
Inferring Flow of Control in Program Synthesis

by Example

Stefan Schr�odl and Stefan Edelkamp

Institut f�ur Informatik

Albert-Ludwigs-Universit�at, Am Flughafen 17, D-79110 Freiburg, Germany,

e-mail:fschroedl,edelkampg@informatik.uni-freiburg.de

Abstract. We present a supervised, interactive learning technique that

infers control structures of computer programs from user-demonstrated

traces. A two-stage process is applied: �rst, a minimal deterministic �-

nite automaton (DFA) M labeled by the instructions of the program

is learned from a set of example traces and membership queries to the

user. It accepts all pre�xes of traces of the target program. The number

of queries is bounded by O(k � jM j), with k being the total number of in-

structions in the initial example traces. In the second step we parse this

automaton into a high-level programming language in O(jM j2) steps,

replacing jumps by conditional control structures.

1 Introduction

1.1 Program Synthesis from Examples

The ultimate goal of program synthesis from examples is to teach the computer

to infer general programs by specifying a set of desired input/output data pairs.

Unfortunately, the class of total recursive functions is not identi�able in the

limit [8]. For tractable and e�cient learning algorithms either the class has to

be restricted or more information has to be provided by a cooperative teacher.

Two orthogonal strains of research can be identi�ed [6]. Until the late 1970s,

the focus was on inferring functional (e.g., Lisp) programs based on traces. Since

the early 1980s the attention shifted towards model-based and logic approaches.

All functional program synthesis mechanism are based on two phases: trace

generation from input/output examples, and trace generalization into a recur-

sive program. Biermann's function merging mechanism [4] takes a one-parameter

Lisp function whose only predicate is atom, and decomposes the output in an al-

gorithmic way into a set of nested basic functions. Subsequently, they are merged

into a minimal set that preserves the original computations by introducing dis-

criminant predicates. These mechanisms perform well on predicates that involve

structural manipulation of their parameters, such as list concatenation or re-

versal. However, their drawbacks are two-fold. The functional mapping between

input and output terms cannot be determined in this straightforward way for

less restrictive applications; on the other hand, manually feeding the inference

algorithm with example traces can be a tedious and error-prone task. Secondly,

the merging algorithms require exponential time in general.

The second direction of research (frequently called Inductive Logic Program-

ming) is at the intersection between empirical learning and logic programming.

A pioneering work was Shapiro's Model Inference System [13] as a mechanism

for synthesizing Prolog programs from positive and negative facts. The system

explores the search space of clauses using a con�gurable strategy. The subsump-

tion relation assists in specializing incorrect clauses implying wrong examples,

and in adding new clauses for uncovered ones. The critical issues are the un-

decidability of subsumption in the general case, the large number of required

examples, and the huge size of the search space.

1.2 Programming in the Graphical User Interface

The last decades have seen a revolutionary change in human-computer interfaces.

Instead of merely typing cryptic commands into a console, the user is given the

illusion of moving around objects on a \desktop" he already knows from his

everyday-life experience. Users can refer to an action by simply performing the

action, something they already know how to do. Therefore, they can more easily

handle end user programming tools.

Many spreadsheet programs and telecommunication programs have built-in

macro recorders. Similarly to a tape recorder, the user presses the \record" but-

ton, performs a series of keystrokes or mouse clicks, presses \stop", and then

invokes \play" to replay the entire sequence. Frequently, the macro itself is in-

ternally represented in a higher programming language (such as Excel macros

in Visual Basic).

Moreover, the current trends in software development tools show that even

programming can pro�t from graphical support. \Visual computing" aims at

relieving conventional programming from the need of mapping a visual repre-

sentation of objects being moved about the screen into a completely di�erent

textual representation of those actions. In an ideal general-purpose programming

scenario, we could think of a domain-independent graphical representation for

standard data structures, such as arrays, lists, trees, etc. which can be visually

manipulated by the user.

Cypher gives an overview of current approaches [5]. Lieberman's Tinker sys-

tem permits a beginning programmer to write Lisp programs by providing con-

crete examples of input data, and typing Lisp expressions or providing mouse

input that directs the system how to handle each example. The user may present

multiple examples that serve to incrementally illustrate di�erent cases in condi-

tional procedures. The system subsequently prompts the user for a distinguishing

test. However, no learning of program structures takes place.

Based on these observations, we argue that program synthesis from traces

could regain some attraction. The burden of trace generation can be greatly

alleviated by a graphical user interface and thus becomes feasible.

