA* and restrict their work to safety properties. In
comparison, cur conclusions are slightly different from theirs. We agree that a shortest
path algorithm is suitable for the fault-finding mode, but we believe that directed search
can also be useful in the first exploratory mode: even in this phase by guiding the search
an error state can be found with less computational effort than with blind search strategies.

The authors of [352] use BDD-based symbolic search within the Mur� validation
tool. The best first search procedure they propose incorporates symbolic information
based on the Hamming distance of two states. This approach has been improved in [303],
where a BDD-based version of the A* algorithm [112] for the�cke model checker [35] is
presented. The algorithm outperforms symbolic breadth-first search exploration for two
scalable hardware circuits. The heuristic is determined in a static analysis prior to the
search taking the actual circuit layout and the failure formula into account. The approach
to symbolic guided search in CTL model checking documented in [38] applies `hints' to
avoid sections of the search space that are difficult to represent for BDDs. This permits
splitting the fix-point iteration process used in symbolic exploration into two parts yield-
ing under- and over-approximation of the transition relation, respectively. Benefits of this
approach are simplification of the transition relation, avoidance of BDD blow-up and a
reduced amount of exploration for complicated systems. However, in contrast to our ap-
proach providing `hints' requires user intervention. Also, this approach is not directly
applicable to explicit state model checking, which is our focus.

The need for heuristics is apparent in conformant planning, where the symbolic rep-
resentation compensates partial knowledge of the current state. The work of [31] trades
information gain for exploration time with an estimate preferring belief states with low
cardinality.

Timed automata call for a finite partitioning of the state space through a symbolic
representation of states as a reduced set of difference constraints. One example is the
real-time model checker Uppaal, which has also been accelerated by heuristic search to
optimise different cost-functions with A* [25]. The techniques are reported to reduce the
explored state-space with up to 90%.

Exploiting structural properties of the Büchi Automaton in explicit state mode check-
ing has been considered in the literature in the context of weak alternating automata
(WAA) [267]. WAA were invented to reason about temporal logics, generalize the tran-
sition function with boolean expressions of the successor set, and partition the automaton
structure. The classification of the states of a WAA differs from ours, since the partition-
ing into disjoint sets of states that are either all accepting or all rejecting does not imply
our partitioning. The simplification of Büchi automata proposed in [330] is inferred from
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an LTL property, whereas our INDFs algorithm is based on the analysis of the structure of
Büchi automata. The work in [330] also considers a partitioning according to WAA-type
weakness conditions and hence differs from the approach taken in our paper.

The approach taken in [345] addresses explicit CTL* model checking in SPIN using
hesitant alternating automata (HAAs). The paper shows that the performance of the pro-
posed `LTL non-emptiness game' is in fact a reformulation and improvement of nested
depth-first search. Both the partitioning and the context of HAA model checking are
significantly different from our setting.

14.10 Conclusion and Outlook

We argued that in order to facilitate debugging the error trails or witnesses that a model
checker generates minimizing their length is highly desirable. A reduction in the number
of visited states during state space search is also desirable since this renders larger models
tractable. Standard depth-first search algorithms used in explicit state model checkers
like SPIN are rather efficient in terms of memory usage and computing time, but tend to
produce lengthy counterexamples.

We introduced into heuristic search algorithms, and showed how to apply heuristic
search to safety property validation. The experimental results showed that directed model
checking with A* always returns shorter error trails than DFS, and that in most instances
the trail length is optimal. Regarding computational effort the results were mixed: in some
instances A* was superior to SPIN and DFS, but in many cases A* was not performing
as well. It also became clear that the gain obtained through directed model checking is
better the more differentiation the heuristic estimation function allows. We also observed
that for the dining philosophers problem under constrained memory availability directed
model checking was able to solve a problem that could not be solved by DFS. We expect
that this effect is linked to the highly symmetric nature of the problem, and the high degree
of coordination that is typical for this example.

Next we proposed an improvement of the nested depth-first search algorithm that ex-
ploits the structure of the never claim to be validated. The INDFS algorithms is applicable
to the validation of liveness properties. We showed that INDFS, which is not a directed
model checking algorithm, leads to modest improvements in terms of error trail length
compared to NDFS. In further experiments we showed how the combined usage of A*
and NDFS can lead to significant reductions in error trail length.

The incorporation of heuristic search strategies is based on the observation that stan-
dard state space exploration algorithms perform a search that is rather uninformed of the
structure of the search problem. As raw as the heuristics that we propose may be, it is
surprising to see them work rather well on many practical problems. We are not primar-
ily interested in optimal solutions, which is why we can tolerate non-admissible heuristic
estimates when optimistic estimates are not available.

In concurrent work [110] we describe an approach to shorten existing error trails using
refined state distance metrics as heuristic estimates. This approach has already been im-
plemented in HSF-SPIN. For selected benchmark and industrial communication protocols
experimental evidence is given thattrail-directed model checkingeffectively shortcuts ex-
isting witness paths.

We are nevertheless interested in improving the quality of the heuristics so that
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our approach becomes applicable to an even larger set of problems. One approach
assesses the fact that our assumption of independence in combining sub-formulae is
rarely fulfilled in practice. The main idea in the not yet implemented approach of
directed stochastic model checkingis to derive a stochastic model for search prediction
that takes correlations of propositions into consideration in order to direct the search.

Further work [241] investigates the combination of partial order reduction techniques
with the directed model checking approach of HSF-SPIN. Both theoretically and empiri-
cally we show that A* and IDA* can be combined with partial order reduction methods.
While the benefit of the application of partial order reduction to A* is limited, due to its
similarity to DFS IDA* avails itself rather nicely to partial order reduction.
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Abstract

HSF-SPIN is a Promela model checker based on heuristic search strategies. It utilizes
heuristic estimates in order to direct the search for finding software bugs in concurrent
systems. As a consequence, HSF-SPIN is able to find shorter trails than blind depth-first
search.

This paper contributes an extension to the paradigm ofdirected model checkingto
shorten already established unacceptable long error trails. This approach has been imple-
mented in HSF-SPIN. For selected benchmark and industrial communication protocols
experimental evidence is given thattrail-directed model checkingeffectively shortcuts ex-
isting witness paths.

261



262 PAPER 15. TRAIL-DIRECTED MODEL CHECKING

15.1 Introduction

The formal methods of model checking [65] have various applications in software ver-
ification [28]. Through the exploration of large state-spaces model checking produces
either a formal proof for the desired property or a detailed description of an error trail.
We concentrate on explicit state model checking and its application to the validation of
communication protocols.

In the broad spectrum of techniques for tackling the huge state spaces that are gener-
ated in concurrent systems, heuristic search is one of the new promising approaches for
failure detection. Early precursors execute explicit best-first exploration in protocol vali-
dation [239] and symbolic best-first search in the model checker Mur� [352]. Symbolic
guided search in CTL model checking is pursued in [38] and bypasses intense symbolic
computations by so-called hints. Last but not least, the successful commercial UPPAAL
verifier for real-time systems represented as timed automata has also been effectively en-
riched by directed search techniques [24].

Our own contributions todirected model checkingintegrate heuristic estimates and
search algorithms to the�cke model checker [303], to a domain independent AI-plan-
ner [93], and to a Promela model checker [109, 107]. The global state space is interpreted
as an implicitly given graph spanned by a successor generator function, in which paths
corresponding to error behaviors are searched. The length of the witness path is crucial to
the designer/programmer to debug the erronous piece of software; shorter trails are easier
to interpret in general.

In the model checker SPIN [187] safety properties are checked through a simple
depth-first search of the system's state space, while liveness properties require a two-
fold nested depth-first search. The error trail in the first case is a simple path from the
start state to an error state, while in the second case we have a seeded cycle, that is a path
composed by a prefix that leads to a seed state, followed by a cycle that is closed at this
state.

Our experimental tool HSF-SPIN1 provides AI heuristic search strategies like A*,
IDA* and best-first for finding safety errors [109], and an improved version of nested
depth-first search [107], based on exploting the never-claim representation of the required
temporal property to simplify the checking process.

In this paper we concentrate on error trail improvement, an apparent need in practical
software development. We expect that a possibly long witness for an error is already
given. This trail might be found by simulation, test, random walk, or depth-first model
checking. This path is read as an additional input, reproduced in the model and then
significantly improved by directed search.

HSF-SPIN tries to find errors faster than traditional tools by employing heuristic
search strategies for non-exhaustive, guided state space exploration. While HSF-SPIN
can be used for full verification through exhaustive state space search, this is not its pri-
mary objective and we note that other model checkers, like Spin or SMV, are likely to be
more time and space efficient for this purpose.

The paper is structured as follows. First we give some background on the AI tech-
nique we use. In a next section. In the next section we introduce the HSF-SPIN model
checker and its usage in terms of its command line options. In the following sections we

1Available from
http://www.informatik.uni-freiburg.de/ ~lafuente/hsf-spin
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address the facets of trail-directed search, based on the hamming distance and the FSM
distance estimates. We distinguish between single-state trail directed search for safety
errors and cycle-detection trail-directed search for liveness errors. Both approaches have
been implemented in HSF-SPIN and in the experimental section we present first results.
We close with some concluding remarks.

15.2 Heuristic Search

Depth-first search and breadth-first search are callblind search strategies, since they use
no information of the concrete state space they explore. On the other hand, heuristic
search algorithms take additional search information in form of an evaluation function
into account. This function is used to rank the desirability of expanding a nodeu.

A* [161] uses an evaluation functionf(u) that is the sum of the generating path length
g(u) and the estimated cost of the cheapest pathh(u) to the goal. Hencef(u) denotes
the estimated cost of the cheapest solution throughu. If h(u) is a lower bound then A* is
optimal, i.e. it finds solution paths of optimal length.

Table 15.1 depicts the implementation of A*, whereg(u) is the length of the traversed
path tou andh(u) is the estimate distance fromu to a failure state.

A* (s)
Open f(s; h(s))g; Closed fg
while (Open6= ;)
u Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Goal Found
for all v in �(u)
f 0(v) f(u) + 1+h(v)� h(u)
if (Search(Open; v))

if (f 0(v) < f(v))
DecreaseKey(Open; (v; f 0(v))

else if(Search(Closed; v))
if (f 0(v) < f(v))

Delete(Closed; v); Insert(Open; (v; f 0(v))
elseInsert(Open; (v; f 0(v))

Table 15.1: The A* Algorithm.

The algorithm divides the state space in three sets: the setOpenof visited but not
expanded states, the setClosedof visited and expanded states, and the set of not already
visited states. Similar to Dijkstra's single source shortest path exploration [80], starting
with the initial state, A* extracts states from theOpenset, move them to theClosedset
and insert their successors in theOpenset until a goal state is found. In Table 12.1 the
differences between Dijkstra's algorithm and A* are underlined. In each expansion step
the state with bestf value is selected to be expanded next. Nodes that have already been
expanded might be encountered on a shorter path. Contrary to Dijkstra's algorithm, A*
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deals with the problem by re-inserting the corresponding nodes from the set of already
expanded nodes into theOpenset. This scheme is calledre-opening.

15.3 HSF-SPIN

HSF-SPIN merges the model checker Spin2 and the heuristic search framework HSF3. It
is basically an extension of HSF for searching state spaces generated by Promela models.

Like in Spin, two steps must be performed prior to the verification process. The first
step generates the source code of the verifier for a given Promela specification. In the
second step, the source code is compiled and linked for constructing the verifier. The
verifier then checks the model. Among other parameters the user can specify the error
type, the search algorithm, and the heuristic estimate as command line options. It is also
possible to perform interactive simulations similar to Spin. When verification is done,
statistic results are displayed and a solution trail in Spin's format is generated.

HSF-SPIN is based on Spin and its specification language Promela. However, HSF-
SPIN is not 100% Promela compatible. Promela specifications with dynamic or non-
deterministic process creation are not yet accepted in HSF-SPIN. HSF-SPIN can check
all the properties that Spin can validate with the exception of non-progress cycles. HSF-
SPIN supports sequential bit-state hashing, but not partial order reduction.

15.3.1 A First Example

The HSF-SPIN distribution includes a set of test models. For example, the file
deadlock.philosophers.prm implements a Promela model of a deadlock solu-
tion to Dijkstra's dining philosophers problem. The executablecheck is a verifier of
the model, similar to Spin's executable filepan . Deadlocks are checked by running the
verifier with argument-Ed resulting in the following output.

HSF-SPIN 1.0
A Simple Promela Verifier based on Heuristic Search Strategies.
This tool is based on Spin 3.4.5 (by G.J. Holzmann) and

on HsfLight 2.0 (by S. Edelkamp)
Verifying models/deadlock.philosophers.prm...
Checking for deadlocks with Depth-First Search...

invalid endstate (at depth 1362)
Printing Statistics...

State-vector 120 bytes, depth reached 1362, errors: 1
1341 states, stored

431 states, matched
1772 transitions (transitions performed)

25 atomic steps
1341 states, expanded

Range of heuristic was: [0..0]
Writing Trail
Wrote models/deadlock.philosophers.prm.trail

Length of trail is 1362

The verifier runs depth-first search, since it is the default search algorithm. It finds
a deadlock at depth 1,362. Following such a long trail is tedious. The A* algorithm
(option-AA ) and a simple heuristic estimate for deadlock detection (option-Ha ) finds a

2http://netlib.bell-labs.com/netlib/spin/whatispin.html
3http://www.informatik.uni-freiburg.de/ ~edelkamp/Hsf
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deadlock at optimal depth 34, expanding and storing less states (17 and 67, respectively),
and performing less transitions (73).

15.3.2 Compile- and Run-Time Options

The HSF-SPIN verifier accepts only a reduced subset of Spin's compile-time options, for
example-DVECTORSZand-DGCC. The only specific compile-time option is-DDEBUG,
to report debug information when running. Each command line argument of HSF-SPIN
has the form- Xx, whereX is the option to be set andx is the value for the option. For
example, argument-Ad sets the optionsearch algorithmto the valuedepth-first search.
By giving an option no value, the list of available values for that option is printed. For
example, executingcheck -A prints all available search algorithms.

Executing the HSF-SPIN verifier without arguments outputs all available run-time
options, e.g.-Ax , wherex is the search algorithm (A*, IDA*, DFS, NDFS, etc.);-Ex ,
wherex is the error to be checked (Deadlock, Assertion, LTL, etc.); and-Hx , wherex is
the heuristic function (Formula-based, Hamming distance, FSM distance, etc.).

15.4 Improvement of Trails

Since various explicit on-the-fly model checkers like Spin search the superimposed global
state space in depth-first manner, they report the first error that has been encountered
even if it appears at a high search depth. One natural option to improve the trail is to
impose a shallower depth on the depth-first search engine. However, there are two severe
drawbacks to this approach.

The first one is that bounds might increase the search efforts by magnitudes, since a
fixed traversal ordering in bounded depth-first exploration in large search depths might
miss the lasting error states for a fairly long time. Therefore, even if the first error is
found fast, improvements are possibly difficult to obtain. Moreover, to find shorter trails
by manual adjusting bounds is time consuming, e.g., trying to improve an optimal witness
will fail and result in a full state exploration.

The second drawback, which we callanomaly in depth-bounded search(cf. Fig-
ure 15.1) is even more crucial to this approach. It can be observed when experimenting
with explicit state model checkers that allow the search depth to be limited to a maximum,
such as it can be done in SPIN, and in which visited states are kept in a hash-table to avoid
an exponential increase in the number of expanded nodes due to the tree expansion of the
underlying graph. This implicit pruning results in the fact, that duplicate errors in smaller
depths will not necessarily be detected anymore, since they might be blocked by nodes
that are already stored. This anomaly emerges frequently in practice when atomic tran-
sitions are used, which correspond to potentially long non-branching paths in the search
tree. In other words, depth-bounded search with node caching is not complete for error
detection in shallower depths than the given bound4.

We have observed this behavior in some of our models. For example, in a model of a
telephony system after establishing a witness of length 756, the search with a new bound

4Note that to the contrary, the iterative-deepening variant of A* (IDA*) is complete, since it invokes the
depth-first search process starting with the smallest available bound and increasing this bound the smallest
possible amount.
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Figure 15.1: Anomaly in Depth-Bounded Search.

755 fails to find one of the remaining error states. For the same Promela model, error
detection alternates with different search depths bound: up to bound 67 no error is found,
from bound 68 to 139 an error is found, from bound 140 to 154 no error is found, from
155 onwards an error is again found, and so on.

A simple method to correct this anomaly is to enforcerevisitingof some states. More
precisely, a state is revisited (reexplored) when it is reached on a shorter path. Therefore,
each state is stored in the hash-table together with its smallest depth value. In fact, this
observation was already made for the Spin model checker, in which the anomaly is fixed
with the-DREACHdirective. However, since entire subtree structures for revisited states
are re-explored, this method causes a possibly exponential increase in time complexity.

Therefore, we aim at a different aspect of trail improvement; namely heuristic search.
The idea is to take the failure state or some of its defining features to set up a heuris-
tic estimate that guides the search process into the direction of that particular state. In
contrast to heuristic search strategies described in previous work [107, 109], we exhibit
refined information. The main argument is that it is easier to find a specific error situation
instead of finding any member according to a general error description. We distinguish
two heuristics and two search algorithms. The first heuristic is designed to focus ex-
actly the state that was found in the guidance trail, while the second heuristic relaxes this
requirement to important aspects for the given failure type. The two algorithms divide
in trail-directed search for safety property violation and trail-directed search for liveness
property violation.

15.4.1 Hamming Distance Heuristic

Let S be a state of the search space be given in a suitable binary encoding, i.e. as a bit
vectorS = (s1; : : : ; sk). Further on letS 0 be the desired error state we are searching
for. One coarse estimate for the number of transitions necessary to get fromS to S 0

is the number of bit-flips necessary to transformS into S 0. The estimate is called the
Hamming distanceHHD(S; S

0), determined by

HHD(S; S
0) =

kX
i=1

jsi � s0ij

Obviously,jsi � s0ij 2 f0; 1g for all i 2 f1; : : : ; kg. Note that the estimateHHD(S; S
0)

is not a lower bound, since one transition might change more than one bit in the state
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description at a time. Moreover, the Hamming distance can be refined by taking the bi-
nary encoded values of the state variables and their modifiers into account. Nevertheless,
the Hamming distance reveals a valuable ordering of the states according to their goal
distances.

15.4.2 FSM Distance Heuristic

Another distance metric centers around the local states of the finite state machines, which
together with the communication queues and variables generate system's global state
space.

Let (pc1; : : : ; pcl) be the vector of all FSM locations in a stateS, i.e. pci, i 2
f1; : : : ; lg, denotes the corresponding program counter. The FSM distance metric
HFSM(S; S 0) according to the goal stateS 0 with FSM state vector(pc0

1
; : : : ; pc0l) is cal-

culated in each FSM separately. When assuming independence of the execution in each
finite state machine, we can approximate

HFSM(S; S 0) =
kX
i=1

Di(pci; pc
0
i)

The distancesDi(pci; pc
0
i) are calculated as the minimal graph theoretical distance

from pci to pc0i, i 2 f1; : : : ; lg. These values are computed beforehand for each pair of lo-
cal states with the all-pairs shortest-path algorithm of Floyd-Warshall, so that the retrieval
of each valueDi(pci; pc

0
i) is a constant time operation. In contrast to the Hamming dis-

tance, the FSM distance abstracts from the current queue load and from values of the local
and global variables. We expect that the search will be then directed into equivalent error
states that could potentially be located at smaller search tree depths (see Figure 15.3).

15.4.3 Safety Errors

Trail-directed search for safety errors, as visualized in Figure 15.2, takes a trail as an addi-
tional input for the model-checker and searches for improvements of its length, especially
for a concise and transparent bug-finding process.

S S

S0S0

Figure 15.2: Safety Error Trail is Shortened by Trail-Directed Search.

In our case we extract the error stateS 0 to focus the search by the above heuristics
HHD(S; S

0) andHFSM(S; S 0). These estimates are integrated in the heuristic search al-
gorithm A*. Recall that is complete, and that, if the estimate is a lower bound, the path is
optimal.
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Figure 15.3: Search Trees of Ordinary Search, Full-State Trail-Directed Search, and
Partial-State Trail-Directed Search.

