
External A*

Stefan Edelkamp1, Shahid Jabbar1, and Stefan Schrödl2

1 Computer Science Department
Baroper Str. 301

University Dortmund
{stefan.edelkamp,shahid.jabbar }@cs.uni-dortmund.de

2 DaimlerChrysler Research and Technology Center
1510 Page Mill Road
Palo Alto, CA 94304

schroedl@rtna.daimlerchrysler.com

Abstract. In this paper we studyExternal A*, a variant of the conventional (in-
ternal) A* algorithm that makes use of external memory, e.g., a hard disk. The
approach applies to implicit, undirected, unweighted state space problem graphs
with consistent estimates. It combines all three aspects of best-first search, fron-
tier search and delayed duplicate detection and can still operate on very small
internal memory. The complexity of the external algorithm is almost linear in ex-
ternal sorting time and accumulates toO(sort(|E|) + scan(|V |)) I/O operations,
whereV andE are the set of nodes and edges in the explored portion of the state
space graph. Given that delayed duplicate elimination has to be performed, the
established bound is I/O optimal. In contrast to the internal algorithm, we exploit
memory locality to allow blockwise rather than random access. The algorithmic
design refers to external shortest path search in explicit graphs and extends the
strategy of delayed duplicate detection recently suggested for breadth-first search
to best-first search. We conduct experiments with sliding-tile puzzle instances.

1 Introduction

Often search spaces are so big that they don’t fit into main memory. In this case, during
the algorithm only a part of the graph can be processed at a time; the remainder is
stored on a disk. However, hard disk operations are about a105 − 106 times slower
than main memory accesses. Moreover, according to recent estimates, technological
progress yields about annual rates of 40-60 percent increase in processor speeds, while
disk transfers only improve by seven to ten percent. This growing disparity has led to a
growing attention to the design ofI/O-efficient algorithmsin recent years.

Different variants of breadth-first and depth-first traversal of external graphs have
been proposed earlier [3, 13]. In this paper we address A* search on secondary memory:
in problems where we try to find the shortest path to a designated goal state, it has been
shown that the incorporation of a heuristic estimate for the remaining distance of a state
can significantly reduce the number of nodes that need to be explored [5].

The remainder of the paper is organized as follows. First we introduce the most
widely used computation model, which counts I/Os in terms of transfers of blocks of

records of fixed size to and from secondary memory. We describe some basic external-
memory algorithms and some data structures relevant to graph search. Then we turn to
the subject of external graph search that is concerned with breadth-first search in explicit
graphs stored on disk. Korf’sdelayed duplicate detectionalgorithm [9] adapts Muna-
gala and Ranade’s algorithm [14] for the case of implicit graphs, and is presented next.
Then we describeExternal A*, which extends delayed duplicate detection to heuristic
search. Internal and I/O complexities are derived followed by an optimality argument
based on a lower bound for delayed duplicate detection. Finally, we address related
work and draw conclusions.

2 Model of Computation and Basic Primitives

The commonly used model for comparing the performance of external algorithms con-
sists of a single processor, a small internal memory that can hold up toM data items,
and an unlimited secondary memory. The size of the input problem (in terms of the
number of records) is abbreviated byN . Moreover, theblock sizeB governs the band-
width of memory transfers. It is often convenient to refer to these parameters in terms of
blocks, so we definem = M/B andn = N/B. It is usually assumed that at the begin-
ning of the algorithm, the input data is stored in contiguous block on external memory,
and the same must hold for the output. Only the number of block read and writes are
counted, computations in internal memory do not incur any cost.

We can distinguish two general approaches to external memory algorithms: either
we can devise algorithms to solve specific computational problems while explicitly
controlling secondary memory access; or, we can develop general-purpose external-
memory data structures, such as stacks, queues, search trees, priority queues, and so on,
and then use them in algorithms that are similar to their internal-memory counterparts.
The simplest operation isexternal scanning, which means reading a stream of records
stored consecutively on secondary memory. In this case, it is trivial to exploit disk- and
block-parallelism. The number of I/Os isΘ(N

B) = Θ(n).
Another important operation isexternal sorting. External Mergesortconverts the

input into a number of elementary sorted sequences of lengthM using internal-memory
sorting. Subsequently, a merging step is applied repeatedly until only one run remains.
A set of k sequencesS1, . . . , Sk can be merged into one run withO(N) operations
by reading each sequence in block wise manner. In internal memory,k cursorspk are
maintained for each of the sequences; moreover, it contains one buffer block for each
run, and one output buffer. Among the elements pointed to by thepk, one with the
smallest key, saypi, is selected; the element is copied to the output buffer, andpi is
incremented. Whenever the output buffer reaches the block sizeB, it is written to disk,
and emptied; similarly, whenever a cached block for an input sequences has been fully
read, it is replaced with the next block of the run in external memory. When using
one internal buffer block per sequence, and one output buffer, each merging phase uses
O(N/B) operations. The best result is achieved whenk is chosen as big as possible,
i.e.,k = M/B. Then sorting can be accomplished inO(logM/B

N
B) phases.