In this paper, we propose an e�cient interactive learning algorithm which

solves the complexity problem of the merging algorithm in functional program

synthesis. Contrary to the latter approach, we focus on imperative program-

ming languages. They also reect more closely the iterative nature of interaction

with graphical user interfaces. The ow of control in imperative languages is

constituted by conditional branches and loops; their lack in most current macro

recorders is an apparent limitation.

2 Editing a First Example Trace

Figure 1 shows our prototypical graphical support. The user generates a �rst

example trace by performing a sequence of mouse selections, mouse drags, menu

selections, and key strokes.

Fig. 1. Trace Frame.

Throughout the paper, we will exemplify the inference mechanism with the

well-known bubble-sort algorithm. The user might start with the sample array

a = [2; 1] of length n = 2. A variable i is introduced to hold the number of

remaining iterations, and is initialized to one (int i=n-1). Then he states that

the end is not yet reached (i>0). Subsequently he initializes another variable

j to zero, meant as an index for traversing the array (int j=0). Now the ar-

ray element with index 0 is compared to its successor (a[j]>a[j+1]). Since the

comparison 1>2 fails (F) he swaps the elements (swap(j,j+1)). For ease of ex-

position, we assume that the swap-procedure has already been programmed to

interchange two values in the array. The user increases j (j++) and then ob-

serves that the array has been traversed up to position i (j<i; F) in which case

i is decremented (i--). The next iteration starts. But since i now has reached

the left border (i>0; F) the sorting is accomplished and the procedure stops

(return). In summary, the example generated by the end user is given as follows:

i=0;i>0;T;j=0;a[j]<a[j+1];F;swap(j,j+1);j++;j<i;F;i--;i>0;F;return.

3 The ID-Algorithm

Grammar inference is de�ned as the process of learning an unknown grammar

given a �nite set of labeled examples. An important, widely used subset of for-

mal languages are regular grammars, which can be generated and recognized

by deterministic �nite automata (DFA). However, given a �nite set of positive

examples and a �nite, possibly empty set of negative examples, the problem of

learning a minimum state DFA equivalent to the target is NP -hard [9]. Hence,

the learner's task has to be simpli�ed by imposing certain desired criteria on the

examples (like structural completeness, characteristic samples), or by providing

the learner with access to sources of additional information, like a knowledgeable

teacher (oracle) who responds to queries generated by the learner.

Our algorithm is based on Angluin's ID-algorithm which is briey recalled

in this section. It may be skipped in a �rst reading.

Let � be the set of symbols, �� be the set of strings, and � be the empty

string. Furthermore, let M = (Q; �;�; q0; F) be a DFA according to the usual

quintuple de�nition and L(M) be the language accepted by M . A state q in

M is alive if it can be reached by some string � and left with some string �
such that �� 2 L(M). In a minimal DFA there is only one state d0 that is not

alive. A set of strings P is said to be live-complete w.r.t. M if for every live

state q in M there exists a string � 2 P such that �(q0; �) = q. Therefore,
P 0 = P [fd0g represents all states in M . In order to �nd a string representation

of the state reached on reading an input b from the state represented by � we

de�ne a function f : P 0�� ! ��[fd0g by f(d0; b) = d0 and f(�; b) = �b. The
transition set T 0 denotes the set of all elements of P 0, together with all elements

f(�; b) for all (�; b) 2 P ��. Analogously to P we de�ne T = T 0 � fd0g.

Input: a live complete set P and a teacher to answer membership queries

Output: a description of the canonical DFA M for the target regular grammar

i = 0; vi = �;V = f�g, T = P [ff(�; b)j(�; b) 2 P ��g; T 0 = T [fd0g, E0(d0) = ;;
for each � 2 T

if (� 2 L) E0(�) = f�g else E0(�) = ;;
while (9�; � 2 P

0 and b 2 � such that Ei(�) == Ei(�) but Ei(f(�; b)) 6= Ei(f(�; b)))

let 2 Ei(f(�; b))�Ei(f(�; b))

let vi+1 = b

let V = V [fvi+1g and i = i+ 1

for each � 2 T

if (�vi 2 L) Ei(�) = Ei�1(�) [fvig; else Ei(�) = Ei�1(�);

Extract the automaton M for L from the sets Ei and T (see text)

Fig. 2. Angluin's ID-algorithm.