Figure 15.3 depicts the search tree inclusive the established trail according to
ordinary search, A* with the Hamming distance heuristicHHD, and A* with the
FSM distance heuristicHFSM . SinceHHD uses the entire error state description,
we call this searchfull-state trail-directed search, while in case ofHFSM only a
part of the error state description is used, such that this approach is referred to as
partial-state trail-directed search.

15.4.4 Liveness Properties

Remember that a trail to a violated liveness property consists of a path with an initial
prefix to a seed state and a cycle starting from that state. Therefore, we can improve the
witness trail by trail-directed A*-like search in both parts (cf. Figure 15.4).

seedseed seed

Figure 15.4: Liveness Error Trail Shortened in Two Phases.

In a first improvement phase we search for shortcuts of the path to the seed state. In
an independent second phase we perform a cycle-detection search, i.e. a search guided
by the seed state from which it has started. In both cases the proposed estimate that we
propose is the Hamming distance heuristicHHD, since we are searching for the exact seed
state, and not for an equivalent one.
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15.5 Experiments

In our experimental study selected examples for trail improvements are used. We apply
the above algorithms to trails obtained by our depth-first search algorithm, producing the
same or very similar results to SPIN's depth-first search traversal.

First we consider deadlock detection. As an example we choose the industrial GIOP
protocol [201] with a seeded bug and a model of a concurrent program that solves the
stable marriage problem [260]5. Table 15.2 shows that the witness trail is improved to
about a half of its original length. The values 67 and 65 in the GIOP model are close
to the optimal trail length of 58. In the second case the solution path obtained when
using the FSM-based heuristic is near to the optimum of 62 and notably better of the
length provided by the algorithm with the Hamming distance heuristic. However, in both
examples the search efforts are significantly higher in the case of the FSM-based heuristic
than in the case of the Hamming distance heuristic.

DFS TDA*,HHD TDA*,HFSM

GIOP Stored States 326 988 30,629
(N=2,M=1) Transitions 364 1,535 98,884

Expanded States 326 432 24,485
Witness Trail 134 67 65

Marriers Stored States 407,009 26,545 225,404
(N=4) Transitions 1,513,651 56,977 467,704

Expanded States 407,009 16,639 192,902
Witness Trail 121 99 66

Table 15.2: Improving Trails of Deadlocks with Trail-Directed Search in the GIOP and
Marriers models.

In the second set of examples we examine another safety property class, namely state
invariants. The two protocols we consider are a Promela model of an Elevator system6

and the POTS telephony protocol model [202]. Table 15.3 shows that the witness trail is
shortened by trail-directed search from 510 to 203 and from 756 to 67, respectively. In
this case there is no significant difference between the two heuristic estimates.

A bad sequencecorresponds to a violation of a liveness property. However, it does
not reflect a cyclic witness but a simple path. The results in Table 15.4 shows the im-
pact of trail improvement in this scenario for a model of a Fundamental-Mode Circuit
(FMC [299]).

The last example is trail improvement for liveness properties that include cycles at
seed states in their witness paths. Once more we use the Elevator protocol as a represen-
tative example.

Table 15.5 depicts the results of trail-directed search applied to trails obtained by
nested depth-first search (NDFS) and the improved version of this algorithm (INDFS). It
is shown that cycle seeds are found at smaller depths for the error trails of both algorithms,
while the cycle length has not been improved. On the other hand considerable work is

5The Promela sources and further information about these models can be obtained from
www.informatik.uni-freiburg.de/ ~lafuente/models/models.html

6Available fromwww.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html
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DFS TDA*,HHD TDA*,HFSM

Elevator Stored States 292 38,363 38,538
(N = 3) Transitions 348 146,827 147,277

Expanded States 292 38,423 38,259
Witness Trail 510 203 203

POTS Stored States 506,751 2,668 2,019
Transitions 1,468106 6,519 4,889
Expanded States 506,751 2,326 997
Witness Trail 756 67 67

Table 15.3: Improving Trails of Invariants Violation with Trail-Directed Search in the
Elevator and POTS models.

DFS TDA*,HHD TDA*,HFSM

FMC Stored States 270 438 419
(N = 3) Transitions 364 664 624

Expanded States 279 437 412
Witness Trail 259 73 73

Table 15.4: Improving the Trail of a Bad Sequence in the FMC model.

necessary to improve the length of the trail. Since this is only a single data point more
protocols with liveness properties are required for a better judgment.

15.6 Conclusions

While previous work ondirected model checkingconcentrates on detecting unknown
error states, the paradigm oftrail-directed model checkingcontemplates the improve-
ment of trails result from error detections, simulations, etc. On the other hand,
although paths to errors could be improved withdirected model checking, the new
paradigm proposes richer heuristics based on the information of a singleton given er-
ror states. Moreoverdirected model checkingis restricted to safety properties, while
trail-directed model checkingis able to improve error trails corresponding to such type
of properties.

Trail improvement in our directed model checking tool HSF-SPIN turns out to be
an effective aid in software design of concurrent systems. With an acceptable overhead
already existing paths are reduced by heuristic search for the established error. The first

NDFS TDA*,HHD INDFS TDA*,HHD

Elevator Stored States 171 11,205 166 10,930
(N = 2) Transitions 259 38,307 194 37,656

Expanded States 208 10,901 166 10,764
Seed at Depth 187 173 177 163
Cycle Length 90 90 90 90
Total Length 277 263 267 253

Table 15.5: Improving the Trail of Liveness Property Violation in the Elevator Protocol.
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results are promising and put forth the idea oftrail-directed model checking, that might
include more information than the mere description of the error state.

One early approach for focusing trail information isdiagnostic model checking for
real-time systems[233]. It also shifts attention to highlight failure detection, but does
not clarify why the established traces are improved compared to ordinary failure trails.
Another line of research aims not only to report what went wrong, but explain why it went
wrong. However, most approaches in this class such as assumption truth-maintenance
systems implemented in the General Diagnostic Engine (GDE [207]) turn out to scale
badly.

At the moment we concentrate on SPIN's Promela specification language, but in future
we are interested in verifying real software in Java and C. The Bandera tool [69] developed
at Kansas University allows slicing of distributed Java-Programs with an export to either
SPIN or SMV. The same research line is pursued by the Automated Software Engineering
group at NASA Ames Research Center that apply a Java byte code verifier, called Java
Path Finder [165]. On the other side, Holzmann [190] has pushed the envelope for actual
C-Code verification with the SPIN validator.



272 PAPER 15. TRAIL-DIRECTED MODEL CHECKING



Paper 16

Partial-Order Reduction in Directed
Model Checking

Alberto Lluch-Lafuente, Stefan Edelkamp, and Stefan Leue.
Institut für Informatik,
Universität Freiburg,
Georges-Köhler-Allee 51,
D-79110 Freiburg
eMail: {edelkamp,lafuente,leue}@informatik.uni-freiburg.de

In SPIN Workshop, Lecture Notes in Computer Science. Springer, 2002.

Abstract

Partial order reduction is a very succesful technique for avoiding the state explosion
problem that is inherent to explicit state model checking of asynchronous concurrent sys-
tems. It exploits the commutativity of concurrently executed transitions in interleaved
system runs in order to reduce the size of the explored state space. Directed model check-
ing on the other hand addresses the state explosion problem by using guided search tech-
niques during state space exploration. As a consequence, shorter errors trails are found
and less search effort is required than when using standard depth-first or breadth-first
search. We analyze how to combine directed model checking with partial order reduc-
tion methods and give experimental results on how the combination of both techniques
performs.

273
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16.1 Introduction

Model checking [65] is a formal analysis technique for the verification of hardware and
software systems. Given the model of the system as well as a property specification,
typically formulated in some temporal logic formalism, the state space of the model is
analyzed to check whether the property is valid or not. The main limitation of this method
is the size of the resulting state space, known as thestate explosion problem. It occurs due
to non-determinism in the model introduced by data or concurrency.

Different approaches have been proposed to tackle this problem. One of the most
successful techniques is partial order reduction [291]. This method explores a reduced
state space by exploiting the independence of concurrently executed events. Partial order
reduction is particularly efficient in asynchronous systems, where many interleavings of
concurrent events are equivalent with respect to a given property specification. Consid-
ering only one or a few representatives of one class of equivalent interleavings leads to
drastic reductions in the size of the state space to be explored.

Another technique that has been suggested in dealing with the state explosion problem
is the use of heuristic search techniques. It applies state evaluation functions to rank the
set of successor states in order to decide where to continue the search. Applying such
methods often allows to find errors at optimal or sub-optimal depths and to find errors in
models for which “blind” search strategies like depth-first and breadth-first search exceed
the available time and space resources. Optimal or near-to optimal solutions are partic-
ularly important for designers to understand the sequence of steps that lead to an error,
since shorter trails are likely to be more comprehensible than longer ones. In protocol
verification, heuristic search model checking has been shown to accelerate the search for
finding errors [108] and to shorten already existing long trails [110].

It is not a priori obvious to what extent partial order reduction and guided search can
co-exist in model checking. In fact, as we show later, applying partial-order reduction to
a state space does not preserve optimiality of the shortest path to a target state. It is the
goal of this paper to show that nevertheless, partial order reduction and directed model
checking can co-exist, and that the mutual negative influence is only minimal.

In this paper, we will focus on safety error detection in model checking. We will
establish a hierarchy of relaxation of the cycle condition for partial order reduction known
as C3, and we will classify the relaxations with respect to their applicability to different
classes of heuristic search algorithms. To the best of our knowledge, at the time of writing
no publication addressing heuristic search in model checking [108, 109, 110, 186, 68, 239,
352] has analyzed how to combine guided search with partial order reduction.

The paper is structured as follows. Section 16.2 gives some background on directed
model checking. Section 16.3 discusses partial order reduction and a hierarchy of con-
ditions for its application to different search algorithms. This Section also addresses the
problem of optimality in the length of the counterexamples. Section 16.4 presents ex-
perimental results showing how the combination of partial order reduction and directed
model checking perform. Section 16.5 summarizes the results and concludes the paper.
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16.2 Directed Model Checking

Analysts have different expectations regarding the capabilities of formal analysis tools at
different stages of the software process [68]. Inexploratory mode, usually applicable to
earlier stages of the process, one wishes to find errors fast. Infault-finding mode, which
usually follows later, one expects to obtain meaningful error trails while one is willing to
tolerate somewhat longer execution times. Directed model checking has been identified
as an improvement of standard model checking algorithms that help in achieving the
objectives of both modes.

Early approaches to directed model checking [239, 352] propose the use of best-
first search algorithms in order to accelerate the search for error states. Further ap-
proaches [109, 108, 110, 68] propose the full spectrum of classical heuristic search strate-
gies for the verification process in order to accelerate error detection and to provide op-
timal or near-to-optimal trails. Most of these techniques can be applied to the detection
of safety properties only or for shortening given error traces corresponding to liveness
violations [110].

Contrary to blind search algorithms like depth- and breadth-first search, heuristic
search exploits information of the specific problem being solved in order to guide the
search. Estimator functions approximate the distance from a given state to a set of goal
states. The values provided by these functions decide in which direction the search will
be continued. Two of the most frequently used heuristic search algorithms are A* [161]
and IDA* [213]. In the following we describe a general state expanding search algorithm
that can be either instantiated as a depth or breadth first search algorithm or as one of the
above heuristic search algorithms. We briefly the basic principles of heuristic search algo-
rithms, and consider different heuristic estimates to be applied in the context of directed
model checking for error detection. In our setting we interpret error states as goal nodes
in an underlying graph representation of the state space with error trails corresponding to
solution paths.

16.2.1 General State Expanding Search Algorithm

The general state expanding search algorithm of Figure 16.1 divides the state spaceS into
three sets: the setOpen of visited but not yet expanded states, the setClosed of visited and
expanded states and the setS n (Closed [ Open) of not yet visited states. The algorithm
performs the search by extracting states fromOpen and moving them intoClosed. States
extracted fromOpen are expanded, i.e. their successor states are generated. If a successor
of an expanded state is neither inOpen nor inClosed it is added toOpen.

Breadth-first search and depth-first search can be defined as concrete cases of the
general algorithm presented above, where the former implementsOpen as a FIFO queue
and the latter as a stack.

16.2.2 Algorithm A*

Algorithm A* treatsOpen as a priority queue in which the priority of a statev is given
by functionf(v) that is computed as the sum of the length of the path from the start
stateg(v) and the estimated distance to a goal stateh(v). In addition to the general
algorithm, A* can move states fromClosed to Open when they are reached along a



276 PAPER 16. PARTIAL-ORDER REDUCTION

procedure search
Closed ;
Open ;
Open:insert(start state)
while (Open 6= ;) do
u Open:extract()

Closed:insert(u)
if error(u) then

exit ErrorFound
for each successorv of u do

if not v 2 Closed [ Open then
Open:insert(v)

Figure 16.1: A general state expanding search algorithm.

shorter path. This step is called reopening and is necessary to guarantee that the algorithm
will find the shortest path to the goal state when non-monotone heuristics are used. For
the sake of simplicity, throughout the paper we only consider monotone heuristics which
do not require reopening [287]. Monotone heuristics satisfy that for each stateu and each
successorv of u the difference betweenh(u) andh(v) is less or equal to the cost of the
transition that goes fromu to v. Assuming monotone estimates is not a severe restriction,
since it turns out that in practical examples most proposed heuristics are indeed monotone.
If h is a lower bound of the distance to a goal state, then A* is admissible, which means
that it will always return the shortest path to a goal state [278]. Best-first search is a
common variant of A* that takes onlyh into account.

16.2.3 Iterative-deepening A*

Iterative-deepening A*, IDA* for short, is a refinement of the brute-force depth-first it-
erative deepening search (DFID) that combines the space efficiency of depth-first search
and the admissibility of A*. While DFID performs successive depth-first search iterations
with increasing depth bound, in IDA* increasing cost bounds are used to limit search iter-
ations. The cost boundf of a state is the same as in A*. Similar to A*, IDA* guarantees
optimal solution paths if the estimator is a lower bound.

16.2.4 Heuristic Estimates

The above presented search algorithms require suitable estimator functions. In model
checking, such functions approximate the number of transitions for the system to reach
an error state from a given state. During the model checking process, however, an explicit
error state is not always available. In fact, in many cases we do not know if there is an
error in the model at all. We distinguish the cases when errors are unknown and when
error states are explicit.
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If an explicit error state is given, estimates that exploit the information of this state can
be devised. Examples are estimates based on the Hamming distance of the state vectors
for the current and the targe state, and the FSM distance that uses the minimum local
distances in the state transition graph of the different processes to derive an estimat [110].

Estimating the distance tounknownerror states is more difficult. The formula-based
heuristic [108] constructs a function that characterizes error states. Given an error formula
f and starting from states, a heuristic functionhf (s) is constructed for estimating the
number of transitions needed until a states0 is reached, wheref(s0) holds. Constructing
an error formula for deadlocks is not trivial. In [108] we discuss various alternatives,
including formula based approaches, an estimate based on the number of non-blocked
processes, and an estimate derived from user-provided characterizations of local control
states as deadlock-prone.

16.3 Partial Order Reduction

Partial order reduction methods exploit the commutativity of asynchronous systems in
order to reduce the size of the state space. The resulting state space is constructed in
such a manner that it is equivalent to the original one with respect to the specification.
Several partial order approaches have been proposed, namely those based on “stubborn”
sets [342], “persistent” sets [146] and “ample” sets [290]. Although they differ in detail,
they are based on similar ideas. Due to its popularity, in this paper we mainly follow the
ample set approach. Nonetheless, most of the reasoning presented in this paper can be
adjusted to any of the other approaches.

16.3.1 Stuttering Equivalence of Labeled Transition Systems

Our approach is mainly focused to the verification of asynchronous systems where the
global system is constructed as the asynchronous product of a set of local component
processes following the interleaving model of execution. Such systems can be modeled
by labeled transitions systems.

A labeled finite transition system is a tuplehS; S0; T; AP; Li whereS is a finite set of
states,S0 is the set of initial states,T is a finite set of transitions such that each transition
� 2 T is a partial function� : S ! S, AP is a finite set of propositions andL is a
labeling functionS ! 2AP . The execution of a transition system is defined as a sequence
of states interleaved by transitions, i.e. a sequences0�0s1 : : :, such thats0 is inS0 and for
eachi � 0, si+1 = �i(si).

The algorithm for generating a reduced state space explores only some of the succes-
sors of a state. A transition� is enabledin a states if �(s) is defined. The set of enabled
transitions from a states is usually called theenabled setand denoted asenabled(s). The
algorithm selects and follows only a subset of this set called theample setand denoted as
ample(s). A states is said to befully expandedwhenample(s) = enabled(s).

Partial order reduction techniques are based on the observation that the order in which
some transitions are executed is not relevant. This leads to the concept of independence
between transitions. Two transitions�; � 2 T are independent if for each states 2 S in
which both transitions are defined the following two properties hold:

1. � and� do not disable each other:� 2 enabled(�(s)) and� 2 enabled(�(s)).
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2. � and� areconmutative: �(�(s)) = �(�(s)).

Two transitions are dependent if they are not independent. A further fundamental
concept is the fact that some transitions areinvisiblewith respect to atomic propositions
that occur in the property specification. A transition� is invisible with respect to a set
of propositionsP if for each states and for each successors0 of s we haveL(s) \ P =

L(s0) \ P .
We now present the concept ofstuttering equivalencewith respect to a property P. A

block is defined as a finite execution containing invisible transitions only. Intuitively, two
executions are stuttering equivalent if they can be defined as a concatenation of blocks
such that the atomic propositions of thei-th block of boths executions have the same
intersection withP , for eachi > 0. Figure 16.2 depicts two stuttering equivalent paths
with respect to a property in which only propositionsp andq occurr.

p; q p; q

p; q

:p;:q :p;:q

:p;:q:p; q:p; q:p; q

:p; q

Figure 16.2: Stuttering equivalent executions.

Two transition systems are stuttering equivalent if and only if they have the same set
of initial states and for each execution in one of the systems starting from an initial state
there exists a stuttering equivalent execution in the other system starting from the same
initial state. It can be shown that LTL�X formulae1 cannot distinguish between stuttering
equivalent transition systems [65]. In other words, ifM andN are two stuttering equiva-
lent transition systems, thenM satisfies a given LTL�X specification if and only ifN also
does.

16.3.2 Ample Set Construction for Safety LTL�X
The main goal of the ample set construction is to select a subset of the successors of every
state such that the reduced state space is stuttering equivalent to the full state space with
respect to a property specification given by a setP of atomic propositions. The construc-
tion should offer significant reduction without requiring a high computational overhead.
The following four conditions are necessary and sufficient for the proper construction of
a partial order reduced state space for a given property specificationP .

Condition C0: ample(s) is empty exactly whenenabled(s) is empty.

Condition C1: Along every path in the full state space that starts ats, a transition that
is dependent on a transition inample(s) does not occur without a transition in
ample(s) occurring first.

Condition C2: If a states is not fully expanded, then each transition� in the ample set
must be invisible with regard toP .

1LTL
�X is the linear time temporal logic without the next-time operatorX .
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Condition C3: If for each state of a cycle in the reduced state space, a transition� is
enabled, then� must be in the ample set of some of the states of the reduced state
space.

Observe that the approximations used inC0, C1 andC2 can be implemented indepen-
dently from the particular search algorithm used. It was shown in [65] that the complexity
of checkingC0 andC2 does not depend on the search algorithm. Checking ConditionC1
is more complicated. In fact, it has been shown to be at least as hard as checking reach-
ability for the full state space. It is, however, usually over-approximated by checking a
stronger condition [65] that can be checked independently of the search algorithm.

ConditionC3 has been implicitly proposed in [185]. In the following we focus on this
condition. We will see that the complexity of checking it depends on the search algorithm
used.

