
On Constructing a Base Map for Collaborative Map Generation and its
Application in Urban Mobility Planning

Maik Drodzynski, Stefan Edelkamp, Andreas Gaubatz, Shahid Jabbar, Miguel Liebe

Computer Science Department,
Otto-Hahn-Str. 14

University of Dortmund,
D-44221 Dortmund

Germany

Abstract— Urban mobility planning depends largely on the
presence of good navigation data in the form of vectorized
maps. Nonetheless, vector maps are not always available for
many areas – especially for many of the third world countries.
On the other hand, good paper maps collected by the city
authorities are widely available.

A solution is the collaborative map generation process that
allows people to share the collected GPS traces. Nevertheless,
the integration of these GPS traces is itself a challenge and
requires a goodbase map.

This paper presents a method to extract calibrated road
topology from raster maps to provide such a base map for
collaborative map generation process. Our approach takes a
bitmap and uses different graphics filters to infer the road
geometry. We propose an aggregation algorithm that extracts
the actual vectorized road fragments and construct a graph of
road network.

To evaluate the proposed algorithms, we have implemented
them and tested on real raster maps collected from the city
authorities of Dortmund, Germany. We also report the inte-
gration of our approach into SUMO, a state-of-the-art traffic
simulation tool for urban mobility.

I. I NTRODUCTION

With the increase in traffic worldwide, especially in large
urban areas, mobility planning and traffic simulation is
a necessity for sustainable transportation. Both tasks rely
largely on the availability of good vector maps.

The invention of collaborative map generation –a product
of Web 2.0– provides a solution to the problem of urban
mobility for those areas where their is an abundance of
good vector maps. Projects like GPS-Tracks, Wikimapia, and
Routeburner, let people add GPS traces collected by car,
bicycle, or even during hiking to a common web portal. The
advantage is a huge set of realistic GPS traces representative
of different travel situations and scenarios.

Even though it solves the problem of having a good
collection of GPS traces, it poses two new challenges to the
community.

1) Combining these GPS traces to represent a single
real road is still an open challenge. In [2], we
have presented an algorithm that exploits AI clustering
techniques to integrate different GPS traces and infer
the actual road geometry. A recent extension proposed

in [14] enhances the approach through learning based
on genetic algorithms.

2) For an appropriate aggregation of GPS traces, a good
base mapis necessary. The absence of such a base
map can distort the whole integration process and can
result in a drift in the road topology.

It is the second problem that we address in this paper and
propose an applicable and automated solution to the problem.

In practice,base mapsare mostly borrowed from Google-
Maps or Google-Earth. Nevertheless, in many areas of in-
terest, detailed vector maps are scarcely available and in
some regions of the world, vector maps are not available at
all. On the other hand, low-cost raster maps are frequently
accessible, e.g., in form of topographic or surveying images
of high-quality. The images are often calibrated with respect
to some form of global coordinate system to be translated to
GPS.

Several efforts have been made in the direction of ex-
tracting the road geometry from images. In [13], we see
a “context based extraction” of roads. The approach uses
a set of aerial images of the same region but taken from
different heights. Road extraction then proceeds iteratively
by first extracting the most salient parts and the attributesof
roads and then going for the finer ones. The whole process
is guided by available context information. [3] discusses
somewhat similar approach as ours for street graph extraction
but does not integrate to any coordinate system or any traffic
simulation. To the best of the authors’ knowledge, this is the
first attempt to combine raster maps to traffic simulation for
GPS trace generation.

The paper is structured as follows. We introduce the
(set of) algorithms that transfer the bitmap to a graph. We
show how roads are extracted, introduce the syntax and
semantics of graphical filters, and present and analyze the
algorithms to produce the road skeleton that is used to
finalize the construction. The effects of graphical operations
are illustrated with a running example.

Next, we turn to the automatic construction of the road
network graph, its compression and simplification. Besides
optional changes to the bitmaps during the conversion itself,
the extended GUI allows a flexible post-processing of the



Fig. 1. A Fragment from a Topographic Map of Dortmund, Germany.

traffic network.
We then present the integration of our approach to SUMO,

a state-of-the-art traffic simulation tool and provides a feasi-
ble and applicable solution to apply traffic simulation directly
on the raster maps. Last but not least, we summarize our
work and address future research avenues.

