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Abstract. Having to cope with memory limitations is an ubiquitous issue in
heuristic search. We present theoretical and practical results on new variants for
exploring state-space with respect to memory limitations.
We establishO(log n) minimum-space algorithms that omit both the open and
the closed list to determine the shortest path between every two nodes and study
the gap in between full memorization in a hash table and the information-theoretic
lower bound. The proposed structure of suffix-lists elaborates on a concise binary
representation of states by applying bit-state hashing techniques. Significantly
more states can be stored while searching and insertingn items into suffix lists is
still available inO(n log n) time. Bit-state hashing leads to the new paradigm of
partial iterative-deepening heuristic search, in which full exploration is sacrificed
for a better detection of duplicates in large search depth. We give first promising
results in the application area of communication protocols.

1 Introduction

Heuristic search in large problem spaces inherently calls for algorithms capable of run-
ning under restricted memory. We present new data structures and algorithms that face
the memory vs. duplication elimination problem that still arises even if the exploration
is directed. The class ofmemory-restricted search algorithmshas been developed un-
der this aim. The framework imposes an absolute upper bound on the total memory
the algorithm may use, regardless of the size of the problem space. If the number of
nodes with distance value smaller than the optimal solution path length is larger than
this memory bound, storing the entire list of visited nodes is no longer possible.

Iterative deepening A*, IDA* for short [16], has proven effective to successively
search the problem graph with bounded DFS traversals according to an increasing
threshold for the tentative values. IDA* consumes space linear in the solution length. It
does not use additionally available memory and traverses all generating paths. Unfor-
tunately, the number of paths in a graph might be exponentially larger than the number
of nodes such that the design of informative consistent heuristics and duplicate elim-
ination remains essential. If all merits are distinct, IDA* expands a quadratic number



IDA* (s)
Push (S; s; h(s)); U  h(s)

while (U 6=1)
U  U 0; U 0  1
while (S 6= ;)

(u; f(u)) Pop(S)
if (goal(u)) return (u; f(u))

for all v in � (u)

if (f(u) + w(u; v)� h(u) + h(v) > U )
if (f(u) + w(u; v)� h(u) + h(v) < U 0)

U 0  f(u) + w(u; v)� h(u) + h(v)

else
Push (S; v; f(u) + w(u; v)� h(u) + h(v))

Table 1.The IDA* Algorihm implemented with a Stack.

of nodes in the worst case. Although iterative deepening is limited to small integral
weights it performs well in practice. Table 1 depicts a possible implementation of IDA*
in pseudo-code:S is a stack for backtracking,U is the current threshold, andU 0 the
threshold for the next iteration. The valuew(u; v) is the weight of the transitition(u; v),
h(u) andf(u) is the heuristic estimate and combined merit for nodeu, respectively.

Pattern data-bases [4] are a general tool to improve the estimate that can cope with
complex subproblem interactions. A solution preserving relaxation of the search prob-
lem is traversed prior to the search and the goal distances of all abstract states are kept
as lower bound estimats for the overall problem within a large hash table. However,
the application of this pre-compilation technique is limited to suitable domain abstrac-
tions that yield better results than on-line computations as findings in protocol verifica-
tion [8], AI-planning [6], and selected single-agent problems [14] indicate. Therefore,
to lessen memory consumption according to a large number of states is still a problem.

Transposition tables are used to store and improve the distances until the memory
bound has been reached [18]. However, when the memory is exhausted, IDA*’s time
consumption is often stinged by uncaught duplicates.

Different node caching strategies have been applied: MREC [21] switches from A*
to IDA* if the memory limit is reached. In contrast, SMA* [19] reassigns the space by
dynamically deleting a previously expanded node, propagating up computedf -values
to the parents in order to save re-computation as far as possible. However, the effect of
node cashing is still limited. An adversary may request the nodes just deleted.

