
Generalizing the Relaxed Planning Heuristic to
Non-Linear Tasks

Stefan Edelkamp

Computer Science Department
Baroper Str. 301

University Dortmund
stefan.edelkamp@cs.uni-dortmund.de

Abstract. The relaxed planning heuristicis a prominent state-to-goal estima-
tor function for domain-independent forward-chaining heuristic search and local
search planning. It enriches the state-space traversal of almost all currently avail-
able suboptimal state-of-the-art planning systems.
While current domain description languages allow general arithmetic expressions
in precondition and effect lists, the heuristic has been devised for propositional,
restricted, and linear tasks only. On the other hand, generalizations of the heuris-
tic to non-linear tasks are of apparent need for modelling complex planning prob-
lems and a true necessity to validate software. Subsequently, this work proposes
a solid extension to the estimate that can deal with non-linear preconditions and
effects. It is derived based on an approximated plan construction with respect to
intervals for variable assignments. For plan extraction, weakest preconditions are
computed according to the assignment rule in Hoare’s calculus.

1 Introduction

More and more successful forward-chaining planners apply variants of therelaxed plan-
ning heuristic, originally proposed by Hoffmann [22] as an extension to the estimated
that was applied in the first heuristic search planning system HSP [2]. As one indicator,
in the list of participants in the bianual series of theinternational planning competi-
tion1, we observe a drastic increase of planners that incorporate the relaxed planning
heuristic. In 2000, the planning systemsFF, STAN, andMIPSat least partially applied a
relaxed plan analysis. In 2002, the plannersMetric-FF, LPG, VHPOP, SimPlan, SAPA,
andMIPS implemented refinements and extensions to the heuristic. In 2004, the plan-
nersSGPlan, Marvin, FAP, Fast Diogonally Downward, Crikey, Roadmapper, YAHSP,
LPG-TD, Macro-FF, andP-MEPrefer to the notion ofrelaxed plans[12].

With Level(s) 2 (and 3) of PDDL2.1 [15] an agreed standard for metric (and tem-
poral planning) has been introduced to allow richer and more flexible domain models.
So-calledfluentsencode numerical quantities to express real-valued attributes. They
call for numerical preconditions and effects. As a matter of fact, PDDL2.1 does not per
se restrict arithmetic expressions in the precondition and effect lists.

One successful extension of the relaxed planning heuristic to planning problem with
numerical state variables has been implemented in the planner Metric-FF [20]. The

1 ipc.icaps-conference.org



translation of the relaxation principleignoring the delete liststo numeric state variables
is involved and has been achieved by introducing negated variables in linear tasks2. As
a feature, the heuristic can deal with repeated operator application in the relaxed plan.
The algorithms presented in this paper shows that the relaxed planning heuristic is in
fact more general. The changes we propose require a shift in the relaxation paradigm
on how to represent and derive the approximation. Our extension contributes to the
fact that, instead of propagating negated variables and introducing upper bounds, it is
seemingly better to evaluate the heuristic based on upperand lower variable bounds.

The paper is structured as follows. First we introduce relaxed planning, and show
where the current proposal for metric domains has its limitations. Next we generalize
the relaxation scheme. The implementations base on a procedure that checks, if an oper-
ator can be applied with respect to a current vector of minimal and maximal numerical
quantities, and on a procedure that adjusts the bounds accordingly. In both cases the
combined vector of bounds is recursively evaluated in the expression for each operator.
Backward extraction will have to determine weakest preconditions for variable assign-
ments. We close with experiments, related work and concluding remarks.

2 Relaxed Planning

In propositional planning, we have a set of atomic propositions AP of which a subset is
true in a given state. Planning operators modify the set of atomic propositions. As a pro-
totype, consider STRIPS [14] operatorsa = (pre(a), add(a), del(a)). The application
of a to a stateS with pre(a) ⊆ S yields the successor state(S \ del(a)) ∪ add(a).

2.1 Propositional Relaxed Planning

Since there are different ways torelax planning problems in order to approximate the
state-to-goal distance, we briefly recall, what is meant withrelaxed in this context.
The relaxed planning problemfor a STRIPS planning instance is constructed as fol-
lows [22]. Therelaxation of an operator a = (pre(a), add(a), del(a)) is the tripel
(pre(a), add(a), ∅), so that the delete list is ignored. Therelaxation of a planning prob-
lemis the one in which all operators are relaxed. It is not difficult to see that any solution
that solves the original plan also solves the relaxed one, and that any goal can be estab-
lished in the original task only if it can be achieved in the relaxed one [22].

Estimateh+ is determined as the length of the shortest plan, that solves the relaxed
problem. The heuristic isconsistentby means that for all planning statesu andv, with v
being the successor ofu, we haveh+(u) ≤ h+(v)+1: if plan with costh+(v) has been
established, it can be extended to a plan foru by adding the operator that leads from
u to v, so thath+(u) ≤ h+(v) + 1. Heuristich+ simplifies the state space graph by
modifying edges to make it acyclic. The state space size, however, does not necessarily
shrink. Unfortunately, the relaxed problem is still computationally hard.