3 External BFS

Since heuristic search algorithms are often applied to huge problem spaces, it is an
ubiquitous issue in this domain to cope with internal memory limitations. A variety
of memory-restricted search algorithmshave been developed to work under this con-
straint. A widely used algorithm is Korf’siterative deepening A* (IDA*)algorithm,
which requires only space linear in the solution length [7], in exchange for an overhead
in computation time due to repeated expansion. Various schemes have been proposed to
reduce this overhead by flexibly utilizing additionally available memory. The common
framework usually imposes a fixed upper limit on the total memory the program may
use, regardless of the size of the problem space. Most of these papers do not explicitly
distinguish whether this limit refers to internal memory or to disk space, but frequently
the latter one appears to be implicitly assumed. On the contrary, in this section we in-
troduce techniques that explicitly manage a two-level memory hierarchy.

3.1 Explicit Graphs

Underexternal graph algorithms, we understand algorithms that can solve thedepth-
first search (DFS), breadth-first search (BFS), or single-source shortest path (SSSP)
problem for explicitly specified directed or undirected graphs that are too large to fit in
main memory. We can distinguish between assigning (BFS or DFS) numbers to nodes,
assigning BFS levels to nodes, or computing the (BFS or DFS) tree edges. However,
for BFS in undirected graphs it can be shown that all these formulations are reducible
to each other up to an edge-list sorting inO(sort(|E|) I/O operations.

The input is usually assumed to be an unsorted edge list stored contiguously on
disk. However, frequently algorithms assume anadjacency list representation, which
consists of two arrays, one which contains all edges sorted by the start node, and one
array of size|V | which stores, for each vertex, its out-degree and offset into the first
array. A preprocessing step can accomplish this conversion in timeO(|E|

|V |sort(|V |)).
Naively running the standard internal-BFS algorithm in the same way in external

memory will result inΘ(|V |) I/Os for unstructured accesses to the adjacency lists, and
Θ(|E|) I/Os for finding out whether neighboring nodes have already been visited.

The algorithm ofMunagala and Ranade[14] improves on the latter complexity
for the case of undirected graphs, in which duplicates are constrained to be located
in adjacent levels. The algorithm buildsOpen(i) from Open(i − 1) as follows: Let
A(i) = N(Open(i− 1)) be the multi-set of neighbor vertices of nodes inOpen(i− 1);
A(i) is created by concatenating all adjacency lists of nodes inOpen(i − 1). Since af-
ter the preprocessing step the graph is stored in adjacency-list representation, this takes
O(|Open(i− 1)|+ |N(Open(i− 1))|/B) I/Os. Then the algorithm removes duplicates
by external sorting followed by an external scan. Hence, duplicate elimination takes
O(sort(A(i))) I/Os. Since the resulting listA′(i) is still sorted, filtering out the nodes al-
ready contained in the sorted listsOpen(i−1) orOpen(i−2) is possible by parallel scan-
ning, therefore this step can be done usingO(sort(|N(Open(i−1))|)+scan(|Open(i−
1)| + |Open(i − 2)|)) I/Os. This completes the generation ofOpen(i). The algorithm
can record the nodes’ BFS-level in additionalO(|V |) time using an external array.

ProcedureExternal Breadth-First-Search
Open(−1)← Open(−2)← ∅; U ← V
i← 0
while (Open(i− 1) 6= ∅ ∨ U 6= ∅)

if (Open(i− 1) = ∅)
Open(i)← {x}, wherex ∈ U

else
A(i)← N(Open(i− 1))
A′(i)← remove duplicates fromA(i)
Open(i)← A′(i) \ (Open(i− 1) ∪Open(i− 2))

foreachv ∈ Open(i)
U ← U \ {v}

i← i + 1

Fig. 1.External BFS by Munagala and Ranade

Figure 1 provides the implementation of the algorithm of Munagala and Ranade in
pseudo-code. A doubly-linked listU maintains all unvisited nodes, which is necessary
when the graph is not completely connected. Since

∑
i |N(Open(i))| = O(|E|) and∑

i |Open(i)| = O(|V |), the execution of external BFS requiresO(|V | + sort(|E|))
time, whereO(|V |) is due to the external representation of the graph and the initial
reconfiguration time to enable efficient successor generation.

The bottleneck of the algorithm are theO(|V |) unstructured accesses to adjacency
lists. The refined algorithm [12] consists of a preprocessing and a BFS phase, arriving
at a complexity ofO(

√
|V | · scan(|V |+ |E|) + sort(|V |+ |E|)) I/Os.

3.2 Implicit Graphs

An implicit graph is a graph that is not residing on disk but generated by successively
applying a set of operators to states selected from the search horizon. The advantage
in implicit search is that the graph is generated by a set of rules, and hence no disk
accesses for the adjacency lists are required.

A variant of Munagala and Ranade’s algorithm for BFS-search in implicit graphs
has been coined with the termdelayed duplicate detection for frontier search[9]. Let I
be the initial state, andN be the implicit successor generation function. The algorithm
maintains BFS layers on disk. LayerOpen(i−1) is scanned and the set of successors are
put into a buffer of size close to the main memory capacity. If the buffer becomes full,
internal sorting followed by a duplicate elimination phase generates a sorted duplicate-
free state sequence in the buffer that is flushed to disk3.