The paper is aimed to close this gap and is structured as follows: The first section
gives anO(log n)-space algorithm to search for the shortest path in graphs with uni-
form or small weights, withn being the total number of nodes in the problem graph.
Suffix lists are a data structure for maximizing the number of stored states according to a
given memory limit. The achieved result is compared to ordinary hashing and a derived
information-theoretic bound. Bit-state state compaction, sequential hashing and partial
search can substitute the transposition table of IDA* with a bit-vector table. Thereby,
it is possible to detect more duplicates in the space while increasing the depth of the



Divide-And-Conquer-BFS(s)
for i 1 to n

for l 1 to n

if (Path(s; i; l))
print (s; i; l)

break

Path(a; b; l)
if ((a; b) 2 E)

return true
else

for j  1 to n

if (Path(a; j; dl=2e) and Path(j; b; bl=2c))
return true

return false

Table 2.Computing the BFS Level.

search. We give promising experimental results in validating an industrial communica-
tion protocol.

2 Minimum Space Algorithms

First of all, we might ask for the limit of space reduction. Given a graph withn nodes
we are interested in algorithms that compute the BFS-level and shortest paths of all
nodes and either consume as little working space as possible or perform faster if more
space is available. In addition, we assume that the algorithms are not allowed to modify
the input during the exection.

The similar problems of node reachability (i.e., determine whether there any path
between two nodes) and graph connectivity have been efficiently solved for the same
restricted memory setting using random walk strategies [10, 11]. However, we are not
aware of any equivalent results for BFS and shortest paths. In the following we will de-
vise anO(log n) space algorithm for BFS and shortest paths with small integer weights.
The principle is similar to the simulation of nondeterministic Turing machines [20].

2.1 Divide-And-Conquer BFS

To compute the breadth-first-level for each node, with very limited space, we may
use a DAC strategyPath that reports if there is a path froma to b with l edges. Ifl
equals 1 and there is an edge froma to b then the procedure returns true. Otherwise,
for each node indexj, 1 � j � n, we recursively determinePath(a; j; dl=2e) and
Path(j; b; bl=2c). If both exist the returned value is true, compare Table 2. The recur-
sion stack has to store at mostO(logn) frames each of which containsO(1) integers.
Hence the space complexity isO(logn). However, this has to be paid with a time com-
plexity ofO(n3+log n) due to the recurrence equationT (1) = 1 andT (l) = 2n �T (l=2)
resulting inT (n) = (2n)logn = n1+logn time for one test. Varyingb and iterating onl
in the range off1; : : : ; ng gives the overall performance ofO(n3+log n) steps.

2.2 Divide-And-Conquer SSSP

To extend this idea to the single-source shortest path problem (cf. Figure 3) with edge
weights bounded by a constantC, we check the weights



Divide-And-Conquer-SSSP(s)
for i 1 to n

for w 1 to C � n
if (Path(s; i; w))

print (s; i; w)

break

Path(a; b; w)
if (weight(a; b) = w)

return true
else

for j  1 to n

for s maxf1; bw=2c � dC=2eg
to minfw � 1; dw=2e + dC=2eg

if (Path(a; j; s) and Path(j; b; w � s))

return true
return false

Table 3.Searching the Shortest Paths.

bw=2c � dC=2e for path 1, bw=2c+ dC=2e for path 2,
bw=2c � dC=2 + 1e for path 1, bw=2c+ dC=2e � 1 for path 2,
. . . . . .
bw=2c+ dC=2e for path 1, bw=2c � dC=2e for path 2.

If there is a path with total weightw then it can be decomposed into one of above
partitions. The worst-case reduction on weights isCn ! Cn=2 + C=2 ! Cn=4 +
3C=4 ! : : : ! C ! C � 1 ! C � 2 ! C � 3 ! : : :! 1. Therefore, the recursion
depth is bounded bylog(Cn) + C which results in a space requirement ofO(logn)
integers. As in the BFS case this compares to exponential time.

We do not claim practical applicability of these algorithms but want to make a start
towards efficient shortest path algorithms for relatively little memory and unmodifiable
large data, for example on optical read-only storage. In particular, time-space trade-offs
seem to require new techniques.

