
Partial Symbolic Pattern Databases for Optimal
Sequential Planning?

Stefan Edelkamp and Peter Kissmann

Faculty of Computer Science
TU Dortmund, Germany

Abstract. This paper investigates symbolic heuristic search with BDDs for solv-
ing domain-independent action planning problems cost-optimally. By distribut-
ing the impact of operators that take part in several abstractions, multiple partial
symbolic pattern databases are added for an admissible heuristic, even if the se-
lected patterns are not disjoint. As a trade-off between symbolic bidirectional and
heuristic search with BDDs on rather small pattern sets, partial symbolic pattern
databases are applied.

1 Introduction

Optimal sequential planning for minimizing the sum of action costs is a natural search
concept for many applications. For the space-efficient construction of planning heuris-
tics, symbolic pattern databases [7] (a BDD-based compressed representation of explicit-
state pattern databases) are promising. Their space requirements are often much smaller
than explicit-state pattern databases. They correlate with the size of the pattern state
space, but the request of a parameter that respects the RAM limit for all benchmark
domains and problem instances makes it harder to apply symbolic pattern databases.

This paper combines symbolic pattern database heuristic search planning with peri-
meter search. Perimeters and pattern databases are very similar in their approach to
speeding up search. Both techniques use backward search to construct a memory-based
heuristic. The memory resources determine the abstraction level for pattern databases
as they must completely fit into memory. Perimeters are built without any abstraction;
the perimeter stops being expanded when a memory limit is reached. The good results
for the hybrid of the two techniques align with recent findings in domain-dependent
single-agent search: partial pattern databases [2] and perimeter pattern databases [11].
Besides general applicability, our approach covers different cost models; it applies to
step-optimal propositional planning and planning with additive action costs. Moreover,
the approach can operate with any pattern selection strategy. Instead of predicting the
abstract search space, we set a time limit to terminate the pattern database construction.

The paper is structured as follows. First, we recall symbolic shortest-path and heuris-
tic search. Then, we introduce planning pattern databases and address the addition of
non-disjoint symbolic pattern database heuristics by an automated distribution of op-
erator costs. Partial symbolic pattern databases, their symbolic construction, and their
inclusion in domain-dependent heuristic search are discussed next. Finally, we provide
some experiments and give concluding remarks.
? Thanks to DFG for support in the projects ED 74/3 and 74/2.

2 Symbolic Shortest Path Search

We assume a given planning problem P = (S,A, I,G, C) of finding a sequence of
actions a1, . . . , ak ∈ A from I to G with minimal

∑k
i=1 C(ai). For symbolic search

with BDDs we additionally assume a binary encoding of a planning problem.
Action are formalized as relations, representing sets of tuples of predecessor and

successor states. This allows to compute the image as a conjunction of the state set
(formula) and the transition relation (formula), existentially quantified over the set of
predecessor state variables. This way, all states reached by applying one action to one
state in the input set are determined. Iterating the process (starting with the representa-
tion of the initial state) yields a symbolic implementation of breadth-first search (BFS).
Fortunately, by keeping sub-relations Transa attached to each action a ∈ A it is not
required to build a monolithic transition relation. The image of state set S then reads as∨

a∈A (∃x (Transa(x, x′) ∧ S(x))) .

For positive action costs, the first plan reported by the single-source shortest-paths
search algorithm of Dijkstra [5] is optimal. For implicit graphs, we need two data struc-
tures, one to access nodes in the search frontier and one to detect duplicates.

Algorithm 1 Symbolic-Shortest-Path.
Input: Problem P = (S,A, I,G, C) in symbolic form with I(x), G(x), and Transa(x, x′)
Output: Optimal solution path

Open[0](x)← I(x)
for all f = 0, . . . , fmax

for all l = 1, 2, . . . , g do Open[g]← Open[g] \ Open[g − l]
Min(x)← Open[f](x)
if (Min(x) ∧ G(x) 6= false) return Construct(Min(x) ∧ G(x))
for all i = 1, . . . , C do

Succi(x
′)←

∨
a∈A,C(a)=i(∃x(Min(x) ∧ Transa(x, x′)))