In the next step,external mergingis applied to unify the files intoOpen(i) by a
simultaneous scan. The size of the output files is chosen such that a single pass suffices.

3 Delayed internal duplicate elimination can be improved by using hash tables for the blocks
before flushed to disk. Since the state set in the hash table has to be stored anyway, the savings
by early duplicate detection are small.

ProcedureDelayed-Duplicate-Detection-Frontier-Search
Open(−1)← ∅, Open(0)← {I}
i← 1
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
A′(i)← remove duplicates fromA(i)
Open(i)← A′(i) \ (Open(i− 1) ∪Open(i− 2))
i← i + 1

Fig. 2.Delayed duplicate detection algorithm for BFS.

Duplicates are eliminated. Since the files were presorted, the complexity is given by
the scanning time of all files. One also has to eliminateOpen(i − 1) andOpen(i −
2) from Open(i) to avoid re-computations; that is, nodes extracted from the external
queue are not immediately deleted, but kept until after the layer has been completely
generated and sorted, at which point duplicates can be eliminated using a parallel scan.
The process is repeated untilOpen(i− 1) becomes empty, or the goal has been found.

The corresponding pseudo-code is shown in Figure 2. Note that the explicit partition
of the set of successors into blocks is implicit in the Algorithm of Munagala and Ranade.
Termination is not shown, but imposes no additional implementation problem.

As with the algorithm of Munagala and Ranade, delayed duplicate detection applies
O(sort(|N(Open(i−1))|)+scan(|Open(i−1)|+ |Open(i−2)|)) I/Os. However, since
no explicit access to the adjacency list is needed, by

∑
i |N(Open(i))| = O(|E|) and∑

i |Open(i)| = O(|V |), the total execution time isO(sort(|E|) + scan(|V |)) I/Os. In
exploration problems where the branching factor is bounded, we have|E| = O(|V |),
and thus the complexity for implicit external BFS reduces toO(sort(|V |)) I/Os.

The algorithm appliesscan(|Open(i−1)|+ |Open(i−2)|) I/Os in each phase. Does
summing these quantities in fact yieldO(scan(|V |)) I/Os, as stated? In very sparse
problem graphs that are simple chains, if we keep eachOpen(i) in a separate file, this
would accumulate toO(|V |) I/Os in total. However, in this case the states inOpen(i),
Open(i + 1), and so forth are stored consecutively in internal memory. Therefore, I/O
is only needed if a level hasΩ(B) states, which can happen only forO(|V |/B) levels.

Delayed duplicate detection was used to generate the first complete breadth-first
search of the2 × 7 sliding tile puzzle, and the Towers of Hanoi puzzle with 4 pegs
and 18 disks. It can also be used to generate large pattern databases that exceed main
memory capacity [10]. One file for each BFS layer will be sufficient. The algorithm
shares similarities with the internalFrontier searchalgorithm [8, 11] that was used for
solving multiple sequence alignment problems.

4 External A*

In the following we study how to extend external breadth-first-exploration in implicit
graphs tobest-firstsearch. The main advantage of A* with respect to BFS is that, due

to the use of a lower bound on the goal distance, it only has to traverse a smaller part of
the search space to establish an optimal solution.

In A*, the merit for stateu is f(u) = g(u) + h(u), with g being the cost of the path
from the initial state tou andh(u) being the estimate of the remaining costs fromu to
the goal. In each step, a nodeu with minimumf -value is removed fromOpen, and the
new valuef(v) of a successorv of u is updated to the minimum of its current value and
f(v) = g(v)+h(v) = g(u)+w(u, v)+h(v) = f(u)+w(u, v)−h(u)+h(v); in this
case, it is inserted intoOpenitself.

In our algorithm, we assume aconsistentheuristic, where for eachu and its child
v, we havew(u, v) ≥ h(u) − h(v), and a uniformly weighted undirected state space
problem graph. These conditions are often met in practice, since many problem graphs
in single agent search are uniformly weighted and undirected and many heuristics are
consistent. BFS can be seen as a special case of A* in uniform graphs with a heuristich
that evaluates to zero for each state. Under these assumptions, we haveh(u) ≤ h(v)+1
for every stateu and every successorv of u. Since the problem graph is undirected this
implies|h(u)− h(v)| ≤ 1 andh(v)− h(u) ∈ {−1, 0, 1}. If the heuristic is consistent,
then on each search path, the evaluation functionf is non-decreasing. No successor
will have a smallerf -value than the current one. Therefore, the A* algorithm, which
traverses the state set inf -order, expands each node at most once.

Take for example sliding tile puzzles, where numbered tiles on a rectangular grid
have to be brought into a defined goal state by successively sliding tiles into one empty
square. TheManhattan distanceis defined as the sum of the horizontal and vertical
differences between actual and goal configurations, for all tiles. It is easy to see that it
is consistent, since for two successive statesu andv the the differenceh(v) − h(u) is
either -1 or 1. Therefore,f -values ofu andv are either the same orf(v) = f(u) + 2.

4.1 Buckets

Like external BFS,External A* maintains the search horizon on disk, possibly parti-
tioned into main-memory-sized sequences. In fact, the disk files correspond to an ex-
ternal representation of Dial’s implementation of a priority queue data structure that is
represented as an array of buckets [4]. In the course of the algorithm, each bucket ad-
dressed with indexi will contain all statesu in the setOpenthat have priorityf(u) = i.
An external representation of this data structure will memorize each bucket in a differ-
ent file.