Bylander has shown that propositional STRIPS planning is PSPACE complete [5].
By a simple reduction to 3-SAT, he also proved that minimizing thesequential plan

2 Note that the termnon-linear taskhas been used for other aspect in planning with a different
meaning, e.g.Pednaultrefers to conditional effects as being non-linear.



procedureRelax(C,G)
P0 ← C; t← 0; A← ∅
while (G 6⊆ Pt)

Pt+1 ← Pt ∪
⋃

pre(a)⊆Pt
add(a)

if (Pt+1 = Pt) return ∞
t← t + 1

for i← t downto 1
Gi ← {g ∈ G | level(g) = i}

for i← t downto 1
for g ∈ Gi

if ∃a. g ∈ add(a) and level(a) = i− 1
A← A ∪ {a}
for p ∈ pre(a)

Glevel(p)
= Glevel(p)

∪ {p}
return |A|

Fig. 1.Propositional relaxed planning heuristic.

length for propositional relaxed tasks is in fact NP-complete. The corresponding plan
existance problem, however, turns out to be computationally tractable, and an optimal
parallel plan that solves the relaxed problem can be found in polynomial time. This
has lead to anapproximationof h+, which counts the number of actions of a greedily
extracted parallel plan in the unrolled relaxed planning graph.

Figure 1 provides an implementation in pseudo code. The planning goalG is pro-
vided as a set of atoms, whileC denotes the current state. The setA that is constructed
reflects the greedily extracted plan. The set of goal atoms in Layeri of the relaxed plan-
ning graph is denoted byGi. Note that in difference to planning graphs inGraphplan,
in the propositional relaxed planning graphs, atoms and operators are unique. In the
sequel of this paper, with the termrelaxed planning heuristicwe will refer to theap-
proximation ofh+. This approximation is efficient to compute, so that it is applied in
forward-chaining planners to evaluate each expanded planning state.

This advantage, however, comes at a high price. Optimal parallel and optimal se-
quential plans may have different sets of operators, so that the approximation ofh+ is
no longerconsistentnoradmissible, and thus fails to serve as a lower bound for the opti-
mal sequential path length. Admissablity, however, is required, when standard heuristic
search algorithms like A* [25] are applied to find optimal plans.

Therefore, the relaxed planning heuristic is usually employed in local search or
hill climbing planners. Alternative designs ofadmissible estimatesare themax-atom
heuristic [2], defined as the maximal depth of a goal in the planning graph, themax-
pair heuristic [17], which takes interactions of pairs of atoms into account, and the
pattern database heuristics[7], that introducesdon’t caresymbols in the state vector to
relax the planning problem.

The h+ heuristic and its approximation have been studied yielding an empirical
validated [18] and theoretical founded [19] topology of the many benchmark domains.



2.2 Metric Planning

In a metric planning problemconditionsare constraints of the formexp= exp′ ⊗ exp′′,
where⊗ is a comparison symbol, andexp′ andexp′′ are arithmetic expressions over the
set of variables and constants.Assignmentsin the effect lists are expressionsv⊕expwith
a variable headv, an arithmetic termexp, and an assignment operator⊕. In grounded
representation of a metric planning problem for somek ∈ IN we have the state space

S ⊆ 2AP × IRk,

where2AP is short for the power set ofAP . Consequently a stateS ∈ S is a pair
(Sp, Sn) with propositional partSp ⊆ AP and numerical partSn ∈ IRk. For the
ease of exposition we assume that all actions are innormal form, i.e. all propositional
expressions satisfy STRIPS notation. All numerical condition and assignments refer to
arithmetic expressions. Comparison operators⊗ are selected from{≥,≤,>,<,=} with
common interpretation. Assignments have operators⊕ in {←, ↑, ↓,↗,↘}, meaning
variableassignment, increase, decrease, scale-up, or scale-down, respectively. This is
not a limitation to general PDDL, since ADL constructs with object quantification,
negated or disjunctive preconditions and conditional effects can be compiled away[16].

2.3 Numerical Relaxed Plans and Current Limitations

In brief terms, thenumerical extension to the relaxed planning heuristic[20] generates
and analyzes a layered graph, maintaining sets of propositional factsand arithmetic
conditions in each layer. The planning graphgeneration phaseapplies relaxed oper-
ators until all goal conditions are established. In the backwardextraction phase, goal
propositions and conditions are selected and a greedy procedure selects either a propo-
sition or a condition at a time. It searches for the corresponding operator of the forward
phase, and marks its (numerical or propositional) preconditions in thesmallest possible
layer as still to be processed. The matching condition is deleted and the process repeats
with the updated sets of propositions and conditions. The returned heuristic estimate is
the number of operators in the relaxed plan. Multiple operator application is permitted
by a special update option to the condition that has been met.