16.3.3 Dynamically Checking C3

CheckingC3 can be reduced to detecting cycles during the search. Cycles can easily be
established in depth-first search: Every cycle contains abackward edge, i.e. an edge that
links back to a state that is stored on the search stack [65]. Consequently, avoiding ample
sets containing only backward edges except when the state is fully expanded ensures
satisfaction ofC3 when using depth-first search or IDA*, since both methods perform a
depth-first traversal. The resulting stack-based characterizationC3stack can be stated as
follows[185]:

Condition C3stack: If a states is not fully expanded, then at least one transition in
ample(s) does not lead to a state on the search stack.

The implementation ofC3stack for depth-first search strategies marks each expanded
state on the stack with an additional flag, so that stack containment can be checked in
constant time. Depth-first strategies that record visited states will not consider every cycle
in the state space on the search stack, since there might exist exponentially many of them.
However,C3stack is still a sufficient condition forC3 since every cycle contains at least a
backward edge.

Detecting cycles with general state expanding search algorithms that do not perform a
depth-first traversal of the state space is more complex. For a cycle to exist, it is necessary
to reach an already visited state. If during the search a state is found to be already visited,
checking that this state is part of a cycle requires to check if this state is reachable from
itself which increases the time complexity of the algorithm from linear to quadratic in
the size of the state space. Therefore the commonly adopted approach assumes that a
cycle exists whenever an already visited state is found. Using this idea leads to weaker
reductions, since it is known that the state spaces of concurrent systems usually have a
high density of duplicate states. The resulting condition [58, 10] is defined as:

Condition C3duplicate: If a states is not fully expanded, then at least one transition in
ample(s) does not lead to an already visited state.

A proof of sufficiency of conditionC3stack for depth-first search is given in [185]. The
proof of sufficiency of conditionC3duplicate when combined with a depth-first search is
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given by the fact thatC3duplicate impliesC3stack; if at least one transition inample(s) has
a non-visited successor this transition certainly does not lead to a successor on the stack.

In order to prove the correctness of partial order reduction with conditionC3duplicate
for general state expanding algorithms in the following lemma, we will use induction on
the state expansion ordering, starting from a completed exploration and moving back-
wards with respect to the traversal algorithm. As a by-product the more general setting
in the lemma also proves the correctness of partial order reduction according to condition
C3duplicate for depth-first, breadth-first, best-first, and A* like search schemes. The lemma
fixes a states 2 S after termination of the search and ensures that each enabled transition
is executed either in the ample set or in a state that appears later on in the expansion pro-
cess. Therefore, no transition is omitted. Applying the lemma to all statess in S implies
C3, which, in turn, ensures a correct reduction.

Lemma 13 For each states 2 S the following is true: when the search of a general
search algorithm terminates, each transition� 2 enabled(s) has been selected either in
ample(s) or in a states0 such thats0 has been expanded afters.

Proof: Let s be the last expanded state. Every transition� 2 enabled(s) leads to
an already expanded state, otherwise the search would have been continued. Condition
C3duplicate enforces therefore that states is fully expanded and the lemma trivially holds
for s.

Now suppose that the lemma is valid for those states whose expansion order is greater
thann. Let s be then-th expanded state. Ifs is fully expanded, the lemma trivially
holds fors. Otherwise we have thatample(s) � enabled(s). Transitions inample(s)
are selected ins. Sinceample(s) is accepted by conditionC3duplicate there is a transition
� 2 ample(s) such that�(s) leads to a state that has not been previously visited nor ex-
panded. Evidently the expansion order of�(s) is higher thann. ConditionC1 implies that
the transitions inample(s) are all independent from those inenabled(s) n ample(s) [65].
A transition  2 enabled(s) n ample(s) cannot be dependent from a transition in
ample(s), since otherwise in the full graph there would be a path starting with and
a transition depending on some transition inample(s) would be executed before a tran-
sition inample(s). Hence, transitions inenabled(s) n ample(s) are still enabled in�(s)
and contained inenabled(�(s)). By the induction hypothesis the lemma holds for�(s)
and, therefore, transitions inenabled(s) n ample(s) are selected in�(s) or in a state that
is expanded after it. Hence the lemma also holds fors. ut

16.3.4 Statically Checking C3

In contrast to the previous approaches the method to be presented in this Section explic-
itly exploits the structure of the underlying interleaving system. Recall that the global
system is constructed as the asynchronous composition of several components. The au-
thors of [228] present what they call astaticpartial order reduction method based on the
following observation. Any cycle in the global state space is composed of a local cycle,
which may be of length zero, in the state transition graph of each component process.
Breaking every local cycle breaks every global cycle. The structure of the processes of
the system is analyzed before the global state space generation begins. The method is
independent from the search algorithm to be used during the verification.
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Some transitions are marked are with a special flag, calledsticky. Sticky transitions
enforce full expansion of a state. Marking at least one transition in each local cycle as
sticky guarantees that at least one state in each global cycle is fully expanded, which
satisfies conditionC3. The resultingC3static condition is defined as follows:

Condition C3static: If a states is not fully expanded then no transition inample(s) is
sticky.

Selecting one sticky transition for each local cycle is a naive approach that can be
made more effective. The impact of local cycles on the set of variables of the system can
be analyzed in order to establish certain dependencies between local cycles. For example,
if a local cycleC1 has an overall incrementing effect on a variablev, for a global cycle to
exist, it is necessary (but not sufficient) to executeC1 in combination with a local cycle
C2 that has an overall decrementing effect onv. In this case one can select only a sticky
transition for this pair of local cycles.

16.3.5 Hierarchy of C3 Conditions

Figure 16.3 depicts a diagram with all the presentedC3conditions. Arrows indicate which
condition enforeces which other. In the rest of the paper we will say that a conditionA is
stronger than a conditionB if A enforcesB. The dashed arrow arrow fromC3duplicate to
C3stack denotes that when search is done with a depth-first search based algorithmC3stack
enforcesC3duplicate but not viceversa. The dashed regions contain the conditions that can
be correctly used with general state expanding algorithms, and those that work only for
depth-first search like algorithms. For a given algorithm, the arrows also denote that a
condition will produce better or equal reduction.

C3 C3stack C3duplicate

C3static

Depth-first search based algorithms

General state
expanding algorithms

Figure 16.3: C3 conditions.

16.3.6 Solution Quality and Partial Order

One of the goals of directed model checking is to find shortest paths to errors. Although
from a practical point of view near-to optimal solutions may be sufficient to help designers
during the debugging phase, finding optimal counterexamples still remains an important
theoretical question. Heuristic search algorithms require lower bound estimates for guar-
anteeing optimal solution lengths.
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Partial order reduction, however, does not preserve optimality of the solution length
for the full state space. In fact, the shortest path to an error in the reduced state space may
be longer than the shortest path to an error state in the full state space. Intuitively, the
reason is that the concept of stuttering equivalence does not make assumptions about the
length of the equivalent blocks. Suppose that the transitions� and� of the state space
depicted in Figure 16.4 are independent and that� is invisible with respect to the set of
propositionsp. Suppose further thatp is the only atomic proposition occurring in the
safety property we want to check. With these assumptions the reduced state space for
the example is stuttering equivalent to the full one. The shortest path that violates the
invariant in the reduced state space is��, which has a length of 2. In the full one the path
� is the shortest path to an error state and the error trail has a length of 1. Section 16.4
presents experimental evidence for a reduction in solution quality when applying partial
order reduction.

:p

:p

�

� �

�

p

p

:p

�

�

p

p

Figure 16.4: Example of a full state space (left) and a reduction (right).

16.4 Experiments

The experimental results that we report in this Section have been obtained using our ex-
perimental directed model checker HSF-SPIN2 [108] for which we have implemented
the described reduction methods. All results were produced on a SUN workstation,
UltraSPARC-II CPU with 248 Mhz.

We use a set of Promela models as benchmarks including a model of a leader
election protocol3 [84] (leader), the CORBA GIOP protocol [201] (giop), a telephony
model4 [202] (pots), and a model of a concurrent program that solves the stable mar-
riage problem [260] (marriers). The considered versions of these protocols violate certain
safety properties.

16.4.1 Exhaustive Exploration

The objective of the first set of experiments is to show how the different variants of the
C3 condition perform. We expect that strongerC3 conditions according to hierarchy in
Figure 16.3 lead to weaker reductions in the number of stored and expanded states and
transitions.

2Available atwww.informatik.uni-freiburg.de/ lafuente/hsf-spin
3Available atnetlib.bell-labs.com/netlib/spin
4Available atwww.informatik.uni-freiburg.de/ lafuente/models/models.html
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Model Reduction States Transitions Time
marriers No Reduction 96,295 264,053 20.6

C3stack 29,501 37,341 5.5
C3duplicate 72,536 111,170 17.5
C3static 57,067 88,119 10.7

leader No Reduction 54,216 210,548 36.3
C3stack 963 4,939 4.4
C3duplicate 1,417 6,899 5.0
C3static 2,985 7,527 4.8

giop No Reduction 664,376 2,579,722 259.3
C3stack 65,964 90,870 23.1
C3duplicate 284,083 605,147 115.0
C3static 231,102 445,672 79.0

Table 16.1: Exhaustive exploration with depth-first search and several reduction methods.

We use the marriers, leader and giop protocols in our experiments. The pots model is
too large to be explored exhaustively. In this and all following experiments we have se-
lected the biggest configuration of these protocols that can still be exhaustively analyzed.
Exploration is performed by depth-first search.

Table 16.1 depicts the size of the state space as a result of the application of different
C3 conditions. The number of transitions performed and the running time in seconds are
also included. For each model, the first row indicates the size of the explored state space
when no reduction is used.

As expected stronger conditions offer weaker reductions. This loss of reduction is
especially evident in the giop protocol, where the two conditions potentially applicable in
A*, namely C3duplicate andC3static, are worse by about a factor of 4 with respect to the
condition that offers the best reduction, namelyC3stack.

For the marriers and giop protocols the static reduction yields a stronger reduction
than conditionC3duplicate. Only for the leader election algorithm this is not true. This
is probably due to the relative high number of local cycles in the state transition graph
of the processes in this model, and to the fact that there is no global cycle in the global
state space. Since our implementation of the static reduction considers only the simplest
approach where one transition in each cycle is marked as sticky, we assume that the results
will be even better with refined methods for characterizing transitions as sticky.

In addition to the reduction in space consumption, partial order reduction also provides
reduction in time. Even though the overhead introduced by the computation of the ample
set and the static computation prior to the exploration whenC3static is used, time reduction
is still achieved in all cases.

16.4.2 Error Finding with A* and Partial Order Reduction

The next set of experiments is intended to highlight the impact of various reduction meth-
ods when detecting errors with A*. More precisely, we want to compare the twoC3
conditionsC3duplicate andC3static that can be applied jointly with A*.

Table 16.2 shows the effect of applyingC3duplicate andC3static in conjunction with A*.
The table has the same format as the previous one, but this time the length of the error
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Model Reduction States Transitions Time Length
marriers no 5,077 12,455 0.93 50

C3duplicate 2,988 4,277 0.51 50
C3static 1,604 1,860 0.31 50

pots no 2,668 6,519 1.57 67
C3duplicate 1,662 3,451 1.08 67
C3static 1,662 3,451 1.00 67

leader no 7,172 22,876 6.87 58
C3duplicate 65 3,190 4.76 77
C3static 399 3,593 4.88 66

giop no 31,066 108,971 26.50 58
C3duplicate 21,111 48,870 16.68 58
C3static 12,361 24,493 9.36 58

Table 16.2: Finding a safety violation with A* and several reduction methods.

trail is included. Similar to SPIN5, we count a sequence of atomic steps (respectively
expansions) as one unique transition (expansion), but length of the error trail is given in
steps in order to provide a better idea of what the user of the model checker gets.

As expected, both conditions achieve a reduction in the number of stored states and
transitions performed. Solution quality is only lost in the case of leader. This occurs
also in experiments done with IDA*. In the same test caseC3static requires the storage
of more states and the execution of more transitions thanC3duplicate. The reasons are
the same as the ones mentioned in the previous set of experiments. On the other hand,
C3duplicate produces a longer error trail. A possible interpretation is that more reduction
leads to higher probability that the anomaly that causes the loss of solution quality occurs.
In other words, the bigger the reduction is, the longer the stuttering equivalent executions
and, therefore, the longer the expected trail lengths become. Table 16.2 also shows that
the overhead introduced by partial order reduction and heuristic search does not avoid
time reduction.

16.4.3 Error Finding with IDA* and Partial Order Reduction

We also investigated the effect of partial order reduction when the state space exploration
is performed with IDA*. The test cases are the same of the previous Section. Partial order
reduction with IDA* uses the cycle conditionC3stack.

Table 16.3 depicts the results on detecting a safety error with and without applying
partial order reduction. The table shows the total number of transitions performed, the
maximal peak of stored states and the length of the provided counterexamples. As in
the previous set of experiments, solution quality is only lost when applying partial order
reduction in the leader election algorithm. On the other hand, this is also the protocol
for which the best reduction is obtained. We assume that the reason is the same as indi-
cated in the previous set of experiments. In addition, the overhead introduced by partial
order reduction and heuristic search does avoid time reduction as explained for previous
experiments.

5Available atnetlib.bell-labs.com/netlib/spin/whatispin.html
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Model Reduction States Transitions Time Length
marriers no 4,724 84,594 19.29 50

yes 1,298 4,924 8.40 50
pots no 2,422 46,929 36.52 67

yes 1,518 20,406 28.37 67
leader no 6,989 141,668 210.67 56

yes 55 50,403 73.90 77
giop no 30,157 868,184 225.54 58

yes 7,441 102,079 78.43 58

Table 16.3: Finding a safety violation with IDA* with and without reduction.

16.4.4 Combined Effect of Heuristic Search and Partial Order

In this Section we are interested in analyzing the combined state space reduction effect
of partial order reduction and heuristic search. More precisely, we have measured the
reduction ratio (size of full state space vs. size of reduced state space) provided by one of
the techniques when the other technique is enabled or not, as well as the reduction ratio
of using both techniques simultaneously.

marriers N C
H 2.3 6.5
PO 40.8 117.6
H+PO 267.0
pots N C
H 5.9 8.4
PO 1.4 1.6
H+PO 9.5
leader N C
H 1.9 2.6
PO 2.7 3.2
H+PO 5.9
giop N C
H 1.3 1.3
PO 2.6 2.5
H+PO 3.3

H PO

H+PO

(PO,N)

(H+PO)

(H,N)

(PO,C) (H,C)

Figure 16.5: Table with reduction factor due partial order and heuristic search (left) and
an explanatory diagram (right).

The Table on the left of Figure 16.5 indicates the reduction factor achieved by par-
tial order and heuristic search when A* is used as the search algorithm. The Figure
also includes a diagram that helps to understand the table. The reduction factor due to
a given technique is computed as the number of stored states when the search is done
without applying the respective technique divided by the number of stored states when
the search is done applying the technique. Recall that when no heuristic is applied, A*
performs breadth-first search. A search is represented in the diagram by a circle labeled
with the applied technique(s), namely heuristic search (H), partial-order reduction (PO) or
both (H+PO). The labels of the edges in the diagram refer to the cells of the table which
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contain the measured reduction factors. The leftmost column of the table indicates the
technique(s) for which the reduction effect is measured. When testing the reduction ratios
of the methods separately, we distinguish whether the other method is applied (C) or not
(N).

In some cases the reduction factor provided by one of the techniques when work-
ing alone ((H,N) and (PO,N)) improves when the other technique is applied ((H,C) and
(PO,C)). This is particularly evident in the case of the marriers model, where the reduction
provided by heuristic search is improved from 2.3 to 6.5 and that of partial order reduction
increases from 40.8 to 117.6. The expected gain of applying both independently would
be2:3 � 40:8 = 93:8 while the combined effect is a reduction of267:0 which indicates
a synergetic effect. However, as illustrated by the figures for the giop model, synergetic
gains cannot always be expected.

16.5 Conclusions

When combining partial order reduction with directed search two main problems must be
considered. First, common partial order reduction techniques require to check a condition
which entails the detection of cycles during the construction of the reduced state space.
Depth-first search based algorithms like IDA* can easily detect cycles during the explo-
ration. On the other side, heuristic search algorithms like A* are not well-suited for cycle
detection. Stronger cycle conditions or static reduction methods have to be used. We have
established a hierarchy of approximation conditions for ample set conditionC3 and our
experiments show that weaker the condition, the better the effect on the state space search.

Second, partial order reduction techniques do not preserve optimality of the length of
the path to error states. In other words, when partial order is used there is no guarantee to
find the shortest counterexample that lead to an error, which is one of the core objectives of
the paradigm of directed model checking. In current work we are analyze the possibility
of avoiding this problem by exploiting independence of events to shorten error trails.

Experimental results show that in some instances, partial order reduction has positive
effects when used in combination with directed search strategies. Although solution qual-
ity is lost in some cases, significant reductions can be achieved even when using A* with
weaker methods than classical cycle conditions. Static reduction, in particular, seems
to be more promising than other methods applicable with A*. Partial order reduction
provides drastic reductions when error detection is performed by IDA*. We have also
analyzed the combined effect of heuristics and reduction, showing than in most cases the
reduction effect of one technique is lightly accentuated by the other. Experimental re-
sults also show that both techniques reduce running time even though the overhead they
introduce.
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Abstract

In practice due to entailed memory limitations the most important problem in model
checking is state space explosion. Therefore, to prove the correctness of a given design
binary decision diagrams (BDDs) are widely used as a concise and symbolic state space
representation. Nevertheless,BDDsare not able to avoid an exponential blow-up in gen-
eral. If we restrict ourselves to find an error of a design which violates a safety property,
in many cases a complete state space exploration is not necessary and the introduction of
a heuristic to guide the search can help to keep both the explored part and the associated
BDD representation smaller than with the classical approach.

In this paper we will show that this idea can be extended with an automatically gen-
erated heuristic and that it is applicable to a large class of designs. Since the proposed
algorithm can be expressed in terms ofBDDs it is even possible to use an existent model
checker without any internal changes.
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17.1 Introduction

To formulate the specification properties of a given design many different temporal log-
ics are available, each of them with a different expressive power: (Fair-) CTL [64] is a
branching time logic, LTL [237] is a linear time logic and CTL* [118] is a superset con-
taining both of them. CTL* itself is a subset of the�-calculus [224] which in addition
allows to verify bisimulation and other more complex properties.

In practice, however, the characteristics people mainly try to verify are simple safety
properties that are expressible in all of the logics mentioned above. They can be checked
through a simple calculation of all reachable states. Unfortunately, this computation can
become intractable for systems consisting of several asynchronously interacting modules.

AlthoughBDDs [50] allow a succinct representation of a system they cannot always
avoid an increase inBDD-sizes caused by the typical exponential blow-up of states. How-
ever, model checking is not only used to show the correctness of a complete system, but
also as a very efficient method to find errors during the construction phase in order to
avoid cost intensive correction phases later on.

In early design phases a system typically contains many errors such that nobody would
expect a successful verification. We should try to detect these errors as soon as possible
to avoid the calculation of the entire state space. Local model checking methods [125]
attempt to exploit only a small part of the state space while global model checking tech-
niques usually calculate all reachable states. Moreover, their fix-point calculation requires
a backward traversal and a lot of work is spent in treating unreachable states. Hence, in
order just to detect an error local model checking methods [333] can be more efficient.
So a suitable application of model checking can replace parts of the classical debugging
and testing work because it allows the detection of more errors in less time.

The method proposed in this paper focuses on safety properties. Starting with the set
of initial states it performs a forward traversal of the system and exploits only that part of
the set of reachable states that is most likely to lead to an error state. This is sufficient to
construct a counter example of the violated property helping the designer to understand
and fix the failure of the system. To guide the search a heuristic estimates the number of
transition steps necessary to reach the error state. If the heuristic fulfills a certain property
it guarantees the detection of a minimal counter example.

Our algorithm detects errors in systems unable to be verified by traditional symbolic
model checking since theBDDs exhaust the available memory resources. Even if we
assume pure forward traversal, after several iterations not containing an error state the
large amount of states that has to be stored by an unguided search becomes too big; while
heuristic search finds the error within an acceptable amount of time without suffering
from memory problems.

