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Abstract. This paper investigates the impact of symbolic search for solving
domain-independent action planning problems with binary decision diagrams
(BDDs). Polynomial upper and exponential lower bounds on the number of BDD
nodes for characteristic benchmark problems are derived and validated. In order
to optimize the variable ordering, causal graph dependencies are exploited.

1 Introduction

Optimal planning is a natural requirement for many applications, and posed in form of
challenging benchmarks at international planning competitions. Due to the unfolding of
the planning graph, parallel-optimal planners [2, 20, 21, 24, 25] appear to be less effec-
tive in large search depth, even though more efficient encodings have been found [23].

The state-of-the-art in optimal sequential planning includes heuristic search plan-
ning approaches with admissible search heuristics, such as the flexible abstraction heuris-
tic [14] and explicit-state pattern databases [12]. The corresponding planners refer to a
fully-instantiated planning problem together with a minimized state encoding [13, 6]
and have been reported to compare well with other techniques [26, 11, 16].

Binary decision diagrams (BDDs) contribute to various successful planning ap-
proaches, e.g. [4, 18]. The idea of using BDDs is to reduce the memory requirements for
planning state sets as problem sizes increase. For several optimal sequential planning
benchmark domains, symbolic breadth-first search with BDDs is competitive with the
state-of-the-art [5]. Recent experimental findings additionally show large compression
ratios for symbolic pattern databases in many planning benchmark domains [1].

This paper studies the causes for good and bad BDD performance by providing
lower and upper bounds for BDD growth in characteristic benchmark domains. The
approach applies to step-optimal propositional planning and transfers to planning with
additive action costs.

The paper is structured as follows. First, we introduce BDD-based search. In the
core of the paper, we then study the impact of BDDs for selected characteristic bench-
mark problems, for which we provide state space encodings, lower and upper bounds.
We consider improvements obtained in bidirectional search. Finally, we give some con-
cluding remarks.

? Extended version of a poster at the National Conference of Artificial Intelligence (AAAI-08)
having the same title [8]. Thanks to DFG for support in ED 74/3 and 74/2.



2 Symbolic Planning

Throughout the paper, we consider optimal planning using the SAS+ representation
of planning tasks [13]. More formally, a SAS+ planning task with costs is defined as
P = (S,V,A, I,G, C) with S being a set of states, V = {v1, . . . , vn} being a set of
state variables (each v ∈ V has finite domain Dv), A being a set of actions given by a
pair (P,E) of preconditions and effects, I being the initial state, and G being the goal
state set in form of a partial assignment. Such partial assignment for V is a function s
over V with s(v) ∈ Dv , if s(v) is defined. Moreover, cost function C maps A to IN .
The task is to find a sequence of actions a1 . . . , ak ∈ A from I to G with minimal∑k

i=1 C(ai). For step-optimal planning we have C(a) = 1 for all a ∈ A.
Symbolic planning sometimes refers to analyzing planning graphs [2], or to check-

ing the satisfiability of formulas [20]. In contrast, we refer to the exploration in the
context of using BDDs [3]. For constructing the BDDs for the initial and goal states as
well as the individual actions, variables are encoded in binary.

Sets of planning states are represented in form of Boolean functions, and actions are
formalized as (transition) relations. This allows to compute the successor state set (the
image) as a conjunction of the given state set and the transition relation, existentially
quantified over the set of the current state variables. This way, all states reached by
applying one action to a state in the input set are determined. Iterating the process
(starting with the representation of the initial state) yields a symbolic implementation of
breadth-first search. Results in international planning competitions show that symbolic
bidirectional breadth-first search performs well for many benchmarks1.

The variable ordering has an exponential impact to the size of the BDDs. In our set-
ting, state variables are encoded in binary and ordered along their causal graph depen-
dencies [13] by greedily minimizing

∑
1≤i 6=j≤n,vi depends on vj

|i − j|. Roughly speak-
ing, the more related two variables are, the more likely they will be located next to each
other.

In the following we study the impact of BDDs for space improvement in character-
istic problems, for which we provide state space encodings, lower and upper bounds.

3 Exponential Lower Bound

Let us consider permutation games on (0, . . . , N − 1), such as the (n2 − 1)-Puzzle,
where N = n2. It is well known that for the (n2 − 1)-Puzzle, half of all n2! possible
permutations are reachable from the initial state. With explicit-state breadth-first search,
Korf and Schultze [22] have generated the entire state space of the 15-Puzzle on disk.