The heuristic is restricted tolinear tasks, where expressions are of the forma0v0 +
. . . + akvk for variablesvi and coefficientsai. In case a coefficientai is negated, a sur-
plus variable representing−vi is included into the state vector to approximate mono-
tonicity in each variable. Many interesting planning tasks, however, include non-linear
expressions. As a illustrative example consider the following domain, where a selection
of numbers and arithmetic symbols is given, with the task to include the symbols into
the sequence to compute a pre-specified target number. The domain has been invented
by van der Krogt [28]. He observed that no current PDDL planning system can deal
with this simple domain. An operator for introducing multiplication looks as follows.

(:action mul
:parameters (?x ?y ?z - number)
:precondition (and (active ?x) (active ?y) (non-active ?z))
:effect (and (active ?z)

(assign (value ?z) (* (value ?x) (value ?y)))))



Given an instance of three numbersa = 1, b = 3, andc = 2, the plan to generate
valuee = 8 is (add a b d) and(mul c d e) . Breadth-first search exploration
produces a plan while expanding 14 planning states. Included in A*, our variant of the
numerical relaxed planning heuristic generates the above plan in the optimal number
of 2 state expansions. Other examples are referred to in the experiments.

Beside extended planning benchmarks, some of which are possibly better dealt with
constraint satisfaction techniques, our main motivation to deal with non-linear expres-
sions in domain descriptions aresoftware verification domains, where general expres-
sions in form of variable assignments are by far more frequent.

2.4 Application Area for Non-Linear Planning

Model checking[6] has evolved into one of the most successful software verification
techniques. Examples range from mainstream applications such asprotocol validation
andembedded systems verificationto exotic areas such asbusiness workflow analysis,
scheduler synthesisandverification. Automated software checking validates (mostly
concurrent) code through an exploration of the space of system’s states, consisting of
propositional and numerical state variables [1]. Software model checking technology is
also effective in automated test case generation.

There are two primary approaches to model checking. First,symbolic model check-
ing [23] uses symbolic representations for the state sets based on binary decision di-
agrams [4]. Property validation in symbolic model checking amounts to symbolic fix-
point computation.Explicit state model checkinguses a single-state representation for
traversing the system’s global state space graph. An explicit state model checker eval-
uates the validity of temporal properties over the model by interpreting its global state
transition graph as an extended Kripke structure, and property validation amounts to a
partial or complete exploration of the state space.

The success of model checking lies in its potential forpush-buttonautomation and
in its error reporting capabilities. A model checker performs an automated complete
exploration of the state space of a software model, commonly using a depth-first search
strategy. When a property violating state is encountered the search stack contains an
error trail that leads from an initial system state into the encountered state. This error
trail greatly helps software engineers in interpreting validation results. The sheer size of
the reachable state space of realistic software models imposes tremendous challenges
on the algorithmics of model checking technology. Complete exploration of the state
space is often impossible, and approximations are needed.

Recent advances have lead to a growth of interest in the use of the technology in
AI. Heuristic and local search techniques can be directly integrated into existing model
checkers. Different to heuristic search, which improves goal finding in action planning,
directed model checkingaccelerates error detection [13]. With themodel checking as
action planningapproach, software fragments are translated into a planning problem
with planning operators for each source code line, having individual preconditions and
effects [8]. However, model checking problems in software verification practice are
more expressive, since complex source code instructions have to be dealt with. There-
fore, it is apparent that a planning heuristic is applicable to existing model checking
technology, only if it can handle non-linear expressions.



ProcedureTest(exp, min, max)
if (op(exp) =≥ [>])

return
Eval+(left(exp), min, max) ≥ [>]
Eval−(right(exp), min, max)

if (op(exp) =≤ [<])
return

Eval−(left(exp), min, max) ≤ [<]
Eval+(right(exp), min, max)

if (op(exp) = =)
return

Eval+(left(exp), min, max) ≥ Eval−(right(exp), min, max) ∧
Eval−(left(exp), min, max) ≤ Eval+(right(exp), min, max)

Fig. 2.Test if an expression is valid within the bounds.

3 Generalized Numerical Relaxed Plans

In the proposed alternative to the numerical planning heuristic, the planning graph is
built and analyzed according to two main subroutines:TestandUpdate. The former
procedure takes a vector of intervals for minimal and maximal variable bounds and
tests if a given constraint is satisfied by at least one possible vector assignment. The
latter procedure adjusts the bounds according to assignment effects in operators.

Both subroutines refer to functionEval(exp) that calculates the maximal and min-
imal value that an expressionexp with variablesvi in [mini,maxi] can take. Func-
tion Eval(exp) is divided into two parts:Eval+(exp) computes the maximal value, and
Eval+(exp) computes the maximal value of expressionexp. Note that computing good
bounds for an expression is not simple and refers to analyzing non-trivial functions. In
our caseEval is itself an approximation that traverses the arithmetic tree in bottom-up
fashion and uses constraint propergation rules to determine the bounds for the individ-
ual arithmetic operations. For example, for multiplying of two variablesvi andvj we
computeEval−(vi · vj) asmin{mini ·minj , maxi ·minj , mini ·maxj , maxi ·maxj},
andEval+(vi, vj) asmax{mini ·minj , maxi ·minj , mini ·maxj , maxi ·maxj}. Un-
fortunately, this results inEval−(vi · vi) = −100 for vi ∈ [−10, 10], where a refined
study reveals thatEval−(vi · vi) = 0. Specialized techniques and refined bounds con-
sistency algorithms can be applied to improve the inference of the bounds [24].

