
Su�x Tree Automata in State Space Search

Stefan Edelkamp

Institut f�ur Informatik, Albert-Ludwigs-Universit�at,

Am Flughafen 17, D-79110 Freiburg

eMail: edelkamp@informatik.uni-freiburg.de

Abstract. An on{line learning algorithm for pruning state space search

is described in this paper. The algorithm is based on a �nite state ma-

chine which is both created and used in the search. The pruning technique

is necessary when memory resources in searching huge problem spaces

are restricted. A duplicate sequence is a generating path in the search

tree that has a counterpart with smaller weight. The automaton provides

the dictionary operations Insert and Delete for the duplicate sequences

found in the search and Search for pruning the search tree.

The underlying data structure is a multi su�x tree. Given that the al-

phabet � of state transitions is bounded by a constant an optimal worst

case bound of O(jmj) for both insertion and deletion of a duplicate se-

quence m 2 �� is achieved. Using the structure as a �nite state machine

we can incrementally accept a given sequence x in time O(jxj).

1 Introduction and Background

State space problems dealing with a huge problem space are actually described

implicitly and thus the transition alphabet � is bounded. A sequence �m(u) =

�(: : : �(�(u;m1);m2); : : : ;mn) of transitions applied to a given problem state u

can be identi�ed with the string m 2 �n. We wish to prune the search tree at all

revisited states but the storage of the search tree in a hash table is impossible.

The key idea of Taylor and Korf (1993) is to regard the transition sequences

instead of the problem states themselves. In the learning phase a breadth-�rst

search is invoked to �nd m and m0 in �� with �m(u) = �m0(u) and w(m) >

w(m0) (w is the transition cost function) s.t. m is called duplicate sequence and

m0 shortcut sequence. The con
ict between m and m0 is found using a hash

table. In the search phase the set of duplicate strings is applied to prune the

search tree. Consider an unconstrained search space in which every transition

sequence can be applied. If a node with the generating path x = �m, � 2 ��,

is reached no further expansion is needed since a sequence �m0 has been or will

be examined in the search. One duplicate found in the learning phase can thus

eliminate hundreds of strings in the search phase. We call this an o�{line learning

algorithm since the automaton is only created but not used in the learning phase.

Taylor and Korf propose the algorithm of Aho and Coarsic (1975) to recognize

the set of duplicate strings m 2M for which there exists a shortcut m0.

A constrained search space, cancelation of the common pre�x in m and m0,

di�erent initial states, a cycle detection search using a heuristic heading back

to the start node or a successive repetition of some transition sequences raise

the quest of a dictionary D for maintaining the di�erent duplicates. Updating

the failure function in the AC-algorithm is not very e�cient (cf. Meyer (1985))

so we choose another approach. The dictionary in this paper provides on{line

learning, since it can be used to detect duplicates parallel to the search.

2 The Algorithm and Multi Su�x Trees

The algorithm combines the function of the hash table H and the dictionary

automaton D. The input is a state space problem � and the output is the

solution path for � . A node u in the search tree consists of the problem state

description itself, the automaton state qu, the last character au on the generating

path pu, the heuristic estimate h(u) and the weight g(u) of pu. The procedure

ccp cancels the common pre�x of the input strings and �ndSuperString returns

a superstring in D if there is one. Before a state has to be searched in H the

automaton state in D is determined. This might be an accepting state which

prunes the search tree immediately. Otherwise suppose that a collision v0 with a

state v is detected in the hash table and the generating path m of v is inserted

in D together with the shortcut generating path m0 of v0. The duplicate strings

in D are kept substring free with respect to each other since a substring m0 of

a duplicate m which has a shortcut also provides a shortcut for m. Thus before

inserting a new duplicate sequence m in the dictionary all superstrings of m are

deleted. The algorithm uses a priority queue PQ and extends A� in the lines

marked with an asterisk (*).

procedure OnLineLearn (�)

PQ.Insert(s); H.Insert(s); // init data structures, s start node

while PQ 6= ; do // if PQ = ; then no solution is found

u PQ.Deletemin // u not deleted in H for reopening

for all v 2 expand(u) do // for all sucessors v of u

if goal(v) return pv // a goal is found

(*) q:v D.Search(pv) // extract new automaton state, q:v �pv (q0)

(*) Let (m;m0) be associated with qv // extract duplicate/shortcut string

(*) if qv is accepting and �m�1m0(v) = v continue // m�1m0 applicable

v0 H.Search(v) // v0 is counterpart of v

if v0 = nil then // v is not found in H

PQ.Insert(v); H.Insert(v) continue // insert v in data structures

if w(pv) < w(pv0) // g(v) + h(v) < g(v0) + h(v0)

(*) m0 = pv; m = pv0 // v0's generating path is duplicate

PQ.Delete(v0); PQ.Insert(v); // reopen v

(*) else m = pv; m
0 = pv0 // v's generating path is duplicate

(*) ccp(m;m0) // use least common ancestor of v and v0

(*) if D.Search(m) is accepting continue // m has substrings in D

(*) while m00 �ndSuperString(m) do D.Delete(m00)

(*) D.Insert((m;m0)) // new duplicate with shortcut inserted

In this algorithm the automaton only prevents us from searching a state in

the hash table. Although hashing of a state is in general not available in constant

time it is quite fast compared to the calculation of Search(pv) in D. On the one

hand we will examine how the calculation of �pv (q0) (q0 is the initial automaton

state) can be done incrementally by analyzing a procedure that can perform

�(qu; av) in (amortized) constant time. On the other hand notice that under

memory restrictions the information that a state has been revisited may not be

encountered in the hash table. Many memory restricted search algorithms that

have been analyzed in the last decade can be combined with the on-line pruning

method. This is a important topic of further research since searching the tree of

generating paths can lead to an exponential blow up of time.