Succi(x)← ∃x′(Succi(x
′) ∧ x = x′)

Open[f + i](x)← Open[f + i](x) ∨ Succi(x)

If we assume that the largest action cost is bounded by some constant C, a symbolic
shortest path search procedure is implemented in Algorithm 1. The algorithm works as
follows. The BDD Open[0] is initialized to the representation of the start state. Unless
one goal state is reached, in one iteration we first choose the next f -value together with
the BDD Min of all states in the priority queue having this value. Then for each a ∈ A
with c(a) = i the transition relation Transa(x, x′) is applied to determine the BDD for
the subset of all successor states that can be reached with cost i. In order to attach new
f -values to this set, we add the result in bucket f + i.

An advanced implementation for the priority queue is a one-level bucket [4], namely
an array of size C + 1, each of which entries stores a BDD for the elements. For large
values of C, multi-layered bucket and radix-heap data structures are appropriate [1].

Let us briefly consider possible implementations for Construct. If all previous layers
remain in main memory, sequential solution reconstruction is sufficient. If layers are
eliminated as in frontier search [19] or breadth-first heuristic search [21], additional
relay layers have to be maintained. The state closest to the start state in the relay layer
is used for divide-and-conquer solution reconstruction. Alternatively, already expanded
buckets are flushed to the disk [8].

The above algorithm traverses the search tree expansion of the problem graph. It
is sound as it finds an optimal solution if one exists. It is complete and necessarily
terminates if there is no solution. By employing backward search, therefore, it can be
used to generate symbolic pattern databases. For the search, we apply a symbolic variant
of A* [9, 12, 17, 20], which, for consistent heuristics, can be deemed as a variant of the
symbolic implementation of Dijkstra’s algorithm.

3 Additive Symbolic Pattern Databases

Applying abstractions simplifies a problem: exact distances in these relaxed problems
serve as lower bound estimates. Moreover, the combination of heuristics for different
abstractions often leads to a better search guidance. Pattern databases [3] completely
evaluate an abstract search space P ′ = (S ′,A′, I ′,G′, C′) prior to the concrete, base-
level search in P in form of a dictionary containing the abstract goal distance from each
state in S ′. Abstractions have to be cost-preserving, which implies that each concrete
path maps to an abstract one with smaller or equal cost. The construction process is
backwards and the size of a pattern database is the number of states it contains.

One natural concept for planning abstraction domains is to select a pattern vari-
able support set varset(R) ⊆ V and project each planning state and each action to
varset(R). In domain-dependent planning, the abstraction functions are selected by the
user. For domain-independent planning, the system has to infer the abstractions auto-
matically [13, 16, 14].

Symbolic pattern databases [7] are pattern databases that are constructed symbol-
ically for later use in symbolic or explicit-state heuristic search. They exploit that the
representation of the actions is provided in form of a relation, which allows to perform
backward search by computing the predecessors (the PreImage) of a given state set ef-
ficiently. Each state set with a distinct goal distance is represented as a BDD. Different
to the posterior compression of the state set [10], the construction itself works on a
compressed representation, allowing the generation of much larger databases.

Additive symbolic pattern databases allow to add abstract goal distances of dif-
ferent abstractions without affecting the admissibility of the heuristic estimate, i.e.,
the sum of the abstract goal distances is still a lower bound for the original space.
Cost-preserving abstract problem tasks P1, . . . ,Pk wrt. state space homomorphisms
φ1,. . . ,φk of a planning task P are trivially additive, if no original action contributes
to two different abstractions. For disjoint patterns in single-agent challenges like the
(n2 − 1)-Puzzle, this assumption is immediate, as only one tile can move at a time.
For general domains, however, the restriction limits pattern database design. Therefore,
we introduce the weighted combination of different abstract tasks as follows. First, we
determine the number of times an original action a ∈ A is valid in the abstractions.