A testof a conditionexpwithin the vector of variable bounds relaxes the require-
ment for accurate assignment information. Ifanyassignment vector to the variables in
the given ranges satisfies the conditions then the procedure returnstrue. In the pseudo-
code in Figure 2 we perform a case study according to the comparison operator at the
root of the expressionexpand evaluate both subtrees for the maximal and the minimal
possible value. It is not difficult to see, that ifEval+[−](exp) calculates a maximal [min-
imal] value that an expressionexpwith variablesvi in [mini,maxi] can take, thenTest
returnstrue if there exist an assignmenta ∈ [min,max] to v that fulfills exp.



ProcedureUpdate(exp, min′, max′, min, max)
vmin ← Eval−(min′, max′)
vmax ← Eval+(min′, max′)
if (op(exp) = ↑)

if (vmin < 0) minhead(exp)↑ vmin

if (vmax > 0) maxhead(exp)↑ vmax

if (op(exp) = ↓)
if (vmin > 0) minhead(exp)↓ vmin

if (vmax < 0) maxhead(exp)↓ vmax

if (op(exp) =←)
if (vmin < minhead(exp)) minhead(exp)← vmin

if (vmax > maxhead(exp)) maxhead(exp)← vmax

Fig. 3.Update according to a given expression.

The observation is true for all options that we have devised. In each case we select
the weakest condition for the set of variables that is available. E.g. for condition≥ we
determine if the maximum variable assignment on the left hand side is larger than the
minimum variable assignment on the right hand side.

Figure 3 depicts the implementation for theUpdateprocedure according the three
main assignment operators←, ↑, and↓. First, the minimal and maximal evaluation
valuesvmin and vmax are determined with respect to the old bounds. Then the new
bounds are updated if the new evaluation exceeds the existing bounds.

If Eval+[−](exp) calculates a maximal [minimal] value that an expressionexpwith
variablesvi in [mini,maxi] can take, thenUpdateadjusts the bounds so that each pos-
sible outcome of an assignment with variable values in[min′,max′] is in [min,max].

The operation modifies[min′,max′] to [min,max] given that[min,max] is ini-
tialized with [min′,max′]. Since evaluation determines the lower and upper bound
of variables in the expression tree, the three update rules we have devised, re-adjust
the bounds conservatively. If, for example, we have an increase in variableh of a
value of at leastvmin < 0 and of at mostvmax > 0, then the new intervalI =
[mini +vmin,maxi +vmax] ensures that the variable assignment tovi will yield a value
that is contained inI.

3.1 Relaxed Plan Generation

In Figure 4 we show the plan generation module to construct the relaxed planning graph.
The presentation was chosen to be aligned with the one in [20]. For each layert in the
relaxed planning graph, a set of propositions and a vector(mint,maxt) of bounds for
each variable is maintained, whereC is the current state,G is the planning goal descrip-
tion, p(·) denotes the propositions true in a given state, andv(·) denotes the variable
assignments with respect to a given state. To select the set of applicable actionsAt,
we apply procedureTestto the vectorsmint andmaxt with respect to the precondition



procedureRelax(C,G)
P0 ← p(C); ∀i : mini

0 ← maxi
0 ← vi(C)

t← 0
while (p(G) 6⊆ Pt or ∃exp∈ v(G) : ¬Test(exp, mint, maxt))

At = {a ∈ A | pre(a) ⊆ Pt,
∀exp∈ v(pre(a)) : Test(exp, mint, maxt))}

Pt+1 ← Pt ∪
⋃

pre(a)⊆Pt
add(a)

[mint+1, maxt+1]← [mint, maxt]
for a ∈ At, exp∈ v(eff(a))

Update(exp, mint, maxt, mint+1, maxt+1)
if (relaxed problem unsolvable) return ∞
t← t + 1

Fig. 4.Generating the problem graph for thegeneralization of the relaxed planning heuristic.

expressions for each action. The process is continued until all propositional and all nu-
merical goals are satisfied, or the relaxed problem proves to be unsolvable. We have not
yet derived the latter criterion. Unfortunately, the simple fixpoint conditionPt = Pt+1

– as in the propositional case – together with[mint,maxt] = [mint+1,maxt+1] may
not be sufficient, since the growth of some numerical variables can be unbounded.
The option applied in [20] pre-computes bounds forrelevant variables, by tracing
the cone of influence for the variables and propositions in the goal description. The
bounds are referred to asmax-need. In our case, we would have have to extend the
computation tomin-needi, so that the computation is terminated ifPt = Pt+1 and
[mint+1,maxt+1] 6⊆ [min-need, max-need].