3 Suffix Lists

Givenm bits of memory, we want to maintain a dynamically evolving visited listclosed
under inserts and membership queries. The entries ofclosedare integers fromf0; ng.
Let r denote the maximal size of closed nodes that can be accommodated. As long as
n � m a simple bit array with biti denoting elementi is sufficient. Using hashing with
open addressing,r is limited toO(n= logn). In the following we describe a simple but
very space efficient approach with small update and query times. Similar ideas appeared
in [2] but the data structure there is static and not theoretically analyzed. Another dy-
namic variant achieving asympotically equivalent storage bounds as our approach is
sketched in [1]. However, constants are only given for two static examples. We provide
constants for the dynamic version; comparing with the numbers of [1], our dynamic
version could host up to five times more elements of the same value range. However,
one has to take into consideration that the data structure of [1] provides constant access
time whereas our structure incurs amortized logarithmic access time.
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Fig. 1.Example for Suffix Lists withp = 4, ands = 3.

3.1 Representation

Let bin(u) be the binary representation of an elementu � n from the setclosed. We
split bin(u) in p high bits ands = dlogne � p low bits. Furthermore,us+p�1; : : : ; us
denotes the prefix ofbin(u) andus�1; : : : ; u0 stands for the suffix ofbin(u).

A suffix list data structureconsists of a linear arrayP of size2p bits and of a two-
dimensional arrayL of sizer(m + 1) bits. The basic idea of suffix lists is to store a
common prefix of several entries as a single bit inP , whereas the distinctive suffixes
form a group withinL. P is stored as a bit array.L can hold several groups with each
group consisting of a multiple ofs + 1 bits. The first bit of eachs + 1-bit row in L

serves as agroup bit. The firsts bit suffix entry of a group has group bit one, the other
elements of the group have group bit zero. We place the elements of a group together in
lexicographical order, see Figure 1.

3.2 Searching

First, we computek =
P

p�1
i=0 us+i � 2

i which gives us the search position in the prefix
arrayP . Then we simply count the number of ones inP starting from positionP [0]
until we reachP [k]. Let z be this number. Finally we search throughL until we have
found thezth suffix ofL with group bit one. If we have to perform a membership query
we simply search in this group. Note that searching a single entry may require scanning
large areas of main memory.

3.3 Inserting

To insert entryu we first search the corresponding group as described above. In caseu

opens a new group withinL this involves setting group bits inP andL. The suffix ofu
is inserted in its group while maintaining the elements of the group sorted. Note that an
insert may need to shift many rows inL in order to create space at the desired position.
The maximum numberr of elements that can be stored inS bits is limited as follows:



We need2p bits forP ands+ 1 = dlogne � p+1 bits for each entry ofL. Hence, we
choosep so thatr is maximal subject to

r �
m� 2p

dlogne � p+ 1
:

For p = �(logm � log log(n=m)) the space requirement for bothP and the suffixes

in L is small enough to guaranteer = �
�

m

log(n=m)

�
.

3.4 Checkpoints

We now show how to speed up the operations. When searching or inserting an ele-
mentu we have to computez in order to find the correct group inL. Instead of scan-
ning potentially large parts ofP andL for each single query we maintain checkpoints,
one-counters, in order to store the number of ones seen so far. Checkpoints are to lie
close enough to support rapid search but must not consume more than a small fraction
of the main memory. For2p � r we havez � r for both arrays, sodlog re bits are
sufficient for each one-counter.

Keeping one-counters after every1=(c1 � blog rc) entries limits the total space re-
quirement. Binary search on the one-counters ofP now reduces the scan-area to com-
pute the correct value ofz to c1 � blog rc bits.

Searching inL is slightly more difficult because groups could extend over2s entries,
thus potentially spanning several one-counters with equal values. Nevertheless, finding
the beginning and the end of large groups is possible within the stated bounds. As we
keep the elements within a group sorted, another binary search on the actual entries is
sufficient to locate the position inL.

