
11. Memory Limitations in Artificial

Intelligence

Stefan Edelkamp

11.1 Introduction

Artificial Intelligence (AI) deals with structuring large amounts of data. As
a very first example of an expert system [424], take the oldest known scien-
tific treatise surviving from the ancient world, the surgical papyrus [146] of
about 3000 BC. It discusses cases of injured men for whom a surgeon had
no hope of saving and lay many years unnoticed until it was rediscovered
and published for the New York Historical Society. The papyrus summa-
rizes surgical observations of head wounds disclosing an inductive method
for inference [281], with observations that were stated with title, examina-
tion, diagnosis, treatment, prognosis and glosses much in the sense that if a
patient has this symptom, then he has this injury with this prognosis if this
treatment is applied.

About half a century ago, pioneering computer scientists report the emer-
gence of intelligence with machines that think, learn and create [696]. The
prospects were driven by early successes in exploration. Samuel [651] wrote
a checkers-playing program that was able to beat him, whereas Newell and
Simon [580] successfully ran the general problem solver (GPS) that reduced
the difference between the predicted and the desired outcome on different
state-space problems. GPS represents problems as the task of transforming
one symbolic expression into another, with a decomposition that fitted well
with the structure of several other problem solving programs. Due to small
available memories and slow CPUs, these and some other promising initial
AI programs were limited in their problem solving abilities and failed to scale
in later years.

There are two basic problems to overcome [539]: the frame problem —
characterized as the smoking pistol behind a lot of the attacks on AI [249] —
refers to all that is going on around the central actors, while the qualification
problem refers to the host of qualifiers to stop an expected rule from being
followed exactly. While [454] identifies several arguments of why intelligence
in a computer is not a true ontological one, the most important reason for
many drawbacks in AI are existing limits in computational resources, es-
pecially in memory, which is often too small to keep all information for a
suitable inference accessible.

Bounded resources lead to a performance-oriented interpretation of the
term intelligence: different to the Turing-test [734], programs have to show

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 233-250, 2003.
© Springer-Verlag Berlin Heidelberg 2003

234 Stefan Edelkamp

human-adequate or human-superior abilities in a competitive resource-
constrained environment on a selected class of benchmarks. As a consequence
even the same program can be judged to be more intelligent, when ran on bet-
ter hardware or when given more time to execute. This competitive view set-
tles; international competitions in data mining (e.g. KDD-Cup), game play-
ing (e.g. Olympiads), robotics (e.g. Robo-Cup), theorem proving (e.g. CADE
ATP), and action planning (e.g. IPC) call for highly performant systems on
current machines with space and time limitations.

11.2 Hierarchical Memory

Restricted main memory calls for the use of secondary memory, where ob-
jects are either scheduled by the underlying operating system or explicitly
maintained by the application program.

Hierarchical memory problems (cf. Chapter 1) have been confronted to
AI for many years. As an example, take the garbage collector problem. Min-
sky [551] proposes the first copying garbage collector for LISP; an algorithm
using serial secondary memory. The live data is copied out to a file on disk,
and then read back in, in a contiguous area of the heap space; [122] ex-
tends [551] to parallelize Prolog based on Warren’s abstract machine, and
modern copy collectors in C++ [276] also refer to [551]. Moreover, garbage
collection has a bad reputation for thrashing caches [439].

Access time graduates on current memory structures: processor register
are better available than pre-fetched data, first-level and second level caches
are more performant than main memory, which in turn is faster than external
data on hard disks optical hardware devices and magnetic tapes. Last but
not least, there is the access of data via local area networks and the Internet
connections. The faster the access to the memorized data the better the
inference.

