
Prediction of Regular Search Tree Growth by
Spectral Analysis

Stefan Edelkamp

Institut für Informatik
Georges-Köhler-Allee, Gebäude 51

79110 Freiburg
eMail: edelkamp@informatik.uni-freiburg.de

Abstract. The time complexity analysis of the IDA* algorithm has
shown that predicting the growth of the search tree essentially relies
on only two criteria: The number of nodes in the brute-force search tree
for a given depth and the equilibrium distribution of the heuristic es-
timate. Since the latter can be approximated by random sampling, we
accurately predict the number of nodes in the brute-force search tree for
large depth in closed form by analyzing the spectrum of the problem
graph or one of its factorization.
We further derive that the asymptotic brute-force branching factor is in
fact the spectral radius of the problem graph and exemplify our consid-
erations in the domain of the (n2 − 1)-Puzzle.

1 Introduction

Heuristic search is essential to AI, since it allows very large problem spaces to be
traversed with a considerably small number of node expansions. Nevertheless,
storing this number of nodes in memory, as required in the A* algorithm [5],
often exceeds the resources available. This is bypassed in an iterative deepening
version of A*, IDA* for short, that searches the tree expansion of the original
state graph instead of the graph itself. IDA* [10] applies bounded depth-first
traversals with an increasing threshold on A*’s node evaluation function. The
tree expansion may contain several duplicate nodes such that low memory con-
sumption is counterbalanced with a considerably high overhead in time.

Fortunately, due to simple search tree pruning rules and expressive heuristic
estimates to direct the search process, duplicates in regular search spaces are
rare such that IDA* has been very successfully applied to solve solitaire games
like the (n2 − 1) Puzzle [9, 12, 15] and Rubik’s Cube [11].

Korf, Reid and Edelkamp [14] have analyzed the IDA* algorithm to predict
the search performance of IDA* in the number of node expansions for a specific
problem. The main result is that assuming consistency1 of the integral heuristic
1 Consistent heuristic estimates satisfy h(v)− h(u) + 1 ≥ 0 for each edge (u, v) in the

underlying problem graph. They yield monotone node evaluations f(u) = g(u) +
h(u) on generating paths with length g(u). Admissible heuristics are lower bound
estimates that underestimate the goal distance for each state. Consistent estimates
are admissible.

estimate in the limit of large c, the expected total number of node expansions
with cost threshold c in one iteration of IDA* is equal to

c∑
d=0

n(d)P (c− d),

where n(d) is the number of nodes in the brute-force search tree with depth
d and P is the equilibrium distribution defined as the probability distribution of
heuristic values in the limit of large depth. More precisely, P (h) is the probability
that a randomly and uniformly chosen node of a given depth has a heuristic value
less than or equal to h. In practice the equilibrium distribution for admissible
heuristic functions will be approximated by random sampling [13]; a represen-
tative sample of the problem space is drawn and classified according to the
integral heuristic evaluation function. The value n(d) for large depths d without
necessarily exploring the search tree, can be approximated with the asymptotic
brute-force branching factor; the number of nodes at one depth divided by the
number of nodes in the next shallower depth, in the limit as the depth goes
to infinity. The asymptotic heuristic branching factor is defined analogously on
search tree levels for two occurring values on the node evaluation function f . In
some domains we observe anomalies in the limiting behavior of the asymptotic
branching factors, e.g., in the (n2 − 1)-Puzzle and odd values of n it alternates
between two different values [2].

The observation that a consistent heuristic estimate h affects the relative
depth to a goal instead of the branching itself is supported by the fact that
IDA*’s exploration is equivalent to undirected iterative deepening exploration
in a re-weighted problem graph with costs 1 + h(v) − h(u) for all edges (u, v).
The new node evaluation f ′(uj) of node uj on path p = (s = u1, . . . , ut = t)
equals

∑j−1
i=1 (1 + h(ui+1)− h(ui)) and telescopes to the old merit f(uj) minus

h(s). Therefore, the heuristic is best understood as a bonus to the search depth.
Moreover, since we have only altered edge weights, it is not surprising that for
bounded heuristic estimates and large depth the asymptotic heuristic branching
factor equals the asymptotic brute-force branching factor.

Our main result in this paper is that in undirected problem graphs the value
of the number of nodes in depth d of the brute-force search can be computed
effectively by analyzing the spectrum of the adjacency matrix for the problem
graph. The analysis requires some results of linear algebra and an algorithm
of applied mathematics. Since the problem graph is considered to be large for
regular search spaces we show how to factorize the problem graph through an
equivalence relation of same branching behavior. We take the (n2 − 1)-Puzzle
as the running example, discuss the generality of the results from various points
of view: other problem domains, general, especially undirected graph structures,
and predecessor pruning. Finally, we give concluding remarks and shed light on
future research options.