The characteristic function fN of all permutations on (0, . . . , N −1) has Ndlog Ne
binary state variables and evaluates to true, if every block of dlog Ne variables corre-
sponds to the binary representation of an integer and every satisfying path of N integers
is a permutation. In his master’s thesis, Hung [17] has shown the following result.

1 The fact that BFS performs well wrt. heuristic search is an observation also encountered in
explicit-state space search [15]. It is related to the exponential increase in the number of states
below the optimum cost for many benchmark domains, even if only small constant errors in
the heuristic are assumed.



Fig. 1. Symbolic BFS in the 15-Puzzle.

Theorem 1. The BDD for fN has more than b
√

2Nc nodes for any variable ordering.

Given that BDD nodes also consume space, the memory savings of BDDs for permu-
tation games like the (n2 − 1)-Puzzle are limited. Fig. 1 validates this hypothesis for
the BFS layers of the 15-Puzzle. The growth of BDD nodes is smaller than the growth
of states (numbers match the ones by Korf & Schultze), but still the symbolic explo-
ration cannot be finished (within 16 GB RAM). Note that a 15-Puzzle instance can be
encoded in 60 bit (4 bits per tile), while a BDD node consumes about 20 bytes. In re-
lated research [9] the overall compression ratio for a 6-tile symbolic pattern database of
the 35-Puzzle was about factor 2.65.

4 Polynomial Upper Bound

In other search spaces, we obtain an exponential gain using BDDs. In Gripper, there is
one robot to transport 2k = n balls from one room A to another room B. The robot has
two grippers to pick up and put down a ball.

The state space grows exponentially. Since we have 2n =
∑n

i=0

(
n
i

)
≤ n

(
n
k

)
, the

number of all states with k balls in one room is
(
n
k

)
≥ 2n/n. Helmert and Röger [15]

have shown that the precise number of all reachable states is Sn = 2n+1 + n2n+1 +
n(n − 1)2n−1, where S0

n := 2n+1 corresponds to the number of all states with no ball
in a gripper. All states, where the number of balls in each room is even (apart from the
two states with all balls in the same room and the robot in the other room), are part of
an optimal plan. For larger values of n, therefore, heuristic search planners even with a
constant error of only 1 are doomed to failure.

The robot’s cycle for the best delivery of two balls has length 6 (picking up the
two balls, moving from one room to the other, putting down the two balls, and moving
back), such that every sixth BFS layer contains the states on an optimal plan with no
ball in a gripper. Yet there are still exponentially many of these states, namely S0

n − 2.

Theorem 2. There is a binary state encoding and an associated variable ordering, in
which the BDD size for the characteristic function of the states on any optimal path in
the breadth-first exploration of Gripper is polynomial in n.
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Fig. 2. BDD structure for representing b balls in room B.

Fig. 3. Sybombolic BFS in Gripper-20.

Proof. To encode states in Gripper2 , 1+2 · dlog(n+1)e+2n bits are required: one for
the location of the robot (A/B) , dlog(n + 1)e for each of the grippers to denote which
ball it currently carries, and 2 for the location of each ball (A/B/none) .

According to BFS, we divide the set of states on an optimal path into layers l,
0 ≤ l ≤ 6k − 1. If both grippers are empty, we are in level l = 6d and all possible
states with b = 2d balls in the right room have to be represented, which is available
using O(bn) BDD nodes (see schema in Fig. 2).

The number of choices with 1 or 2 balls in the gripper that are addressed in the
2dlog(n+1)e variables is bounded by O(n2), such that intermediate layers with l 6= 6d
lead to an at most quadratic growth. Hence, each layer restricted to the states on the
optimal plan contains less than O(n2 · dn) = O(dn3) = O(n4) BDD nodes in total.
Accumulating the numbers along the path, whose size is linear in n, we arrive at a
polynomial number of BDD nodes needed for the entire exploration.

The forward BFS exploration in Gripper for n = 42 in Fig. 3 validates the theoret-
ical result (including the reduction/increase of BDD nodes every sixth step). Roughly

2 This encoding is found using a static analyzer.



speaking, permutation benchmarks are bad for BDDs, and counting benchmarks are
good.