3.5 Buffers

We now turn to insertions where two problems remain: adding a new element to a
group may need shifting large amount of data. Also, after each insert the checkpoints
must be updated. A simple solution uses a second buffer data structureBU which is less
space efficient but supports rapid inserts and look-ups. When the number of elements
in BU exceeds a certain threshold,BU is merged with the old suffix lists to obtain
a new up-to-date space efficient representation. Choosing an appropriate size ofBU,
amortized analysis shows improved computational bounds for inserts while achieving
asymptotically the same order of phases for the graph search algorithm.

Note that membership queries must be extended toBU as well. We implementBU
as an array for hashing with open addressing.BU stores at mostc2 � r=dlogne elements
of sizep+ s = dlogne, for some small constantc2. As long as there is10% space left
in BU, we continue to insert elements intoBU otherwiseBU is sorted and the suffixes
are moved fromBU into the proper groups ofL. The reason not to exploit the full hash
table size is again to bound the expected search and insert time withinBU to a constant
number of tests.



Theorem 1. Searching and insertingn items into suffix lists under space restrictionm
can be done inO(n � log2 n) bit operations. Assuminglogn bits for a machine word,
the total run time forn inserts and memberships isO(n logn).

Proof. For a membership query we perform binary searches on numbers ofdlog re bits
or s bits, respectively. So, to search an element we needO(log2 r + s2) = O(log2 n)
bit operations sincer � n ands � logn.

Each of theO(r= log n) buffer entries consists ofO(logn) bits, hence sorting the
buffer can be done with

O

�
logn �

r

logn
� log

r

logn

�
= O(r � logn)

bit operations. Starting with the biggest occurring keys merging can be performed in
O(1) memory scans,O(m) operations. This also includes updating all one-counters. In
spite of the additional data structures we still have

r = �

�
m

log(n=m)

�
:

Thus, the total bit complexity forn inserts and membership queries is given by

O(#buffer-runs(#sorting-ops+#merging-ops) +

#elements#buffer-search-ops+

#elements#membership-query-ops) =

O(n=r � logn � (r � logn+m) + n � log2 n+ n � log2 n) =

O(n=r � logn � (r � logn+ r � log(n=m)) + n � log2 n) =

O(n � log2 n):

Assuming a machine word length oflogn in the RAM model, any modification or
comparison of entries withO(logn) bits appearing in our suffix lists can be done using
O(1) machine operations. Hence the total complexity reduces toO(n�logn) operations.

The constants can be improved using the following observation: in the casen =
(1+ �) �m, for a small� > 0 nearly half of the entries inP will always be zero, namely
those which are lexicographically bigger than the suffix ofn itself. Cutting theP array
at this position leaves more room forL which in turn enables us to keep more elements.

3.6 The Information Theoretic Bound

We place an upper bound on the maximal sizer� of the subset that can be stored. For the
static case, we observe thatdlog

�
n

r�

�
e � m. However, if we consider the dynamic case,

i.e. including insertions, we have to represent all former configurations. This results in

&
log

 
r
�X

i=0

�
n

i

�!'
� m:



We aim chooser� maximal subject to this inequality. Forr� � (n� 2)=3 we have

�
n

r�

�
�

r
�X

i=0

�
n

i

�
� 2 �

�
n

r�

�
:

The correctness follows from
�
n

i

�
=
�

n

i+1

�
� 1=2 for i � (n � 2)=3. We are only

interested in the logarithms, so we conclude

log

�
n

r�

�
� log

 
r
�X

i=0

�
n

i

�!
� log

�
2

�
n

r�

��
= log

�
n

r�

�
+ 1

Obviously in this restricted range it is sufficient to concentrate on the last bino-
mial coefficient. The error in our estimate is at most one bit. The restriction onr� is
compatible with all reasonable choices forn andm. Using

log

�
n

r�

�
= log

n � (n� 1) � � � � � (n� r� + 1)

r�!