Since all states have to be visited, our method fails to entirely validate a correct sys-
tem, but this should be postponed until the end of the construction phase when most of the
errors have been removed and the correctness of the system is more probable. The suc-
cessful verification of large systems can be a very time consuming work which requires
elaborated methods and a lot of experience. This results in a manually driven process with
a lot of expertise demanding a specialist. We recommend a distinction of a verification to
prove the correctness of a system and the use of a model checker as debugging tool, since
the ultimate goal is to tediously prove the system only once and not after every detection
and correction of an error.
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The paper is structured as follows. In Section 2, we introduce some basics about
BDDs. Section 3 addresses traditional symbolic model checking and Section 4 its pro-
posed enhancement with a heuristic. The automatic inference of the heuristic is the topic
of Section 5. Finally, Section 6 presents our results in verifying a buggy design of the
tree-arbiter and the DME.

17.2 BDD Basics

Ordered binary decision diagrams (OBDDs) introduced by Bryant [50] are a graphical
representation for boolean functions. ABDDG(f; �) with respect to the functionf and
the variable ordering� is an acyclic graph with one source and two sinks labelled with
true and false. All other (internal) nodes are labelled with a boolean variablexi of f
and have two outgoing edgesleft and right. For all edges from anxi labelled node to
an xj labelled node we have�(i) < �(j), such that on every path inG the variables
are tested in the same order and at most once. ReducedBDDs with respect to a fixed
variable ordering are a canonical representation for boolean functions. ABDD is reduced
if isomorphic sub-BDDs are merged and nodes whose outgoing edges lead to the same
successor are omitted. ReducedBDDsare build directly, integrating the reduction rules
into the construction algorithm. The variable ordering� can be choosen freely, but it has
a great influence on the size of theBDDs, e.g. there are functions which haveBDDsof
linear size for a “good” and of exponential size for a “bad” ordering. The determination of
an optimal ordering is an NP-hard problem but, for most applications, there exist several
heuristics for non-optimal but “good” orderings [34]. Another method to improve the
ordering is dynamic variable reordering [309] which is applied during the verification in
case theBDDsbecome too large. In the following we will only speak ofBDDs, however,
we always mean reduced orderedBDDs.

In model checkingBDDs help to overcome the memory limitations of explicit state
representation methods [259]. They represent both sets of states and the transition re-
lation. Model checking temporal logic properties can be reduced to the calculation of
fix-points. This calculation can be performed efficiently treating lots of states in each
iteration step.

An important task is to determine the set of reachable states. Starting with the set
of initial states the fix-point iteration corresponds to a breadth-first search until no more
new states are found. This is sufficient to check safety and simple reachability properties.
To verify more complicated properties typically a backward state traversal is applied to
calculate the necessary fix-points. As a drawback many unreachable states have to be
represented because the reachability status of a given state is not known at the beginning
of the verification.

17.3 Model Checking

First we expose the structure of the transition relation and examine the calculations that
have to be performed to check safety properties with a classical symbolic model checker.
Thereafter, we discuss alternative methods that try to overcome the weaknesses of the
breadth-first search approach.
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17.3.1 Traditional Symbolic Model Checking

In order to apply a model checker we need a description of the system and the safety
property to be verified. The�-calculus is an example of a logic in which both descriptions
can be expressed. The two predicatesStart and Goal describe the set of initial states
and the set of error states, respectively. In addition a predicateTrans is required that
evaluates totrue if and only if there is a transistion between two successive states. For an
interleaving model the predicateTransis defined by the following equation:

Trans(States;Statet) =
n_
i=1

Transi(s; ti) ^ CoStabi(s; t):

Systems typically consist of several interacting modules. The interaction can be syn-
chronous, asynchronous or interleaving. Here the verification of an interleaving model
is described while for the verification of the other two models only small changes in the
transition relation have to be made.

The predicateCoStabi describes that all modules except modulei preserve their state
and the predicateTransi describes the transition relation of the single modulei that might
depend on the states of up to all other (n) modules but that only changes its own statesi
into ti. The state of a single module consists of several(m) variables of type: bool, enu-
merated or integer (with limited values) or a combination of them. They are all translated
into boolean variables such that for all modules we end up with an expression of the form:

Transi(States;ModuleStateti) =
m̂

j=1

Ti;j(s; ti;j);

whereti;j describes the state of variablej in modulei. The transitionTi;j of a single
variablesi;j describes the possibility to change its value according to its input variables
or to persist in its state. A backward traversal of the system then calculates the following
fix-point:

� FGoal(States):Goal(s) _ (9State succ:Trans(s; succ) ^ FGoal(succ)):

After determining the set of states satisfying this fix-point we check if it contains the
initial state. As said above, the disadvantage of this approach is that many unreachable
states have to be stored. The alternative is to start with the set of initial states and to make
a forward traversal calculating the transitive closureReachof the transition relation:

� Reach(States):Start(s) _ (9Stateprev:Trans(prev; s) ^ Reach(prev)):

The efficiency can be improved: After each fix-point iteration we check if the set con-
tains an error state in which case the verification can be aborted. Based on an interleaving
(asynchronous) combination of modules, however, each order of transitions of the single
modules has to be taken into account leading to state space explosion. Therefore, the sole
calculation of reachable states might be impossible.

17.3.2 Other Approaches

An attempt to overcome the disadvantage of the unreachable states to be stored in a back-
ward traversal islocal model checking[67, 333]. It applies a depth-first search allowing
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an intelligent choice of the next state to be expanded. It significantly reduces the verifica-
tion time in case properties are checked that do not necessarily require the traversal of the
whole state space. In general, local model checking uses an explicit state representation
such that it cannot take profit from the elegant and space efficient representation based on
BDDs.

An attempt to combinepartial order reductionwith BDDswas made in [10]. Never-
theless, it was not yet as successful as globalBDD-model checking.

Bounded model checkingperforms symbolic model checking withoutBDDs using
SATdecision procedures [36]. The transition relation is unrolledk steps for a boundedk.
The bound is increased until an error is found or the bound is large enough to guarantee
the correctness of a successful verification. The major disadvantage of bounded model
checking is the fact that it is difficult to guarantee a successful verification, since the
necessary bound will be rather large and difficult to determine. Therefore, similar to our
approach the most important profit of this method is a fast detection of errors.

Validation with guided search[352] is the only other approach known to the authors
which tries to profit from a heuristic to improve model checking. The measure is the
Hamming distance, i.e. the minimum number of necessary bit-flips to transfer a given
bit-vector of a state to an erroneous one. For our purposes this heuristic is too weak. The
lower bound presented in Section 17.5 has a larger range of values leading to a better
selection of states to be expanded. Furthermore, the pure effect of the heuristic is not
clearly evaluated. The authors compare the number of visited and explored states with a
breadth-first search, but unfortunately theBDD-sizes for the state representation, the key
performance measure, are not mentioned. It does not become clear which parts of the
verification are performed withBDDsand which parts are dealt otherwise. The proposed
approach is combined with two other methods:target enlargementsandtracks. The for-
mer corresponds to a certain kind of bidirectional search, which is not a heuristic but a
search strategy close to perimeter search [82] and the latter seems to be highly manually
driven and not suitable for automatisation, one of our principal aims. The combination of
their methods to find an error leads to good results, but in our opinion, it seems that the
heuristic only contributes a small part to this advancement.

In contrast our algorithms entirely utilizes theBDD data structure such that the only
interesting point are the sizes of theBDDsand not the number of states represented by it.
In the examples of Section 17.6 the overall time and memory efficiency of our approach
is shown to outperform traditionalBDD breadth-first search.

17.4 Directed Model Checking

In BDD based breadth-first-search all states on the search horizon are expanded in one
iteration step. In contrast our approach is directed by a heuristic that determines a subset
of the states on the horizon to be expanded which most promisingly leads to an error state.
Non-symbolic heuristic search strategies are well studied. A� [161] is an advancement of
Dijkstra's algorithm [80] for determining the shortest paths between two designated states
within a graph.

The additional heuristic search information helps to avoid a blind breadth-first-search
traversal but still suffers from the problem that a huge amount of states has to be stored. In
this section an algorithm similar to A� is proposed to improve symbolic model checking.
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17.4.1 BDDA*

Edelkamp and Reffel have shown howBDDshelp to solve heuristic single-agent search
problems intractable for explicit state enumeration based methods [112]. The proposed
algorithmBDDA* was evaluated in the Fifteen-Puzzle and within Sokoban.

The approach exhibits a new trade-off between time and space requirements and tack-
les the most important problem in heuristic search, the overcoming of space limitations
while avoiding a strong penalty in time. The experimental data suggests thatBDDA* chal-
lenges both breadth-first search usingBDDsand traditionalA*. Sokoban is intractable to
be solved with explicit state enumeration techniques (unless very elaborated heuristics,
problem graph compressions and pruning strategies are applied) and the Fifteen-Puzzle
cannot be solved with traditional symbolic search methods. It is worthwhile to note that
especially in the Sokoban domain only very little problem specific knowledge has been
incorporated to regain tractability.

The approach was successfully applied in AI-planning [113]. The authors propose a
planner that usesBDDs to compactly encode sets of propositionally represented states.
Using this representation, accurate reachability analysis and backward chaining are ap-
parently be carried out without necessarily encountering exponential representation ex-
plosion. The main objectives are the interest in optimal solutions, the generality and the
conciseness of the approach. The algorithm is tested against a benchmark of planning
problems and lead to substantial improvements to existing solutions. The most difficult
problems in the benchmark set were only solvable when additional heuristic information
in form of a (fairly easy) lower bound was given.

17.4.2 Heuristics and A*

Let h�(s) be the length of the shortest path froms to a goal state andh(s) its estimate. A
heuristic is calledoptimisticif it is always a lower bound for the shortest path, i.e., for all
statess we haveh(s) � h�(s). It is calledconsistentif we haveh(u) � h(v) + 1, with
v being the successor ofu on any solution path. Consistent heuristics are optimistic by
definition and optimistic heuristics are also calledlower bounds.

Heuristics correspond to a reweighting of the underlying problem graph. In the
uniformly weighted graph we assign the following assignment to the edgesw(u; v) =
1 � h(u) + h(v). Fortunately, up to an additional offset the shortest paths values remain
the same and no negative weighted loops are introduced. Consistent heuristics correspond
to a positively weighted graph, while optimistic heuristics may lead to negative weighted
edges.

In A* there are three sets. The setvisitedof states already expanded, the setOpencon-
taining the states next to be expanded and the states which have not yet been encountered.
During the calculation every state always belongs to exactly one of these sets. When a
state is expanded it is moved fromOpento visitedand all its successors are moved to
Openunless they do not already belong tovisited. In this case they are inserted back to
Open(reopened) only if the current path is shorter than the one found before. This is done
until the goal state is encountered or the setOpenis empty. In the later case there exists
no path between an initial state and a goal state. The correctness result ofA* states that
given an optimistic estimate the algorithm terminates with the optimal solution length.
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17.4.3 Tailoring BDDA* for Model Checking

In theBDD version ofA* the setVisitedis omitted. To preserve correctness the successors
of the expanded state are always inserted intoOpen. This relates to the expansion of the
entire search tree corresponding to the reweighted graph. The closely related explicit
state enumeration technique is iterative deepeningA*, IDA* for short [213]. With an
increasing bound on the solution length the search tree is traversed in depth-first manner.
Note, IDA* was the first algorithm that solved the Fifteen Puzzle. The admissibility of
BDDA* is inherited by the fact that Korf has shown that given an optimistic heuristic
IDA* finds an optimal solution.

For model checking omitting the setVisitedturns out not to be a good choice in gen-
eral such that the option to update the set of visited states in each iteration has been
reincarnated. In difference toA*, however, the length of the minimal path to each state
is not stored. The closest corresponding single-state space algorithm isIDA* with trans-
position tables [305]. Transposition tables store already encountered states to determine
that a given state has already been visited. This pruning strategy avoids so-calleddupli-
catesin the search. However it is necessary to memorize the corresponding path length to
guarantee admissibility for optimistic heuristics. Fortunately one can omit this additional
information when only consistent heuristics are considered. In this case the resulting
cost-function obtained by the sum of path lengthg and heuristic valueh is monotone.

The setOpenis a priority queue sorted according to the costs of the states. The costs
of a states is the sum of the heuristic and the number of steps necessary to reachs.
The priority queueOpencan be symbolically represented as aBDD Open(costs, state)
in which the variables for the binary representation of the costs have smaller indices than
those for the representation of states. In Figure 17.1 the algorithm is represented in pseudo
code. TheBDD Opencorresponds to a partitioning of the states according to their costs.

Due to the variable ordering a newBDD operation (not included in standardBDD
libraries) might efficiently combine three steps in the algorithm: the determination of
the set of states with minimal costs contained in the queue, its costsfmin, and the new
queue without these states. The function follows the path from the root node by always
choosing the left successor – provided it does not directly lead tofalse– until the first state
variable is encountered. This node is the root ofMin, the persecuted path corresponds to
the minimal costsfmin. The setOpenexcluding the just expanded states is obtained
whenMin is replaced byfalseprobably followed by some necessary applications of the
BDD-reduction rules.

Note, that the range of the costs has to be chosen adequately to avoid an overflow.
To determine the setSuccthe costs of the new states have to be calculated. As inOpen
only the costs of a state are stored and not the path-length the new costs are the result
of the formulaf 0 � h0 + 1 + h with f 0 andh0 being the costs and the heuristic value of
the predecessor. The value 1 is added for the effected transition andh is the estimate
for the new state. Afterwards it remains to update the setVisitedwhich is merged with
Min. Furthermore the new statesSuccare added toOpenwhich should contain no states
comprised inVisited.
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Input BDD Startof the initial,BDD Goalof the erroneous states,BDD Transrepresenting
the transition relation, andBDD Heuristicfor the estimate of the entire search space.
Output “Error state found!” if the algorithm succeeds in finding the erroneous state,
“Complete Exploration!”, otherwise.

Visited(State s) :=false
Open(Costs f, State s) :=Start(s)^ Heuristic(f,s)
while (9 s1;f1: Open(f1;s1))

if (9 s0;f0: Open(f0;s0) ^ Goal(s0)) return “Error state found!”
Min(f,s) := Open(f,s) ^ f=fmin
Succ(f,s) := 9 f0;s0;h;h0: Heuristic(h,s) ^ Heuristic(h0;s0) ^

Min(f0;s0) ^ Trans(s0,s)^ f=f0�h0 + 1+h
Visited(s) :=Visited(s)_ 9 f. Min(f,s)
Open(f,s) := (Open(f,s)_ Succ(f,s))^ :Visited(s)

return “Complete Exploration!”

Figure 17.1: Heuristic based algorithm in Model Checking.

17.5 Inferring the Heuristic

The heuristic estimates the distance (measured in the number of transition steps) from a
state to an error state. According to the type of the system such a step can have different
meanings. For a synchronous system one step corresponds to one step in each module.
In an asynchronous system a subset of all modules can perform a step and finally for an
interleaving model exactly one module executes a transition. The challenging question is
how to find a lower bound estimate (optimistic heuristic) for typical systems.

First of all,h � 0 would be a valid choice, but in this caseA* exactly corresponds to
breadth-first-search. Therefore, the values of the heuristic have to be positive to serve as
an effective guidance in the search: The more diverse the heuristic values the better the
classification of states. In this case we select most promising states for failure detection
and distinguish them from the rest. As an effect in each iteration only a few states have to
be expanded.

The next intuitive heuristic is the Hamming distance mentioned above. The measure
is optimistic if in one transition only onexi can change. Unfortunately, this is not true in
general. The main drawback of this heuristic, however, is that in general the number of
variables necessary to define an error state are few in comparison to the number of state
variables. Hence, the Hamming distance typically has a small range of values and the
number of different partitions of states are too less to significantly reduce the number of
states to be expanded.

In the sequel we propose an automatic construction of a heuristic only based on the
safety property and the structure of the transition function. We assume that the formula
f describing the error states is a boolean formula using^ and_ while negation is only
applied directly to variables. In CTL the safety property with respect to the propertyf is
denoted by AG(:f).
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Heuf (s) =

8>>><
>>>:

mink=1;:::;n Heufk(s); if f = f1 _ � � � _ fn
maxk=1;:::;n Heufk(s); if f = f1 ^ � � � ^ fn
Heusi;j(s); if f = si;j
Heusi;j(s); if f = si;j

Table 17.1: Property-dependent determination of heuristic values.

g(x1; x2) Heusi;j(s) = if (si;j) then 0 else:
0 1
x1 ^ x2 1 + max fHeux1(s);Heux2(s)g:(x1 ! x2) 1 + max fHeux1(s);Heux2(s)g
x1 1 + Heux1(s):(x2 ! x1) 1 + max fHeux1(s);Heux2(s)g
x2 1 + Heux2(s)
x1 6$ x2 1 + (if (x1)minfHeux1(s);Heux2(s)g

else min fHeux1(s);Heux2(s)g)
x1 _ x2 1 + minfHeux1(s);Heux2(s)g

Table 17.2: Transition-dependent determination of heuristic values forti;j =
g(si1;j1; si2;j2). The remaining 8 functions are obtained by duality.

17.5.1 Definition

Table 17.1 describes the transformation of the formulaf into a heuristic Heuf . In the first
two cases the sub-formulasfk must not contain another_-operator (respectivelŷ) at the
top level.

With this construction the heuristic value depends only on Heusi;j(s) and Heusi;j (s)
which rely on the structure of the transition relation. As explained in Section 17.3.1
the transition of variablej in modulei is described byTi;j(s; ti;j). The devicesTi;j are
typically some standard electronic elements such as the logical operatorsor, and, xor, etc.
In a general setting, however, they can be arbitrary formulas.

Table 17.2 exemplarily depicts the values for the function Heusi;j for every binary
boolean formula. For a general boolean functionsi;j = g : Bn 7! B with n arguments
the sub-function Heusi;j (s) has the following value:

min
x2Bnjg(x)=1

f max
i2f1::ng

fnumber of transitions necessary untilsi = xigg

Note, that Table 17.2 is valid for both an asynchronous and a synchronous model.
In the case of an interleaving model the heuristic can be improved: ifHeux1 andHeux2
appear only once in the whole formula andx1 andx2 belong to different modules then
maxcan be replaced byplus.

17.5.2 Refinement-Depth

Actually, the rules can be applied to Heuf infinitely often such that we have to limit the
number of its applications and to define a base case.

Definition 15 In a first step all possible rules of Table 17.1 are applied to Heuf . The
refinement-depthof the heuristic formula is the number of times all possible replacements
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s2;0

s1;2

s1;1

s1;0

s1;2

s1;5

s1;3
s1;4

s2;1
s2;2

Figure 17.2: Part of an electronic circuit

given in Table 17.2 are applied.

The rules are applied appropriately to reach the desired depth. Afterwards each re-
maining Heusi;j(s) is replaced by

if (si;j) then0 else1

A higher refinement-depth corresponds to an improvement of the estimate, but on the
other hand theBDD representing the heuristic becomes bigger and from a certain depth
on the benefit from further refinements becomes very small or even disappears. So the
aim is to find a trade-off between theBDD-size and the refinement-depth. In many cases
already simple heuristics lead to a noticeable effect. Therefore, a feasible strategy can be
to start with a simple heuristic and to refine it more and more until an error state is found.

17.5.3 Example

In Figure 17.2 a part of an electronic circuit is given. Letf = s1;0 ^ s2;0 be the de-
scription of the error state. Table 17.3 demonstrates the construction of the heuristic for a
refinement depth of 1 and 2.

To show that our heuristic yields to a better partitioning of the state space by a wider
range of heuristic values look at the following states = fs1; s2g with s1 = (1; 1; 1; 1; 1; 0)

ands2 = (0; 0; 1; 0)
As s1;0 is true ands2;0 is false the Hamming distance is 1. Our construction of the

heuristic takes into account that it is not possible to reach a state wheres2;0 = true with
one transition. Using a refinement depth of 2 leads to Hs1;0^s2;0(s) = 3. The variables2;2
has to becomefalsebefore thenor-element can change the value ofs2;1 and in the third
transitions2;0 can switch totrue.