2 Linear Algebra Basics

Linear Mappings and Bases A mapping f : V → W , with V , W being vector
spaces over the field K (e.g. the set of real or the set of complex numbers) is
linear, if f(λv + µw) = λf(v) + µf(w) for all v, w ∈ V and all λ, µ ∈ K. A basis
of a vector space V is a linear independent set of vectors that spans V . If the
basis is finite, its cardinality defines the dimension dim(V) of the vector space
V , otherwise the dimension is said to be infinite.

Matrices and Basis-Transformations Linear mappings of vector spaces of finite
dimension can be represented as matrices, since there is an isomorphism that
maps the set of all (m × n) matrices to the set of all linear mappings from
V to W according to their respectively fixed bases, where dim(V) = n and
dim(W) = m. Usually, V equals W and in this case the linear mapping f is
called endomorphism. A basis-transformation from basis A to B in the vector
space V can be represented by a transformation matrix CAB which is the inverse
of CBA. Very often, A is the canonical basis. Computing the inverse C−1 of a
matrix C can be achieved by elementary row transformations, that convert the
(n× 2n) matrix [C | I] into [I | C−1], with I being the identity matrix.

Similarity and Normal Forms Two matrices A and B are similar, if there is
a matrix C with B = CAC−1. This is equivalent to the fact that there is an
endomorphism f of V and two bases A and B with matrix A representing f ac-
cording to A and B representing f according to B. Similarity is an equivalence
relation and one main problem in linear algebra is to derive a concise representa-
tive in the equivalence class of similar matrices, the normal form. A very simple
form is the diagonal shape with non-zero values λ1, . . . , λn only on the main
diagonal. In this case, a matrix B is called diagonizable and can be written as
B = C · diag(λ1, . . . , λn) ·C−1. Unfortunately, not all matrices are diagonizable,
especially when the linear mapping is defined on the set of real numbers. Even
if the vector space defining field is the set of complex numbers, only tridiagoniz-
ability can be granted, in which matrix A may have non-zero components above
the main diagonal. Further simplifications lead to the so-called Jordan normal
form.

Eigenvalues and Eigenspaces An endomorphism f of a vector space V over the
field K contains an eigenvalue λ ∈ K, if there is a non-trivial vector v ∈ V ,
with f(v) = λv. Any such non-trivial vector v ∈ V with f(v) = λv is called
eigenvector. If there is a basis B of eigenvectors, then the matrix representa-
tion according to B has a diagonal shape. In this case f is also called diag-
onizable. It can be shown that the eigenvalues are roots of the characteristic
equation Pf (λ) = det(A − λI) = 0, where the determinant det(A) is defined as∑

σ∈Sn

∏
i<j(σ(j)−σ(i))/(j−i))·a1σ(1) ·. . .·anσ(n) with Sn being the set of all n-

permutations. If the polynomial Pf (λ) factorizes, i.e. Pf (λ) = const·∏k
i=1(λ−λi),

which is the case for matrices of complex numbers, the corresponding eigenspaces
Ef (λi) have to be computed. If then the number of occurring linear terms (λ−λi)

in Pf (λ), the algebraic multiplicity of λi, equals the dimension of Ef (λi), the
geometric multiplicity of λi, then A is indeed diagonizable.

3 Partitioning the Search Space

The (n2−1)-Puzzle is a sliding tile toy problem. It consists of (n2−1) numbered
tiles that can be slid into a single empty position, called the blank. The goal is to
rearrange the tiles such that a certain goal position is reached. Figure 1 depicts
possible end configurations of well-known instances to the (n2 − 1)-Puzzle: For
n = 3 we get the Eight-Puzzle, for n = 4 the Fifteen-Puzzle and for n =
5, the Twenty-Four-Puzzle is met. The state spaces for these problems grow

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

3

7 5

4

1 2

8

6

8

4

5 7

321

6

9 10 11 12

13 1514

Fig. 1. The Eight-, Fifteen- and Twenty-Four-Puzzles.

exponentially. The exact number of reachable states (independent of the initial
one) is (n2)!/2 which resolves to approximately 105 states for the Eight-Puzzle,
1013 states in the Fifteen-Puzzle and 1025 states in the Twenty-Four-Puzzle.

We partition the search space S in classes S1, . . . , Sk, collecting states into
groups with same branching behavior. In other words we devise an equivalence
relation that partitions the state space into equivalence classes: two states are
equivalent if their long term branching behavior coincides. All states in one
equivalence class Si, i ∈ {1, . . . , k}, necessarily have the same node branching
factor, defined as the number of children a node has in the brute-force search
tree.