We introduce a refinement of the data structure that distinguishes between states
of differentg-values, and designates bucketOpen(i, j) to all statesu with path length
g(u) = i and heuristic estimateh(u) = j.

As with the description of external BFS, we do not change the identifierOpento
separategeneratedfrom expandedstates (traditionally denoted as theClosedlist). Dur-
ing the execution of A*, bucketOpen(i, j) may refer to elements that are in the current
search horizon or belong to the set of expanded nodes. During the exploration process,
only nodes from one currentlyactive bucket Open(i, j) with i + j = fmin are ex-
panded, up to its exhaustion. Buckets are selected in lexicographic order for(i, j); then,
the bucketsOpen(i′, j′) with i′ < i andi′ + j′ = fmin areclosed, whereas the buckets

g

≤ d/2

d

f∗h(I)

h(I)

h

Fig. 3.The number of buckets selected in A*.

Open(i′, j′) with i′ + j′ > fmin or with i′ > i andi′ + j′ = fmin areopen. For states
in the active bucket the status can be eitheropenor closed.

For an optimal heuristic, i.e., a heuristic that computes the shortest path distancef∗,
A* will consider the bucketsOpen(0, f∗), . . . , Open(f∗, 0). On the other hand, if the
heuristic is equal to zero, it considers the bucketsOpen(0, 0), . . . , Open(f∗, 0). This
leads to the hypothesis that the A* looks atf∗ buckets. Unfortunately, this is not true.

Consider Figure 3, in which theg-values are plotted with respect to theh-values,
such that states with the samef = g + h value are located on the same diagonal.
For states that are expanded inOpen(g, h) the successors fall intoOpen(g + 1, h− 1)
Open(g + 1, h), or Open(g + 1, h + 1). The number of naughts for each diagonal is an
upper bound on the number buckets that are needed. It is trivial to see that the number
is bounded byf∗(f∗ + 1)/2, since naughts only appear in the triangle bounded by the
f∗-diagonal. We can, however, achieve a slightly tighter bound.

Lemma 1. The number of bucketsOpen(i, j) that are considered by A* in a uniform
state space problem graph with a consistent heuristic is bounded by(f∗ + 1)2/3.

Proof. Let d = f∗−h(I). Belowh(I) there are at mostd·h(I)+h(I) nodes. Theroof
aboveh(I) has at most1 + 3 + . . . + 2(d/2)− 1 nodes (counted from top to bottom).
Since the sum evaluates tod2/4 we need at mostd · h(I) + h(I) + d2/4 buckets
altogether. The maximal number((f∗)2 +f∗ +1)/3 is reached forh(I) = (f∗ +2)/3.

By the restriction forf -values in the sliding-tile puzzles only about half the number
of buckets have to be allocated. Note thatf∗ is not known in advance, so that we have
to construct and maintain the files on the fly.

As in the algorithm of Munagala and Ranade, we can exploit the observation that
in undirected state space graph structure, duplicates of a state with BFS-leveli can at
most occur in levelsi, i − 1 andi − 2. In addition, sinceh is a total function, we have
h(u) = h(v) if u = v. This implies the following result.

Lemma 2. During the course of executing A*, for alli, i′, j, j′ with j 6= j′ we have
thatOpen(i, j) ∩ Open(i′, j′) = ∅.

Lemma 2 allows to restrict duplicate detection to buckets of the sameh-value.

4.2 The Algorithm

For ease of presentation, we consider each bucket for theOpenlist as a different file. By
Lemma 1 this accumulates to at most(f∗ + 1)2/3 files. For the following we therefore
generally assume(f∗ + 1)2/3 = O(scan(|V |)) and(f∗ + 1)2/3 = O(sort(|E|)).

Figure 4 depicts the pseudo-code of theExternal A*algorithm for consistent esti-
mates and uniform graphs. The algorithm maintains the two valuesgmin andfmin to
address the currently active bucket. The buckets offmin are traversed for increasing
gmin up to fmin. According to their differenth-values, successors are arranged into
three different horizon listsA(fmin), A(fmin + 1), andA(fmin + 2); hence, at each
instance only four buckets have to be accessed by I/O operations. For each of them, we
keep a separate buffer of sizeB; this will reduce the internal memory requirements to
4B. If a buffer becomes full then it is flushed to disk. As in BFS, it is practical to presort
buffers in one bucket immediately by an efficient internal algorithm to ease merging,
but we could equivalently sort the unsorted buffers for one buckets externally.

Note that it suffices to perform the duplicate removal only for the bucket that is to
be expanded next. The other buckets might not have been fully generated and hence
we can save the redundant scanning of the files for every iteration of the inner most
while loop. When merging the presorted sets with the previously existingOpenbuckets
(both residing on disk), duplicates are eliminated, leaving the setOpen(gmin, hmax),
duplicate free. Moreover, bucketOpen(gmin, hmax) is refined not to contain any state
in Open(gmin − 1, hmax) or Open(gmin − 2, hmax). This can be achieved through a
parallel scan of the presorted files.