17.5.4 Properties

As indicated the heuristic can be improved to allow a better partitioning of the set of
states to be expanded. A non-optimistic heuristic can lead to a faster detection of an
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x Heux(s) for x =true in s Heux(s) for x =falsein s

For refinement depth 1:

s1;0 0 1 + max fHs1;1 ;Hs1;2g
s2;0 0 1 + max fHs1;2 ;Hs2;1g
For refinement depth 2:

s1;1 0 1 + minfHs1;3 ;Hs1;4g
s1;2 0 1 + minfHs1;5 ;Hs2;2g
s2;1 0 1 + max fHs2;2 ;Hs2;3g
Base cases:
s1;5; s1;3; s1;4 0 1
s2;2; s2;2; s2;3 0 1

Table 17.3: Example of the heuristic estimate.

erroneous state but on the other hand it can increase the length of the counter example.
The construction of the heuristic however always leads to an optimistic heuristic. To prove
this we will use the following lemma:

Lemma 14 Heusi;j(s) is a lower bound for the number of transitions which are necessary
to reach a state froms wheresi;j = true.

Proof: The property will be shown by induction on the refinement depth.

Refinement depth 0: In this case we haveHeusi;j = if (si;j) then 0 else 1. (The argu-
mentation for negated variablessi;j is similar.) If si;j is true no transition step is
necessary. Hence,Heusi;j (s) = 0. In casesi;j is false at least one transition step has
to be made to change its value. Therefore,Heusi;j (s) = 1 is a lower bound.

Refinement depthk: We will suppose that for a refinement depth less thank the func-
tions Heusi;j fulfill the desired property. After the first application of a rule from
Table 17.2 for the introduced formulaeHeuxi we have a refinement depth ofk � 1.
This implies that it takes at leastHeuxi steps to change the values of the involved
variables. It depends on the formulag(x1; x2) which changes the value ofsi;j that
it is necessary for both variablesx1 andx2 to have a certain value, or that it is suf-
ficient that one of them has a certain value. This determines if the minimum or the
maximum of the involved functionsHeuxi is used. In both cases after the variables
x1 andx2 have been assigned to a value, which allowsg to change the value of
si;j from falseto true, at least one additional step is necessary. Therefore, 1 can be
added andHeusi;j still remains a lower bound.

Using Lemma 14 it it quite easy to prove thatHeuf according to the construction
introduced above is a lower bound estimate.

Theorem 17 The functionHeuf is optimistic.
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Proof:
It remains to show that the rules of Table 17.1 lead to an optimistic heuristic since the

sub-functionsHeusi;j underestimate the number of transitions necessary to achieve the
desired value forsi;j. This can be shown easily by induction on the number of applications
of the rules of Table 17.1 so we will only explain the main idea for the proof.

It is based on the fact that for an_-formula it is sufficient that one of thefi becomes
true, so the minimum of theHeufi is chosen and for an̂-formula allfi have to be fulfilled
so the maximum of theHeufi can be chosen for the heuristic value.

Note, that for an asynchronous or a synchronous system in one transition step the
values of various variables can change, therefore it is not possible to summarize over the
Heufi for example in case of an̂-formula. In contrast, for an interleaving model the sum
could be used if thefi depend on variables in different modules because only one module
can change its state in a single transition.

As already indicated to guarantee the computation of the minimal counter-example in
the proposed extension toBDDA* it is not sufficient to use an optimistic heuristic. Fortu-
nately, it is possible to show the consistency of our automatically constructed heuristic:

Theorem 18 The function Heuf is consistent.

Proof:
We have to show that

8States; t:Trans(s; t)) Heuf(s) � 1 + Heuf(t):

This property follows directly from the fact that for all variablesx we have

8States; t:Trans(s; t)) Heux(s) � 1 + Heux(t):

We will prove this by induction on the refinement depth similar to Lemma 14. For
a refinement depth of 0 there is nothing to prove becauseHeux(s) � 1. For refinement
depthk we will show the property for the operator^ (cf. Table 17.2). In this caseHeux(s)
is defined as1 + max fHeux1(s);Heux2(s)g: For Heux1 andHeux2 we have a refinement
depth ofk � 1 so the property holds for these formulas:

Heux(s) � 1 + max f1 + Heux1(t); 1 + Heux2(t)g
� 1 + (1 + max fHeux1(t);Heux2(t)g)
� 1 + Heux(t)

The proof for the other operators of Table 17.2 is analogue expect for the operator6$.
The interesting case is a transition where in states the variablesx1 andx2 are assigned
to true and in statet both variables are assigned tofalse. In this case the structure of the
formula changes: For states we have

Heux(s) = 1 + minfHeux1(s);Heux2(s)g

and in statet we establish



17.6. EXPERIMENTAL RESULTS 301

Heux(t) = 1 + minfHeux1(t);Heux2(t)g:

The circumstance that there is a transition froms to t which changes the values ofx1
andx2 from true to falseimplies thatHeux1(s) = Heux2(s) = 1 while for statet we have
Heux1(t), Heux2(t) � 1. Therefore, the following equation completes the proof:

Heux(t) = 1 + minfHeux1(t);Heux2(t)g � 1 + minf1; 1g = 2 = Heu(s)

Note, that breadth-first-search finds the error state in the minimal number of iterations.
In contrast in the heuristic search approach several states remain unexpanded in each
iteration such that the number of necessary iteration steps increases. In the worst case we
have a quadratic growth in the number of iterations [112]. On the other hand, especially
for large systems, a transition step expanding only a small subset of the states is much
faster than a transition based on all states. Therefore, this apparent disadvantage even
turns out to be very time-efficient surplus as the examples in the next section will show.

17.6 Experimental Results

In our experiments we used the�-calculus model checker�cke [35] which accepts the full
�-calculus for its input language [283]. Thewhile-loop has to be converted into a least
fixpoint. As it is not possible to change two sets (Open, Visited) in the body of one fixpoint
theVisitedset is simulated by one slot in theBDD for Open. The next problem is that the
function forOpenis not monotone because states are deleted from it after they have been
expanded. Monotony is a sufficient criterion to guarantee the existence of fixpoints. The
function forOpenis not a syntactic correct�-calculus formula but as the termination of
the algorithm is guaranteed by the monotony of the setVisitedwe can apply the standard
algorithm for the calculation of�-calculus fixpoints.

Unfortunately, we cannot take advantage of the specialBDD operation determining
the set of states with minimal costs in this case. These calculations have to be simulated
by standard operations leading to some unnecessary overhead that in the visible future has
to be avoided in a customized implementation.

For the evaluation of our approach we use the example of the tree-arbiter [81] a mech-
anism for distributed mutual exclusion:2n user want to use a resource which is available
only once and the tree-arbiter manages the requests and acknowledges avoiding a simul-
taneous access of two different users. The tree-arbiter consists of2n � 1 modules of the
same structure such that it is very easy to scale the example. Since we focus on error
detection we experiment with an earlier incorrect version – also published in [81] – using
an interleaving model.

The heuristic was devised according to the description in Section 17.5 with a
refinement-depth of 6. We also experimented with larger depths which implied a reduc-
tion neither in time nor in size. Since the algorithm for the automatic construction of the
heuristic has not yet been implemented and since the number of different errors increases
very fast with the size of the tree-arbiter we searched for the detection of a special error
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BFS Heuristic
# Mod #it max nodes time depth #it max nodes time

15 30 991,374 46s 4 104 10,472,785 483s
6 127 5,715,484 288s

17 42 18,937,458 3,912s 6 157 7,954,251 476s
19 44 22,461,024 6,047s 6 157 8,789,341 540s
21 44 26,843,514 24,626s(9) 6 157 9,097,823 530s
23 >40 - >17,000s 6 157 9,548,269 516s
25 - - - 6 169 21,561,058 1,370s
27 - - - 6 169 25,165,795 1,818s(1)

6(x2) 593 23,798,202 1,970s

Table 17.4: Results for the tree-arbiter. In parenthesis the number of garbage collections
is given.

case. Table 17.4 shows the results in comparison with a classical forward breadth first
search. To guarantee the fairness of the comparison we terminated the search at the time
the error state has first been encountered.

For the tree-arbiter with 15 modules or less the traditional approach is faster and less
memory consuming, but for larger systems its time and memory efficiency decreases very
fast. On the other hand, the heuristic approach found the error even in large systems, since
its memory and time requirements increases slowly. For the tree-arbiter with 23 modules
the error could not be found with breadth-first-search and already for the version with
21 modules 9 garbage collections were necessary not to exceed the memory limitations,
whereas the first garbage collection with the heuristic method was invoked at a system of
27 modules. For the tree-arbiter with 27 modules we also experimented with the heuristic.
When we double its values the heuristic fails to be optimistic, but the error detection
becomes available without any garbage collection. Moreover, although more than three
times more iterations were necessary only about8% more time was consumed. This
illustrates that there is much room for further research in refinements to the heuristic.

The second example we used for the evaluation of our approach is the asynchronous
DME [81]. Like the tree-arbiter it consists ofn identical modules and it is also a mech-
anism for distributed mutual exclusion. The modules are arranged in a ring structure
whereas the modules of the tree-arbiter form a pyramid. In this case we also experimented
with the setvisitedand it turns out that it was more efficient to omit it like proposed in
[112]. For this variation only a small change in the calculation ofOpenis necessary. Like
in the previous example the results in Table 17.5 show that the heuristic approach is more
memory efficient and less time-consuming. The first experiment in the Table uses the set
visited that was omitted in the other experiments. This led to a greater iteration depth
because several states are visited more than once. Nevertheless this turned out to be more
time and memory efficient. The increase of the refinement-depth to 7 allows to reduce the
verification time and no garbage collection remains necessary.

17.7 Conclusion and Discussion

We presented how a heuristic can successfully be integrated into symbolic model check-
ing. It is recommended to distinguish between the use of a model checker in order to
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BFS Heuristic
# Mod #it max nodes time depth #it max nodes time

6 23 26,843,514 5,864s(5) 6v 35 29,036,025 2,207s(4)
6 53 25,165,795 1,009s(1)
7 53 25,159,862 813s(0)

Table 17.5: Results for the asynchronous DME. In parenthesis the number of garbage
collections is given.

prove a property and the use as a debugging tool. For debugging exhaustive search of the
reachable state space can be avoided and the heuristic can decrease both the number of
expanded states and theBDD-sizes which allows the treatment of bigger systems. It was
shown how a heuristic can be automatically designed for a large class of systems allowing
the application of this method also for non-experts.

The experiments demonstrated the effectiveness of the approach and we plan to test
the algorithm with more example data and to evaluate further refinements of the heuristic
and its construction.

There are lots of choices for an experienced user to modify and improve the estimate
or even to use non-optimistic heuristics allowing a better partitioning of the state space.
This can be more important than the determination of the minimal counter-example. Pearl
[287] discusses limits and possibilities of overestimations in corresponding explicit search
algorithms. One proposed search scheme, calledWIDA*, considers costs of the form
f = �g + (1 � �)h. If � 2 [:5; 1] the algorithm is admissible. In case� 2 [0; :5) the
algorithm searches according to overestimations of the heuristic value compared to the
path lengthg. The literature clearly lacks theoretical and practical results for symbolic
searches according to non-optimistic heuristics.
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Abstract

Heuristic search in large problem spaces inherently calls for algorithms capable of
running under restricted memory. This question has been investigated in a number of arti-
cles. However, in general the efficient usage of two-layered storage systems is not further
discussed. Even if hard-disk capacity is sufficient for the problem instance at hand, the
limitation of main memorymay still represent the bottleneck for their practical applica-
tions. Since breadth-first and best-first strategies do not exhibit any locality of expansion,
standardvirtual memory managementcan soon result in thrashing due to excessive page
faults.

In this paper we propose a new search algorithm and suitable data structures in order
to minimize page faults by a local reordering of the sequence of expansions. We prove its
correctness and completeness and evaluate it in a real-world scenario of searching a large
road map in a commercial route planning system.
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18.1 Introduction

Heuristic search algorithms are usually applied to huge problem spaces. Hence, having to
cope with memory limitations is an ubiquitous issue in this domain. Since the develop-
ment of theA* algorithm [161], the main objective has always been to develop methods
to regain tractability.

The class ofmemory-restricted search algorithmshas been developed under this aim.
The framework imposes an absolute upper bound on the total memory the algorithm may
use, regardless of the size of the problem space. Most papers do not explicitly distinguish
whether this limit refers to disk space or to working memory, but frequently the latter one
appears to be implicitly assumed.

IDA* explores the search space by iterative deepening and uses space linear in the
solution length, but may revisit the same node again and again [213]. It does not use
additionally available memory.MRECswitches fromA* to IDA* if the memory limit is
reached [324]. In contrast,SMA* [311] reassigns the space by dynamically deleting a
previously expanded node, propagating up computedf -values to the parents in order to
save re-computation as far as possible. Eckerle and Schuierer improve the dynamic re-
balancing of the search tree [90]. However, it remains to be shown that these algorithms
in general outperformA* or IDA* since they impose a large administration overhead. A
more recent work employs stochastic node caching and is shown to reduce the number of
visited nodes compared toMREC[265].

Even if secondary storage is sufficient, limitation ofworking memorymay still repre-
sent a bottleneck for practical applications. Modern operating systems provide a general-
purpose mechanism for processing data larger than available main memory calledvirtual
memory. Transparently to the program,swappingmoves parts of the data back and forth
from disk as needed. Usually, the virtual address space is divided up into units called
pages; the corresponding equal-sized units in physical memory are calledpage frames. A
page table maps the virtual addresses on the page frames and keeps track of their status
(loaded/absent). When apage faultoccurs, i.e., a program tries to use an unmapped page,
the CPU is interrupted; the operating system picks a little-used page frame and writes its
contents back to the disk. It then fetches the referenced page into the page frame just
freed, changes the map, and restarts the trapped instruction. In modern computers mem-
ory management is implemented on hardware with a page size commonly fixed at 4096
Byte.

Variouspaging strategiespaging strategyhave been explored that aim at minimizing
page-faults. Belady has shown that an optimal off-line page exchange strategy deletes the
page, which will not be used for the longest time [26]. Unfortunately, the system, unlike
possibly the application program itself, cannot know this in advance. Several different
on-line algorithms for the paging problem have been proposed, such asLast-In-First-Out
(LIFO), First-In-First-Out (FIFO), Least-Recently-Used (LRU), Least-Frequently-Used
(LFU), Flush-When-Full (FWF), etc. [336]. Sleator and Tarjan proved thatLRU is the
best on-line algorithm for the problem achieving an optimal competitive ratio equal to the
number of pages that fit into main memory [329].

Programmers can reduce the number of page faults by designing data structures that
exhibit memory locality, such that successive operations tend to access nearby memory
addresses. However, sometimes it would be desirable to have more explicit control of
secondary memory manipulations. For example, fetching data structures larger than the
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system page size may require multiple disk operations. A file buffer can be regarded
as a kind of“software” paging that mimics swapping on a coarser level of granularity.
Generally, an application can outperform the operating system's memory management
because it is well-informed to predict future memory access.

Particularly for search algorithms, system paging can become the major bottleneck.
We experienced this problem when applyingA* to the domain of route planning. Node
structures become large, compared to hardware pages; moreover,A* does not respect
locality at all; it explores nodes in the strict order off values, regardless of their neigh-
borhood, and hence jumps back and forth in a spatially unrelated way for only marginal
differences in the estimation value.

In the following we present a new heuristic search algorithm to overcome this lack
of locality. In connection with software paging strategies, it can lead to a significant
speedup. The idea is to organize the graph structure for spatial locality and to expand
spatial local data even if it can lead to a possible non-optimal solution. As a consequence,
the algorithm cannot stop with the first solution found, but has to do the additional work
of exploring all pending paths. However, the increased number of node expansions can
be outweighed by the reduction in the number of page faults.

In the next section, we review traditionalA* and extend it so as to allow for node ex-
pansions in arbitrary order. We prove its correctness and completeness, and as a byproduct
we fix a minor lack of accuracy in the traditional proof forA*. Then, we describe a data
structure calledHeap-Of-Heapsthat is suitable to accommodate locality and is based on
a partitioning of the search space. Finally the algorithm is evaluated within a commercial
route planning system.

18.2 The Algorithm

We start by characterizing the standardA* algorithm [161] in an unusual but concise
way on the basis of Dijkstra's algorithm to find shortest paths in (positively) weighted
graphs from astart nodes to a set ofgoal nodesT [80]. Dijkstra's algorithm uses a
priority queueOpenmaintaining the set of currently reached yet unexplored nodes. If
f(u) denotes the total weight of the currently best explored path froms to some nodeu
(also called themeritof u), the algorithm always selects a node fromOpenwith minimum
f value for expansion, updates its successors'f -values, and transfers it to the setClosed
with established minimum cost path.

18.2.1 TraditionalA� = Dijkstra + Re-weighting

Algorithm A* accommodates the information of aheuristich(u), which estimates the
minimum cost of a path from nodeu to a goal node inT . It can be cast as a search
through a re-weighted graph. More precisely, the edge weightsw are replaced by new
weightsŵ by adding the heuristic difference:̂w(u; v) = w(u; v)� h(u) + h(v). At each
instant of time in the re-weighted Dijkstra algorithm, the meritf of a nodeu is the sum
of the new weights along the currently cheapest path explored by the algorithm.

By this transformation, negative weights can be introduced. Nodes that have already
been expanded might be encountered on a shorter path. Thus, contrary to Dijkstra's algo-
rithm, A* deals with them by possibly re-inserting nodes fromClosedinto Open.
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On every pathp from s tou the accumulated weights in the two graph structures differ
by h(s) andh(u) only, i.e.,w(p) = ŵ(p) � h(u) + h(s). Consequently, on every cycle
c we haveŵ(c) = w(c) � 0, i.e., the re-weighting cannot lead to negatively weighted
cycles so that the problem remains solvable.

Let �(u; v) and �̂(u; v) denote the least-cost path weights between nodesu andv in
the initial resp. re-weighted graphs. The heuristich is calledconsistentif and only if
ŵ(u; v) � 0 for all u andv. It is calledoptimisticif h(u) � minf�(u; t)jt 2 Tg = h�(u).
This is equivalent to the conditionminf�̂(u; t)jt 2 Tg � 0.

For convenience, since in the following we are dealing only with the transformed
weights, we will writew instead ofŵ.

18.2.2 Invariance Condition

In each iteration of theA* algorithm, the elementuwith minimumf value is chosen from
the setOpenand is inserted intoClosed. Then the set of successors�(u) is generated.
Each nodev 2 �(u) is inspected andOpenand Closedare adjusted according to the
following procedureImprove.

Procedure Improve(Nodeu, Nodev)
if (v 2 Open)

if (f(u) + w(u; v) < f(v))

Open.DecreaseKey(v; f(u) + w(u; v))
else if(v 2 Closed)

if (f(u) + w(u; v) < f(v))

Closed.Delete(v)
Open.Insert(v; f(u) + w(u; v))

else
Open.Insert(v; f(u) + w(u; v))

The core of the standard optimality proof ofA* published in AI-literature [287] con-
sists of an invariance stating that while the algorithm is running there is always a nodev in
theOpenlist on an optimal path with the optimalf -valuef(v) = �(s; v). In our opinion,
this reasoning is true but lacks some formal rigidness: if the child of a node with optimal
f -value was already contained inClosed(be it with optimalf value), then it wouldn' t
be reopened and the invariance would be violated. It is part of the proof to show that
this situation cannot occur. Thus, we strengthen the invariance condition by requiring the
node not to be followed by anyClosednode on the same optimal solution path.

Invariance I. Let p = (s = v0; : : : ; vn = t) be a least-cost path from the start node
s to a a goal nodet 2 T . Application ofImprovepreserves the following invariance:
Unlessvn is in Closedwith f(vn) = �(s; vn), there is a nodevi in Opensuch thatf(vi) =
�(s; vi), and noj > i exists such thatvj is in Closedwith f(vj) = �(s; vj).