We define valid(a) = |{i ∈ {1, . . . , k} | φi(a) 6= noop}|, and t = lcma∈Avalid(a),
where lcm denotes the least common multiple, and noop a void action. Then, we scale
the original problem P to P∗, by setting C∗(a) = t · C(a). All plans π now have costs
C∗(π) =

∑
a∈π t·Cost(a) = t·C(π), such that an optimal plan inP induces an optimal

plan in P∗ and vice versa. Next, we set all action costs C∗i (a) in the abstract problem
P∗

i to C∗i (a) = t · C(a)/valid(a), if φi(a) 6= noop, and to zero, otherwise. As t is the
least common multiple, the cost values in the abstract domains remain integral.

The following result shows that the sum of the heuristic values according to the
abstractions Pi, i ∈ {1, . . . , k}, is a lower bound.

Theorem 1. The weighted combination of different abstract tasks P1, . . . ,Pk of P wrt.
cost-preserving state space homomorphims φ1, . . . , φk always results in an admissible
heuristic for the scaled problem P∗.

Proof. Let π = (a1, . . . , al) be any plan solving P∗ and πi = (φi(a1), . . . , φi(al)) be
the corresponding solution in abstraction i, i ∈ {1, . . . , k}. Some φi(aj) are trivial and
correspond to cost 0. The sum of costs of all πi is equal to

k∑
i=1

C∗i (πi) =
k∑

i=1

l∑
j=1

C∗i (aj) =
k∑

i=1

l∑
j=1

t · C(aj)[φi(a) 6= noop]/valid(aj)

=
l∑

j=1

k∑
i=1

t · C(aj)[φi(a) 6= noop]/valid(aj)

≤
l∑

j=1

(t · C(aj)/valid(aj))
k∑

i=1

[φi(aj) 6= noop]

=
l∑

j=1

(t · C(aj)/valid(aj))valid(aj)

=
l∑

j=1

t · C(aj) =
∑
a∈π

t · C(a) = C∗(π).

As π is chosen arbitrarily, we conclude that minπ

∑k
i=1 C∗i (πi) ≤ minπ C∗(π).

Additive symbolic databases for non-disjoint patterns are novel, but similar tech-
niques for explicit search have been introduced (though not empirically evaluated) [18].

4 Partial Symbolic Pattern Databases

Perimeter search [6] tries to reap the benefits of front-to-front-evaluations in bidirec-
tional search, while avoiding the computational efforts involved in re-targeting the
heuristics towards a continuously changing search frontier. It conducts a cost-bounded
best-first search starting from the goal nodes; the nodes on the final search frontier,
called the perimeter, are stored in a dictionary. Then, a forward search, starting from I,

employs front-to-front evaluation with respect to these nodes. Alternatively, in front-to-
goal perimeter search all nodes outside the perimeter are assigned to the maximum of
the minimum of the goal distances of all expanded nodes in the perimeter and an addi-
tionally available heuristic estimate. Although larger perimeters provide better heuris-
tics, they take increasingly longer to compute. The memory requirements for storing the
perimeter are considerable and, more crucially, the effort for multiple heuristic compu-
tations can become large.

In essence, a partial pattern database is a perimeter in the abstract space (with the
interior stored). Any node in the original space has a heuristic estimate to the goal: if it
is in the partial pattern database, the recorded goal distance value is returned; if not, the
radius d of the perimeter is returned. This heuristic is both admissible and consistent.
Building a partial pattern database starts from the abstract goal and stores heuristic
values. When a memory or time limit is reached it terminates and the heuristic values
are used for the forward search. The value d is the minimum cost of all abstract nodes
outside the partial pattern database. On one extreme, a partial pattern database with
no abstraction reverts to exactly a perimeter. On the other extreme, a partial pattern
database with a coarse-grained abstraction will cover the entire space, and performs
exactly like an ordinary pattern database. Bidirectional BFS is an interleaved partial
pattern database search without abstraction.

An ordinary pattern database represents the entire space; every state visited dur-
ing the forward search has a corresponding heuristic value in the database. The pat-
tern database abstraction level is determined by the amount of available memory. Fine-
grained abstraction levels are not possible, because the memory requirements increase
exponentially with finer abstractions. Explicit-state partial pattern databases, however,
generally do not cover the entire space.