For the example of the (n2 − 1)-Puzzle a partition is given by the following
relation: two states are equivalent if the blank is at the same absolute position.
Obviously the subtrees of such nodes are isomorphic, since the branching be-
havior of equivalent states has to be the same. A further reduction of the search
tree is established by partitioning the search space with respect to symmetry.
For the (n2 − 1) Puzzle we establish three branching types: corner or c-nodes
with node branching factor 2, side or s-nodes with node branching factor 3, and
middle or m-nodes with node branching factor 4. However, does the long time
node branching behavior depend on these node types only? In the Eight- and
Fifteen-Puzzles this is the case, since for symmetry reasons all c, s and m nodes
generate the same subtree structure. For the Twenty-Four-Puzzle, however, the

2

1
21

21

7

2

1

21

5

2

2

1
2

1

21
1

2

6

1

2

1 12

41

3

8

13

24

Fig. 2. Equivalence Graph for the Eight-, Fifteen- and Twenty-Four-Puzzles.

search tree of two side or two middle states may differ. For this case we need six
classes with a blank at position 1,2,3,7,8, and 13 according to the tile labeling
in Figure 2. In the general case the number of different node branching classes
in the (n2 − 1) Puzzle is

dn/2e∑
i=0

i =
(dn/2e

2

)
= dn/2e(dn/2e − 1)/2.

This still compares well to a partition according to the n2 equivalent classes
in the first factorization (savings of a factor of about eight) and of course to the
(n2)!/2 states in the overall search space (exponential savings).

4 Equivalence Graph Structure

Utilizing this partition technique we define the weighted equivalence graph G =
(V ,E, w) as follows. The set of nodes V equals the set of equivalence classes
and an edge e from class Si ∈ V to Sj ∈ V with weight w(e) is drawn, if every
state in Si leads to w states in class Sj . Obviously, the sum of all outgoing edges
equals the node branching factor. Let AG be the adjacency matrix with respect
to the equivalence graph G. Since the explorations in G and G span the same
search-tree structure the search tree growth will be the same.

A generator matrix P for the population of nodes according to the given
equivalence relation is defined by P = AT

G
. More precisely, Pj,i = l if a node of

type i in a given level leads to l nodes of type j in the next level. We immediately
infer that N (d) = PN (d−1), with N (d) being the vector of nodes in depth d of
the search tree. If || · ||1 denotes the vector norm ||x||1 = |x1| + . . . + |xk| then
the number of nodes n(d) in depth d is equal to ||N (d)||1.

The asymptotic branching factor b (if it exists) is defined as the limit of
n(d)/n(d−1) for increasing d and equals the weighted product of the node fre-
quencies b =

∑k
i=1 bifi, where fi is the fraction of nodes of class i with respect

to the total number of nodes. As we will see, we can compute the branching
factor analytically without actually determining node frequency values.

The first observation is that in case of convergence the asymptotic branch-
ing factor is not only met in the the overall search tree expansion but in ev-
ery equivalence class. Since all frequencies of nodes converge we have that b =
limd→∞N

(d)
i /N

(d−1)
i , with N

(d)
i being the number of nodes of class i in depth d,

i ∈ {1, . . . , k}. In other words, if the ratio of the cardinality of one equivalence
class and the overall search space size settles and the search space size grows
with factor b, then the equivalence class size itself grows with factor b.

We represent the fractions fi as a distribution vector F . We first assume that
this vector converges in the limit of large depth. The considerations for an ana-
lytical solution to the branching factor problem result in the equations bF = FP ,
where b is the asymptotic branching factor. In addition, we have the equation
that the total of all node frequencies is one. The underlying mathematical is-
sue is an eigenvalue problem. Transforming bF = PF leads to 0 = (P − bI)F
for the identity matrix I. The solutions for b are the roots of the characteristic
equation det(P − bI) = 0 where det is the determinant of the matrix. Since
det(P − bI) = det(PT − bI) the transposition of the equivalence graph matrix
AG preserves the value of b. In case of the Eight-Puzzle det(P − bI) equals

det

0− b 2 0
2 0− b 1
0 4 0− b

 = 0.

This equation is equivalent to b(4− b2) + 4b = 0, yielding the following three
solutions −√8 = −2.828427124, 0,

√
8 = 2.828427124. Experimental results

show that the branching factor alternates every two depth values between 3 and
8/3 = 2.666666666. Since

√
8 is the geometric mean of 3 and 8/3 the value

√
8 is

the proper choice for the asymptotic branching factor b of the brute-force search
tree.

For the case of the Fifteen-Puzzle we have to calculate

det

0− b 2 0
1 1− b 1
0 2 2− b

 = 0,

which simplifies to (1− b)(b− 2)b + 4b− 4 = 0. The solution to this equation
are 1, 1 +

√
5 = 3.236067978, and 1 − √

5 = −1.236067978. The value 1 +
√

5
matches experimental data for the asymptotic branching factor.

For the Twenty-Four-Puzzle we have to solve

det

0− b 2 0 0 0 0

1 0− b 1 1 0 0
0 2 0− b 0 1 0
0 2 0 0− b 2 0
0 0 1 2 0− b 1
0 0 0 0 4 0− b

 = 0.

The six eigenvalues are 0, 0,
√

3 = 1.732050808, −√3 = −1.732050808,√
12 = 3.464101616, and −√12 = −3.464101616. Experiments show that for

large depth the branching factor oscillates and that the geometric mean is
3.464101616.