The goal of the ID algorithm (Figure 2) is to construct a partition of T 0 that

places all the equivalent elements in one state [2]. The equivalence relation is the

Nerode relation such that the resulting DFA will be minimal [1]. The algorithm

starts with an initial partition of one accepting and one non-accepting state and

re�nes it successively. In each step i of ID a string vi is drawn such that for

any two states q and q0 there exists a j � i with �(q; vj) 2 F and �(q0; vj) =2 F
or vice versa. Thus, we de�ne the i-th partition Ei as follows: Ei(d0) = ; and

Ei(�) = fvj jj � i; �vj 2 L(M)g. Then for every two strings �; � 2 T with

�(q0; �) = �(q0; �) we have Ej(�) = Ej(�) for all j � i. For each i the algorithm
searches for a separating pair �; � and a symbol b such that Ei(�) = Ei(�) but
Ei(f(�; b)) 6= Ei(f(�; b)). Let be any string that is either in Ei(f(�; b)) and not
in Ei(f(�; b)) or vice versa. Then we de�ne vi+1 = b and construct the (i+1)-th

partition as follows. For each � 2 T we query the string �vi+1. If �vi+1 2 L(M)

we set Ei+1 = Ei [fvi+1g; otherwise, we let Ei+1 = Ei unchanged.

We iterate until no separating pair �, � exists and extract M from the sets

Ei and the transition set T as follows. The states of M are the sets Ei(�), for
� 2 T . The initial state of M is Ei(�). The accepting states of M are the sets

Ei(�), where � 2 T and � 2 Ei(�). If Ei(�) = ; then we add self loops on the

state Ei(�) for all b 2 �; else we set the transition �(Ei(�); b) = Ei(f(�; b)) for
all � 2 P and b 2 �.

Angluin proved that ID asks no more than n � j�j � jP j queries, where n is the

number of states in M : the algorithm iterates through the while-loop at most n
times, since each time at least one set Ei (corresponding to a state) is partitioned

into two subsets. It asks jT j questions, where T contains no more than j�j � jP j
elements.

4 Customizing ID for Program Traces

4.1 Naive Approach

A simple strategy to apply the ID-algorithm to the problem of program inference

from traces goes as follows. The alphabet � consists of all program lines occur-

ring in the examples. More precisely, we partition � into � [�[�[freturng,

where � is the set of non-branching instructions (e.g. assignments), � is the

set of (boolean) tests (e.g. numerical comparisons), � = fT; Fg is the set of

boolean values, and return signals the end of the procedure. The language L
to be learned is regular and consists of all pre�xes of valid execution traces.

Programs are represented as �nite state machines, where transitions are labeled

with the respective instructions. Let Pr(�) be the set of all pre�xes to �. The
live-complete set P for the ID-algorithm can now be �xed as P = Pr(S) [f�g,
with S being the example trace.

For the initial examples in P , the user is free to choose any data, such as the

array [2; 1] in our case. As a heuristic guideline, the �rst examples are supposed

both not to be overly lengthy (in order to reduce the number of subsequent

questions), but at the same time cover all states of the automaton (in order to

specify P). However, this requirement is not compulsory: in the version IID of

the algorithm [11], the initial set of examples need not to be live-complete; the

user is allowed to incrementally re�ne the automaton structure by presenting

additional (positive or negative) examples later on.

Using this scheme, the number of queries (2158) asked for our bubble-sort

case is clearly inacceptably high. Fortunately, the majority of them can imme-

diately be answered by the system itself.

4.2 Pruning

We make the following general assumptions to hold for all execution traces �
in ��.

1. If �a 2 L for some a 2 � then also � 2 L. In words: every pre�x of a word

in L is itself in L.
2. If �ab 2 L and �ac 2 L where a 2 � [� and b; c 2 �, then b = c. In words:

There is only one instruction that follows a non-branching instruction or a

boolean.

3. If �ab 2 L and a 2 � then b 2 �. In words: A test is only followed by a

boolean denoting its outcome.

4. We have �ab =2 L for a = return and all b 2 �. In words: No instruction

may follow the end statement.

If condition 3. or 4. is violated, the trace is malformed and is hence rejected.

According to condition 1., we can e�ciently store both the example traces

and the query traces con�rmed by the user in a trie data structure [10]. The bold

path in Figure 3 corresponds to the �rst example trace of Section 2. Given a query

string �b, we tentatively insert it into the trie. If it is already contained, the

answer is \yes". If the new trie forks at a non-branching instruction, condition 2.

is violated and thus the answer is \no". Otherwise, the user is prompted. Unless

his response is positive, the query string is removed.