Proof: W.l.o.g. leti be maximal among the nodes satisfying (I). We distinguish the fol-
lowing cases:

1. Nodeu is not onp or f(u) > �(s; u). Then nodevi 6= u remains inOpen. Since no
v in Open \ p \ �(u) with f(v) = �(s; v) � f(u) + w(u; v) is changed and no
other node is added toClosed, (I) is preserved.
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2. Nodeu is onp andf(u) = �(s; u). If u = vn, there is nothing to show.

First assumeu = vi. ThenImprovewill be called forv = vi+1 2 �(u); for all
other nodes in�(u) n fvi+1g, the argument of case 1 holds. According to (I), ifv

is in Closed, thenf(v) > �(s; v), and it will be reinserted intoOpenwith f(v) =
�(s; u) + w(u; v) = �(s; v). If v is neither inOpenor Closed, it is inserted into
Openwith this merit. Otherwise, theDecreaseKeyoperation will set it to�(s; v).
In either case,v guarantees the invariance (I).

Now supposeu 6= vi. By the maximality assumption ofi we haveu = vk with
k < i. If v = vi, no DecreaseKeyoperation can change it becausevi already has
optimal meritf(v) = �(s; u) + w(u; v) = �(s; v). Otherwise,vi remains inOpen
with unchangedf -value and no other node besidesu is inserted intoClosed; thus,
vi still preserves (I).

Note that we have not requiredf to be optimistic. Under this assumption, theoptimal-
ity of A* is implied as a corollary, i.e., the fact that a solution returned by the algorithm
is indeed a shortest one. To see this, suppose that the algorithm terminates the search
process with the first nodet0 in the set of goal nodesT andf(t0) is not optimal. Then
f(t0) > �(s; u) + minf�(u; t)jt 2 Tg � �(s; u) = f(u), since for an optimistic estimate
the valueminf�(u; t)j t 2 Tg is not negative. This contradicts the choice oft0.

18.2.3 General-Node-OrderingA�

Move orderingis a search optimization technique which has been explored in depth in the
domain of two-player games and single-agent applications. It is well-known that substitut-
ing the priority queue by a stack or a FIFO-queue results in a depth-first resp. breadth-first
traversal of the problem graph. In this case theDeleteMinoperation is replaced byPopor
Dequeue, respectively. In the following we will assume a generic operationDeleteSome
not imposing any restrictions on the selection criteria. The subsequent section will give
an implementation that is allowed to select nodes which are “local” to to previously ex-
panded nodes with respect to the application-dependent storage scheme, even though they
do not have a minimumf value.

Function General-Node-Ordering A*
Open.Insert(s; h(s))
� 1; bestSolution ;
while not (Open.IsEmpty())

u Open.DeleteSome()
Closed.Insert(u)

(*) if (f(u) > �) continue
if (u 2 T ^ f(u) < �)

� f(u); bestSolution retrieved path tou
else�(u) Expand(u)

for all v in �(u)

Improve(u; v)
return bestSolution
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In contrast toA*, reaching the first goal node will no longer guarantee optimality of
the found solution path. Hence, the algorithm has to continue until theOpenlist runs
empty. By storing and updating the current best solution path length as a global lower
bound value�, we give an anytime extension to A* that improves the solution quality
over time. The concept can be compared to the linear best first algorithmDepth-First-
Branch-and-Bound[214].

Theorem 19 If the heuristic estimateh is optimistic, General-Node-Ordering A*is op-
timal.

Proof: Upon termination, each node inserted intoOpenmust have been selected at
least once. Suppose that invariance (I) is preserved in each loop, i.e., that there is always a
nodev in theOpenlist on an optimal path withf(v) = �(s; v). Thus the algorithm cannot
terminate without eventually selecting the goal node on this path, and since by definition
it is not more expensive than any found solution path andbestSolutionmaintains the
currently shortest path, an optimal solution will be returned. It remains to show that
the invariance (I) holds in each iteration. If the extracted nodeu is not equal tov there
is nothing to show. Otherwisef(u) = �(s; u). The bound� denotes the currently best
solution length. Iff(u) � � the condition in (*) is not fulfilled and no pruning takes place.
On the other handf(u) > � leads to a contradiction since� � �(s; u) + minf�(u; t)jt 2
Tg � �(s; u) = f(u) (the latter inequality is justified byh being optimistic).

Theorem 20 AlgorithmGeneral-Node-Ordering A*is complete, i.e., terminates on finite
graphs.

Proof: For each successor generation,General-Node-Ordering A*adds new links to
its traversal tree. Moreover, the algorithm only reopens a node inClosedwhen it finds a
strictly cheaper path to it and, as said above, re-weighting of positively weighted graphs
keeps weights of cycles positive. Hence, the algorithm considers at most the number
of acyclic path of the underlying finite graph. This number is finite and, therefore, the
algorithm terminates.

18.3 The Heap-Of-Heaps Data Structures

Let us briefly review the usual A* implementation in terms of data structures. The set
Openis realized as a priority queue (heap) supporting the operationsIsEmpty, Min, Insert,
DecreaseKey DeleteMin. The membership testsv 2 Openresp.v 2 Closedin procedure
Improveare implemented using a hash tableT . This makes explicit storage of theClosed
set obsolete, since it is equal toTn Open.

For large node structures, it is inefficient to move them physically around; rather, they
are maintained in an auxiliary data structureD containing all graph information.D can
also contain the links related to the heap and to the hashing chains maximizingmemory
locality with respect to node operations. If the graph is entirely stored, the hash table
collapses withD. In some cases there is even no other option than explicit storage, e.g.
in the domain of route planning.
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Our approach to achieve memory locality is to find a suitable partition of the search
space and of all associated data structures into a set of (software) pagesP1; : : : ; Pk. We
assume a function� : Node! f1; : : : ; kg which maps each node to the corresponding
page it is contained in.

The data structureHeap-Of-Heapsrepresents theOpenset. It consists of a collection
of k priority queuesH1; : : : ; Hk, one for each page. At any instant, one of the heaps,
Hactive, is designated as beingactive. One additional priority queueH keeps track of the
root nodes of allHi with i 6= active; It is used to quickly find the overall minimum across
all of these heaps.

The following operations are delegated to the member priority queuesHi in the
straightforward way. Whenever necessary,H is updated accordingly.

Function IsEmpty()
return

Vk
i=1

Hi.IsEmpty()

Procedure Insert(Nodeu, Merit f(u))
if (�(u) 6= active ^ f(u) < f(H�(u).Min()))
H.DecreaseKey(H�(u); f(u))

H�(u).Insert(u, f(u))

ProcedureDecreaseKey(Nodeu, Merit f(u))
if (�(u) 6= active ^ f(u) < f(H�(u).Min()))
H.DecreaseKey(H�(u); f(u))

H�(u).DecreaseKey(u,f(u))

OperationDeleteSomeperformsDeleteMinon the active heap.

Function DeleteSome()
CheckActive()
return Hactive:DeleteMin()

The Insert andDecreaseKeyoperations can affect all heaps. However, the hope is
that the number of adjacent pages of the active page is small and that they are already
in memory or have to be loaded only once; all other pages and priority queues remain
unchanged and do not have to reside in main memory.

As the aim is to minimize the number of switches between pages, the algorithm favors
theactivepage by continuing to expand its nodes although the minimumf value might
already exceed the minimum of all remaining priority queues. There are two control
parameters: Anactiveness bonus� and an estimate� for the cost of an optimum solution.

ProcedureCheckActive()
if (Hactive:IsEmpty() _

(f(Hactive:Min())� f(H:Min():Min()) > �

^ f(Hactive:Min()) > �))

H:Insert(Hactive; f(Hactive:Min()))
Hactive H:Min()
H:Remove(Hactive)
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If the minimumf -value of the active heap is larger than that of the remaining heaps
plus theactiveness bonus�, the algorithm may switch to the priority queue satisfying the
minimum rootf value. Thus,� discourages page switches by determining the proportion
of a page to be explored. As it increases to large values, in the limit each activated page
is searched to completion.

However the active page still remains valid, unless� is exceeded. The rationale be-
hind this second heuristic is that one can often provide a heuristic for the total least cost
path which is, on the average, more accurate than that obtained fromh, but which might
be overestimating in some cases.

With this implementation, algorithmGeneral-Node-Ordering A*itself remains almost
unchanged, i.e., the data structure and page handling is transparent to the algorithm. Tra-
ditional A* arises as a special case for� = 0 and� < h�(s), whereh�(s) denotes the
actual minimum cost between the start node and a goal node.

Optimality is guaranteed, since we leave the heuristic estimates unaffected by the heap
prioritization scheme, and since each node inserted into theHeap-Of-Heapsstructure is
eventually returned byDeleteMin.

18.4 Experiments

In our experiments we incorporated our algorithm into a commercially available route
planning system running on Windows platforms. The system covers an area of approx-
imately 800� 400 km at a high level of detail, and comprises approximately 910,000
nodes (road junctions) linked by 2,500,000 edges (road elements). The entire graph struc-
ture, together with the members needed for the search algorithm, results in a total memory
size of 40 MByte, which already exceeds the advertized minimum main memory hard-
ware requirement of 32 MByte.

For long-distance routes, conventionalA� expands the nodes in a spatially uncorre-
lated way, jumping to a node as far apart as some 100 km, but possibly returning to the
successor of the previous one in the next step. Therefore, the working set gets extremely
large, and the virtual memory management of the operating system leads to excessive
paging and is the main burden on the computation time.

As a remedy, we achieve memory locality of the search algorithm by exploiting the
underlying spatial relation of connected nodes. Nodes are geographically sorted accord-
ing to their coordinates in such a way that neighboring nodes also tend to appear close to
each other. A page consists of a constant number of successive nodes (together with the
outgoing edges) according to this order. Thus, pages in densely populated regions tend
to cover a smaller area than those representing rural regions. For not too small sizes, the
connectivity within a page will be high, and only a comparably low fraction of road ele-
ments cross the boundaries to adjacent pages. Fig. 18.1 shows some bounding rectangles
of nodes belonging to the same page.

There are three parameters controlling the behavior of the algorithm with respect to
secondary memory, the algorithm parameters� and�, and the (software) page size.
The latter one should be adjusted so that the active page and its adjacent pages together
roughly fit into available main memory. The optimum solution estimate� is obtained
by calculating the Euclidean distance between the start and the goal and adding a fixed
percentage.



18.4. EXPERIMENTS 315

Figure 18.1: The granularity of the partition (lines indicate bounding rectangles of pages).

Fig. 18.2 opposes the number of page faults to the number of node expansions for
varying page size and�. We observe that the rapid decrease of page faults compensates
the increase of expansions (note the logarithmic scale). Using an activeness bonus of
about 2 km suffices to decrease the value by more than one magnitude for all page sizes.
At the same time the number of expanded nodes increases by less than ten percent.

Fig. 18.3 depicts the corresponding influence of�. In this case the reduction of page
faults by more than a magnitude can be achieved by investing less than 50 percent extra
node expansions for� equal to1:25 times the Euclidean distance. The effect is almost
independent of the page size.
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Figure 18.2: Number of page-faults and node expansions for varying page size and ac-
tiveness bonus�.

Unfortunately, the convincing decrease in page faults did not translate proportionally
to execution time; the maximum reduction amounted to about 30 percent. We suspect that
the reason is that we could not totally control the operating system's hardware paging still
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Figure 18.3: Number of page-faults and node expansions for varying page size and the
ratio (in percent) of solution length approximation� and the Euclidean distancedist
between start and goal.

working besides and on top of our software paging technique. Hence, more inquiry into
the platform-dependent implementation is still required.

We conclude that there is a trade-off between the growth of node expansions and the
savings of page faults that has to be resolved by tuning the parameters to improve the
overall efficiency for best performance.

18.5 Related Work

A couple of dynamic data structures have been proposed which take into account sec-
ondary memory structures. Major representatives are tree structured indices, such as B-
Trees invented by Bayer and McCreight [23] and dynamic hashing variants [234], such as
extendible hashing [120] and virtual hashing [240]. External sorting algorithms [210] are
special-tailored for handling sequences on disk storage that do not fit into working mem-
ory. An extension for the LEDA [262] C++ library project to secondary storage systems,
LEDA-SM for short, is being developed by Crauser and Mehlhorn at MPI/Saarbrücken.

One currently deeply investigated area in which the advantage of memory locality
pays off is the breadth-first synthesis of binary decision diagrams (BDDs) [50]. The idea
is to construct the diagram structure in a level-wise traversal [193]. Since there is a trade-
off between low memory overhead and memory access locality, hybrid approaches based
on context switches are currently being explored [351].

Since each page is explored independently, the algorithms easily lends itself to paral-
lelization by allowing for more than one active page at a time. In fact, a commonly used
method for duplicate pruning uses a hash function similar to� defined above to associate
with each node of the search space a distinct subspace with a dedicated processor. In
[250], the notion of locality is important to reduce communication between processors
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and it is implemented as the neighborhood on a hypercube.
There are some related approaches to the re-weighting technique used in our optimal-

ity proof. Searching negatively weighted graphs has been intensively studied in literature,
cf [70]. An O(jV jjEj) algorithm for the single-source shortest path problem has been
separately proposed by Bellman and Ford. The algorithm has been improved by Yen. The
all-pair shortest path problem has been solved by Floyd based on a theorem of Warshall.
It has been extended by Johnson for sparse and possibly negatively weighted graphs by
re-weighting. All these algorithms do not apply to the scenario of implicitly given graphs
with additional heuristic information.

18.6 Conclusion

We have presented an approach to relax the order of node expansions in traditionalA*. Its
admissibility is shown using a refined invariance condition based on Dijkstra's algorithm
and re-weighted graphs. The reordering is used to make the search algorithm take into
account memory locality for the price of an increased number of expansions. However,
this is offset by the minimization of secondary memory access in a two-layered storage
system, which is a major bottleneck for the traditional algorithm. To this end, the data
structureHeap-Of-Heapshas been developed which partitions the underlying graph into
pages; two heuristic threshold values discourage page switches and can be tuned for best
performance. The count of page switches from an evaluation within a commercially avail-
able route planning system supports this view.
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Abstract

Navigation systems assist almost any kind of motion in the physical world including
sailing, flying, hiking, driving and cycling. On the other hand, traces supplied by global
positioning systems (GPS) can track actual time and absolute coordinates of the moving
objects.

Consequently, this paper addresses efficient algorithms and data structures for the
route planning problem based on GPS data; given a set of traces and a current location,
infer a short(est) path to the destination.

The algorithm of Bentley and Ottmann is shown to transform geometric GPS infor-
mation directly into a combinatorial weighted and directed graph structure, which in turn
can be queried by applying classical and refined graph traversal algorithms like Dijkstras'
single-source shortest path algorithm or A*.

For high-precision map inference especially in car navigation, algorithms for road
segmentation, map matching and lane clustering are presented.

319
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19.1 Introduction

Route planning is one of the most important application areas of computer science in
general and graph search in particular. Current technology like hand-held computers,
car navigation and GPS positioning systems ask for a suitable combination of mobile
computing and course selection for moving objects.

In most cases, a possibly labeled weighted graph representation of all streets and
crossings, called themap, is explicitly available. This contrasts other exploration prob-
lems like puzzle solving, theorem proving, or action planning, where the underlying prob-
lem graph is implicitly described by a set of rules.

Applying the standard solution of Dijkstra's algorithm for finding the single-source
shortest path (SSSP) in weighted graphs from an initial node to a (set of) goal nodes faces
several subtle problems inherent to route planning:

1. Most maps come on external storage devices and are by far larger than main mem-
ory capacity. This is especially true for on-board and hand-held computer systems.

2. Most available digital maps are expensive, since exhibiting and processing road
information e.g. by surveying methods or by digitizing satellite images is very
costly.

3. Maps are likely to be inaccurate and to contain systematic errors in the input sources
or inference procedures.

4. It is costly to keep map information up-to-date, since road geometry continuously
changes over time.

5. Maps only contain information on road classes and travel distances, which is often
not sufficient to infer travel time. In rush hours or on bank holidays, the time needed
for driving deviates significantly from the one assuming usual travel speed.

6. In some regions of the world digital maps are not available at all.

The paper is subdivided into two parts. In the first part, it addresses the process of
map construction based on recorded data. In Section 19.2, we introduce some basic def-
initions. We present thetravel graph inference problem, which turns out to be a derivate
of the output sensitive sweep-line algorithm of Bentley and Ottmann. Subsequently, Sec-
tion 19.3 describes an alternative statistical approach. In the second part, we provide
solutions to accelerate SSSP computations for time or length optimal route planning in an
existing accurate map based on Dijkstra's algorithm, namely A* with the Euclidean dis-
tance heuristic and refined implementation issues to deal with the problem of restricted
main memory.

19.2 Travel Graph Construction

Low-end GPS data devices with accuracies of about 2-15 m and mobile data loggers
(e.g. in form of palmtop devices) that store raw GPS data entries are nowadays easily
accessible and widly distributed. To visualize data in addition to electronic road maps,
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# latitude, longitude, date (yyyymmdd), time (hhmmss)

48.0131754,7.8336987,20020906,160241
48.0131737,7.8336991,20020906,160242
48.0131720,7.8336986,20020906,160243
48.0131707,7.8336984,20020906,160244
48.0131716,7.8336978,20020906,160245
48.0131713,7.8336975,20020906,160246

Figure 19.1: Small GPS trace.

recent software allows to include and calibrate maps from the Internet or other sources.
Moreover, the adaption and visualization of topographical maps is no longer complicated,
since high-quality maps and visualization frontends are provided at low price from orga-
nizations likethe Surveying Authorities of the States of the Federal Republic of Germany
with the TK50 CD series. Various 2D and 3D user interfaces with on-line and off-line
tracking features assist the preparation and the reflection of trips.

In this section we consider the problem of generating a travel graph given a set of
traces, that can be queried for shortest paths. For the sake of clarity, we assume that the
received GPS data is accurate and that at each inferred crossing of traces, a vehicle can
turn into the direction that another vehicle has taken.

With current technology of global positioning systems, the first assumption is almost
fulfilled: on the low end, (differential) GPS yields an accuracy in the range of a few
meters; high end positioning systems with integrated inertial systems can even achieve an
accuracy in the range of centimeters.

The second assumption is at least feasible for hiking and biking in unknown terrain
without bridges or tunnels. To avoid these complications especially for car navigation, we
might distinguish valid from invalid crossings. Invalid crossing are ones with an intersec-
tion angle above a certain threshold and difference in velocity outside a certain interval.
Fig. 19.1 provides a small example of a GPS trace that was collected on a bike on the
campus of the computer science department in Freiburg.

19.2.1 Notation

We begin with some formal definitions.Pointsin the plane are elements of IR� IR, and
line segmentsare pairs of points. Atimed pointp = (x; y; t) has global coordinatesx and
y and additional time stampt, wheret 2 IR is the absolute time to be decoded in year,
month, day, hour, minute, second and fractions of a second. Atimed line segmentis a
pair of timed points. AtraceT is a sequence of timed pointsp1 = (x1; y1; t1); : : : ; pn =

(xn; yn; tn) such thatti, 1 � i � n, is increasing. Atimed pathP = s1; : : : ; sn�1 is the
associated sequence of timed line segments withsi = (pi; pi+1), 1 � i < n. The angle of
consecutive line segements on a (timed) path and the velocity on timed line segments are
immediate consequences of the above definitions.

The trace graphGT = (V;E; d; t) is a directed graph defined byv 2 V if its coordi-
nates(xv; yv) are mentioned inT , e = (u; v) 2 E if the coordinates ofu andv correspond
to two successive timed points(xu; yu; tu) and(xv; yv; tv) in T , d(e) = jju � vjj2, and
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t(e) = tv � tu, wherejju� vjj2 denotes the Euclidean distance between (the coordinates
of) u andv.

The travel graphG0
T = (V 0; E 0; d; t) is a slight modification ofGT including its line

segment intersections. More formally, letsi \ sj = r denote thatsi and sj intersect
in point p, and letI = f(r; i; j) j si \ sj = rg be the set of all intersections, then
V 0 = V [ fr j (r; i; j) 2 Ig andE 0 = E [ Ea n Ed, whereEd = f(si; sj) j 9r :

(r; i; j) 2 Ig, andEa = f(p; r); (r; q); (p0; r); (r; q0) 2 V 0 � V 0 j (r; i; j) 2 I andr =

(si = (p; q) \ sj = (p0; q0))g. Note that intersection pointsr have no time stamp. Once
more, the new cost values fore = (u; v) 2 E 0nE are determined byd(e) = jju�vjj2, and
by t(e) = t(e0)d(e)=d(e0) with respect to the original edgee0 2 Ed. The latter definition
of time assumes a uniform speed on every line segment, which is plausible on sufficiently
small line segments.