We conclude that the asymptotic branching factor in the example problems
is the largest eigenvalue of the adjacency matrix for the equivalence graph and
that we observe anomalies if the largest eigenvalue has a negative counterpart
of the same absolute value. In the following we will analyze the structure of the
eigenvalue problem to show why this is the case.

5 Exact Prediction of Search Tree Size

The equation N (d) = PN (d−1) can be unrolled to N (d) = P dN (0). We briefly
sketch how to compute P d for large d. We have seen that P is diagonizable, if
there exists a invertible matrix C and a diagonal matrix Q with P = CQC−1.
This simplifies the calculation of P d, since we have P d = CQdC−1 (the remaining
terms C−1C cancel). By the diagonal shape of Q the value of Qd is obtained
by taking the matrix elements qi,i to the power of d. These elements are the
eigenvalues of P . This connection is not surprising, since in case of convergence
of the vector of node frequencies F we have seen that the branching factor itself
is a solution to the eigenvalue problem PF = bF . We conclude that in case
of diagonizability we can exactly predict the number of nodes of depth d by
determining the set of eigenvalues of P .

In the example of the Eight-Puzzle the eigenvectors for the eigenvalues −√8,
0, and

√
8 are (2,−√8, 1)T , (−2, 0, 1)T , and (2,

√
8, 1)T , respectively. Therefore,

the basis-transformation matrix C is given by

C =

 2 −2 2
−√8 0

√
8

1 1 1

with the following inverse

C−1 = 1/16

 2 −√8 4
−2 0 8
2

√
8 4

 .

With Q = diag(−√8, 0,
√

8) we have C−1C = I and C−1PC = Q. Therefore,
calculating N (d) = P dN (0) for d ≥ 1 corresponds to N (d) = CQdC−1N (0), where
Qd = diag((−√8)d, 0, (

√
8)d). Hence, N (d) equals to

1/16

 2 −2 2
−√8 0

√
8

1 1 1

 (−√8)d 0 0
0 0 0
0 0 (

√
8)d

 2 −√8 4
−2 0 8
2

√
8 4

 1
0
0

which resolves to

N (d) = 1/16
(
4
√

8
d
((−1)d + 1), 2

√
8

d+1
((−1)d+1 + 1), 2

√
8

d
((−1)d + 1)

)T

.

The exact formula for N (d) and small values of d validates the observed search
tree growth: N (1) = (0, 2, 0)T , N (2) = (4, 0, 2)T , N (3) = (0, 16, 0)T , N (4) =
(32, 0, 16)T , etc.

The closed form for N (d) explicitly states that the asymptotic branching
factor for the Eight Puzzle is

√
8. Moreover, the odd-even effect for branching

in that puzzle is established by the factor (−1)d + 1, which cancels for an odd
value of d. Nevertheless, solving the characteristic equation and establishing the
basis of eigenvectors by hand is tedious work. Fortunately, the application of
symbolic mathematical tools such as Maple and Mathematica help to perform
the calculations in larger systems.

For the Fifteen-Puzzle the basis-transformation matrix C and its inverse C−1

are

C =

 1 −1 1
1−√5 −1 1 +

√
5

3/2− 1/2
√

5 1 3/2 + 1/2
√

5

and

C−1 =

 1/50
(
5 + 3

√
5
)√

5 −1/50
(
5 +

√
5
)√

5 1/5
−2/5 −1/5 2/5

1/50
(−5 + 3

√
5
)√

5 −1/50
(−5 +

√
5
)√

5 1/5

 .

The vector of node counts is

N (d) =

1/50
(
1−√5

)d (
5 + 3

√
5
)√

5 + 2/5+
1/50

(
1 +

√
5
)d (−5 + 3

√
5
)√

5

1/50
(
1−√5

) (
1−√5

)d (
5 + 3

√
5
)√

5 + 2/5+
1/50

(
1 +

√
5
) (

1 +
√

5
)d (−5 + 3

√
5
)√

5

1/50
(
3/2− 1/2

√
5
) (

1−√5
)d (

5 + 3
√

5
)√

5− 2/5+
1/50

(
3/2 + 1/2

√
5
) (

1 +
√

5
)d (−5 + 3

√
5
)√

5

such that the exact total number of nodes in depth d is

1/50
(
7/2− 3/2

√
5
) (

1−
√

5
)d (

5 + 3
√

5
)√

5 + 2/5+

1/50
(
7/2 + 3/2

√
5
) (

1 +
√

5
)d (

−5 + 3
√

5
)√

5

The number of corner nodes (1,0,2,2,10,26,90,. . .), the number of side nodes
(0,2,2,10,26,90,282,. . .) and the number of middle nodes (0,0,6,22,70,230,. . .)
grow as expected. The largest eigenvalue 1 +

√
5 dominates the growth of the

search tree in the limit for large d.
In the Twenty-Four-Puzzle the value N (d) equals