SinceExternal A*simulates A* and changes only the order of elements to be ex-
panded that have the samef -value, completeness and optimality are inherited from the
properties shown for A* [15].

Theorem 1 (I/O performance of External A*). The complexity for External A* in
an implicit unweighted and undirected graph with a consistent estimate is bounded by
O(sort(|E|) + scan(|V |)) I/Os.

Proof. By simulating internal A*, the delayed duplicate elimination scheme looks at
each edge in the state space problem graph at most once.

Each data item is I/O efficiently written once as a successor, once for external sort-
ing, once for expansion and scanned twice for duplicate elimination.

More precisely, we haveO(sort(|N(Open(gmin − 1, hmax))| + |N(Open(gmin −
1, hmax−1))|+ |N(Open(gmin−1, hmax +1))|)) I/Os for eliminating duplicates in the
accumulated successor lists before expanding(Open(gmin, hmax)), since this operation
is based onexternal sorting. While each state is expanded at most once, this yields an
amount ofO(sort(|E|)) I/Os for the overall run time.

File subtraction requiresO(scan(|N(Open(gmin − 1, hmax))| + |N(Open(gmin −
1, hmax−1))|+|N(Open(gmin−1, hmax+1))|)+scan(|N(Open(gmin−1, hmax))|)+

ProcedureExternal A*
Open(0, h(I))← {I}
fmin ← h(I)
while (fmin 6=∞)

gmin ← min{i | Open(i, fmin − i) 6= ∅}
while (gmin ≤ fmin)

hmax ← fmin − gmin

Open(gmin, hmax)← remove duplicates from Open(gmin, hmax)
Open(gmin, hmax)← Open(gmin, hmax)\

(Open(gmin − 1, hmax) ∪Open(gmin − 2, hmax))
A(fmin), A(fmin + 1), A(fmin + 2)← N(Open(gmin, hmax))
Open(gmin + 1, hmax + 1)← A(fmin + 2)
Open(gmin + 1, hmax)← A(fmin + 1) ∪Open(gmin + 1, hmax)
Open(gmin + 1, hmax − 1)← A(fmin) ∪Open(gmin + 1, hmax − 1)
gmin ← gmin + 1

fmin ← min{i + j > fmin | Open(i, j) 6= ∅} ∪ {∞}

Fig. 4.External A*for consistent and integral heuristics.

scan(|N(Open(gmin − 2, hmax))|)) I/Os. Therefore, subtraction addO(scan(|V |) +
scan(|E|)) I/Os to the overall run time.

All other operation are available in scanning time of all reduced buckets.

If we additionally have|E| = O(|V |), the complexity reduces toO(sort(|V |)) I/Os.
Internal costs have been neglected in the above analysis. All operation base on

batched access, we can scale the internal memory requirements down toO(1), namely
2-3 states, depending on the internal memory needs for external sorting. Since each state
is considered only once for expansion, the internal time requirements are|V | timesthe
durationtexp for successor generation, plus the efforts for internal duplicate elimina-
tion and sorting, if applied. By setting new edges weightw(u, v) to h(u) − h(v) + 1,
for consistent heuristics A* is a variant of Dijkstra’s algorithm that requires internal
costs ofO(C · |V |), C = max{w(u, v) | v successor ofu} on a Dial. Due to con-
sistency we haveC ≤ 2, so that, given|E| = O(|V |), internal costs are bounded by
O(|V | · (texp + log |V |)), whereO(|V | log |V |)) refers to the internal sorting efforts.

To reconstruct a solution path, we could store predecessor information with each
state on disk, and apply backward chaining, starting with the target state. However, this
is not strictly necessary: For a state in depthg, we intersect the set of possible prede-
cessors with the buckets of depthg− 1. Any state that is in the intersection is reachable
on an optimal solution path, so that we can recur. The time complexity is bounded by
the scanning time of all buckets in consideration and surely inO(scan(|V |)).

In practice, to save disk space when expanding bucketOpen(gmin, hmax), we can
eliminate the bucketOpen(gmin − 2, hmax) after file subtraction. In this case, solution
path has to be reconstructed by regeneration or through divide-and-conquer strategy.

4.3 Non-Uniformly Weighted Graphs

Up to this point, we have made the assumption of uniformly weighted graphs; in this
section, we generalize the algorithm to small integer weights in{1, . . . , C}. Due to
consistency of the heuristic, it holds for every stateu and every successorv of u that
h(v) ≥ h(u) − w(u, v). Moreover, since the graph is undirected, we equally have
h(u) ≥ h(v) − w(u, v), or h(v) ≤ h(u) + w(u, v); hence,|h(u) − h(v)| ≤ w(u, v).
This means that the successors of the nodes in the active bucket are no longer spread
across three, but over3 + 5 + . . . + 2C + 1 = C · (C + 2) buckets.