The travel graphG0
D of a setD of tracesT1; : : : Tl is the travel graph of the union

graph of the respective trace graphsGT1 ; : : : ; GTk , Where the union graphG = (V;E) of
two graphsG1 = (V1; E1) andG2 = (V2; E2) is defined asV = V1[V2 andE = E1[E2.

For the sake of simplicity, we assume that all crossings are ingeneral position, so
that not more than two line segments intersect in one point. This assumption is not a
severe restriction, since all algorithms can be adapted to the more general case. We also
might exclude matching endpoints from the computation, since we already know that two
consecutive line segments intersect at the recorded data point. If a vehicle stops while
the GPS recorder is running, zero-length sequences with strictly positive time delays are
generated. Since zero-length segments cannot yield crossings, the problem of self loops
might be dealt with ignoring these segments for travel graph generation and a re-inserting
them afterwards to allow timed shortest path queries.

19.2.2 Algorithm of Bentley and Ottmann

The plane-sweep algorithm of Bentley and Ottmann [27] infers an undirected planar graph
representation (thearrangement) of a set of segments in the plane and their intersections.
The algorithm is one of the most innovative schemes both from a conceptual and from a
algorithmical point of view.

From a conceptional point of view it combines the two research areas of
computational complexityand graph algorithms. The basic principle of an imaginary
sweep-linethat stops on any interesting event is one of the most powerful technique in
geometry e.g. to directly compute the Voronoi diagram on a set ofn points in optimal
timeO(n logn), and is a design paradigm for solving many combinatorial problems like
the minimum and maximum in a set of values in the optimal number of comparisons, or
the maximum sub-array sum in linear time with respect to the number of elements.

From an algorithmical point of view the algorithm is a perfect example of the ap-
plication of balanced trees to reduce the complexity of an algorithm. It is also the first
output-sensitive algorithm, since its time complexityO((n + k) logn) is measured in
both the input and the output length, due to the fact thatn input segments may give rise
to k = O(n2) intersections.

The core observation for route planning is that, given a set of tracesD in form of a
sequence of segments, the algorithm can easily be adapted to compute the corresponding
travel graphG0

D. In difference to the original algorithm devised for computational ge-
ometry problems, the generated graph structure has to be directed. The direction of each
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edgee as well as its distanced(e) and travel timet(e) is determined by the two end nodes
of the segment. This includes intersections: the newly generated edges inherit direction,
distance and time from the original end points.
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Sweepline

Figure 19.2: Visualization of the sweep-line algorithm of Bentley and Ottmann on ai)
tiny andii) small data set in the client-server visualization Java frontend VEGA.

In Fig. 19.2 we depicted a snapshot of the animated execution of the algorithm in the
client-server visualization Java frontend VEGA [175]i) on a line segment sample set and
ii) on an extended trail according to Fig. 19.1. The sweep-line proceeds from left to right,
with the completed graph to its left.

The algorithm utilizes two data structures: theevent queueand thestatus structure.
In the event queue the active points are maintained, ordered with respect to theirx-
coordinate. In the status structure the active set of segments with respect to the sweep
line is stored iny-ordering. At each intersection the ordering of segments in the status
structure may change. Fortunately, the ordering of segments that participate in the inter-
sections simply reverses, allowing fast updates in the data structure. After new neigh-
boring segments are found, their intersections are computed and inserted into the event
queue. The abstract data structure needed for implementation are a priority queue for the
event queue and a search tree with neighboring information for the status data structure.
Using a standard heap for the former and a balance tree for the latter implementation
yields anO((n+ k) logn) time algorithm.

The lower bound of the problem's complexity is
(n logn + k) and the first step to
improve time performance wasO(n log2 n= log logn + k) [55]. The firstO(n logn + k)

algorithm [56] usedO(n+ k) storage. TheO(n logn + k) algorithm withO(n) space is
due to Balaban [19].

For trace graphs theO((n+k) logn) implementation is sufficiently fast in practice. As
a small example trace file considern = 216 = 65; 536 segment end points withk = 28 =
256 intersections. Thenn2 = 232 = 4; 294; 967; 296, while(n+k) logn = (216+28)�16 =
1; 052; 672 andn logn + k = 1; 048; 832.

19.3 Statistical Map Inference

Even without map information, on-line routing information is still available, e.g. a driving
assistance system could suggestyou are 2 meters off to the right of the best route, or you
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have not followed the suggested route, I will recompute the shortest path from the new
position, or turn left in about 100 meter in a resulting angle of about 60 degrees.

Nevertheless, route planning in trace graphs may have some limitations in the presen-
tation of the inferred route to a human, since abstract maps compact information and help
to adapt positioning data to the real-world.

In this section, an alternative approach to travel graphs is presented. It concentrates
on the map inference and adaptation problem for car navigation only, probably the most
important application area for GPS routing. One rationale in this domain is the following.
Even in one lane, we might have several traces that overlap, so that the number of line
segment intersectionsk can increase considerably. Takem=2 parallel traces on this lane
that intersect another parallelm=2 traces on the lane a single lane in a small angle, then
we expect up to�(m2) intersections in the worst case.

We give an overview of a system that automatically generates digital road maps that
are significantly more precise and contain descriptions of lane structure, including number
of lanes and their locations, and also detailed intersection structure. Our approach is a
statistical one: we combine ' lots of bad' GPS data from a fleet of vehicles, as opposed
to ' few but highly accurate' data obtained from dedicated surveying vehicles operated
by specially trained personnel. Automated processing can be much less expensive. The
same is true for the price of DGPS systems; within the next few years, most new vehicles
will likely have at least one DGPS receiver, and wireless technology is rapidly advancing
to provide the communication infrastructure. The result will be more accurate, cheaper,
up-to-date maps.

19.3.1 Steps in the Map Refinement Process

Currently commercially available digital maps are usually represented as graphs, where
the nodes represent intersections and the edges are unbroken roadsegmentsthat con-
nect the intersections. Each segment has a unique identifier and additional associated
attributes, such as a number ofshape pointsroughly approximating its geometry, the road
type (e.g., highway, on/off-ramp, city street, etc), speed information, etc. Generally, no
information about the number of lanes is provided. The usual representation for a a two-
way road is by means of a single segment. In the following, however, we depart from this
convention and view segments as unidirectional links, essentially splitting those roads
in two segments of opposite direction. This will facilitate the generation of the precise
geometry.

The task of map refinement is simplified by decomposing it into a number of succes-
sive, dependent processing steps. Traces are divided into subsections that correspond to
the road segments as described above, and the geometry of each individual segment is
inferred separately. Each segment, in turn, comprises a subgraph structure capturing its
lanes, which might include splits and merges. We assume that the lanes of a segment are
mostly parallel. In contrast to commercial maps, we view an intersection as a structured
region, rather than a point. These regions limit the segments at points where the traces
diverge and consist of unconstrained trajectories connecting individual lanes in adjacent
segments.

The overall map refinement approach can be outlined as follows.

1. Collect raw DGPS data (traces) from vehicles as they drive along the roads. Cur-
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rently, commercially available DGPS receivers output positions (given as longi-
tude/latitude/altitude coordinates with respect to a reference ellipsoid) at a regular
frequency between 0.1 and 1 Hz.

Optionally, if available, measurements gathered for the purpose of electronic
safety systems (anti-lock brakes or electronic stability program), such as wheel
speeds and accelerometers, can be integrated into the positioning system through
aKalman filter[162]. In this case, the step 2 (filtering or smoothing) can be accom-
plished in the same procedure.

2. Filter and resample the traces to reduce the impact of DGPS noise and outliers. If,
unlike in the case of the Kalman filter, no error estimates are available, some of the
errors can be detected by additional indicators provided by the receiver, relating to
satellite geometry and availability of the differential signal; others (e.g., so-called
multipath errors) only from additional plausibility tests, e.g., maximum accelera-
tion according to a vehicle model. Resampling is used to balance out the bias of
traces recorded at high sampling rates or at low speed. Details of the preprocessing
are beyond the scope of the current paper and can be found in a textbook such as
[284].

3. Partition the raw traces into sequences of segments bymatchingthem to an initial
base map. This might be a commercial digital map, such as that of Navigation Tech-
nologies, Inc. [275]. Section 19.3.2 presents an alternative algorithm for inferring
the network structure from scratch, from a set of traces alone.

Since in our case we are not constrained to a real-time scenario, it is useful to
consider the context of sample points when matching them to the base map, rather
than one point at a time. We implemented a map matching module that is based
on a modified best-first path search algorithm based on the Dijkstra-scheme [80],
where the matching process compares the DGPS points to the map shape points
and generates a cost that is a function of their positional distance and difference in
heading. The output is a file which lists, for each trace, the traveled segment IDs,
along with the starting time and duration on the segment, for the sequence with
minimum total cost (a detailed description of map matching is beyond the scope of
this paper).

4. For each segment, generate aroad centerlinecapturing the accurate geometry that
will serve as a reference line for the lanes, once they are found. Our spline fitting
technique will be described in Section 19.3.3.

5. Within each segment, cluster the perpendicular offsets of sample points from the
road centerline to identifylanenumber and locations (cf. Section 19.3.4).

19.3.2 Map Segmentation

In the first step of the map refinement process, traces are decomposed into a sequence
of sections corresponding to road segments. To this end, an initial base map is needed
for map matching. This can either be a commercially available map, such as that of
Navigation Technologies, Inc. [275]; or, we can infer the connectivity through a spatial
clustering algorithm, as will be described shortly.
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These two approaches both have their respective advantages and disadvantages. The
dependence on a commercial input map has the drawback that, due to its inaccuracies
(Navigation Technologies advertises an accuracy of 15 meters), traces sometimes are in-
correctly assigned to a nearby segment. In fact, we experienced this problem especially
in the case of highway on-ramps, which can be close to the main lanes and have similar
direction.

A further disadvantage is that roads missing in the input map cannot be learned at all.
It is impossible to process regions if no previous map exists or the map is too coarse, thus
omitting some roads.

On the other hand, using a commercial map as the initial baseline associates additional
attributes with the segments, such as road classes, street names, posted speeds, house
numbers, etc. Some of these could be inferred from traces by related algorithms on the
basis of average speeds, lane numbers, etc. Pribe and Rogers [297] describe an approach
to learning traffic controls from GPS traces. An approach to travel time prediction is
presented in [156]. However, obviously not all of this information can be independently
recovered. Moreover, with the commercial map used for segmentation, the refined map
will be more compatible and comparable with applications based on existing databases.

Road Segment Clustering

In this section, we outline an approach toinferring road segments from a set of traces si-
multaneously. Our algorithm can be regarded as aspatial clustering procedure. This class
of algorithms is often applied to recognition problems in image processing (See e.g. [85]
for an example of road finding in aerial images). In our case, the main questions to an-
swer are to identify common segments used by several traces, and to locate the branching
points (intersections). A procedure should be used that exploits the contiguity informa-
tion and temporal order of the trace points in order to determine the connectivity graph.
We divide it into three stages: cluster seed location, seed aggregation into segments, and
segment intersection identification.

Cluster Seed Location Cluster seed locationmeans finding a number of sample points
on different traces belonging to the same road. Assume we have already identified a num-
ber of trace points belonging to the same cluster; from these, a mean values for position
and heading is derived. In view of the later refinement step described in Sec. 19.3.3, we
can view such a cluster center as one point of theroad centerline.

Based on the assumption of lane parallelism, we measure the distance between traces
by computing their intersection point with a line through the cluster center that runs per-
pendicular to the cluster heading; this is equivalent to finding those points on the traces
whose projection onto the tangent of the cluster coincides with the cluster location, see
Fig. 19.3.

Our similarity measure between a new candidate trace and an existing cluster is based
both on its minimum distance to other member traces belonging to the cluster, computed
as described above; and on the difference in heading. If both of these indicators are
below suitable thresholds (call them� and�, respectively) for two sample points, they are
deemed to belong to the same road segment.

The maximum heading difference� should be chosen to account for the accuracy of
the data, such as to exclude sample points significantly above a high quantile of the error
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Figure 19.3: Distance between candidate trace and cluster seed

distribution. If such an estimate is unavailable, but a number of traces have already been
found to belong to the cluster, the standard deviation of these members can give a clue.
In general we found that the algorithm is not very sensitive to varation of�.

The choice of� introduces a trade-off between two kinds of segmentation errors: if it is
too small, wide lanes will be regarded as different roads; in the opposite case, nearby roads
would be identified. In any case, the probablility that the GPS error exceeds the difference
between the distance to the nearest road and the lane width is a lower bound for the
segmentation error. A suitable value depends on the expected GPS errors, characteristics
of the map (e.g., the relative frequencies of four-way intersections vs. freeway ramps),
and also on the relative risks associated with both tyes of errors which are ultimately
determined by the final application. As a conservative lower bound,� should be at least
larger than the maximum lane width, plus a tolerance (estimated standard deviation) for
driving off the center of the lane, plus a considerable fraction of an estimated standard
deviation of the GPS error. Empirically, we found the results with values in the range of
10–20 meters to be satisfying and sufficiently stable.

Using this similarity measure, the algorithm now proceeds in a fashion similar to the
k-means algorithm [249]. First, we initialize the cluster with some random trace point.
At each step, we add the closest point on any of the traces not already in the cluster,
unless� or � is exceeded. Then, we recompute the average position and heading of the
cluster center. Due to these changes, it can sometimes occur that trace points previously
contained in the cluster do no longer satisfy the conditions for being on the same road; in
this case they are removed. This process is repeated, until no more points can be added.

In this manner, we repeatedly generate cluster seeds at different locations, until each
trace point has at least one of them within reach of a maximum distance thresholddmax.
This threshold should be in an order of magnitude such that we ensure not to miss any
intersection (say, e.g., 50 meters). A simple greedy strategy would follow each trace and
add a new cluster seed at regular intervals of lengthdmax when needed. An example
section of traces, together with the generated cluster centers, are shown in Fig. 19.4.

Segment Merging The next step is tomergethose ones of the previously obtained clus-
ter centers that belong to the same road. Based on the connectivity of the traces, two such
clustersC1 andC2 can be characterized in that (1) w.l.o.g.C1 precedesC2, i.e., all the
traces belonging toC1 subsequently pass throughC2, and (2) all the the traces belong-
ing toC2 originate fromC1. All possible adjacent clusters satisfying this condition are
merged. A resulting maximum chain of clustersC1; C2; : : : ; Cn is called asegment, and
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< d max

Figure 19.4: Example of traces with cluster seeds

Figure 19.5: Merged cluster seeds result in segments

C1 andCn are called theboundary clustersof the segment.
At the current segmentation stage of the map refinement process, only a crude geo-

metric representation of the segment is sufficient; its precise shape will be derived later
in the road centerline generation step (Sec. 19.3.3). Hence, as an approximation, adjacent
cluster centers can either be joined by straight lines, polynomials, or one representative
trace part (in our algorithms, we chose the latter possibility). In Fig. 19.5, the merged
segments are connected with lines.

Intersections The only remaining problem is now to represent intersections. To capture
the extent of an intersection more precisely, we first try to advance the boundary clusters
in the direction of the split- or merge zone. This can be done by selecting a point from
each member trace at the same (short) travel distance away from the respective sample
point belonging to the cluster, and then again testing for contiguity as described above.
We extend the segment iteratively in small increments, until the test fails.

The set of adjacent segments of an intersection is determined by (1) selecting all out-
going segments of one of the member boundary clusters; (2) collecting all incoming seg-
ments of the segments found in (1); and iterating these steps until completion. Each
adjacent segment should be joined to each other segment for which connecting traces
exist.

We utilize the concept of asnakeborrowed from the domain of image processing,
i.e., a contour model that is fit to (noisy) sample points. In our case, a simple star-shaped
contour suffices, with the end points held fixed at the boundary cluster centers of the
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Figure 19.6: Traces, segments, and intersection contour model (dotted)

adjacent segments. Conceptually, each sample points exert an attracting force on it closest
edge. Without any prior information on the shape of the intersection, we can define the
' energy' to be the sum of the squared distances between each sample point and the closest
point on any of the edges, and then iteratively move the center point in an EM-style
fashion in order to minimize this measure. The dotted lines in Fig. 19.6 correspond to the
resulting snake for our example.

Dealing with Noisy Data

Gaps in the GPS receiver signal can be an error source for the road clustering algorithm.
Due to obstructions, it is not unusual to find gaps in the data that span a minute. As a
result, interpolation between distant points is not reliable.

As mentioned above, checking for parallel traces crucially depends onheadingin-
formation. For certain types of positioning systems used to collect the data, the heading
might have been determined from the direction of differences between successive sample
points. In this case, individual outliers, and also lower speeds, can lead to even larger
errors in direction.

Therefore, in the first stage of our segmentation inference algorithm, filtering is per-
formed by disregarding trace segments in cluster seeds that have a gap within a distance
of dmax, or fall outside a 95 percent interval in the heading or lateral offset from the
cluster center. Cluster centers are recomputed only from the remaining traces, and only
they contribute to the subsequent steps of merging and intersection location with adjacent
segments.

Another issue concerns the start and end parts of traces. Considering them in the
map segmentation could introduce segment boundaries at each parking lot entrance. To
avoid a too detailed breakup, we have to disregard initial and final trace sections. Dif-
ferent heuristics can be used; currently we apply a combined minimum trip length/speed
threshold.

19.3.3 Road Centerline Generation

We now turn our attention to the refinement of individual segments. Theroad centerline
is a geometric construct whose purpose is to capture the road geometry. The road cen-
terline can be thought of as a weighted average trace, hence subject to the relative lane
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Figure 19.7: Segment part: NavTech map (bottom), trace points (crosses), and computed
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occupancies, and not necessarily a trajectory any single vehicle would ever follow. We
assume, however, the lanes to be parallel to the road centerline, but at a (constant) per-
pendicular offset. For the subsequent lane clustering, the road centerline helps to cancel
out the effects of curved roads.

For illustration, Fig. 19.7 shows a section of a segment in our test area. The indicated
sample points stem from different traces. Clearly, by comparison, the shape points of the
respective NavTech segment exhibit a systematic error. The centerline derived from the
sample points is also shown.

It is useful to represent our curves inparametric form, i.e., as a vector of coordi-
nate variablesC(u) = (x; y; z)(u) which is a function of an independent parameter
u, for 0 � u � 1. The centerline is generated from a set of sample points using
a weighted least squares fit. More precisely, assume thatQ0; : : : ; Qm�1 are them data
points given,w0; : : : ; wm�1, are associated weights (dependent on an error estimate), and
�u0; : : : ; �um�10 their respective parameter values. The task can be formulated as finding a
parametric curveC(u) from a class of functionsS such that theQk are approximated in
the weighted least square sense, i.e.

s :=
m�1X
k=0

wk � kQk � C(�uk)k2

in a minimum with respect toS, wherek�k denotes the usual Euclidean distance (2-norm).
Optionally, in order to guarantee continuity across segments, the algorithm can easily be
generalized to take into account derivatives; if heading information is available, we can
use coordinate transformation to arrive at the desired derivative vectors.

The classS of approximating functions is composed of rationalB-Splines, i.e., piece-
wise defined polynomials with continuity conditions at the joining knots (for details, see
[293, 321]). For the requirement of continuous curvature, the degree of the polynomial
has to be at least three.

If each sample point is marked with an estimate of the measurement error (standard
deviation), which is usually available from the receiver or a Kalman filter, then we can
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use its inverse to weight the point, since we want more accurate points to contribute more
to the overall shape.

The least squares procedure [293] expects thenumber of control pointsn as input,
the choice of which turns out to be critical. The control points define the shape of the
spline, while not necessarily lying on the spline themselves. We will return to the issue of
selecting an adequate number of control points in Section 19.3.3.