1/36
(−2

√
3
)d

+ 2/9
(−√3

)d
+ 2/9

(√
3
)d

+ 1/36
(
2
√

3
)d

−1/18
√

3
(−2

√
3
)d − 2/9

√
3

(−√3
)d

+ 2/9
√

3
(√

3
)d

+ 1/18
√

3
(
2
√

3
)d

1/18
(−2

√
3
)d

+ 1/9
(−√3

)d
+ 1/9

(√
3
)d

+ 1/18
(
2
√

3
)d

1/12
(−2

√
3
)d

+ 1/12
(
2
√

3
)d

−1/18
√

3
(−2

√
3
)d

+ 1/9
√

3
(−√3

)d − 1/9
√

3
(√

3
)d

+ 1/18
√

3
(
2
√

3
)d

1/36
(−2

√
3
)d − 1/9

(−√3
)d − 1/9

(√
3
)d

+ 1/36
(
2
√

3
)d

for the following total of nodes in depth d

n(d) = 1/36
(
7− 4

√
3
) (

−2
√

3
)d

+ 1/9
(
2−

√
3
) (

−
√

3
)d

+

1/9
(
2 +

√
3
) (√

3
)d

+ 1/36
(
7 + 4

√
3
)(

2
√

3
)d

.

The value for small d validates that the total number of nodes increases as
expected (2,6,18,60,198,684,. . .). Once again the vector of the largest absolute
value determines the search tree growth.

If the size of the system is large, the exact value of N (d) has to be approxi-
mated. One option to bypass the intense calculations for determinants of large
matrices and roots of high-degree polynomials is to compute the asymptotic
branching factor b. The number of nodes in the brute-force search tree is then
approximated by n(d) ≈ bd.

6 Approximate Prediction of Search Tree Size

The matrix denotation for calculating the population of nodes according to the
given equivalence relation implies N (d) = PN (d−1), with N (d) being the vector of
equivalent class sizes. The asymptotic branching factor b is given by the limit of
||N (d)||1/||N (d−1)||1 which equals N

(d)
i /N

(d−1)
i in any component i ∈ {1, . . . , k}.

Evaluating N
(d)
i /N

(d−1)
i for increasing depth d is exactly what is considered in

the algorithm of van Mises for approximating the largest eigenvalue (in absolute
terms) of P . The algorithm is also referred to as the power iteration method.

As a precondition, the algorithm requires that P be diagonizable. This implies
that we have n different eigenvalues λ1, . . . , λn and each eigenvalue λi with multi-
plicity of αi has αi linear independent eigenvectors. Without loss of generality, we
assume that the eigenvalues are given in decreasing order |λ1| ≥ |λ2| ≥ . . . ≥ |λk|.
The algorithm further requires that the start vector N (0) have a representation
in the basis of eigenvectors in which no coefficient according to λ1 is trivial.

We distinguish the following two cases: |λ1| > |λ2| ≥ . . . ≥ |λk| and |λ1| =
|λ2| > . . . ≥ |λk|. In the first case we obtain that (independent of the choice of

j ∈ {1, . . . , k}) the value of limd→∞N
(d)
j /N

(d−1)
j equals |λ1|. Similarly, in the

second case limd→∞N
(d)
j /N

(d−2)
j is in fact λ2

1. The cases |λ1| = . . . = |λl| >
. . . ≥ |λk| for l > 2 are dealt with analogously. The outcome of the algorithm
and therefore the limit in the number of nodes in layers with difference l is |λ1|l,
so that once more the geometric mean turns out to be |λ1|.

We indicate the proof of the first case only. Diagonizability implies a basis of
eigenvectors b1 . . . , bk. Due to |λ1| > |λ2| ≥ . . . ≥ |λn| the quotient of |λi/λ1|d
converges to zero for large values of d. If the initial vector N (0) with respect to
the eigenbasis is given as x1b1 + x2b2 + . . . + xkbk applying P d yields x1P

db1 +
x2P

db2 + . . . + xkP dbk by linearity of P , which further reduces to x1b1λ
d
1 +

λd
2x2b2+ . . .+λd

nxkbk by the definition of eigenvalues and eigenvectors. The term
x1b1λ

d
1 will dominate the sum for increasing values of d. Factorizing λd

1 in the
numerator and λd−1

1 in denominator of the quotient of N
(d)
j /N

(d−1)
j results in an

equation of the form x1b1λ1+R where limd→∞R is bounded by a constant, since
except of the leading term x1b1λ1 both numerator and denominator in R only
involve expressions of the form O(|λi/λ1|d). Therefore, to find the asymptotic
branching factor analytically, it suffices to determine the set of eigenvalues of P
and to take the largest one. This corresponds to the results of the asymptotic
branching factors in the (n2 − 1)-Puzzles.

In the Eight-Puzzle the ratio N
(d)
1 /N

(d−2)
1 is equal to 8 for d > 3 and, there-

fore, approximates λ2
1. The value n(d)/

√
8

d
alternates between 3/4 and 1/

√
2.