For duplicate reduction, we have to subtract the2C bucketsOpen(i − 1, j) ,. . .,
Open(i− 2C, j) from the active bucketOpen(i, j) prior to its nodes’ expansion. It can
be shown by induction overf = i + j that no duplicates exist in smaller buckets. The
claim is trivially true forf ≤ 2C. In the induction step, assume to the contrary that for
some nodev ∈ Open(i, j), Open(i′, j) contains a duplicatev′ with i′ < i − 2C; let
u ∈ Open(i − w(u, v), ju) be the predecessor ofv. Then, by the undirectedness, there
must be a duplicateu′ ∈ Open(i′ +w(u, v), ju). But sincef(u′) = i′ +w(u, v)+ ju ≤
i′ + C + ju < i − C + ju ≤ i − w(u, v) + ju = f(u), this is a contradiction to the
induction hypothesis.

The derivation of the I/O complexity is similar to the uniform case; the difference is
that each bucket is referred to at most2C+1 times for bucket subtraction and expansion.

Theorem 2 (I/O performance of External A* for non-uniform graphs). The I/O
complexity for External A* in an implicit and undirected graph, where the weights are
in {1, . . . , C}, with a consistent estimate, is bounded byO(sort(|E|) + C · scan(|V |)).

If we do not impose a boundC, or if we allow directed graphs, the run time increases
to O(sort(|E|) + f∗ · scan(|V |)) I/Os. For larger edge weights andf∗-values, buckets
could become sparse and should be handled more carefully, as we would be wasting a
number of I/Os in accessing the buckets having fewer thanB states. If we haveO((f∗)2·
B) main memory space, a plausible solution in this case would be to keep all the unfilled
buffers in main memory. The space requirement can be reduced toO(C · f∗ · B), i.e.,
saving only theC layers that change between successive active buckets. In any case, our
algorithm requires at leastΩ(C2 · B) main memory, to be able to store theC2 buffers
into which a successor might fall.

5 Lower Bound

Is O(sort(|V |)) I/O-optimal? Aggarwal and Vitter [1] showed that external sorting has
the above-mentioned I/O complexity ofΩ

(
N log N

B /B log M
B

)
and provide two algo-

rithms that are asymptotically optimal. As internalset inequality, set inclusionandset
disjointnessrequire at leastN log N − O(N) comparisons, the lower bound on the
number of I/Os for these problems is also bounded byΩ(sort(N)).

Arge, Knudsen and Larsen [2] considered the duplicate elimination problem. A
lower bound on the number of comparisons needed isN log N −

∑k
i=1 Ni log Ni −

O(N) whereNi is the multiplicity of recordi. The authors argue in detail that after the

S. No. Initial State Initial EstimateSolution Length
1 (0 2 1 3 5 4 6 7 8 9 10 11 12 13 14 15) 4 16
2 (0 1 2 3 5 4 7 6 8 9 10 11 12 13 14 15) 4 24
3 (0 2 1 3 5 4 7 6 8 9 13 11 12 10 14 15) 10 30

4 {12} (14 1 9 6 4 8 12 5 7 2 3 0 10 11 13 15) 35 45
5 {16} (1 3 2 5 10 9 15 6 8 14 13 11 12 4 7 0) 24 42
6 {14} (7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12) 41 59
7 {60} (11 14 13 1 2 3 12 4 15 7 9 5 10 6 8 0) 48 66
8 {88} (15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4) 43 65

Table 1.15-puzzle instances used for experiments

duplicate removal, the total order of the remaining records is known. This corresponds
to an I/O complexity of at most

Ω

(
max

{
N log N

B −
∑k

i=1 Ni log Ni

B log M
B

, N/B

})
.

The authors also give an involved algorithm based on Mergesort that matches this
bound. For the sliding tile puzzle with two preceding buckets and a branching factor
b ≤ 4 we haveNi ≤ 8. For general consistent estimates in uniform graphs, we have
Ni ≤ 3c, with c being an upper bound on the maximal branching factor. An algo-
rithm performsdelayed duplicate bucket elimination, if it eliminates duplicates within
a bucket and with respect to adjacent buckets that are duplicate free.

Theorem 3 (I/O Performance Optimality for External A*)). If |E| = Θ(|V |), de-
layed duplicate bucket elimination in an implicit unweighted and undirected graph A*
search with consistent estimates needs at leastΩ(sort(|V |)) I/O operations.

Proof. Since each state gives rise to at mostc successors and there at most 3 preceding
buckets in A* search with consistent estimates in an uniformly weighted graph, given
that previous buckets are mutually duplicate free, we have at most3c states that are the
same. Therefore, all setsNi are bounded by3c. Sincek is bounded byN we have that∑k

i=1 Ni log Ni is bounded byk · 3c log 3c = O(N). Therefore, the lower bound for
duplicate elimination forN states isΩ(sort(N) + scan(N)).

6 Experiments

We selected 15-Puzzle problem instances. Many instances cannot be solved internally
with A* and the Manhattan distance. Each state is packed into 8 bytes.