For example at branch (3) in Figure 3 the system asks: int i=n-1; i>0;T;

int j=0; a[j]>a[j+1]; T; swap(j,j+1); j++; j<i; T; int i=n-1; 2 L? The
user will answer \no".

In the further course of the session, the system will eventually \guess" all

possible instructions as b until the correct one a[j]>a[j+1] is found. As a fur-

ther simpli�cation, we can allow the user to edit the question and to immediately

type in the right continuation.

4.3 Selection of Example Data

Ideally, the system should present its queries by animating a sequence of in-

structions for a suitable instantiation of the variables. Given only the raw code

fragments, it might be di�cult for the user to �nd the correct continuation.

This raises the question of how to select data which is consistent with a given

trace, i.e., how to �nd an assignment to the variables that makes one choice point

true and another one which makes it false. Two options are conceivable: the user

could be asked to give a pool of examples independently of (prior or alternating

to) the learning process, from which the system can choose some appropriate

one. Alternatively, he can provide a speci�cation to generate random data. E.g.,

i=n-1 s

i>0 s

T s

int j=0 s

a[j]>a[j+1] s

T s

swap(j,j+1) s

j++ s

j<i s

T s

a[j]>a[j+1] (3)s

�
�
�Q

Q
Q

Q
Q
Q

Q
Q
Q

Q
Q
QF s

i-- s

i>0 s

T s

int j=0 s

(4)

�
�
�Q

Q
Q

Q
Q
Q

Q
Q
Q

Q
Q
QF s

return s

�
�

�
�

�
�

�
�@
@F s

j++ s

(2)

�
�
�

�
�
�

�
�
�

�
�
�Q
Q
QF s

return (1)s

Fig. 3. Trie of example traces (bold edges) and query results (thin).

the bubble-sort algorithm should sort every permutation of the array elements,

which we w.l.o.g. �x to be [1; 2; : : : ; n]. For instance, the array a = [3; 1; 2] of
length n = 3 leads to the following instantiation for question (3): int i=2;

2=i>0; T; int j=0; 2=a[0]>a[1]=1; T; swap(0,1); j++; 1=j<i=2; T; i=2;

2 L? The user responds by replacing i=2 by the next step which compares

3 = a[1] > a[2] = 2, i.e., the test a[j]>a[j+1].

Figure 4 depicts the �nite state machine for the bubble-sort program inferred

by the ID-algorithm. All states are accepting, and all omitted transitions lead

to the dead state d0.

4.4 Query Complexity

Every a�rmatively answered membership question and every edited answer

string inserts at least one node into the trie. Incrementally extending the trie in

this way contributes to reduce the number of user questions. The total number

is bounded by the size of the �nal trie minus that of the the initial one. In our

bubble-sort example, this bound corresponds to the number of thin edges in

Figure 3. Actually, the user is asked four instead of 2158 times.

a[j]>a[j+1]

T

swap(j,j+1)

F

FT

int j=0

j<i

F
i--

return

i>0

int i=n-1

T
8

9 10

11

12

13

7

1

2

3

4 5

6

j++

Fig. 4. DFA for bubble-sort.

Due to the restrictions on well-formed traces, we can specify a tighter upper

bound on the number of user questions, compared to that of Angluin. If � 2 T
violates one of conditions 2. - 4., then �vi =2 L for all distinguishing strings vi.
We count the number of the remaining valid elements ~T .

We assume that all given examples in P are complete traces, i.e. end with a

return statement. Therefore, extensions f(�; b) 2 T to � 2 P are only available

at proper pre�xes of elements in the example set. However, if � ends with a

non-branching instruction, restriction 2. constrains f(�; b) to be in the set P .
In case � ends with a test instruction, condition 3. leaves us with two choices T

and F for b. With k denoting the total number of tests in the example set, we

have that j ~T j is bounded by k+ jP j. Finally, we conclude that the total number
of membership queries is bounded by n � (k + jP j) = O(n � jP j).

5 Transforming Automata into Structured Programs

It is straightforward to write down any generated automaton as a program using

some form of jumps (e.g., goto-statements).

For more complex algorithms such ow charts quickly become confusing.

In most current high-level programming languages, jump statements are either

strongly discouraged (e.g., in C), or do not exist at all (e.g., in Pascal). Instead,

high-level constructs are available for conditional branching and looping.