Hence,
√

8
d

approximates the search tree growth.
For the Fifteen-Puzzle for increasing depth d the value N

(d)
1 /N

(d−1)
1 equals 1,

3, 13/5, 45/13, 47/15, 461/141, 1485/461, 4813/1485, 15565/4813, 50381/15565,
163021/50381, 527565/163021 = 3.236178161, etc., a sequence approximating
1+
√

5 = 3.236067978. Moreover, the ratio of n(d) and (1+
√

5)d quickly converges
to 1/50

(
7/2 + 3/2

√
5
) (−5 + 3

√
5
)√

5 = .5236067984.
In the Twenty-Four-Puzzle the ratio N

(d)
1 /N

(d−2)
1 converges to 12 starting

with the sequence 6, 9, 11, 129/11, 513/43, 683/57, 8193/683, 32769/2731,
43691/3641 = 11.99972535, etc. The quotient n(d)/

√
12

d
for larger depth al-

ternates between .3888888889 and .3849001795 and is therefore bounded by a
small constant.

If n is even – as in the Fifteen-Puzzle – the largest eigenvalue is unique and
if n is odd – as in the Eight- and in the Twenty-Four-Puzzle – we find two
eigenvalues with the same absolute value verifying that every two depths the
node sizes will asymptotically increase by the square of these values.

7 Generalizing the Approach

Iterating the algorithm with ||N (d)||1/||N (d−1)||1 instead of N
(d)
j /N

(d−1)
j shows

that the convergence conditions according to G and G are equivalent. This is
important, since other graph properties may alter, e.g. symmetry of AG is not
inherited by AG. Therefore, we concentrate on diagonizability results of AG,

which are easier to obtain. The Theorem of Schur states that symmetric matrices
are indeed diagonizable. Moreover, the eigenvalues are real and the matrix to
perform the basis transformation has the eigenvectors in its columns.

For the (n2−1)-Puzzle we are done. Since G is undirected, AG is indeed sym-
metric. In the spectrum of AG power iteration either obtains a unique branching
factor b = |λ1| or a branching factor of λ2

1 for every two iterations. Therefore,
the branching factor is the spectral radius ρ = |λ1|.

7.1 Other Problem Spaces

Since the search tree is often exponentially larger than the problem graph we have
reduced the prediction of the search tree growth to the spectral analysis of the
explicit adjacency representation of the graph. As long as this graph is available,
accurate and approximate predictions for the brute-force and subsequently for
the heuristic search tree growth can be computed.

However, the calculations for large implicitly given graphs are involved such
that reduction of the analysis to a smaller structure is desirable. For the (n2−1)-
Puzzle we proposed a compression to a few branching classes. The application
of equivalence class reduction to exactly predict the search tree growth relies on
the regular structure of the problem space. This technique is available as long
as the same branching behavior for different states is given.

For Rubik’s Cube without predecessor elimination N (d) equals 18d since all
nodes in the search tree span a complete 18-ary subtree. With predecessor elimi-
nation the node branching factor reduces to 15, since for each of the three twists
single clockwise, double clockwise, and counterclockwise there is a remainder of
five sides front, back, right, left, up, and down that are available. If we further
restrict rotation of opposite sides to exactly one order we get the transition ma-
trix ((6 6), (9 6)), where the first class is the set of primary nodes with branching
factor 15, and the second class is the class of secondary nodes with branching
factor 12. The eigenvalues are 6 + 3

√
6 and 6 − 3

√
6 and the value n(d) equals

1/2
(
6 + 3

√
6
)d

+ 1/2
(
6− 3

√
6
)d

. For small values of d experimental data as
given in [11] matches this analytical study. The observed asymptotic branching
factor is 6 + 3

√
6 = 13.34846923 as expected.

Extending the work to problem domains like the PSPACE-complete Sokoban
problem [1] is challenging. It is difficult to derive an accurate prediction, since
the branching behavior of the tree includes almost all state facets. Therefore, a
more complicated search model has to be devised to derive exact or approximate
search tree prediction in this domain. As Andreas Junghanns has coined in his
Ph.D. dissertation [8], the impact of the search tree node prediction formula∑c

d=0 n(d)P (c − d) has still to be shown. In the other PSPACE-complete slid-
ing block game Atomix [7, 6] simplification based on branching equivalences do
apply and yield savings that are exponential in the number of atoms, but this
void labeling scheme still results in an intractable size of the equivalence graph
structure. Only very small games can be analyzed by this method.

7.2 Pruning

When incorporating pruning to the exploration process, symmetry of the under-
lying graph structure may be affected. Once again we consider the Eight-Puzzle.
The adjacency matrix Apred

G
for predecessor elimination now consists of four

classes: cs, sc, mc and cm, where the class ij indicates that the predecessor of a
j-node in the search tree is an i node.

Apred

G
=

0 1 0 0

1 0 0 1

2 0 0 0

0 0 3 0

In this case we cannot infer diagonizability according to the set of real numbers.
Fortunately, we know that the branching factor is a positive real value since
the iteration process is real. Therefore, we may perform all calculation to pre-
dict the search tree growth with complex numbers, for which the characteristic
polynomial factorizes. The branching factor and the search tree growth can be
calculated analytically and the iteration process eventually converges.