Internal sorting is done by the built-inQuicksort routine. External merge is per-
formed by maintaining the file pointers for every flushed buffer and merging them into
a single sorted file. Since we have a simultaneous file pointers capacity bound imposed
by the operating system, we implemented two-phase merging. Duplicate removal and
bucket subtraction are performed on single passes through the bucket file. The imple-
mentation differs a little from the algorithm presented in this paper in that the duplicate

g/h 1 2 3 4 5 6 7 8 9 10 11
0 - - - 1+0 - - - - - - -
1 - - - - 2+0 - - - - - -
2 - - - 0+4 - 2+0 - - - - -
3 - - - - 7+3 - 4+0 - - - -
4 - - - 0+7 - 13+4 - 10+0 - - -
5 - - - - 5+15 - 24+10 - 24+0 - -
6 - - - 0+6 - 12+26 - 46+28 - 44+0 -
7 - - - - 9+10 - 20+51 - 99+57 - 76+0
8 - - - 0+8 - 15+25 - 48+137 - 195+0 -
9 - - - - 4+17 - 45+52 - 203+0 - -

10 - - - 0+3 - 13+49 - 92+0 - - -
11 - - - - 2+19 - 46+0 - - - -
12 - - - 0+5 - 31+0 - - - - -
13 - - 0+2 - 10+0 - - - - - -
14 - 0+2 - 5+0 - - - - - - -
15 0+2 - 5+0 - - - - - - - -

Table 2.States inserted in the buckets for instance 1

removal within one bucket, as well as the bucket subtraction are delayed until the bucket
is selected for expansion. The program utilizes an implicit priority queue. For sliding
tile puzzles, during expansion, the successor’sf value differs from the parent state by
exactly 2. This implies that in case of an empty diagonal, the program terminates.

We performed our experiments on a mobile AMD Athlon XP 1.5 GHz processor
with 512 MB RAM, running MS Windows XP. In Table 1 we give the example instances
that we have used for our experiments. Some of them are adopted from Korf’s seminal
paper [7] (original numbers given in brackets). We chose some of the simplest and
hardest instances for our experiments. The harder problems cannot be solved internally
and were cited as the core reasons for the need of IDA*.

In Table 2 we show the diagonal pattern of states that is developed during the
exploration for problem instance 1. The entryx + y in the cell (i, j) implies thatx
andy number of states are generated from the expansion ofOpen(i − 1, j − 1) and
Open(i− 1, j + 1), respectively.

Initial State B I/O ReadsI/O Writes Time (sec)
10 5,214 6,525 2

2 25 3,086 3,016 1
50 2,371 1,843 < 1
100 2,022 1,265 < 1

Table 3.Effects on I/O performance due to different internal buffer sizes

The impact of internal buffer size on the I/O performance is clearly observable in
Table 3. We show the I/O performance of two instances by varying the internal buffer
sizeB. A larger buffer implies fewer flushes during writing, fewer block reads during

expansion and fewer processing time due to internally sorting larger but fewer buffers.
This I/O and time data are collected using the task manager of Windows XP.

Initial State N Ndr Ndr+sub

1 530,401 2,800 1,654
2 > 50,000,000 126,741 58,617
3 > 50,000,000 492,123 314,487
4 71,751,166 611,116 493,990
5 <out of disk space> 7,532,113 5,180,710
6 <out of disk space> <out of disk space> 297,583,236
7 <out of disk space> <out of disk space> 2,269,240,000
8 <out of disk space> <out of disk space> 2,956,384,330

Table 4. Impact of duplicate removal and bucket subtraction on generated states

In Table 4, we show the impact of duplicate removal and bucket subtraction. Note
that we do not employ any pruning technique like hashing or predecessor elimination.
As observable from the fourth entry, the gain is about 99% when duplicate removal and
bucket subtraction are used. In the latter cases, we had to stop the experiment because of
the limited hard disk capacity. These states are the number of states that aregenerated
during the run and do not represent the total number of states that are actuallyexpanded.
The number of expanded states differs largely from the generated states because of the
removal of duplicate states and generation of states of(f∗ + 2) diagonal.

Initial State NIDA∗ [7] NExA∗ SExA∗ (GB) % gain
4 546,344 493,990 0.003 9.58
5 17,984,051 5,180,710 0.039 71.2
6 1,369,596,778297,583,236 2.2 78.3
7 3,337,690,3312,269,240,000 16.91 32
8 6,009,130,7482,956,384,330 22 50.8

Table 5.Comparison of space requirement by IDA* and External A*

Finally, we compare the node count of our algorithm to the node count of IDA*
in Table 5. As is noticeable in the table that the problem instances 6,7, and 8 can not
be solved internally, especially 7 and 8 whose memory requirements surpass even the
address limits of current PC hardware.

7 Conclusion

In this work, we present an extension of external undirected BFS graph search to exter-
nal A* search which can exploit a goal-distance heuristics. Contrary to some previous
works in standard graph search, we are concerned with implicitly represented graphs.
The key issue to efficiently solve the problem is a file-based priority queue matrix as

a refinement to Dial’s priority queue data structure. For consistent estimates in uni-
form graphs we show that we achieve optimal I/O complexity. On the other side of
the memory hierarchy, through the achievement of better memory locality for access,
the external design for A* seems likely to increase cache performance. Different from
delayed duplicate detection, we start with the external BFS exploration scheme of Mu-
nagala and Ranade to give complexity results measured in the number of I/O operations
that the algorithm executes.