II. EXTRACTION OF ROAD SURFACES

The raster map we started from, contains a set of pixels.
Each pixel at position (i,j) carries its color information in
form of a RGB triple. Fortunately, the set of topographic
maps we considered do not contain much noise, such that
the streets are easily discriminated by their color value (See
Fig. 1). We allow the user to select the color value for road
extraction. Next, we set all the information that belongs tothe
street network to black, and all other information to white.
Using this simple filter yields some subtle problems: in our
maps we have black letters for street and city names and
further urban information, moreover, all railway tracks are
drawn in black.

The solution to define black as the color of the road
includes railway tracks. On the other hand, not using black
would give rise to many white holes in the road infrastructure
due to the street names. Moreover, as parking and play
grounds are white in our input, selecting this discriminat-
ing color also has its drawbacks. Subsequently, the current
extraction process is not perfect and needs some manual post-
processing.

For automated post-processing we implemented six mor-
phological filters:Erosion, Dilatation, Morphological open-
ing, Morphological closing, Gap closing, and Fragment
elimination. We illustrate the working of these graphical
filters in the following using a running example. The math-
ematical basis for these filters is set theory and are termed
morphological filters because they work on theshapeof the
image.

A. Erosion

In order to remove the city and street names from the
map, we employ an erosion operation. An erosion operation

Fig. 2. Result of Erosion

is defined with respect to astructuring elementcalled mask.
Intuitively, it works like a net with holes in the shape of a
mask. All the elements of the image that can pass through
the holes disappear.

For two setsA andB in ZZ2, the erosionof A w.r.t B is
defined asA ⊖ B = {z |(B)z ⊆ A}. Therefore, an erosion
of A w.r.t the maskB consists of all pointsz, such that if
B is shifted with its center point atz, it remains inA.

The form and size of the mask is crucial for the results
of erosion. To avoid distortion of the road elements, a
symmetric mask is required. As pixels are deleted by erosion
(starting at the fringes of the road surfaces), the mask should
not be selected to be too large, suggesting a3×3 pixel map in
our case. Using erosion a large part of the non-road elements
such as railway tracks and names are eliminated. The result
of erosion on our example is depicted in Fig. 2.

B. Dilatation

Due to the application of erosion operation, street lines
might become distorted, especially at the places where they
overlapped a street name. A dilatation operation is then used
to smoothened these contours and to fill certain holes that
might have appeared during erosion.

For two setsA andB in ZZ2, thedilatation of A w.r.t the
maskB is defined asA⊕B = {z | (B)z∩A 6= ∅}. Dilatation
enlarges the number of black pixels and closes some gaps
within the road surfaces. As in erosion, the choice of mask
is crucial and it should be taken care of that no two road
elements are merged into one.

C. Morphological Opening

The morphologic opening is a composite morphological
operation based on both erosion and dilatation. For two sets
A and B in ZZ2, the morphological openingof A w.r.t the
maskB is defined asA •B = (A⊖B)⊕B. This operation
helps in removing small bridges between black surfaces,
smoothening of the contours and elimination of small noises.



D. Morphologic Closing

The morphologic closing of a setA given the structuring
elementB in ZZ2 is defined asA◦B = (A⊕B)⊖B. Using
this operation will also smoothen contours, but in difference
to a morphologic opening small bridges between black
surfaces are strengthened and small gaps and indentations
are filled.

E. Gap Closing

A problem that cannot be solved with the dilatation alone
is the elimination of gaps within large road elements such
as inter-state highways.

Several dilatations can close those gaps, but may lead to
a merging of different road fragments. A solution to the
problem is a specialized algorithmgap closing, which test
for each white pixel if it has more thann ∈ {1, 2, ..., 8}
black neighbor pixel. The numbern is to be provided by the
user, withn = 5 as a feasible choice.

F. Fragment Elimination

Even after applying the above-mentioned filters, some of
the railway tracks and other map symbols still remain on the
map as isolated fragments. Such fragments are searched and
removed in thefragment eliminationphase.

We iterate through every pixel of the bitmap. If we find a
black pixelx, the neighborhood ofx is analyzed. We exploit
the property that route fragments accumulate to continuous
chains of black pixel. If all surrounding pixels ofx are white,
we assumex to be isolated from the other black pixels and
color it white. In the method a odd integeri > 3 is taken
as a parameter, which denotes the size of the square that is
drawn aroundx. In a loopi is increased successively. If all
the border pixels of the square are colored white, the iteration
is stopped coloring all internal pixels also white. If this is
not the case, the square is enlarged until the upper bound is
met. Corner pixels of the bitmap have to be considered in a
refined case study.