Access to the next lower level in the memory hierarchy is organized in
pages or blocks. Since the theoretical models of hierarchical memory differ
e.g. by the amount of disks to be concurrently accessible, algorithms are of-
ten ranked according to sorting complexity O(sort(N)), i.e., the number of
block accesses (I/Os) necessary to sort N numbers, and according to scan-
ning complexity O(scan(N)), i.e., the number of I/Os to read N numbers.
The usual assumption is that N is much larger than B, the block size. Scan-
ning complexity equals O(N/B) in a single disk model. The first libraries for
improved secondary memory maintainance are LEDA-SM [226] and TPIE1.
On the other end, recent developments of hardware significantly deviate from
traditional von-Neumann architecture, e.g., the next generation of Intel pro-
cessors have three processor cache levels. Cache anomalies are well known;
1 http://www.cs.duke.edu/TPIE

11. Memory Limitations in Artificial Intelligence 235

e.g. recursive programs like Quicksort often perform unexpectedly well when
compared to the state-of-the art.

Since the field of improved cache performance in AI is too young and
moving too quickly for a comprehensive survey, in this paper we stick to
knowledge exploration, in which memory restriction leads to a coverage prob-
lem: if the algorithm fails to encounter a memorized result, it has to (re)-
explore large parts of the problem space. Implicit exploration corresponds to
explicit graph search in the underlying problem graph. Unfortunately, theo-
retical results in external graph search are yet too weak to be practical, e.g.
O(|V |+sort(|V |+ |E|)) I/Os for breadth-first search (BFS) [567], where |E| is
the number of edges and |V | is the number of nodes. One additional problem
in external single-source shortest path (SSSP) computations is the design of
performant external priority queues, for which tournament-trees [485] serve
as the current best (cf. Chapter 3 and Chapter 4).

Most external graph search algorithms include O(|V |) I/Os for restruc-
turing and reading the graph, an unacceptable bound for implicit search.
Fortunately, for sparse graphs efficient I/O algorithms for BFS and SSSP
have been developed (cf. Chapter 5). For example, on planar graphs, BFS
and SSSP can be performed in O(sort(|V |)) time. For general BFS, the best
known result is O

(√
|V | · scan(|V |+ |E|) + sort(|V |+ |E|)

)
I/Os (cf. Chap-

ter 4).
In contrast, most AI techniques improve internal performance and include

refined state-space representations, increased coverage and storage, limited
recomputation of results, heuristic search, control rules, and application-
dependent page handling, but close connections in the design of internal
space saving strategies and external graph search indicate a potential for
cross-fertilization.

We concentrate on single-agent search, game playing, and action plan-
ning, since in these areas, the success story is most impressive. Single-agent
engines optimally solve challenges like Sokoban [441] and Atomix [417], the
24-Puzzle [468], and Rubik’s Cube [466]. Nowadays domain-independent ac-
tion planners [267, 327, 403] find plans for very large and even infinite mixed
propositional and numerical, metric and temporal planning problems. Last
but not least, game playing programs challenge human supremacy for exam-
ple in Chess [410], American Checkers [667], Backgammon [720], Hex [49],
Computer Amazons [565], and Bridge [333].

11.3 Single-Agent Search

Traditional single-agent search challenges are puzzles. The “fruit-fly” is the
NP-complete (n2 − 1)-Puzzle popularized by Loyd and Gardner [325]. Mile-
stones for optimal solutions were [672] for n = 3, [465] for n = 4, and [470]
for n = 5. Other solitaire games that are considered to be challenging are

236 Stefan Edelkamp

s s t
t

Θf

f = g

f = g + h

Fig. 11.1. The effect of heuristics in A* and IDA* (right) compared to blind SSSP
(left).

the above mentionend PSPACE-hard computer games Sokoban and Atomix.
Real-life applications include number partitioning [467], graph partition-
ing [291], robot-arm motion planning [394], route planning [273], and multiple
sequence alignment [777].

Single-agent search problems are either given explicitly in form of a
weighted directed graph G = (V,E,w), w : E → IR+, together with one
start node s ∈ V and (possibly several) goal nodes T ⊆ V , or implicitly
spanned by a quintuple (I,O, w, expand, goal) of initial state I, operator set
O, weight function w : O → IR+, successor generation function expand, and
goal predicate goal. As an additional input, heuristic search algorithms as-
sume an estimate h : V → IR+, with h(t) = 0 for t ∈ T . Since single-agent
search can model Turing machine computations, it is undecidable in gen-
eral [611].