=

nX
j=n�r�+1

log j �

r
�X

j=1

log j;

we can approximate the logarithm by two corresponding integrals. If we properly
bias the integral limits we can be sure to compute a lower bound

log

�
n

r�

�
�

Z n

n�r�+1

log(x) dx�
Z r

�+1

2

log(x) dx:

Maximizing r� with respect to this equation yields an information theoretic upper
bound.

Table 4 compares suffix lists with hashing and open addressing. The constants for
suffix lists are chosen so that2 � c1 + c2 � 1=10 which means that ifr elements can
be treated, we set asider=10 bits to speed-up internal computations. For hashing with
open addressing we also leave10% memory free to keep the internal computation time
moderate. When using suffix lists instead of hashing, note that only the ratio betweenn

andm is important. For the static data structure of [1] the following numbers are given:
for n

m
= 1:0�232

1:9�230
� 1:05 it can store a fraction ofr

n
= 1:4�227

1:0�232
� 4:37% of n. Our

approach achieves22:7% which constitues an improvement by a factor of more than
five. For another example withn=m � 3:2 our approach gains by a factor of about1:8.

Hence, suffix lists can close the phase gap in search algorithms between the upper
bound and trivial approaches like hashing with open addressing. Already forn � 1:1�m
we reach two-optimality.

4 Bit-State Hash-Tables

Advanced to the treatment of data structures and algorithms we give a small introduc-
tion to the verification of distributed software systems and communication protocols;
an apparent and practical relevant domain for state-space search.



n=m Upper Suffix Hashing
Bound Lists n = 220 n = 230

1.05 33.2 % 22.7 % 4.3 % 2.9 %
1.10 32.4 % 21.2 % 4.1 % 2.8 %
1.25 24.3 % 17.7 % 3.6 % 2.4 %
1.50 17.4 % 13.4 % 3.0 % 2.0 %
2.00 11.0 % 9.1 % 2.3 % 1.5 %
3.00 6.1 % 5.3 % 1.5 % 1.0 %
4.00 4.1 % 3.7 % 1.1 % 0.7 %
8.00 1.7 % 1.5 % 0.5 % 0.4 %

16.00 0.7 % 0.7 % 0.3 % 0.2 %

Table 4.Fractions ofn stored in Suffix Lists and Hashing with Open Addressing.

4.1 State Space Search for Protocols Validation

Reliable communication is probably the most important issue for accessing the Internet
and for the design of distributed computer systems. Usually a layered structure like the
ISO Reference Model is used to allow for different abstractions. In one layer (trans-
port layer) we have the request for reliable communication while the next lower layers
provide this quality of service facing a lossy channel (cf. Figure 2).

Sender Receiver

transportation of messages

unreliable (lossy) channel

Fig. 2.Communication over a Lossy Channel for Messaging in Layered Protocols.

One example to cope with lossy channels is the alternating bit protocol. The mes-
sage flow is visualized in Figure 3. To assert secure data transport from the sender to
the receiver we assume sequence numbers for messages. In the following we study
algorithms and data structures to certify the correctness of a such a protocol.

4.2 Supertrace

The idea of bit-state hashing is adopted from Holzman’s protocol validator Spin [12],
that parses the expressive concurrent Promela protocol specification language. It com-
presses the state description of several hundred bits down to only a few bits to build a
hash table with up to230 entries and more. Combined with a depth-first search strat-
egy this is in fact thesupertrace algorithm: A states is represented by its hash address
h(s). When generating a state the corresponding bit is set. Synonyms are regarded as
duplicates resulting in pruning the search. The search algorithm is not complete, since
not all synonyms are disambiguated. Moreover, through depth-first traversal, the length
of a witness for an encountered error state is not minimal.
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Fig. 3. Flow of Control on a Lossy Channel with the Alternating Bit Protocol.