A partial symbolic pattern database is the outcome of a partial symbolic backward
shortest paths exploration in abstract space. It consists of a set of abstract states S ′<d

and their goal distance, where S ′<d contains all states in S ′ with cost-to-goal less than
d, and where d is a lower bound on the cost of any abstract state not contained in S ′<d.
The state sets are kept as BDDs H[i] representing S ′<i+1 \ S ′<i, i ∈ {0, ..., d − 1}.
The BDD H[d] represents the state set S ′ \ S ′<d, such that a partial pattern database
partitions the abstract search space. If Cmax is the cost of the most expensive action, the
construction works as shown in Algorithm 2.1

Multiple pattern databases can be merged by either taking the maximum, the sum, or
the weighted combination of individual pattern database entries. Additionally we apply
iterative abstraction to refine the quality of a database. If pattern database construction
is partial because of the time cut-off, an abstraction φ can be re-abstracted to φ′ (e.g.,
by dropping another variable). The idea is illustrated in Fig. 1. Algorithm 3 shows how
remaining states outside the previous perimeter are classified wrt. φ′. The process is
iterated until all states are classified.

1 For large costs, pattern databases can become sparse, so that in practice we compress the BDD
vector H[0.. max] to a list containing (i, H[i]) for every i with H[i] 6= false.

Algorithm 2 Construct-Partial-Symbolic-PDB
Input: Abstract planning problem P ′ = (S ′,A′, I′,G′, C′)
Output: Partial or full symbolic pattern database

Reached← H[0]← G′
for all d = 0, 1, 2, . . . do

H[d]← H[d] ∧ ¬Reached
if (H[d..d + Cmax − 1] ≡ false) then return (full, H[0..d− 1])
if (time-out) then return (partial, (H[0..d],¬Reached))
Reached← Reached ∨H[d]
for all i = 1, . . . , Cmax do

Succi ←
∨

a∈A′,C′(a)=i PreImage(H[d], Trans′a)

H[d + i]← H[d + i] ∨ Succi

H[0..max’]

H’[max’]
H[max] H[max’]

H[0..max] H’[0..max’]

Fig. 1. Partial pattern database refinement: left 2 pattern databases are merged into the right one.

In the extension to weighted graphs, all successors of the set of states with mini-
mum f -value are determined wrt. the current cost value g and action cost value i. To
determine their h-values, the merged symbolic pattern database is scanned.2

5 Experiments

Table 1 compares symbolic search with partial symbolic pattern databases (PSPDB,
construction time included) with symbolic bidirectional breadth-first search (SBBFS),
PDB [14] and LFPA [15] on various competition problems on equivalent computational
resources. For automated pattern selection (at least compared to [14]) we chose a rather
simple policy. Abstractions are variable projections, combined via greedy bin-packing.
PSPDB shows benefits to PDB, especially considering that automated pattern selection
is less elaborated. Wrt. LFPA, the advantage is less impressive.

For TPP-9 (from IPC-5), a problem that according to [15] cannot be solved by any
other heuristic search planner so far. It also can not be solved with bidirectional search.
Two partial pattern databases were constructed. As some actions remain applicable in
both abstractions, their costs are 1. The costs of all other actions in the abstract space

2 In our implementation, we avoid merging prior to the search and merge the results of the
lookups. However, we observed that the advantages of such dynamic lookups are small.

Algorithm 3 Refinement
Input: Planning problem P = (S,A, I,G), multiple pattern database abstraction set Φ
Output: Symbolic pattern database set

for all φ ∈ Φ do
(r, H[0..max])← Construct-Partial-Symbolic-PDB(Pφ)
while (r = partial) do

φ′ ← Abstract(φ); Rest← false
(r, H ′[0..max′])← Construct-Partial-Symbolic-PDB(Pφ′)
for all i = 1, . . . , max−1 do Rest← (H ′[i] ∧H[max]) ∨ Rest
for all i = max +1, . . . , max′ do H[i]← H ′[i] ∧H[max]
H[max]← H[max] ∧ (H ′[max] ∨ Rest)
max← max′