The calculations can be performed recursively, initializing[min-needi, max-needi]
with [−∞,∞] and further restricting the interval to the numerical conditions in the
goal description and action preconditions. We recursively propagate the bounds through
the numerical effect lists by determining the weakest preconditions that have to be
satisfied if the given post-conditions are met. This will further restrict the intervals
[min-needi, max-needi]. The process is continued until a fix-point is reached.Irrelevant
variablesare those in which[min-needi, max-needi] = [−∞,∞] and can be omitted
from the fixpoint requirement.

If algorithmRelaxterminates with value∞, then there is no solution to the original
planning problem. The two aspects necessary to consider are:i) every plan for the orig-
inal problem also solves the relaxed one andii) if Pt = Pt+1 and[mint+1,maxt+1] 6⊆
[min-need, max-need] once in the relaxed exploration process it will remain the same
for all upcoming iterations. Parti) is true, since satisfying any numerical condition or
any proposition will be preserved by the relaxation process. If conditionexpor propo-
sition p will be reachable in the original problem, so it will be in the relaxed one.
For partii) we observe that for all levels in the plan graph we havePt ⊆ Pt+1 and
[mint,maxt] ⊆ [mint+1,maxt+1].



The complexity of the algorithm is proportional the size of the plan graph times the
maximal length of the condition and effect lists and the maximal expression tree size
to evaluate the vector in. Since operators can apply more that once, even in the case of
bounded lists this does not necessarily imply polynomial complexity for deciding the
relaxed task. In fact, the depth of the graph can be exponential in the binary encoding of
the variables values in start and goal description. However, one may introduce so-called
“∞ handling” rules as shown in [20] to match the result that deciding propositional
relaxed PLANSAT is polynomial [5].

3.2 Relaxed Plan Extraction

For the extraction process as shown in Table 5, we first determine the minimal layers
of the goal propositions and target arithmetic conditions inG to initialize thepending
queuesof requests. More precisely, in each layer in the planning graph we maintain
two queues, one for the set of facts that have still to be processed and one for the set
of constraints that have to be satisfied and propagated. In the procedureExtract the two
queues are referred to asp(Gi) andv(Gi), with i being the smallest layer in which the
propositions constraints are satisfied.

Next we greedily traverse the constructed graph backwards, layer by layer. To deter-
mine the set of matching operatorsA, for each layeri we process setAi and reconstruct
the vectormini+1 andmaxi+1 of lower and upper bounds to the variables, using the
Updateprocedure. This will ease to determine which of the operators do match. There
are two cases. Either the propositionaladd effect of an operator matches our proposi-
tional pending queue or a numerical constraint matches one in the arithmetic condition
queue. In both cases we delete the matching condition from the queue and propagate
the preconditions of the selected actiona as yet to be established. The relaxed planA is
extended by actiona. The minimal layer for each precondition, as denoted by the vari-
able level, can be derived using additional information selected in the forward phase.
Alternatively, the layer can be re-computed by applying procedureTestto the vectors
minj andmaxj as computed for the levelj ∈ {1, . . . , i− 1}.

The remaining pseudo-code fragment – starting with the line ”for exp′ ∈ v(eff(a)))”
considers how to modify and propagate the numerical expression for which we have
found a match, to allow repeated operator application. For instance, say that we have a
lower bound on a variable of 10 units and an operator that increases the variable content
by 2 units, then it is appropriate for the first application to denote that there are still 8
units to be produced. For the sake of simpler exposition, for the following we assume
that we have updates only according to the uniform assignment operator ”←”. This is
not a restriction, if we allow variables, that appear in the heads of an assignment to
re-appear on the right hand side.

After selecting the numerical assignment that fires, we need to determine the associ-
atedweakest preconditionsto be included in the pending queue in its individual smallest
available layer. This is another precondition that has to be satisfied for the relaxed plan.
In this case the (minimal) layer for the new goalhas to bebe computed using procedure
Testand the vectors(minj ,maxj) for increasing level indexj ∈ {1, . . . , i}. Note that
the currently active Layeri is included in the range forj.



ProcedureExtract(G)
A← ∅
for i ∈ {1, . . . , t}

p(Gi)← {g ∈ p(G) | level(g) = i}
for exp∈ v(G)

if Test(exp, mini maxi)
v(Gi)← v(Gi) ∪ {exp}; v(G)← v(G) \ {exp}

for i ∈ {t, . . . , 1}
[mini+1, maxi+1]← [mini, maxi]
for a ∈ Ai

for exp∈ v(eff(a))
Update(exp, mini, maxi, mini+1, maxi+1)

for e ∈ add(a)
if e ∈ p(Gi)

A← A ∪ {a}; p(Gi) = p(Gi) \ add(a)
for p ∈ p(pre(a)):

p(Glevel(p)
) ← p(Glevel(p)

) ∪ {p}
for exp∈ v(pre(a))

v(Glevel(exp)) ← v(Glevel(exp)) ∪ {exp}
for exp∈ v(Gi)

if Test(exp, mini+1, maxi+1)
A← A ∪ {a}; v(Gi) = v(Gi) \ {exp}
p(Gi) = p(Gi) \ add(a)
for p ∈ p(pre(a))

p(Glevel(p)
) ← p(Glevel(p)

) ∪ {p}
for exp∈ v(pre(a))

v(Glevel(exp)) ← p(Glevel(exp)) ∪ {exp}
for exp′ ∈ v(eff(a))

h← head(exp′)
exp← exp[h \ exp′]

for j ∈ {1, . . . , i}
if (Test(exp, minj , maxj)) l← j

v(Gl)← v(Gl) ∪ {exp}
return |A|

Fig. 5.Extracting the relaxed plan for the proposednumerical relaxed planning heuristic.