4.3 Data Structures

As an illustration and generalization of the bit-state hashing idea, Figure 4 depicts the
range of possible hash structures: Usual hashing with chaining of synonyms, single-bit
hashing, double-bit hashing and hash compact [22]. Letn be the number of reachable
states andm be the maximal number of bits available. A coarse approximation for
single bit-state hashing coverage withn < m is 1� P1 with the average probability of
collisionP1 � 1

n

Pn�1

i=0
i

m
� n=2m, since thei-th element collides with one of thei�1

already inserted elements with a probability of at most(i� 1)=m, 1 � i � n [13]. For
multi-bit hashing andh (independent) hash-functions by assuminghn < m coverage is
improved to1�Ph with average probability of collisionPh � 1

n

P
n�1

i=0 (h �
i

m
)h, since

i elements occupy at mosthi=m addresses,0 � i � n�1. For double bit-state hashing
this simplifies toP2 � 1

n
( 2
m
)2
P

n�1
i=0 i2 = 2(n� 1)(2n� 1)=3m2 � 4n2=3m2.

4.4 Sequential and Universal Hashing

The drawback in incompleteness of partial search is compensated by re-invoking the
algorithm with different hash functions to improve the coverage of the search tree. Sub-
sequently, this technique, calledsequential hashing, examines various beams in the
search tree (up to a certain threshold depth). In considerably large protocols supertrace
with sequential hashing succeeds in finding bugs but still returns long witness trails.
If in sequential hashing exploration with the first hash first function coversm=n of
the search space, the probability that a statex is not generated ind independent runs
is (1 � m=n)d such thatx is reached with probability1 � (1 � m=n)d. Eckerle and
Lais [5] have shown that thisideal circumstances are not given in practice and refine
the model for coverage prediction.
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Fig. 4. Ordinary Hashing, Single Bit-State Hashing, Double Bit-State Hashing, and Hash-
Compact.

Moreover, universal hash functions suit best for implementing sequential hashing.
LetA, B be sets withjBj = 2w, for some integer valuew. The class of hash functions
H is universal, if for all x, y 2 A, we have

jfh 2 H j h(x) = h(y)gj �
jHj

jBj
:

Universal hash functions lead to a good distribution of values on the average. Ifh

is drawn randomly fromH andS is the set of keys to be inserted in the hash table, the
expected cost of each search, insert and delete operation is bounded by(1 + jSj=jBj).
We give an example of a universal hash function. Letp be prime, andp � jAj and
hm;n(s) = ((m � s+ n) modp) modjBj. Then the classH1 := fhm;njm;n 2 Zpg is
universal.



Partial IDA* (s)

Push (S; s; h(s)); U 0  U  h(s)

while (U 6=1)
U  U 0; U 0  1
Init (H)

while (S 6= ;)
(u; f(u)) Pop(S)
if (goal(u)) return (u; f(u))

for all v in � (u)

if (Search (H;v) 6= ;)
Insert (H;v)

if (f(u) + w(u; v)� h(u) + h(v) > U )
if (f(u) + w(u; v)� h(u) + h(v) < U 0)

U 0  f(u) + w(u; v)� h(u) + h(v)

else
Push (S; v; f(u) + w(u; v)� h(u) + h(v))

Table 5.Partial IDA* Algorithm.

4.5 Validating Process

For the validation of the design of the protocols, bug-finding by simulation and testing
has its drawbacks, since several subtle bugs in concurrent systems are difficult to es-
tablish. Given a formal specification of a desired protocol property model-checking is a
push-button procedure to verify the correctness. Validation is performed by traversing
the finite-state machine representation of the protocol to find a bug. Therefore protocols
are represented by state spaces, in which reachability analysis is performed to establish
error states.

Therefore, directed search for minimal counterexamples in the protocol space ac-
cording to a given implementation corresponds to the search for an optimal solution
with the goal as the failure state. From a model checking perspective [3] the approach
allows to implement various heuristics to direct the search into the direction of the
failure. From an AI-perspective partial search, maybe assisted with sequential hashing,
condenses duplicate information in various search and planning problem spaces.