H ← Merge(H, H[0..max])
returnH

Problem L* PSPDB SBBFS PDB LFPA
log-10-0 45 137s 577s 497s 117s
log-10-1 42 174s 546s 405s 129s
log-11-0 48 68s 577s 377s 129s
log-11-1 60 65s - - 284s
log-12-0 42 47s 473s 545s 185s
log-12-1 68 861s - - 221s

sat-4 17 5s 2s 6s 11s
sat-5 15 41s 37s 110s 47s
sat-6 20 38s 27s 21s 634s
sat-7 21 567s - - -

psr-48 37 10s 128s 787s 36s
psr-49 47 57s - - 67s

Table 1. Comparison between optimal planning approaches (on a 2.6GHz CPU, 2 GB RAM).

and the costs of all actions in the original state space are multiplied with two. The
exploration took 354 iterations to find a plan of 48 steps in about 2h. Between 32 and
64 million BDDs were used for the entire exploration, corresponding to about 1.5 GB.

6 Conclusion

We extended heuristic search planning to work with partial symbolic pattern databases,
a recent compromise between bidirectional breadth-first search and a low number of
variables in the pattern for a full database. Thereby, we obtained promising results for
a selection of planning benchmarks. As a matter of fact, the results are highly selec-
tive, and given that both LFPA and PDB take different parameter settings in different
domains, we are excited to directly compare the approaches in a competition.

Due to the scaling of action costs to preserve admissibility of the heuristic, we
employed a bucket implementation of Dijkstra’s single-source shortest paths algorithm
for the cost-limited construction of each database. One possible future research avenue
is to construct partial pattern databases on-the-fly; similar to bidirectional BFS, where
the search continues in the direction that is likely to be the cheapest.

References

1. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest
path problem. Journal of the ACM, 37(2):213–223, 1990.

2. K. Anderson, R. Holte, and J. Schaeffer. Partial pattern databases. In SARA, pages 20–34,
2007.

3. J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(4):318–
334, 1998.

4. R. B. Dial. Shortest-path forest with topological ordering. Communications of the ACM,
12(11):632–633, 1969.

5. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik,
1:269–271, 1959.

6. J. F. Dillenburg and P. C. Nelson. Perimeter search. Artificial Intelligence, 65(1):165–178,
1994.

7. S. Edelkamp. Symbolic pattern databases in heuristic search planning. In AIPS, pages 274–
293, 2002.

8. S. Edelkamp. External symbolic heuristic search with pattern databases. In ICAPS, pages
51–60, 2005.

9. S. Edelkamp and F. Reffel. OBDDs in heuristic search. In KI, pages 81–92, 1998.
10. A. Felner, Richard E. Korf, R. Meshulam, and R. C. Holte. Compressed pattern databases.

Journal of Artificial Intelligence Research, 30:213–247, 2006.
11. A. Felner and Nir Ofek. Combining perimeter search and pattern database abstractions. In

SARA, pages 155–168, 2007.
12. E. A. Hansen, R. Zhou, and Z. Feng. Symbolic heuristic search using decision diagrams. In

SARA, pages 83–98, 2002.
13. P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for domain-independent

planning. In AAAI, pages 1163–1168, 2005.
14. P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-independent construc-

tion of pattern database heuristics for cost-optimal planning. In AAAI, pages 1007–1012,
2007.

15. M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for optimal sequen-
tial planning. In ICAPS, pages 176–183, 2007.

16. J. Hoffmann, A. Sabharwal, and C. Domshlak. Friends or foes? An AI planning perspective
on abstraction and search. In ICAPS, pages 294–303, 2006.

17. R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA*: An efficient BDD-based heuristic
search algorithm. In AAAI, pages 668–673, 2002.

18. M. Katz and C. Domshlak. Combining perimeter search and pattern database abstractions.
In ICAPS-Workshop, 2007.

19. R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontier search. Journal of the ACM,
52(5):715–748, 2005.

20. K. Qian. Formal Verification using heursitic search and abstraction techniques. PhD thesis,
University of New South Wales, 2006.

21. R. Zhou and E. Hansen. Breadth-first heuristic search. In ICAPS, pages 92–100, 2004.