III. ROAD SKELETON COMPUTATION

After the road surfaces have been clearly extracted using
the application of filters and some additional manual refine-
ments, the skeleton has to be computed as a basis from which
the street graph is generated. Roughly speaking, the skeleton
of a pixel map is a set of thin curves, denoting the centerlines
of the black surfaces. With respect to the road geometry,
these are the centerline of the streets to look at. Using the
mathematical notation of morphological arguments the skele-
ton of A is defined asS(A) =

⋃K

k=0
Sk(A) with Sk(A) =

(A⊖ kB)− (A⊖ kB) ◦B, whereB is the structuring ele-
ment and(A⊖ kB) = (. . . (A⊖B)⊖B)⊖B)⊖ . . .)⊖B)

︸ ︷︷ ︸

k times
Moreover,K is the last iteration beforeA is the empty set.
i.e., K = max{k | (A⊖ kB) 6= ∅}.

A. Skeleton Generation

A first implementation of the classical definition of the
skeleton has yielded the aimed result. But, a skeleton
generated by using the above mentioned definition is not
guaranteed to be connected and may easily break down
into pieces especially at crossings. This can make graph
generation infeasible.

A heuristic solution to this problem is proposed by [1]. It
is based on the medial axis transformation, MAT for short.
The MAT of a regionR with fringe G is defined as follows.
For every pixelp in R, we search for a nearest neighbor in
G. If there are more than one neighbor, then it belongs to
the middle axis, the skeleton. An illustrative interpretation
of the MAT is a fire in the Savannah, with dry grass that
is set into flames at its fringe. The MAT corresponds to all
positions that are reached by at least two fire frontiers. A
direct conversion of this idea leads to inefficient algorithms,
since the computation for distances from all interior points
to all fringe pixels is involved. A comprehensive survey of
skeletonizing techniques can be found in [12]. In [6], this
heuristic solution has been successfully applied to find the
boundaries of granulation cells.

The binary bitmap is processed in two stages that are suc-
cessively altered until no more changes are to be observed.
Let the considered pixel be arranged as follows.

p9 p2 p3

p8 p1 p4

p7 p6 p5

In the first stage, all black pixels are marked that satisfy
the following conditions:2 ≤ Sum(p1) ≤ 6, Trans(p1) = 1,
p2 ∧ p4 ∧ p6 = 0, andp4 ∧ p6 ∧ p8 = 0, whereSum(p1) =
p2 + p3 + . . . + p9 and Trans(p1) denotes the number of
0/1 transitions in the sequence〈p2, p3, . . . , p9, p2〉. In the
following, two cases of pixel’s positions are shown. On the
left, we haveSum(p1) = 4 andTrans(p1) = 3, while on the
right, we haveSum(p1) = 4 and Trans(p1) = 1 as required
for the second condition.

•
p1 •

• •

• • •
p1 •

Condition 1 is violated, ifp1 has one, seven or eight black
neighbors. In case of one neighborp1 cannot be deleted as
it is at the end of a pixel chain. If black pixels with 7 or 8
neighbors are deleted, the region will quickly become sparse.
Condition 2 takes care that the skeleton is not split, so that
no pixel is deleted that lies on a chain of minimal width.

If all conditions are checked, the original is deleted. The
manipulated bitmap is the input for the next step.

In the next stage, all black pixels are marked if the
following conditions are satisfied.2 ≤ Sum(p1) ≤ 6,
Trans(p1) = 1, p6 ∧ p8 ∧ p2 = 0, andp8 ∧ p2 ∧ p4 = 0.

A pixel that satisfies the first two conditions and both first
parity conditions is located east or south or is a north-west
corner point. In this case the pixel is not in the skeleton and
should be eliminated. Similarly, a pixel is eliminated that



satisfies both second parity conditions is located north or
wets or is a south-east corner point.

In Algorithm 1, we see the pseudo-code form of the
skeletonizing algorithm that checks the entire bitmap for the
pixels that satisfies the former conditions. Note that the pixels
are not deleted in the first pass and only marked, so that they
do not bring any change to the next iteration. In a second
pass, all marked pixels are deleted.