4.6 Heuristic Search Algorithm

The apparent aspirant for state compaction is IDA* withtransposition tables, since,
in opposite to A*, it tracks the solution path on the stack, which allows to omit the
predecessor link in the state description of the set of visited states.

When substituting the transposition tableH of already visited nodes in IDA* by
bit-state, multi bit-state or hash compaction we establish the Partial IDA* algorithm
as depicted in Table 5. Since neither the predecessor nor thef -value are present, in
order to distinguish the current iteration from the previous ones, the bit-state table has
to be re-initialized in each iteration of IDA*. Refreshing large bit-vector tables is fast in
practice, but for shallow searches with a small number of expanded nodes this scheme



can be improved by invoking ordinary IDA* with transposition table updates for smaller
thresholds and by applying bit-vector exploration in large depths only.

In practice the obtained counterexamples are minimal, since the coverage with bit-
state duplicate elimination is very close to 100 % for moderately sized systems (n <

m). Moreover, the technique oftrail-directed searchcan effectivly improve non-optimal
existing paths [9].

The results for searching deadlocks in one large communication protocol are de-
picted in Table 6, where the number of expansions with respect to different optimal
search algorithms for an increasing threshold is shown. For A* a snapshot is taken at
each time the priority queue value increases, while in IDA* the number of expanded
nodes according to each completed iteration is shown. Hence, the number of node ex-
pansion numbers in these two algorithms do not match exactly, but indicate a common
trend. The considered protocol instance is the industrial General Inter-ORB Protocol
(GIOP, 1 server and 3 clients) [15], which is a key component of the Common Object
Request Broker Architecture (CORBA) specification.

The witness for a seeded deadlock in depth 70 has to be established according to
the heuristic that counts the number of non-active processes. The state vector generated
by the validator tool SPIN is 544 Bytes large, such that the visited list (hash table or
transposition table) is bounded to218 states corresponding to approx.217 KByte or128
MByte. Therefore, we fix the size of the bit-state hash table accordingly at230 Bits.

Algorithm A* exceeds its space limit in depth 61 and fails. IDA* utilizes a trans-
position table which is exhausted at the same depth. As IDA* then searches the tree of
generation paths it compensates space for time. But even when investing more than 24
hours on our 248 MHz Sun Ultra Workstation and when utilizing the table constructed
so far, ordinary IDA* was not able to complete search depth 61. On the other hand,
Partial A* finishes all searches up to depth 70 with either single- and double bit-state
hashing within a total of one hour.

Since the algorithms are not complete, we validated optimality with A* with our
maximum of 1.5 GByte main memory. Note that the difference in the number of node
expansions in single and double bit-state hashing is very small (less than a hundred)
and only occurs in large search depths (iteration 58 onwards). As Partial IDA* with
double bit-state hashing expands exactly the same number of states as IDA* with a
transposition table, we actually observe no loss of information in the example.

5 Conclusion

At the limit of main memory eliminating duplicates and weight diversity can soon re-
sult in thrashing both resources time and space, such that powerful data structures for
caching, partial search and compressed dictionaries are required. Therefore, regarding
the limits and possibilities of A*, we have suggested different contributions to memory-
restricted search. Partial search supports bookkeeping in tremendously large hash tables
to avoid duplicates in the search, while suffix lists push the envelope for increasing the
number of nodes to be stored without loss of information.

The treatment of Partial IDA* search elaborates on precursoring findings in [8],
where a rudimentory bit vector and single-bit hashing function has been chosen for im-



A* IDA* Partial IDA* Partial IDA*
depth(hash table)(transposition table)(single bit-state)(double bit-state)

...
...

...
...