Therefore, we do not regard the automaton generated by the ID-algorithm

as the �nal output, but rather apply a transformation in order to replace jumps

by control structures.

Our algorithm transforms the automaton graph step by step by repeatedly

collapsing a subgraph into a new edge, for which we keep track of extra in-

formation: its type (e.g., simple, test, sequence, while-loop, etc.), possibly its

subcomponents, and the set of its successors.

Two adjacent edges labeled with arbitrary instructions other than tests or

booleans can be merged into a sequence if they are the only inward or outward

edges of the enclosed node. Connected tests can be merged into (compound)

conditions containing boolean operators depending on the role of their T- and

F-edges in the obvious way. For example, if test t1 is connected to test t2 via

its T-edge, and the F-edges of both t1 and t2 point to the same node v, then
a compound condition t1 ^ t2 is formed whose T-edge leads to the same node

pointed to by the T-edge of t2, and whose F-successor-node is v.

The more interesting cases are the instances where control structures are

inferred: a (simple or compound) condition whose T-edge leads to a non-test

edge with successor node v, and whose F-successor-node is also v, can be merged

into an if-then-statement pointing to v. Similarly, if the T- and the F-edge lead

to di�erent edges with the same successor node, then the resulting conditional

statement additionally contains an else-part. A while-loop is a condition-edge c
whose T-successor leads to an edge (i.e., the repeated block) which has, in turn, c
as its successor. The resulting edge points to the destination of the F-successor-

edge of c. If the two edges are interchanged, the condition in the generated

while-statement is negated. In do-while-loops, the condition follows the edge for

the repeated block.

First, the algorithm initializes the in-degrees of all nodes (in linear time).

Then all n nodes are repeatedly checked for applicable transformation rules. If

none is found, we are done; otherwise the automaton is altered accordingly, and

the degree of a�ected nodes is adjusted. Both these operations require constant

time. Since each transformations removes at least one node, at most n iterations

are performed, giving an overall worst-case complexity of O(n2).

Note that, in principle, it is not always possible to transform jumps into con-

trol structures without reasoning about the semantics of a program or changing

the set of variables (Fig. 5 sketches a critical loop structure). In these cases,

the system should at least try to minimize the number of remaining gotos. Such

graceful degradation is not covered by our algorithm and left as a topic for

further research.

int i=10, j=20;

l1 : i��;

l2 : if (j==0) return;

j��;

if (i > 0 && j>0) goto l1;

goto l2;

Fig. 5. Without semantic information unfolding is impossible.

For our example, Figure 6 show the sequence of transformations applied to

the original automaton of Figure 4. First, the edges (6; 8), (8; 9), (8; 10), and
(9; 10) are collapsed into an if-then-statement (a). In the next step, the edge

labeled j++ is appended to form a sequence edge (b). Now we create a do-

while-loop, since the test edge (11; 12) appears after the repeated block (c). The

two next steps summarizes it, together with the edges with respective labels

int j=0 and i--, into a sequence (d). We create the outer while-loop (e), and

then concatenate int i=n-1 and return to it, such that only one edge is left

corresponding to the �nal program (f).

6 Conclusion and Discussion

We have presented a supervised, interactive learning algorithm which infers con-

trol structures of computer programs from example traces and queries.

First, a deterministic �nite automaton is learned by a customized version of

the ID-algorithm for regular language inference. By exploiting the syntactical

form of programs and allowing the user to incrementally type in instructions,

the number of questions is reduced from an infeasible to a moderate scale. An

upper bound of O(n � jP j) membership queries is given. Secondly, the resulting

automaton is rewritten in a high-level language with control structures using an

O(n2) algorithm.

An early precursor of this work similar in spirit is presented by Gaines [7]. His

approach infers a DFA by exhaustive and exponential search until an automaton

is found that is consistent with the given traces.

Schlimmer and Hermens describe a note-taking system that reduces the

user's typing e�ort by interactivly predicting continuations in a button-box in-

terface [12]. An unsupervised, incremental machine learning component identi�es

the syntax of the input information. To avoid intractability the class of target

languages is constrained to so-called k-reversible regular languages for which An-
gluin proposed an O(n3) inference algorithm [3]. However, for general proposed

languages this class is too restrictive. It is not hard to �nd simple programs not

covered by zero-reversible FSM's (as in the examples given in the paper). On the

other hand, simply �xing k at a larger value sacri�es minimality of the generated

automaton. Schlimmer and Hermens improve the system's accuracy by adding a

decision tree to each state. However, prediction is not relevant to our approach

since traces are deterministic: A new training example leads to a new FSM.