5 Symbolic Bidirectional Search

Bidirectional search algorithms are distributed in the sense that two search frontiers are
searched concurrently. For explicit-state space search, they solve the one-pair shortest
path problem. Since the seed in symbolic search can be any state set and symbolic pre-
decessors are the straight inverse of symbolic successors, symbolic bidirectional search
algorithms start immediately from the partial goal assignment. Moreover, bidirectional
BFS comes at a low price as it does not rely on any heuristic evaluation function.

In Blocksworld, towers of labeled blocks have to be built. As a full tower can be
casted as a permutation, we do not expect polynomially sized BDDs. If we look at
benchmark instances (see Fig. 4) bidirectional search improves symbolic BFS from
stacking 9 blocks step-optimally to 15 blocks3.

Fig. 4. Time Performance (in seconds) of Symbolic Uni- and Bidirectional BFS in Blocksworld.

Fig. 5 gives insights to the exploration for problem 15-0. Backward search (sorted
to the left of the plot to avoid an interleaved order) shows that it contains a large number
of illegal states, and forward search (to the right of the plot) shows that the number of
states exceeds the number of BDD nodes.

We next look at the Sokoban domain, a problem that is well studied in AI re-
search [19]. A level represents a maze of cells, where stones appear to be randomly
placed. The player, also located in one of the cells, pushes the stones around the maze
so that, at the end, all stones are on a target location. We observe another exponential
gap between explicit-state and symbolic representation.

Theorem 3. If all
(
n
k

)
· (n − k) configurations with k balls in a maze of n cells in

Sokoban are reachable, there is a binary state encoding and an associated variable
3 All runtimes wrt. Linux PC with 2.6 GHz CPU



Fig. 5. Symbolic Bidirectional BFS in Blocksworld-15-0.

ordering, in which the BDD size for the characteristic function of all reachable states
in Sokoban is polynomial in n.

Proof. To encode states in Sokoban, 2n bits are required4, i.e., 2 bits for each cell
(stone/player/none). If we were to omit the player and branch on binary state variables
(stone/none), we would observe the same pattern that was shown in Fig. 2, where the
left branch would denote an empty cell and the right branch a stone, leaving a BDD of
O(nk) nodes. Integrating the player gives us a second BDD of size O(nk) with links
from the first to the second. Therefore, the complexity for representing all reachable
Sokoban positions requires a polynomial number of BDD nodes.

Fig. 6. Results in Sokoban; Unsolved Instances for Symbolic Bidirectional BFS are 93, 105, and
145; Symbolic BFS additionally cannot solve Instance 107.

As
(
n
k

)
≤ (n

k )k, the number of all reachable states is clearly exponential. In Fig. 6,
we compare exploration results of symbolic uni-/bidirectional BFS (SBFS/SBBFS)

4 This encoding is found using our static analyzer.



with explicit-state pattern database heuristic search (PDB) [12]. In all but instances
126, 141 and 143, SBBFS is faster. Moreover, it solves 9 of the 12 unsolved instances
(out of the 40 problem instances of [12]) in reasonable time. The discrepancy between
uni- and bidirectional search is often small; the former is often slightly better in finding
long plans (due to saturation of the reachable set) and sometimes worse on small-sized
plans (due to non-saturation).

6 Conclusion and Future Work

The advantage of BDD-based compared to SAT-based and constraint-based planning is
that the number of variables does not increase with the search depth. Moreover, heuris-
tics are often of limited help in many planning benchmarks.

We gave insights on when and why BDDs work well for compressing the planning
state space and its exploration. State spaces that have permutation character are less
appropriate than state spaces with selection of elements in a set (balls in a room, loca-
tions in a maze). In difference to other posterior state space compressing techniques,
see e.g. [10], the compression is on-the-fly, during the exploration of the state space.
We obtained promising results for a selection of planning benchmarks, improving the
best known results for Sokoban problems.

Optimal planning problems with discrete action costs and soft constraints are the
main challenges in the deterministic part of the international planning competition in
2008. The net-benefit to optimize is the total benefit of satisfying the goals, minus the
total action cost to achieve them. This results in a plan metric that is a linear expression
over indicator variables for the violation of the constraints added to the action cost total.
For computing net-benefits with BDDs, we contributed a symbolic breadth-first branch-
and-bound search algorithm together with several search refinements [7], to which the
above studies apply.
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