In the example, the set of (complex) eigenvalues is i
√

2, −i
√

2,
√

3, and −√3.
Therefore, the asymptotic branching factor is

√
3. The vector N (d) is equal to

1/5
(
i
√

2
)d

+ 1/5
(−i

√
2
)d

+ 3/10
(√

3
)d

+ 3/10
(−√3

)d

−1/10 i
√

2
(
i
√

2
)d

+ 1/10 i
√

2
(−i

√
2
)d

+ 1/10
√

3
(√

3
)d − 1/10

√
3

(−√3
)d

3/20 i
√

2
(
i
√

2
)d − 3/20 i

√
2

(−i
√

2
)d

+ 1/10
√

3
(√

3
)d − 1/10

√
3

(−√3
)d

−1/10
(
i
√

2
)d − 1/10

(−i
√

2
)d

+ 1/10
(√

3
)d

+ 1/10
(−√3

)d

.

Finally, the total number of nodes in depth d is

n(d) = 1/5
(
1/2 + 1/4 i

√
2
)(

i
√

2
)d

+ 1/5
(
1/2− 1/4 i

√
2
) (

−i
√

2
)d

+

1/10
(
4 + 2

√
3
)(√

3
)d

+ 1/10
(
4− 2

√
3
)(

−
√

3
)d

.

For small values of d the value n(d) equals 1, 2, 4, 8, 10, 20, 34, 68, 94, 188 etc.

7.3 Non-Diagonizability

Since we assumed diagonizability, the eigenspaces L(λi) according to the values
λi have full rank αi. In general this is not true. Not all matrices are diagonali-
zable. In this case the best thing one can do is to transform the matrix into
Jordan Form which has blocks on the diagonal, each block being r × r, with
the eigenvalue on the diagonal, 1’s above the diagonal and 0’s everywhere else.

More precisely, a matrix A has Jordan Form J for an invertible matrix T , if
J = T−1AT consists of so-called Jordan-blocks J1, . . . , Jm. One Jordan-block
has an eigenvalue on the main diagonal and 1s on the diagonal above. Therefore,
T gives a basis of eigenvectors and so-called main vectors. Each Jordan-block
Jl of dimension jl corresponds to one eigenvector t1 and jl − 1 main vectors
t2, . . . , tjl

with (A − λiI)t0 = 0 and (A − λiI)tm = tm−1, m = 2, . . . , jl. Using
the Jordan basis one can devise P dN (0) similar to the case above.

7.4 Start Vector

The second subtlety arises even if the matrix is diagonalizable. We are interested
in determining the behavior of P dN (0) for large d, where P is an n×n matrix and
N (0) is an n×1 vector. Suppose that P is diagonalizable, which means that there
is a basis of eigenvectors. Hence, N (0) can be written as a sum of eigenvectors:
N (0) = v1 + v2 + v3 + . . . + vn where vi is an eigenvector with eigenvalue λi. It
follows that P dN (0) = λd

1v1+λd
2v2+λd

3v3+...+λd
nvn So the term with the largest

corresponding eigenvalue will dominate for large d, provided that the eigenvector
is non-zero. It may happen that the initial vector v has component of zero in the
eigenspace of the largest eigenvalue. In general, the algorithm finds the largest
eigenvalue in which the corresponding component is non-zero.

Fortunately, this observation is more theoretical in nature. In the iteration
process this case is very rarely fulfilled. Rounding errors will soon or later lead to
non-zero components. Moreover, to determine the asymptotic branching factor
we have several initial states to choose from such that at least one has to yield
non-zero coefficients.

8 Previous Work

This paper extends the work of Edelkamp and Korf [2] that already derived
the asymptotic branching factors of the sliding-tile puzzles and Rubik’s Cube.
However, their approach lack sufficient convergence conditions. We established
the criterion of diagonizability of the adjacency graph matrix of the problem
graph that emerges of the algorithm of van Mises and showed that this criterion is
fulfilled in undirected graphs by the Theorem of Schur. The (n2−1)-Puzzles and
Rubik’s Cube are chosen to illustrate the techniques, since they are inherently
difficult to solve and often considered in case studies.

The set of recurrence relations in [2] also showed that the numbers of nodes
at various depths can be calculated in time linear to the product of the number of
node classes and the depth of search tree by numerically iterating the recurrence
relations. In contrast to this finding, the current paper resolves the problem of
how to compute a closed form for the number of nodes. Last but not least, the
given mathematical formalization of equivalence classification, diagonalization
and power iteration builds a bridge for more powerful results in applying known
mathematical theorems. At least in theory, generality to different problem spaces
is given, since this approach applies to any problem graph with a diagonizable
matrix and probably to more than that.