As a consequence, we need an option to derive theweakest preconditionfor a given
expressionwith respect to anassignment operator. To solve this problem we go back to
the early stages of verifyingpartial correctnessof computer programs, namely to the
Hoare calculus. In the calculus we have rules that are of the form

Premises
Conclusion

.

Available rules areskip (the trivial operation)assignment, composition, selection, iter-
ation, andconsequence. For example, ifS1 andS2 were programs andp, q, andr were
conditions, then thecomposition rulesays

{p} S1 {q}; {q} S2 {r}
{p}S1;S2{r}

.

Theselection ruleis written as

{p ∧B} S1 {q}; {q ∧ ¬B} S2 {r}
{p} if (B) then S1 elseS2 {q}

,

while theiteration rule is denoted as

{p ∧B} S {p}
{p}while (B) do S {p ∧ ¬B}

.

A proof of partial correctness starts with simple instructions and certified conditions on
variable values. An analysis covers incrementally growing programm fragments, while
maintaining respective pre- and postcondition lists. A program istotally correctif it is
partially correct and terminating. Here we are only interested in theassignment ruleto
derive the weakest precondition of an assignment. It is denoted as

{p[x \ t]} x← t; {p},

wherex is a variable,p the postcondition of the assignment, and[x\t] is the substitution
of t in x. As an example we take a program that merely consists of the assignmentu←
3x + 17, and a postconditionp of the formu < 5x. To find the weakest precondition
for S with respect top we havet = 3x + 17, so thatp[u \ t] is equal to3x + 17 < 5x,
or equivalentlyx > 8.5.

The application in the programExtract is as follows. Suppose that we have an as-
signment of the formh ← exp in one of the effects of the selected operatora and a
postcondition of the formexp′. Both expressionsexp andexp′ are given in form of
arithmetic trees. The weakest precondition is now found substituting each occurrence
of h in exp′ by exp. It will be simplified and inserted in the appropriate pending queue.

4 Experiments

To illustrate practical feasibility of our approach, we have implemented the heuristic es-
timate in our heuristic search forward chaining planner MIPS [9]. The planner has been



id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A* 2 7 5 7 3 2 3 11 13 2 3 2 5 5 3 2 3 9 2 2

BFS 5 33 10 26 7 2 59 22 65 6 4 5 28 7 38 2 5 40 2 2
Table 1.Number of expanded nodes inArithmeticDomain.

extended to PDDL2.2 [11] to deal with timed initial literals and derived predicates [10].
For IPC-4 it has been used to check solvability especially temporal benchmark de-
signs [21]. In our implementation we terminate relaxed planning graph construction, if
the depth of the relaxed planning graph exceeds a pre-specified threshold. Since the re-
laxed planning graph reflects a simplified parallel execution of actions, goals for bench-
mark problems often appear in shallow depth.

Unfortunately, grounded and simplified benchmark problems in all planning com-
petitions are at most linear. This lack of expressiveness is due to a compromise with
respect to existing planning technology. Subsequently, we selected three different op-
tions for experimental evaluation: 1) problems that are non-linear by definition, 2) ex-
isting but modified benchmark domains, and 3) challenging linear domains. Although
all problems agree with PDDL syntax, no other planning system can solve either of the
domains. In the first two cases this is due to the lack in expressivity, while in the second
case this is a due to a lack in performance3.

First, we generated random instances to theArithmeticdomain with target value 24.
As depicted in Table 1 the exploration efforts for A* andbreadth-first search(BFS) are
very small. A*’s exploration shows a considerable improvement to the uninformed one.
Both algorithms found optimal solutions. In contrast,enforced hill climbingoften fails
to establish a plan.

It is not difficult, to introduce non-linearities to existing benchmarks. InZenoTravel
we squared some preconditions, artificially making the domain non-linear. Since deter-
mining that variables are strictly positive can be as hard as the planning problem itself,
actual planners will not be able to simplify the above formula. As shown to the left in
Table 2, the planner solved all modified instances. The table is headed by problemid,
the number of expandednodes, the CPU searchtimeon a 1.8 GHz Windows PC with
256 MB memory, the obtained solutionvalue, and thelengthof the established plan.