Heuristic search algorithms traverse the re-weighted problem graph. Re-
weighting sets the new weight of (u, v) to w(u, v) − h(u) + h(v). The total
weight of a path from s to u according to the new weights differs from the
old one by h(s)− h(u). Function h is admissible if it is a lower bound, which
is equivalent to the condition that any path from the current node to the set
of goal nodes in the re-weighted graph is of non-negative total weight. Since
on every cycle the accumulated weights in the original and re-weighted graph
are the same, the transformation cannot lead to negatively weighted cycles.
Heuristic h is called consistent, if h(u) ≤ h(v) + w(u, v), for all (u, v) ∈ E.
Consistent heuristics imply positive edge weights.

The A* algorithm [384] traverses the state space according to a cost
function f(n) = g(n)+h(n), where h(n) is the estimated distance from state
n to a goal and g(n) is the actual shortest path distance from the initial
state. Weighted A* scales between the two extremes; best-first search with
f(n) = h(n) and BFS with f(n) = g(n). State spaces are interpreted as
implicitly spanned problem graphs, so that A* can be cast as a variant of
Dijkstra’s SSSP algorithm [252] in the re-weighted graph (cf. Fig. 11.1). In
case of negative values for w(u, v) − h(u) + h(v) shorter paths to already
expanded nodes may be found later in the exploration process. These nodes

11. Memory Limitations in Artificial Intelligence 237

1011001
0011011
1011010
0011101
1011011
0101000
1011110
0101001
0101111

0
0
0

1
0

0
0
0
0
0
1
0
1
0
0
0 1

0
1
0
0
1
0
0
0

prefix-list suffix-list

0011

0000

0101

1011

1111

1011

0011
0011
0101
0101
0101

1011
1011

1011

011
101
000
001
111
001
010
011
110

011
101
000
001
111
001
010
011
110

closed nodes in sorted order

Fig. 11.2. Example for suffix lists with p = 4, and s = 3.

are re-opened; i.e. re-inserted in the set of horizon nodes. Given an admissible
heuristic, A* yields an optimal cost path. Despite the reduction of explored
space, the main weakness of A* is its high memory consumption, which grows
linear with the total number of generated states; the number of expanded
nodes |V ′| << |V | is still large compared to the main memory capacity of M
states.

Iterative Deepening A* (IDA*) [465] is a variant of A* with a sequence of
bounded depth-first search (DFS) iterations. In each iteration IDA* expands
all nodes having a total cost not exceeding threshold Θf , which is determined
as the lowest cost of all generated but not expanded nodes in the previous
iteration. The memory requirements in IDA* are linear in the depth of the
search tree. On the other hand IDA* searches the tree expansion of the graph,
which can be exponentially larger than the graph itself. Even on trees, IDA*
may explore Ω(|V ′|2) nodes expanding one new node in each iteration. Ac-
curate predictions on search tree growth [264] and IDA*’s exploration efforts
[469] have been obtained at least for regular search spaces. In favor of IDA*,
problem graphs are usually uniformly weighted with an exponentially grow-
ing search tree, so that many nodes are expanded in each iteration with the
last one dominating the overall search effort.

As computer memories got larger, one approach was to develop better
search algorithms and to use the available memory resources. The first sugges-
tion was to memorize and update state information also for IDA* in form of
a transposition table [631]. Increased coverage compared to ordinary hashing
has been achieved by state compression and by suffix lists. State compression
minimizes the state description length. For example the internal representa-
tion of a state in the 15-Puzzle can easily be reduced to 64 bits, 4 bits for each
tile. Compression often reduces the binary encoding length to O(log |V |), so
that we might assume that for constant c the states u to be stored are as-
signed to a number φ(u) in [1, . . . , n = |V |c]. For the 15-Puzzle the size of
the state space is 16!/2, so that c = 64/�log(16!/2)� = 64/44 ≈ 1.45.