A Patricia tree is a compact representation of a trie where all nodes with

only one successor are merged to their parents. A su�x tree is a Patricia tree

corresponding to the su�xes of a given string. Although there are �(jmj2) char-

acters for the jmj su�xes of a string m the su�x tree only needs space of size

O(jmj). The substring information stored at each su�x node is simply given by

the indices of �rst and last character. If an internal node v represents a�, a 2 �

and � 2 �� then the su�x link points to a node representing � which has to

exist in the su�x tree. Using these su�x links McCreight (1976) presents and

analyses an optimal linear time algorithm to build a su�x tree ST of a given

string m$. His approach can be extended naturally to more than one string

for example by building the su�x tree of the string m1$1 : : :mn$n. Amir et al.

(1994) proved that the su�x tree ST for m1$1 : : :mn$n is isomorphic to the

compacted trie ST 0 (cf. Fig. 1) for all su�xes of m1$1 up to to all su�xes of

mn$n. Furthermore, the trees are identical except for the labels of the edges

incident to leaves. This fact allows to insert and delete a string into an existing

su�x tree. The description and the correctness proof of the linar-time insertion

and deletion scheme for multi su�x trees can be found in Amir et al. (1994).

In solving the (100 � 100) Maze with a chance of 35 percent for a square

to represent a wall we count the number of pruned nodes in the OnLineSearch

algorithm. In Fig. 2 we have depicted the �rst 20 random instances that need

more than 1000 expansions. The competitors are two prede�ned automata as

well as two automata learned in a breadth-�rst-search up to depth 5 and 25.

In the learning phase of the last two approaches we reconstruct the �nite state

machine for each increase of search depth. The automata sizes measured in the

number of trie nodes are: 10 for the automaton based on predecessor elimination,

14 for the one described in Taylor and Korf (1993), 17 for a learning depth of 5,

43 for a learning depth of 25 and 75 up to 135 for the on-line learning dictionary.

3 Incremental Search using State Transitions

There are two di�erent approaches to �nd a substring of a given string x in the

su�x tree. Amir et al. (1994) determine the longest pattern pre�x h of the string

stored in the su�x tree that matches x starting at position i, i 2 f1; : : : ; jmjg.

In contrast to this algorithm we �x the longest substring h of the strings stored

0 1

10

1 01

0

10
0

01
1

01

$

$

$

$
$

$

$

$$
$

10$

10$

01$

1$01$ $ 10$

0

1$

$

1001$

01$
$

10$

Fig. 1 The multi su�x tree ST 0

for (1100110), (1011001), (010101)

and (11010) to be inserted.

2000

4000

6000

8000

10000

12000

0 5 10 15 20

N
o

pr
un

ed
 n

od
es

trials

on-line learning
predecessor elimination
Grid automaton (Taylor)

learning phase with depth 5
learning phase with depth 25

Fig. 2 Experimental results on

on-line and o�-line pruning the

(100� 100) Maze.

in ST 0 that matches x ending at position i. If the strings m stored in ST 0 are

substring free, i.e., no string is a substring of another one, then the only thing

to do in both cases is to check if h is maximal (jh:mj = jhj). In the general case

we have to test the membership of the pre�xes of h in M which is called the

dictionary pre�x problem (DPP) introduced by Amir et al. (1994). Our algorithm

will be called incremental because it doesn't refer to characters xj with j < i.

This is crucial, since in the overall OnLineLearn algorithm we need an e�cient

way to determine �pv (q0) = �(qu; av). To �nd qv = �(qu; av) we search for a new

node el and an integer o�set at such that av corresponds to the transition stored

at position �rst+at of the string stored at el. Thus we will use the su�x links

until we have achieved this task. The returned value hj of �(xj) is the substring

corresponding to the path from the root to the new location. Together with the

properties of su�x links we can prove the following result inductively.

Theorem 1. Let x 2 �n be read from x1 up to xj�1. The returned value hj
of procedure � invoked with xj is the longest su�x x(i; j) of x(1; j) which is

also substring of one m 2 M stored in the su�x tree ST 0. The amortized time

complexity for � is O(1).

References

1. A. V. Aho and M. J. Corasick. E�cient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6):333{340, 1975.
2. A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic dictionary

matching. J. Comput. Syst. Sci., 49(2):208{222, 1994.
3. E. M. McCreight. A space-economical su�x tree construction algorithm. Journal

of the ACM, 23(2):262{272, 1976.
4. B. Meyer. Incremental string matching. Inf. Process. Lett., 21:219{227, 1985.
5. L. A. Taylor and R. E. Korf. Pruning duplicate nodes in depth-�rst search. In

Proceedings of the 11th National Conference on Arti�cial Intelligence, pages 756{

761. AAAI Press, 1993.