We also conducted experiments in two domains provided by Amol Mali: one version
of Jugs, where some pouring actions and goal constraints are non-linear, andKarel, the
Robotdomain, where the distance to move is non-linearly dependent to the current
positition, and some goal constraints are also non-linear. We could solve selectedKarel
domains, e.g.Karel-2 required 98 expansions, 0.15s CPU time to produce a 5-step plan,
while in Jugsthe heuristic turns out to be too weak: complete jug fillings span the entire
range for thecontentvariables in the first layer of the relaxed planning graph.

Table 2 highlights that the approach is efficient in linear domains. On a slightly
larger machine (2.66 GHz Linux PC with 512 MB memory) we could generate the

3 In the competition 2004,SGPlanturned out to be the only other system that solved entire
Settlers, while P-MEPwas announced to be a system that has non-linear expressivity.



id nodes time value length
1 1 0.06 13,564 1
2 10 0.12 7,567 8
3 26 0.13 10,455 8
4 15 0.15 23,422 11
5 37 0.17 12,009 14
6 53 0.20 28,642 14
7 40 0.21 11,977 16
8 53 0.29 41,364 20
9 32 0.36 19,921 23

10 74 0.43 559,60 28
11 31 0.36 34,362 17
12 73 0.47 22,650 26
13 129 0.55 45,358 33
14 59 3.63 1,815 39
15 67 7.77 76,602 40
16 287 15.60 117,050 55
17 709 35.48 153,021 78
18 1,474 67.35 85,896 72
19 2,522 128.75 131,528 103
20 2,429 158.17 283,688 113

id nodes time value length
1 551 4.48 142 58
2 39 1.40 30 35
3 2,984 17.17 880 101
4 569 5.36 51 42
5 99 5.25 44 68
6 999 14.57 44 67
7 17 4.29 62 16
8 0 2.13 - -
9 8,515 295.59 2,741 270

10 404 59.15 3,979 159
11 695 42.18 2,694 168
12 251 58.92 1,878 133
13 35,377 1,358 3,897 218
14 761 84.39 1,815 304
15 399 164.60 3,688 261
16 893 194.62 4,827 275
17 13,232 2,401 9,738 285
18 7,803 846.75 8,784 338
19 171,465 725.44 6,428 415
20 23,643 3,728.05 0 286

Table 2.Results inModified Zeno Travel(left) and inSettlers(right).

first report in solving the entire problem suite ofSettlers. Our planner also detects that
Problem 8 is unsolvable; the goal requires a railway fromlocation6 to location3, in
contrast to connectivity status of the two locations.

5 Conclusion

In this work we extended the mixed propositional and numerical relaxed planning
heuristic [20], which itself is an extension to the propositional relaxed planning heuristic
and the relaxed planning heuristic for restricted tasks. As the existing approach to trans-
late ignoring the delete liststo numeric state variables restricts to at most linear tasks,
the question was how to tackle non-linear expressions that are available in PDDL2.1
and do appear frequently in practice. In difference to the introduction of upper bounds
and negated variables together with a transformation process beforehand, the proposed
alternative applies upper and lower bounds. The algorithmic considerations of the gen-
eralization are tricky but base on simple subroutines. It enables to deal with complex
problems and shows a way of understanding the heuristic in more detail.

The relaxed planning heuristic has been recently applied toconformant planning
problems[3] and has also been integrated in a two stage scheduling approach fortem-
poral planning[9]. In case of conformant planning, the planing graph construction is
associated with animplication graphto derive information on atoms that are known



to be true or false in a given level, while the temporal planning apporach parallelizes
sequential plans with respect to action duration and action dependency. Byschedul-
ing partial, relaxed and final plans, non-linear expressions are universal for Level 1-3
PDDL2.1 planning problems. Moreover, with relaxed plans for non-linear tasks we are
not limited to PDDL2.1 planning. In concurrent work, we have extended our planning
approach to PDDL2.2 [11] includingderived predicatesandtimed initial literals. Our
implementation solved relaxed non-linear problems in various domains that planners
like Metric-FF cannot deal with.

In the context of the 2004 international planning competition, the forward state-
space planner(P-)MEP [26], for (parallel) more expressive planner, is announced to
handle PDDL2.1 expressivity and to apply a related technique of bounding intervals to
generate a numerical relaxed planning graph and to extract a relaxed plan. Similar to
MIPS it also supports ADL functionality and for Level 3 planning as it applies temporal
reasoning to find a schedule after a sequential plan has been found. When comparing the
two approaches we first realize that planning graph construction is similar in both cases.
S-MEP [27] constructs the planning graph allowing each operator to apply at most
once. In P-MEP – the participating planner in IPC-4 – this problem has been fixed. The
refinement strategy merely reduces to relevant variables and is very different to the plan
extraction phase we propose. The approach does not support weakest preconditioning.
In some sense (P-)MEP truncates the planning graph of the forward phase, instead of
greedily extracting plans as done in Metric-FF and MIPS. As IPC-4 has shown, P-MEP
has efficiency deficies. For example, it cannot solve any of the instances inSettlers.