Algorithm 1 Skeleton Generation
Input: 2DPixelArrayp; Height; Width;
repeat

Marked← false;
for i← 1 to Height do

for j ← 1 to Width do
if p(i, j) = 1 then

if 2 ≤ Sum(p(i, j)) ≤ 6 AND
Trans(p(i, j)) = 1 AND
p(i, j − 1) = p(i + 1, j) = p(i, j + 1) = 0

AND
p(i + 1, j) = p(i, j + 1) = p(i − 1, j) = 0

then
Mark(p(i, j));
Marked← true

end if
end if

end for
end for
for i← 1 to Height do

for j ← 1 to Width do
if Mark(p(i, j)) then

p(i, j)← 0;
Unmark(p(i, j))

end if
end for

end for
until Marked= false

B. Skeleton Minimization

An immediate construction of the graph from the skele-
ton is problematic, since the skeleton is not necessarily
maximally sparse. A skeleton ismaximally sparse, if the
elimination of a pixel having two neighbors can break down
the skeleton. This condition can be used to minimize the
skeleton and to identify pixels corresponding to crossings,
dead-ends or to just an ordinary point. In total, we have
to consider28 = 256 cases. The result of the skeleton
generation and minimization phase is shown in Fig. 3.

IV. GRAPH CONSTRUCTION

Once the skeleton is generated, aTracking algorithmcon-
structs the underlying directed graph. This algorithm is based
upon the Sweep-line paradigm: the pixels are processed in a
column-wise fashion. As soon as a new pixel is found, which
belongs to the skeleton, a sub-routine is invoked that traverse
and process the connected component of the new pixel.

Fig. 3. The Generated Skeleton.

It generates nodes for all neighboring points. Furthermore,
new pixels are added to the pixel chain at regular intervals
(user-defined), and are connected with the previous pixels
by new edges. As soon as a pixel representing a crossing is
reached and converted to a node, a list of its neighbors is
generated. This list is then iterated through, calling the same
sub-routine recursively for every list element.

One thing that is to be especially taken care of is that the
neighbors are not accessed twice. It can happen that during
the traversing of the skeleton in this manner, a crossing is
encountered that had been visited but not all of its neighbors
had been processed. This problem can be resolved by using
a flag that marks a pixel as visited and avoids re-processing
when reached again.

Once a connected component has been processed com-
pletely, the sweep-line algorithm searches for another con-
nected component in the picture. A node counter is set that
counts the number of nodes that belong to a connected
component. In this way we can get rid of those connected
components that are too small to represent any street. These
fragments may correspond to any noise that may have been
left during the filtration process. The minimum size of a
connected component should be provided by the user. Fig. 4
shows the street graph constructed for our example.

A. Graph Simplification

The graph constructed through theTracking algorithmhas
a large number of nodes. In case of very large raster maps,
the resulting graph could be enormous in size and would
not even fit into the available memory. The graph can be
simplified by the help of simple observations. Using some
information on the road geometry, the number of nodes that
are needed to represent a street can be reduced. In many
cases, we have achieved a reduction of about half the nodes
without losing any significant information about the road
geometry. In the following, we discuss the two simplification
techniques that are used in our approach.

1) Removal of Redundant Nodes:A nodeu is redundant,
if it lies in the middle of a straight street. Typically, such
nodes have anin-degree= out-degree= 1. Note that the



Fig. 4. The Street Graph.

street must be straight, else we may lose the desired precision
in road geometry. Letu = (xu, yu), v = (xv, yv), w =
(xw, yw) be the three consecutive nodes in the graphG. The
simplification algorithm basically uses a collinearity test to
find the redundant node. The nodev is redundant ifv lies
on the line joining the nodesu andw. The collinearity test
can be performed by testing if the value of the determinant

∣
∣
∣
∣
∣
∣

xu yu 1
xv yv 1
xw yw 1

∣
∣
∣
∣
∣
∣

is 0 or not.

The simplification algorithm described above can be ad-
justed to simplify a bit curved or wavy streets too. By
introducing a tolerance parameterǫ, only the nodes that lie
within an ǫ-distance of the line joining the two neighboring
nodes are removed. Increasing the value ofǫ can give lower
number of nodes but a distortion in the road geometry as
many curved streets would be approximated as straight ones.