There is a tight connection between the exploration of externally stored sets of
states, and an efficientsymbolicrepresentation for sets of states withBinary Decision
Diagrams (BDDs). The design of existing symbolic heuristic search algorithms seems
to be strongly influenced by the delayed duplication and external set manipulation. An-
other related research area are internal memory-restricted algorithms, that are mainly
interested in oan early removal of states from the main memory. The larger space-
efficiency of a breadth-first traversal ordering in heuristic search has lead to improved
memory consumption for internal algorithms, with new algorithms entitledbreadth-
first heuristic searchandbreadth-first iterative-deepening[16]. One interesting feature
of our approach from a practical point of view is the ability to pause and resume the pro-
gram execution. For large problem instances, this is a desirable feature in case we reach
the system bounds of secondary storage and after upgrading the system want to resume
the execution. In near future we expect a practical relevant outcome of this research in
application domains especially AI planning, model checking and route planning.

Very recently, there are two related but independent research results, considering
external best-first exploration. On the one hand, Korf [6] has successfully extended
delayed duplicate detection to best-first search and also considered omission of the
visited list as proposed infrontier search. It turned out that any 2 of the 3 options
were compatible: Breadth-first frontier search with delayed duplicate detection, best-
first frontier search, and best-first with external but non-reduced visited list. For the
latter Korf simulates the buffered traversal in a Dial priority queue. With respect to
this work, we contribute an algorithm that can deal with all three approaches. As an
additional feature, Korf showed how external sorting can be avoided, by a selection of
hash functions that split larger files into smaller pieces which fit into main memory. As
with theh-value in our case a state and its duplicate will have the same hash address.

Zhou and Hansen [17] incorporated a projection function that maps states into an
abstractstate space; this reduces the successor scope of states that have to be kept in
main memory. Projections are state space homomorphisms, such that for each pair of
consecutive abstract states there exist an original pair of consecutive original states.
In the running example of the 15-puzzle, the projection was based on states that have
the same blank position. Unfortunately, this state-space abstraction also preserves the
additional property that the successor set and the expansion sets are disjoint, yielding
no self-loops in the abstract state space graph. For this case a reduction similar to the 3-
layer idea of Munagala and Ranade applies to the reduced graph. For multiple-sequence
alignment the authors could define an abstract graph structure that works well together
with theSweep-A*algorithm. The method is crucially dependent on the availability of
suitable partition functions. If the remaining duplicate elimination scope fits into main
memory, the authors provide an improved worst case bound ofO(n · |E|) I/Os. By the

additional assumption this does not contradict the lower bound provided. In contrast, we
do not rely on any partitioning beside theh function and we do not require the duplicate
scope to fit in main memory.

It seems that the other two approaches are quite compatible with our approach;
e.g., by introducing the abstract state space concept, the spatial locality of the states
can be further improved. Also, duplicate detection using external hashing within each
of our buckets of the priority queue might result in better run-time of our algorithm,
in practice. In summary, all three approaches have independent contributions and the
future will show how they cooperate.

AcknowledgmentsThe work is supported byDeutsche Forschungsgemeinschaft(DFG)
in the projectsHeuristic Search(Ed 74/3) andDirected Model Checking(Ed 74/2).

References

1. A. Aggarwal and J. S. Vitter. Complexity of sorting and related problems. InInternational
Colloquim on Automata, Languages and Programming (ICALP), number 267 in LNCS,
pages 467–478, 1987.

2. L. Arge, M. Knudsen, and K. Larsen. Sorting multisets and vectors in-place. InWorkshop
on Algorithms and Data Structures (WADS), LNCS, pages 83–94, 1993.

3. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S. Vitter.
External memory graph algorithms. InSymposium on Discrete Algorithms (SODA), pages
139–149, 1995.

4. R. B. Dial. Shortest-path forest with topological ordering.Communication of the ACM,
12(11):632–633, 1969.

5. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination of
minimum path cost.IEEE Trans. on on Systems Science and Cybernetics, 4:100–107, 1968.

6. R. Korf. Best-first frontier search with delayed duplicate detection. InNational Conference
on Artificial Intelligence (AAAI), 2004. To appear.

7. R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.Artificial
Intelligence, 27(1):97–109, 1985.

8. R. E. Korf. Divide-and-conquer bidirectional frontier search: First results. InInternational
Joint Conferences on Artificial Intelligence (IJCAI), pages 1184–1191, 1999.

9. R. E. Korf. Delayed duplicate detection. InIJCAI-Workshop on Model Checking and Artifi-
cial Intelligence (MoChart), 2003.

10. R. E. Korf and A. Felner.Chips Challenging Champions: Games, Computers and Artificial
Intelligence, chapter Disjoint Pattern Database Heuristics, pages 13–26. Elsevier, 2002.

11. R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal sequence
allignment. InNational Conference on Artificial Intelligence (AAAI), pages 910–916, 2000.

12. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In
European Symposium on Algorithms (ESA), 2002.

13. U. Meyer, P. Sanders, and J. Sibeyn.Memory Hierarchies. Springer, 2003.
14. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. InSymposium on Discrete

Algorithms (SODA), pages 87–88, 2001.
15. J. Pearl.Heuristics. Addison-Wesley, 1985.
16. R. Zhou and E. Hansen. Breadth-first heuristic search. InInternational Conference on

Automated Planning and Scheduling (ICAPS), pages 92–100, 2004.
17. R. Zhou and E. Hansen. Structured duplicate detection in external-memory graph search. In

National Conference on Artificial Intelligence (AAAI), 2004. To appear.