Although we proved that a generalization of the relaxed planning estimate is avail-
able for full PDDL, we strongly believe that there is much more efforts needed to make
the tool appropriate e.g. for software model checking problems. Therefore, next we will
address CSP techniques for evaluation and a fine-grained or mixed representation of the
set of possible values that is available for a numerical variable. One option is to keep
precise numeric information available until a certain threshold on the number values is
exceeded. In this case we might swap back to finite constraint variable domains. We are
certain that extending the approach is compatible with theTest-and-Updatescheme for
the construction of the relaxed planning graph and the extraction of the relaxed plan.

As the core motivation of the work is apply the relaxed planning heuristic to model
checking, in future we may try implementing the estimate in an existing model checker.

AcknowledgmentsThe work is supported byDeutsche Forschungsgemeinschaft(DFG)
in the projectsHeuristic Search(Ed 74/3) andDirected Model Checking(Ed 74/2).

References

1. B. Bérard, A. F. M. Bidoit, F. Laroussine, A. Petit, L. Petrucci, P. Schoenebelen, and
P. McKenzie.Systems and Software Verification. Springer, 2001.

2. B. Bonet and H. Geffner. Planning as heuristic search.Artificial Intelligence, 129(1–2):5–33,
2001.

3. R. Brafman and J. Hoffmann. Conformant planning via heuristic forward search: A new
approach. InInternational Conference on Automated Planning and Scheduling (ICAPS),
2004. 335-364.



4. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.ACM
Computing Surveys, 24(3):142–170, 1992.

5. T. Bylander. The computational complexity of propositional STRIPS planning.Artificial
Intelligence, pages 165–204, 1994.

6. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 1999.
7. S. Edelkamp. Planning with pattern databases. InEuropean Conference on Planning (ECP),

2001. 13-24.
8. S. Edelkamp. Promela planning. InWorkshop on Model Checking Software (SPIN), pages

197–212, 2003.
9. S. Edelkamp. Taming numbers and durations in the model checking integrated planning

system.Journal of Artificial Research (JAIR), 20:195–238, 2003.
10. S. Edelkamp. Extended critical paths in temporal planning. InProceedings ICAPS-Workshop

on Integrating Planning Into Scheduling, pages 38–45, 2004.
11. S. Edelkamp and J. Hoffmann. PDDL2.2: The language for the classical part of the 4th

international planning competition. Technical report, University of Freiburg, 2003.
12. S. Edelkamp, J. Hoffmann, M. Littman, and H. Younes.Proceedings Fourth International

Planning Competition, International Conference on Automated Planning and Scheduling.
Jet Propulsion Laboratory, 2004.

13. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking in
the validation of communication protocols.International Journal on Software Tools for
Technology (STTT), 2004.

14. R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving.Artificial Intelligence, 2:189–208, 1971.

15. M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains.Journal of Artificial Research (JAIR), 20:61–124, 2003.

16. B. C. Gazen and C. Knoblock. Combining the expessiveness of UCPOP with the efficiency
of graphplan. InEuropean Conference on Planning (ECP), pages 221–233, 1997.

17. P. Haslum and H. Geffner. Admissible heuristics for optimal planning. InArtificial Intelli-
gence Planning and Scheduling (AIPS), pages 140–149, 2000.

18. J. Hoffmann. Local search topology in planning benchmarks: An empirical analysis. In
International Joint Conferences on Artificial Intelligence (IJCAI), pages 453–458, 2001.

19. J. Hoffmann. Local search topology in planning benchmarks: A theoretical analysis. In
Artificial Intelligence Planning and Scheduling (AIPS), pages 379–387, 2002.

20. J. Hoffmann. The Metric FF planning system: Translating “Ignoring the delete list” to nu-
merical state variables.Journal of Artificial Intelligence Research, 20:291–341, 2003.

21. J. Hoffmann, S. Edelkamp, R. Englert, F. Liporace, and S. Thiebaux. Towards realistic
benchmarks for planning: the domains used in the classical part of IPC-4. InProceedings
Fourth International Planning Competition, pages 8–15, 2004.

22. J. Hoffmann and B. Nebel. Fast plan generation through heuristic search.Journal of Artificial
Intelligence Research, 14:253–302, 2001.

23. K. L. McMillan. Symbolic model checking. In M. K. Inan and R. P. Kurshan, editors,
Verification of Digital and Hybrid Systems, pages 117–137. Springer, 1998.

24. K. Meriott and P. Stuckey.Programming with Constraints. MIT Press, 1998.
25. J. Pearl.Heuristics. Addison-Wesley, 1985.
26. J. Sanches, M. Tang, and A. D. Mali. P-MEP: Parallel more expressive planner. InProceed-

ings Fourth International Planning Competition, pages 53–55, 2004.
27. J. Sanchez and A. D. Mali. S-MEP: A planner for numeric goals. InProceedings IEEE

International Conference Tools with Artificial Intelligence (ICTAI), pages 274–283, 2003.
28. R. van der Krogt, M. de Weerdt, and C. Witteveen. Exploiting opportunities using planning

graphs. InUK Planning and Scheduling SIG (PlanSig), pages 125–136, 2003.