The algorithm runs inO(n2) time and is actually a
simplified form of Douglas-Peucker algorithm [4], which
was developed to reduce the number of points to represent
a digitized curve from maps and photographs. It considers
a simple trace (certain forms of self-intersections can also
be handled) ofn + 1 points {p0, . . . , pn} in the plane that
form a polygonal chain and asks for an approximating chain
with fewer line segments. It is best described recursively:to
approximate the chain from pointpi to pj , the algorithm
starts with segmentpipj . If the farthest vertex from this
segment has a distance smaller than a given thresholdǫ,
then the algorithm accepts this approximation. Otherwise,
it splits the chain at this vertex and recursively approximate
the two pieces. TheO(n log n) algorithm [7] takes advantage
of the fact that splitting vertices are to be located on the
convex hull. It has latter been improved toO(n log∗ n),
wherelog∗ n = min{k| log log · · · log

︸ ︷︷ ︸

k times

n = 1}.

2) Merging of Closely Situated Nodes:Another approach
that can result in a simplified graph with much lesser nodes is

Fig. 5. SUMO.

to remove the nodes that lie very close to each other. Again,
it can effect the smoothness of the streets, but when done
with proper parameters the resulting graph can retain a good
approximation of the road geometry and still consisting of
lesser nodes. The simplification can be done by a linear time
algorithm that runs in the time proportional to the number of
edges. The algorithm iterates through the edge list. Lets and
t denote the start and the end node of the edgee, respectively.
For each edgee = (s, t), we check if the Euclidean distance
betweens andt, ‖t−s‖2 < σ, whereσ is the simplification
parameter. If the distance is smaller, the nodet is declared
as aclosenode and is deleted.

V. I NTEGRATION TO A TRAFFIC SIMULATOR – SUMO

To test a utility of our approach in a different scenario,
we decided to integrate our efforts with an existing traffic
simulation system called SUMO [11]. SUMO stands for
Simulation of Urban Mobility. It is an open-source project
developed and supported by DLR (German Aerospace Cen-
ter). It has recently been used for traffic simulation and
prognosis during the world soccer championship 2006. For
real-time data collection during such an enormous event, a
Zeppelin airship was also used. It provided live data for the
traffic simulation in SUMO that made it possible to predict
the traffic jams and to inform the city authorities to redirect
the traffic in advance [8].

SUMO is a microscopic and multi-modal traffic simulation
tool. The input to SUMO is a graph in XML format. It
consists of three parts: the nodes, the edges, and a third data
set that consists of the test routes in the street graph. These
routes are to be used by the virtual vehicles during the traffic
simulation.

For the parsing of XML data, an open source parser
called XERCES is used. In the following, excerpts from the
Node.sumo.xml and Edge.sumo.xml files are shown
that contain the nodes and edges information, respectively:

<nodes>
<node id="0" x="0.0" y="220.0 type="priority" \>
<node id="1" x="61.0" y="234.0 type="priority" \>



<node id="2" x="98.0" y="232.0 type="priority" \>
</nodes>
<edges>
<edge id="0" fromnode="0" tonode="1" priority="78"

nolanes="1 speed=50.000 />
<edge id="1" fromnode="0" tonode="2" priority="78"

nolanes="1 speed = 50.000 />
<edge id="2" fromnode="0" tonode="2" priority="78"

nolanes="1 speed = 50.000 />
</edges>

A. Post-processing of the SUMO Street Network

After the vectorization and the generation of the street
graph, the exported XML data can be post-processed for
SUMO. Normally an edge means a street with only one
lane and with allowed speed as 50 km per hour. In order to
obtain a realistic trace, the street graph has to be extended
to bring it more toward reality. But again, not all streets
have more than one lane and different kinds of streets have
different number of lanes. For this purpose, a user interface
is developed and integrated in the SUMO environment that
provides the facility to change the attributes of a street. To
get this lane information, we have used satellite images of
the city of Dortmund. In Europe, where most of the streets
indeed consist of one lane for each direction, the process is
fairly easier to be carried out by a human. Another post-
processing step is to mark the road crossings that have a
traffic signal installed.

B. Traffic Routes

As described above, the routes to be used by the virtual
vehicles during the simulation are generated beforehand
and saved as XML data. This routing information is not
changeable during simulation time and must be provided
along with the problem graph. A sub-program of SUMO
helps in the generation of individual routes. The main input
is the number of cars per time unit. A series of random routes
are generated by picking the start and end nodes randomly
and searching for the route between them. The generated
routes are then used in SUMO for simulation.