End users without programming knowledge can take bene�t from inference

of control structures. More powerful customization tools (e.g., macro recorders)

are able to support them in solving more of the repetitive routine work which

often needs elementary conditional branching and looping.

For the experienced programmer, the proposed inference mechanism might

support the process of software development, mainly in view of integrity and

incremental extensibility.

The �nal set of execution traces (as depicted by the resulting trie) uniquely

determines the structure of the automaton. All source fragments in the generated

FT

1

2

3

T F
i--

return

i>0

int i=n-1

4

int j=0
6

8,9,10
j++

if(a[j]>a[j+1])
swap(j,j+1)

5

7

11

12

13

j<i

T

1

2

3
F

i--

return

i>0

int i=n-1

T

4

if(a[j]>a[j+1])
swap(j,j+1)

6,8,9,10

j++

int j=0

5

7

11

12

13

F

j<i

(a) (b)

7

54

3
FT

1

2

13

11,

while(j<i)

swap(j,j+1)
if(a[j]>a[j+1])

12

int j=0

j++

do

6,8,9,10

int i=n-1

i--

return

i>0

11,
4,6,8,9,10

7

5

3

2

1

12,13

if(a[j]>a[j+1])

j++

do
int j=0

while(j<i)
i--

swap(j,j+1)

T F

int i=n-1

i>0

return

(c) (d)

j++
swap(j,j+1)

int i=n-1

2,3,
4,6,8,9,10,

i--

if(a[j]>a[j+1])

while(i>0)

do
int j=0

while(j<i)

12,13

7

5
return

11,

1

swap(j,j+1)
j++

i--
while(j<i)

if(a[j]>a[j+1])

while(i>0)

do
int j=0

return

11,

7

int i=n-1

12,13

4,5,6,8,9,10,
1,2,3,

(e) (f)

Fig. 6. Transformation of the DFA into a structured program.

program have been exercised in at least one example. Therefore, no untested code

can arise. For recorded execution traces on concrete sample data, di�erences

between the intended and the actual meaning of the program will occur by

far more infrequently than bugs in programs developed without the control of

explicit variable instantiations. In a way, both stages in the software development

cycle, coding and testing, are performed more e�ciently in parallel rather than

in the usual alternating way.

A sequence of examples should start with simple examples and build to more

complex and exceptional cases. Recursive and conditional procedures can be

developed incrementally by starting with simple, \incorrect" de�nitions, and

later adding more instances to handle more complicated and special purpose

situations. Maintaining all used examples and only adding to this set ensures

that previous examples are still covered and that with growing complexity, no

new bugs are introduced for cases which have already been successfully treated.

References

1. A. V. Aho, J. E. Hopcroft, and J. Ullman. The design and analysis of computer

algorithms. Addison{Wesley, 1974.

2. D. Angluin. A note on the number of queries needed to identify regular languages.

Information and Control, 51(1):76{87, 1981.

3. D. Angluin. Inferrence of reversible languages. Journal of the Association of

Computing Machinery, 29:741{765, 1982.

4. A. W. Biermann. The inference of regular lisp programs from examples. IEEE

Trans. on Systems, Man, and Cybernetics, 8(8):585{600, 1978.

5. A. Cypher, editor. Watch What I Do: Programming by Demonstration. MIT Press,

1993.

6. P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic

Publishers, 1995.

7. B. Gaines. Behaviour/structure transformations under uncertainty. International

Journal of Man-Machine Studies, 8(3):337{365, 1976.

8. E. M. Gold. Language identi�cation in the limit. Information and Control,

10(5):447{474, 1967.

9. E. M. Gold. Complexity of automaton identi�cation from given data. Information

and Control, 37(3):302{320, 1978.

10. D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley Publishing Company, Reading, 1973.

11. R. Parekh, C. Nichitiu, and V. Honovar. A polynomial time incremental algorithm

for regular grammar inference. Technical Report 97-03, Department of computer

science, Iowa State University, 1997.

12. J. C. Schlimmer and L. A. Hermens. Software agents: Completing patterns and

constructing user interfaces. Journal of Arti�cial Intelligence Research, 1:61{89,

1993.

13. E. Y. Shapiro. Algorithmic Program Debuggging. PhD thesis, Yale University,

1983. Published under the same title by MIT press.