...
40 6,646 6,333 6,333 6,333
41 9,306 8,184 8,184 8,184
42 10,955 10,575 10,575 10,575
43 13,666 13,290 13,290 13,290
44 17,761 16,500 16,500 16,500
45 20,130 19,860 19,860 19,860
46 25,426 23,646 23,646 23,646
47 27,714 27,654 27,654 27,654
48 33,799 32,040 32,040 32,040
49 37,095 37,011 37,011 37,011
50 46,105 42,849 42,849 42,849
51 51,113 49,872 49,872 49,872
52 61,710 58,545 58,545 58,545
53 73,195 69,162 69,162 69,162
54 85,245 81,993 81,993 81,993
55 96,995 96,543 96,543 96,543
56 113,950 112,296 112,296 112,296
57 115,460 129,138 129,138 129,138
58 147,042 146,625 146,623 146,625
59 150,344 164,982 164,978 164,982
60 184,872 184,383 184,376 184,383
61 187,411 206,145 206,135 206,145
62 - > 97,157,721 229,611 229,626
63 - - 255,386 255,411
64 - - 282,416 282,444
65 - - 311,306 311,340
66 - - 341,522 341,562
67 - - 373,374 373,422
68 - - 407,249 407,310
69 - - 442,863 442,941
70 - - 67 67

Table 6.Number of Expanded nodes of Search Algorithms in the GIOP Protocol.

plementation. For the experiments we chose a non-trivial protocol example [7], but re-
cent progress shows that the algorithm has also reduced the search efforts for optimally
solving Atomix, a PSPACE-complete AI single-agent search problem [14]. Omitting the
visited list and exploring the space in a Divide-and-Conquer fashion has been proposed
in [17], and the algorithms we consider study the effect of removing the horizon-list
as well. Another model checking approach for state compression as to answer to the
representation problem of large sets of states are binary decision diagrams (BDDs) that
are able to encode large sets of states without necessarily encountering exponential
growth. However, hybrid methods of explicite and symbolic search methods are still to
be developed.

AcknowledgementsThe authors would like to thank Robert Holte for valuable discus-
sions and comments and Alberto Lluch Lafuente for the joined implementation efforts
in the HSF-SPIN protocol validator. The work is partially supported by the IST Pro-



gramme of the EU under contract number IST-1999-14186 (ALCOM-FT) and by DFG
within the projectHeuristic Search and Its Application to Protocol Validation.

References

1. A. Brodnik and J. Munro. Membership in constant time and almost-minimum space.SIAM,
28(3):1627–1640, 1999.

2. Y. Choueka, A. Fraenkel, S. Klein, and E. Segal. Improved hierarchical bit-vector compres-
sion in document retrieval systems. pages 88–96, 1986.

3. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 2000.
4. J. C. Culberson and J. Schaeffer. Searching with pattern databases. Lecture Notes in Com-

puter Science, pages 402–416. Springer, 1996.
5. J. Eckerle and T. Lais. Limits and possibilities of sequential hashing with supertrace. InIFIP

FORTE/PSTV, Lecture Notes in Computer Science. Springer, 1998.
6. S. Edelkamp. Planning with pattern databases. InEuropean Conference on Planning (ECP),

2001. To appear.
7. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in HSF-SPIN. In

SPIN Workshop, Lecture Notes in Computer Science, pages 57–79. Springer, 2001.
8. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Protocol verification with heuristic search. In

AAAI-Spring Symposium on Model-based Validation of Intelligence, pages 75–83, 2001.
9. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Trail-directed model checking. InWorkshop

on Software Model Checking. Electronic Notes in Theoretical Computer Science, Elsevier,
2001. To appear.

10. U. Feige. A fast randomized LOGSPACE algorithm for graph connectivity.Theoretical
Computer Science, 169(2):147–160, 1996.

11. U. Feige. A spectrum of time-space tradeoffs for undirecteds� t connectivity. Journal of
Computer and System Sciences, 54(2):305–316, 1997.

12. G. J. Holzmann.Design and Validation of Computer Protocols. Prentice-Hall, Englewood
Cliffs, New Jersey, 1991.

13. G. J. Holzmann. An analysis of bitstate hashing.Formal Methods in System Design: An
International Journal, 13(3):289–307, 1998.
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