9 Conclusion and Discussion

In the paper we have improved the prediction of the number of node expansions
in IDA* by an exact derivation of the number of nodes in the brute-force search
tree. We have resolved the question of convergence to explain anomalies in of
the asymptotic branching factor. The asymptotic branching factor is the spectral
radius of the successor generation matrix and can be computed with the power
iteration method. The approach extends to further regular problem spaces and
can cope with simple pruning rules. The main result is that diagonizability is
granted in undirected problem graphs, such that exact and approximate calcu-
lation of the brute-force search-tree are mathematically sound. The technique
for establishing a closed form is not standard, and it is hard to suggest other
methodologies to actually solve the set of recurrence relations.

Moreover, given the adjacency matrix P of an undirected graph by analyzing
N

(d)
i /N

(d−1)
i and N

(d)
i /N

(d−k)
i , k > 1, of the equation N (d) = N (d−1)P gives the

(mean) asymptotic branching factor. This is in fact the algorithm of van Mises to
determine the largest eigenvalue of P for whose applicability we have to test if P
is diagonizable. The paper closes the small gap in literature to accurately predict
search tree growth in closed form and to compute the branching factor both
analytically and numerically without relying on strong experimental assumption
on the convergence.

Since for practical problems in which IDA* applies it is very unlikely that
the entire graph structure can be kept in main memory, the approach helps
only if some reduction of the branching behavior with respect to equivalence
classes can be obtained. Therefore, the analysis is limited to the cases where the
the successor generator matrix of the original or the adjacency graph structure
can be build. If not, abstractions to the graph structure have to be found that
preserve or approximate information of the branching behavior.

All analyses given in this or precursory papers on search tree prediction do not
include the application of transposition tables, in which visited states together
with their best encountered state merits (path length plus heuristic estimate)
are kept. This in fact is also a challenge for analysts. One option is the prediction
of the search tree growth of IDA* with respect to bit-state hashing, which turns
out to be an improvement to transposition tables in single-agent games [7] and
protocol verification [3]. For this model of partial search first results on coverage
prediction have been found [4].

Exact calculation of the brute-force search tree raises the question if the
other source of uncertainty, namely the heuristic equilibrium distribution, can
also be eliminated. As said, the equilibrium distribution of the estimate can be
obtained by random sampling. However, in some cases of regular search trees
exact values can be produced. If the estimate is given with respect to a pattern
database storing pairs of the form (estimated value, state pattern) by analyzing
the pattern database, a histogram of heuristic values can computed: we deter-
mine the number of states that satisfy a pattern with a total to be computed
for each integral heuristic value in a predefined range. For consistent heuristics

this range will be bounded by the heuristic estimate of the start state and the
optimal solution length.

At the very far end of this research line there are precise or approximate
predictions for the growth of A*’s and IDA*’s search efforts according to various
kinds of heuristics, node caching strategies and problem domains. This implies
an alternative way of defining heuristics themselves: ranking successor nodes
according to the expected growth of the resulting search tree.

Acknowledgments I thank Richard Korf and Michael Reid for intense and helpful
discussions on the topic of this paper. The work is partially supported by DFG in
the project Heuristic Search and Its Application to Protocol Validation. Thanks
to T. Lauer for proof reading.

References

1. J. C. Culberson. Sokoban is PSPACE-complete. In Fun for Algorithms (FUN),
pages 65–76. Carleton Scientific, 1998.

2. S. Edelkamp and R. E. Korf. The branching factor of regular search spaces. In
National Conference on Artificial Intelligence (AAAI), 1998. 299–304.

3. S. Edelkamp, A. L. Lafuente, and S. Leue. Protocol verification with heuristic
search. In AAAI-Spring Symposium on Model-based Validation of Intelligence,
pages 75–83, 2001.

4. S. Edelkamp and U. Meyer. Theory and practice of time-space trade-offs in memory
limited search. This volume.

5. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination
of minimum path cost. IEEE Transaction on SSC, 4:100–107, 1968.

6. M. Holzer and S. Schwoon. Assembling molecules in Atomix is hard. Technical
Report 0101, Institut für Informatik, Technische Universität München, 2001.

7. F. Hüffner, S. Edelkamp, H. Fernau, and R. Niedermeier. Finding optimal solutions
to Atomix. This volume.

8. A. Junghanns. Pushing the Limits: New Developments in Single-Agent Search.
PhD thesis, University of Alberta, 1999.

9. R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

10. R. E. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.
11. R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases.

In National Conference on Artificial Intelligence (AAAI), pages 700–705, 1997.
12. R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelli-

gence, 2001. To appear.
13. R. E. Korf and M. Reid. Complexity analysis of admissible heuristic search. In

National Conference on Artificial Intelligence (AAAI), 1998. 305–310.
14. R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of Iterative-Deepening-A*.

Artificial Intelligence, 2001. To appear.
15. R. E. Korf and L. A. Taylor. Finding optimal solutions to the twenty-four puzzle.

In National Conference on Artificial Intelligence (AAAI), pages 1202–1207, 1996.