Choice of Parameter Values for Trace Points

For each sample pointQk, a parameter value�uk has to be chosen. This parameter vector
affects the shape and parameterization of the spline. If we were given a single trace as
input, we could apply the widely usedchord lengthmethod as follows. Letd be the
total chord lengthd =

Pm�1
k=1
jQk � Qk�1j. Then set�u0 = 0, �um�1 = 1, and �uk =

�uk�1 +
jQk�Qk�1j

d
for k = 1; : : : ; m� 2. This gives a good parameterization, in the sense

that it approximates auniformparameterization proportional to the arc length.
For a set ofk distinct traces, we have to impose a common ordering on the combined

set of points. To this end, we utilize an initial rough approximation, e.g., the polyline
of shape points from the original NavTech map segments; if no such map segment is
available, one of the traces can serve as a rough baseline for projection. Each sample
pointQk is projectedontos, by finding the closest interpolated point ons and choosing
�uk to be the chord length (cumulative length along this segment) up to the projected point,
divided by the overall length ofs. It is easy to see that for the special case of a single trace
identical tos, this procedure coincides with the chord length method.

Choice of the Number of Control Points

The number of control pointsn is crucial in the calculation of the centerline; for a cubic
spline, it can be chosen freely in the valid range[4; m� 1]. Fig. 19.8 shows the centerline
for one segment, computed with three different parametersn.

Note that a low number of control points may not capture the shape of the centerline
sufficiently well (n = 4); on the other hand, too many degrees of freedom causes the
result to “fit the error”. Observe how the spacing of sample points influences the spline
for the casen = 20.

From the latter observation, we can derive an upper bound on the number of control
points: it should not exceed the average number of sample points per trace, multiplied by
a small factor, e.g.,2 �m=k.

While the appropriate number of control points can be easily estimated by human
inspection, its formalization is not trivial. We empirically found that two measures are
useful in the evaluation.

The first one is related to thegoodness of fit. Averaging the absolute offsets of the
sample points from the spline is a feasible approach for single-lane roads, but otherwise
depends on the number and relative occupancies of lanes, and we do not expect this offset
to be zero even in the ideal case. Intuitively, the centerline is supposed to stay roughly in
the middle between all traces; i.e., if we project all sample points on the centerline, and
imagine a fixed-length window moving along the centerline, then the average offset of all
sample points whose projections fall into this window should be near to zero. Thus, we
define theapproximation error�fit as the average of these offsets over all windows.
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Figure 19.8: Trace points and centerlines computed with varying number of control points

The second measure checks for overfitting. As illustrated in Fig. 19.8, using a large
number of control points renders the centerline “wiggly”, i.e., tends to increase the
curvatureand makes it change direction frequently. However, according to construction
guidelines, roads are designed to be piecewise segments of either straight lines or circles,
with clothoids between as transitions. These geometric concepts constrain the curvature to
bepiecewise linear. As a consequence, the second derivative of the curvature is supposed
to be zero nearly everywhere, with the exception of the segment boundaries where it might
be singular. Thus, we evaluate the curvature of the spline at constant intervals and numer-
ically calculate the second derivative. The average of these values is thecurvature error
�curv.

Fig. 19.9 plots the respective values of�fit and�curv for the case of Fig. 19.8 as a function
of the number of control points. There is a tradeoff between�fit and�curv; while the former
tends to decrease rapidly, the latter increases. However, both values are not completely
monotonic.

Searching the space of possible solutions exhaustively can be expensive, since a com-
plete spline fit has to be calculated in each step. To save computation time, the current
approach heuristically picks the largest valid number of control points for which�curv lies
below an acceptable threshold.

19.3.4 Lane Finding

After computing the approximate geometric shape of a road in the form of the road cen-
terline, the aim of the next processing step is to infer the number and positions of itslanes.
The task is simplified by canceling out road curvature by the following transformation.
Each trace pointP is projectedonto the centerline for the segment, i.e., its nearest inter-
polated pointP 0 on the map is determined. Again, the arc length from the first centerline



19.3. STATISTICAL MAP INFERENCE 333

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20 25 30

Control points

2nd deriv of curvature / (10 m^2)
avg window offset / m
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point up toP 0 is thedistance along the segment; the distance betweenP andP 0 is referred
to as itsoffset. An example of the transformed data is shown in Fig. 19.10.

Intuitively, clustering means assigningn data points in ad-dimensional space tok
clusters such that some distance measure within a cluster (i.e., either between pairs of
data belonging to the same cluster, or to a cluster center) is minimized (and is maximized
between different clusters). For the problem of lane finding, we are considering points in
a plane representing the flattened face of the earth, so the Euclidean distance measure is
appropriate.

Since clustering in high-dimensional spaces is computationally expensive, methods
like thek-means algorithmuse a hill-climbing approach to find a (local) minimum solu-
tion. Initially, k cluster centers are selected, and two phases are iteratively carried out
until cluster assignment converges. The first phase assigns all points to their nearest
cluster center. The second phase recomputes the cluster center based on the respective
constituent points (e.g., by averaging) [249].

Segments with Parallel Lanes If we make the assumption that lanes are parallel over
the entire segment, the clustering is essentially one-dimensional, taking only into account
the offset from the road centerline. In our previous approach [308], a hierarchical ag-
glomerative clustering algorithm (agglom) was used that terminated when the two closest
clusters were more than a given distance apart (which represented the maximum width
of a lane). However, this algorithm requiresO(n3) computation time. More recently, we
have found that it is possible to explicitly compute theoptimal solutionin O(k � n2) time
andO(n) space using a dynamic programming approach, wheren denotes the number of
sample points, andk denotes the maximum number of clusters [321].
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Segments with Lane Splits and Merges

We have previously assumed the ideal case of a constant number of lanes at constant
offsets from the road centerline along the whole segment. However, lane widths may
gradually change; in fact, they usually get wider near an intersection. Moreover, new lanes
can start at any point within a segment (e.g., turn lanes), and lanes can merge (e.g., on-
ramps). Subsequently, we present two algorithms that can accommodate the additional
complexity introduced by lane merges and splits.

One-dimensional Windowing with Matching One solution to this problem is to aug-
ment the one-dimensional algorithm with a windowing approach. We divide the segment
into successive windows with centers at constant intervals along the segment. To min-
imize discontinuities, we use a Gaussian convolution to generate the windows. Each
window is clustered separately as described above, i.e., the clustering essentially remains
one-dimensional. If the number of lanes in two adjacent windows remains the same,
we can associate them in the order given. For lane splits and merges, however, lanes in
adjacent windows need to bematched.

To match lanes across window boundaries, we consider each trace individually (the
information as to which trace each data point belongs to has not been used in the center-
line generation, nor the lane clustering). Following the trajectory of a given trace through
successive windows, we can classify its points according to the computed lanes. Accu-
mulating these counts over all traces yields a matrix oftransition frequenciesfor any pair
of lanes from two successive windows. Each lane in a window is matched to that lane in
the next window with maximum transition frequency.
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Figure 19.11: Error in determining the number of lane clusters

19.3.5 Experimental Results

We have now completed our account of the individual steps in the map refinement process.
In this section, we report on experiments we ran in order to evaluate the learning rate of
our map refinement process. Our test area in Palo Alto, CA, covered 66 segments with a
combined length of approximately 20 km of urban and freeway roads of up to four lanes,
with an average of 2.44 lanes.

One principal problem we faced was the availability of a ground truth map with lane-
level accuracy for comparison. Development of algorithms to integrate vision-based lane
tracker information is currently under way. Unfortunatly, however, these systems have er-
rors on their own and therefore cannot be used to gauge the accuracy of the pure position-
based approach described in this article. Therefore, we reverted to the following proce-
dure. We used a high-end real-time kinematic carrier phase DGPS system to generate a
base map with few traces [347]. According to the announced accuracy of the system of
about 5 cm, and after visual inspection of the map, we decided to define the obtained map
as our baseline. Specifically, the input consisted of 23 traces at different sampling rates
between 0.25 and 1Hz.

Subsequently, we artificially created more traces of lower quality by adding varying
amounts of gaussian noise to each individual sample position (� = 0:5 : : : 2 m) of copies
of the original traces. For each combination of error level and training size, we generated
a map and evaluated its accuracy.

Fig. 19.11 shows the resulting error in thenumber of lanes, i.e., the proportion of
instances where the number of lanes in the learned map differs from the number of lanes
in the base line map at the same position. Obviously, for a noise level in the range of more
than half a lane width, it becomes increasingly difficult to distinguish different clusters of
road centerline offsets due to overlap. Therefore, the accuracy of the map for the input
noise level of� = 2 m is significantly higher than that of the lower ones. However, based
on the total spread of the traces, the number of lanes can still be estimated. Forn = 253

traces, their error is below 10 percent for all of them. These remaining differences arise
mainly from splits and merges, where in absence of the knowledge of lane markings it is
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Figure 19.12: Average error in lane offsets

hard to determine the exact branch points, whose position can heavily depend on single
lane changes in traces.

Fig. 19.12 plots the mean absolute difference of the offsets of corresponding lanes
between the learned map and the base map, as a function of the training size (number of
traces). Again, the case� = 2 m needs significantly more training data to converge. For
� <= 1:5 m, the lane offset error decreases rapidly; it is smaller than 15 centimeters after
n = 92 traces, and thus in the range of the base map accuracy.

19.4 Searching the Map Graph

Let us now turn our attention to the map usage in on-line routing applications. In some
sense, both maps and travel graphs can be viewed as embeddings of weighted general
graphs. Optimal paths can be searched with respect to accumulated shortest timet or
distanced or any combination of them. We might assume a linear combination for a total
weight functionw(u; v) = � � t(u; v) + (1 � �) � d(u; v) with parameter� 2 IR and
0 � � � 1.

19.4.1 Algorithm of Dijkstra

Given a weighted graphG = (V;E; w), jV j = n, jEj = e, the shortest path between
two nodes can be efficiently computed by Dijkstra's single source shortest path (SSSP)
algorithm [80].

Table 19.1 shows a implementation of Dijkstra's algorithm for implicitly given graphs
that maintains a visited listClosedin form of a hash table and a priority queue of the
nodes to be expanded, ordered with respect to increasing meritsf .

The run time of Dijkstra's algorithm depends on the priority queue data structure.
The original implementation of Dijkstra runs inO(n2), the standard textbook algorithm
in O((n + e) logn) [70], and utilizing Fibonacci-heaps we getO(e + n logn) [134].
If the weights are small, buckets are preferable. In a Dial thei-th bucket contains all
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Dijkstra: A*

Open f(s; 0)g Open f(s; h(s))g
Closed fg
while (Open6= ;)
u Deletemin(Open)
Insert(Closed,u)
if (goal(u)) return u

for all v in �(u)

f 0(v) f(u) + w(u; v) +h(v)� h(u)
if (Search(Open; v))

if (f 0(v) < f(v))

DecreaseKey(Open(v; f 0(v))
else if not(Search(Closed; v))

Insert(Open; (v; f 0(v))

Table 19.1: Implementation of Dijkstra's SSSP algorithm vs. A*.

elements with af -value equal toi [79]. Dials yieldsO(e + n � C) time for SSSP, with
C  max(u;v)2Efw(u; v)g. Two-Level Buckets have top level and bottom level of length
dpC + 1e+ 1, yielding the run timeO(e+ n

p
C). An implementation withradix heaps

uses buckets of sizes1; 1; 2; 4; 8; : : : and implyO(e + n logC) run time, two-level heap
improve the bound toO(e+n logC= log logC) and a hybrid with Fibonacci heaps yields
O(e+ n

p
logC) [5]. This algorithm is almost linear in practice, since when assuming 32

bit integers we havedplogCe � 6. The currently best result arecomponent treeswith
O(n + e) time for undirected SSSP on a random access machine of word lengthw with
integer edge weights in[0::2w � 1] [340]. However, the algorithm is quite involved and
likely not to be practical.

19.4.2 Planar Graphs

Travel graphs have many additional features. First of all, the number of edges is likely
to be small. In the trail graph the number of edges equals the number of nodes minus
1, and forl trails T1; : : : ; Tl we havejT1j; : : : ; jTlj � l edges in total. By introducingk
intersections the number of edges increases by2k only. Even if intersections coincide
travel graphs are still planar, and by Eulers formula the number of edges is bounded by
at most three times the number of nodes. Recall, that for the case of planar graphs linear
time algorithms base on graph separators and directly lead to network flow algorithms of
the same complexity [208].

If some intersections were rejected by the algorithms to allow non-intersecting cross-
ing like bridges and tunnels, the graph would loose some of its graph theoretical proper-
ties. In difference to general graphs, however, we can mark omitted crossings to improve
run time and storage overhead.
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19.4.3 Frontier Search

Frontier search [222] contributes to the observation that the newly generated nodes in any
graph search algorithm form a connected horizon to the set of expanded nodes, which is
omitted to save memory.

The technique refers to Hirschberg's linear space divide-and-conquer algorithm for
computing maximal common sequences [176]. In other words, frontier search reduces a
(d+1)-dimensional memorization problem into ad-dimensional one. It divides into three
phases. In the first phase, a goaltwith optimal costf � is searched. In the second phase the
search is re-invoked with boundf �=2; and by maintaining shortest paths to the resulting
fringe the intermediate statei from s to t is detected. In the last phase the algorithm is
recursively called for the two subproblems froms to i, and fromi to t.

19.4.4 Heuristic Search

Heuristic search includes an additional node evaluation functionh into the search. The
estimateh, also called heuristic, approximates the shortest path distance from the current
node to one of the goal nodes. A heuristic isadmissibleif it provides a lower bound to
the shortest path distance and it isconsistent, if w(u; v) + h(v) � h(u) � 0. Consistent
estimates are admissible.

Table 19.1 also shows the small changes in the implementation of A* for consistent
estimates with respect to Dijkstra's SSSP algorithm. In the priority queueOpenof gener-
ated and not expanded nodes, thef -values are tentative, while in setClosedthef -values
are settled. On every path from to the initial state to a goal node the accumulated heuristic
values telescope, and if any goal node has estimate zero, thef values of each encountered
goal node in both algorithms are the same. Since in Dijkstra's SSSP algorithm thef -value
of all expanded nodes match their graph theoretical shortest path value we conclude that
for consistent estimates, A* is complete and optimal.

Optimal solving the SSSP problem for admissible estimates and negative values of
w(u; v) + h(v)� h(u) leads to re-openings of nodes: already expanded nodes inClosed
are pushed back into the search frontierOpen. If we considerw(u; v) + h(v) � h(u) as
the new edge costs, Fig. 19.13 gives an example for such a re-weighted graphs that leads
to exponentially many re-openings. The second last node is re-opened for every path with
weightf1; 2; : : : ; 2k� 1g. Recall that ifh is consistent, no reopening will be necessary at
all.

In route planning the Euclidean distance of two nodes is a heuristic estimate defined
ash(u) = ming2G jjg � ujj2 for the set of goal nodesG is both admissible and consistent
Admissibility is granted, since no path on any road map can be shorter than the flight
distance, while consistency follows from the triangle inequality for shortest path. For edge
e = (u; v) we haveming2G jjg � vjj2 � ming2G jjg � ujj2 + w(u; v) . Since nodes closer
to the goal are more attractive, A* is likely to find the optimum faster. Another benefit
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from this point of view is that all above advanced data structures for node maintenance in
the priority as well as space saving strategies like frontier search can be applied to A*.

19.5 Related Work

Routing schemes often run on external maps and external maps call for refined memory
maintenance. Recall that external algorithms are ranked according tosorting complexity
O(sort(n)), i.e., the number of external block accesses (I/Os) necessary to sortn num-
bers, and according toscanning complexityO(scan(n)), i.e., the number of I/Os to
readN numbers. The usual assumption is thatN is much larger thanB, the block
size. Scanning complexity equalsO(n=B) in a single disk model. On planar graphs,
SSSP runs inO(sort(n)) I/Os, wheren is the number of vertices. As for the internal
case the algorithms apply graph separation techniques [339]. For general BFS at most
O(
q
n � scan(n + e)+sort(n+e)) I/Os [261] are needed, wheree is the number of edges

in the graph. Currently there is noo(n) algorithm for external SSSP. On the other hand,
O(n) I/Os are by far too much in route planning practice.

Fortunately, one can utilize the spatial structure of a map to guide the secondary map-
ping strategy with respect to the graph embedding. The work of [115] provides the new
search algorithm and suitable data structures in order to minimize page faults by a local
reordering of the sequence of expansions. AlgorithmLocalized A*introduces an opera-
tion deleteSomeinstead of strictdeleteMininto the A* algorithm. Nodes corresponding to
an active page are preferred. When maintaining an bound� on obtained solution lengths
until Openbecomes empty the algorithm can be shown to be complete and optimal. The
loop invariant is that there is always a node on the optimal solution path with correctly
estimated accumulated cost. The authors prove the correctness and completeness of the
approach and evaluate it in a real-world scenario of searching a large road map in a com-
mercial route planning system.

In many fields of application, shortest path finding problems in very large graphs
arise. Scenarios where large numbers of on-line queries for shortest paths have to be pro-
cessed in real-time appear for example in traffic information systems. In such systems,
the techniques considered to speed up the shortest path computation are usually based on
pre-computed information. One approach proposed often in this context is a space reduc-
tion, where pre-computed shortest paths are replaced by single edges with weight equal
to the length of the corresponding shortest path. The work of [323] gives a first system-
atic experimental study of such a space reduction approach. The authors introduce the
concept of multi-level graph decomposition. For one specific application scenario from
the field of timetable information in public transport, the work gives a detailed analy-
sis and experimental evaluation of shortest path computations based on multi-level graph
decomposition.

In the scenario of a central information server in the realm of public railroad transport
on wide area networks a system has to process a large number of on-line queries for
optimal travel connections in real time. The pilot study of [322] focuses on travel time
as the only optimization criterion, in which various speed-up techniques for Dijkstra's
algorithm were analyzed empirically.

Speed-up techniques that exploit given node coordinates have proven useful for
shortest-path computations in transportation networks and geographic information sys-
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tems. To facilitate the use of such techniques when coordinates are missing from some,
or even all, of the nodes in a network [44] generate artificial coordinates using meth-
ods from graph drawing. Experiments on a large set of train timetables indicate that the
speed-up achieved with coordinates from network drawings is close to that achieved with
the actual coordinates.

19.6 Conclusions

We have seen a large spectrum of efficient algorithms to tackle different aspects of the
route planning problem based on a given set of global positioning traces.

For trail graph inference the algorithm of Bentley and Ottmann has been modified
and shown to be almost as efficient as the fastest shortest path algorithms. Even though
this solves the basic route planning problem, different enhanced aspects are still open.
We indicate low memory consumption, localized internal computation, and fast on-line
performance as the most challenging ones.

Map inference and map matching up to lane accuracy suite better as a human-
computer interface, but the algorithmic questions include many statistical operations and
are non-trivial for perfect control. On the other hand, map inference based on GPS in-
formation saves much money especially to structure unknown and continuously changing
terrains.

Low-end devices will improve GPS accuracy especially by using additional inertia in-
formation of the moving object, supplied e.g. by a tachometer, an altimeter, or a compass.
For (3D) map generation and navigation other sensor data like sonar and laser (scans) can
be combined with GPS e.g. for outdoor navigation of autonomous robots and in order to
close uncaught loops.

The controversery if the GPS routing problem is more a geometrical one (in which
case the algorithm of Bentley/Ottmann applies) or a statistical one (in which clustering
algorithms are needed) is still open. At the moment we expect statistical methods to
yield better and faster results due to their data reduction and refinement aspects and we
expect that a geometrical approach will not suffice to appropriately deal with a large and
especially noisy data set. We have already seen over-fitting anomalies in the statistic
analyses. Nevertheless, a lot more research is needed to clarify the the quest of a proper
static analysis of GPS data, which in turn will have a large impact in the design and
efficiency of the search algorithms.

We expect that in the near future, the combination of positioning and precision map
technology will give rise to a range of new vehicle safety and convenience applications,
ranging from warning, advice, up to automated control.
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