VI. CONCLUSION

GPS based navigation and planning is becoming aneces-
sity in the modern times, where urban mobility on large scale
poses a genuine challenge for sustainable transportation.
Navigation systems allow users to search for ashortest
path, based on a given metric, let it be distance or travel
time. However, their availability and utility is completely
dependent on the underlying digital vector map.

Collaborative map generation process allows people to
gather GPS traces and upload to a common web portal. The
integration of these GPS traces to represent an actual road
is an intensive process and poses difficult challenges to the
community. Having a good base map can greatly help the
integration process allowing a good filtration of GPS traces.

We have presented an approach to provide a vectorized
and calibrated map extracted through raster maps. For the
vectorization and graph generation process we generated a
0/1 pixel map of a topographic map by applying a variety of

different digital image processing techniques. A skeletoniz-
ing algorithm then transform this processed bitmap into a
road network skeleton. In order to construct the road graph,
the skeleton is mademaximally sparse. The street graph
is generated by a tracking algorithm based on thesweep-
line paradigm that processes the skeleton by iterating on the
connected components.

The presented approach has been implemented in C++ and
evaluated on raster maps collected by the city authorities of
Dortmund, Germany. The implementation provides a flexible
user interface to maintain and annotate the road network.
The seamless integration of our approach to the microscopic
traffic simulation tool SUMO results in a stand-alone tool
for urban mobility planning in the areas where vector maps
are scarce.

As future work, we plan to integrate the presented ap-
proach into our solution to the problem-1 namely the inte-
gration of different GPS traces presented in the beginning of
this paper.

REFERENCES

[1] H. Blum. Models for the Perception of Speech and Visual Forms. MIT
Press, 1967.

[2] R. Bruntrup, S. Edelkamp, S. Jabbar, and B. Scholz. Incremental map
generation with gps traces. InInternational Conference on Intelligent
Transportation Systems (ITSC), pages 574–579. IEEE Press, 2005.

[3] A. Dasen. AIS: A system for the Automatic Interpretation of Street
maps. in German). Master’s thesis, Philosophische und Naturwis-
senschaftliche Universität zu Bern, 2001.

[4] D. H. Douglas and T. K. Peuker. Algorithms for the reduction of the
number of points.The Canadian Cartographer, 10:112–122, 1973.

[5] S. Edelkamp, S. Jabbar, and T. Willhalm. Geometric travel planning.
IEEE Transactions on Intelligent Transportation Systems, 6(1):5–16,
2005.

[6] A. Florio and F. Berrilli. A skeletonizing algorithm forgranulation
and supergranulation cell finding. InPoster Proceedings of SOLE98
Workshop, 1998.

[7] J. Hershberger and J. Snoeyink. AnO(n log n) implementation of the
Douglas-Peuker algorithm for line simplification.ACM Computational
Geometry, pages 383–384, 1994.

[8] D. Krajzewicz, M. Bonert, and P. Wagner. The open source traffic sim-
ulation package SUMO. InRoboCup 2006 Infrastructure Simulation
Competition, 2006.

[9] D. Krajzewicz, M. Hartinger, G. Hertkorn, P. Mieth, C. Rössel,
J. Zimmer, and P. Wagner. Using the road traffic simulation (SUMO)
for educational purposes. InTraffic and Granular Flow (TGF), 2003.

[10] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner. Anexample
of microscopic car models validation using the open source traffic
simulation SUMO. InProceedings of Simulation in Industry, 14th
European Simulation Symposium, pages 318–322. SCS European
Publishing House, 2002.

[11] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner. SUMO
(Simulation of Urban Mobility); an open-source traffic simulation. In
Proceedings of the 4th Middle East Symposium on Simulation and
Modelling (MESM2002), pages 183–187. SCS European Publishing
House, 2002.

[12] L. Lam, S. Lee, and C. Y. Suen. Thinning methodologies-a comprehen-
sive survey.IEEE Trans. Pattern Anal. Mach. Intell., 14(9):869–885,
1992.

[13] H. Mayer, I. Laptev, A. Baumgartner, and C. Steger. Automatic
road extraction based on multi-scale modeling, context, and snakes.
In International Archives of Photogrammetry and Remote Sensing,
volume XXXII, Part 3–2W3, pages 106–113, 1997.

[14] B. Schulz. Automatic inference of streetmaps based on gpstraces.
Master’s thesis, Universität Dortmund, Germany, 2006. in German.