238 Stefan Edelkamp

h(u)

u

h1(u) h2(u)

u

hc(u)

h(u)

u

Fig. 11.3. Single bit-state hashing, double bit-state hashing, and hash-compact.

Suffix lists [271] have been designed for external memory usage, but show
a good space performance also for internal memorization. Let bin(φ(u)) be
the binary representation of an element u with φ(u) ≤ n to be stored. We split
bin(φ(u)) in p high order bits and s = �logn�−p low order bits. Furthermore,
φ(u)s+p−1, . . . , φ(u)s denotes the prefix of bin(φ(u)) and φ(u)s−1, . . . , φ(u)0
stands for the suffix of bin(u). The suffix list consists of a linear array P
and of a two-dimensional array L. The basic idea of suffix lists is to store a
common prefix of several entries as a single bit in P , whereas the distinctive
suffixes form a group within L. P is stored as a bit array. L can hold several
groups with each group consisting of a multiple of s+ 1 bits. The first bit of
each (s+ 1)-bit row in L serves as a group bit. The first s bit suffix entry of
a group has group bit one, the other elements of the group have group bit
zero. We place the elements of a group together in lexicographical order, see
Fig. 11.2. The space performance is by far better than ordinary hashing and
very close to the information theoretical bound. To improve time performance
to amortizedO(log |V |) for insertions and memberships, the algorithm buffers
states and inserts checkpoints for faster prefix-sum computations.

Bit-state hashing [224] and state compaction reduce the state vector size
to a selection of few bits allowing even larger table sizes. Fig. 11.3 illustrates
the mapping of state u via the hash functions h, h1 and h2 and compaction
function hc to the according storage structures. This approach of partial
search necessarily sacrifices completeness, but often yields shortest paths in
practice [417]. While hash compact also applies to A*, single and double bit-
state hashing are better suited to IDA* search [271], since the priority of a
state and its predecessor pointer to track the solution, are mandatory for A*.

In regular search spaces, with a finite set of different operators to be
applied, Finite state machine (FSM) pruning [715] provides an alternative for
duplicate prediction in IDA*. FSM pruning pre-computes a string acceptor
for move sequences that are guaranteed to have shorter equivalents; the set of
forbidden words. For example, twisting two opposite sides of the Rubiks cube
in one order, has always an equivalent in twisting them in the opposite order.

11. Memory Limitations in Artificial Intelligence 239

L R

L R

D

RL
U R

U

L

D

EM

active
page

IM

Fig. 11.4. The finite state machine to prune the Grid (left) and the heap-of-heap
data structure for localized A* (right). The main and the active heap are in internal
memory (IM), while the others reside on external memory (EM).

This set of forbidden words is established by hash conflicts in a learning phase
prior to the search and converted to a substring acceptor by the algorithm of
Aho and Corasick [20]. Fig 11.4 shows an example to prune the search tree
expansion in a regular Grid. The FSM enforces to follow the operators up (U),
down (D), left (L), and right (R) along the corresponding arrows reducing
the exponentially sized search tree expansion with 4d states, d > 0, to the
optimum of d2 states. Suffix-tree automata [262] interleave FSM construction
and usage.

In route planning based on spatial partitioning of the map, the heap-of-
heap priority-queue data structure of Fig. 11.4 has effectivly been integrated
in a localized A* algorithm [273]. The map is sorted according to the two
dimensional physical layout and stored in form of small heaps, one per page,
and one being active in main memory. To improve locality in the A* derivate,
deleteMin is substituted by a specialized deleteSome operation that prefers
node expansions with respect to the current page. The algorithm is shown
both to be optimal and to significantly reduce page faults counter-balanced
with a slight increase in the number of node expansions. Although locality
information is exploited, parts of the heap-of-heap structure may be substi-
tuted by provably I/O efficient data structures (cf. Chapter 2 and Chapter 3)
like buffer trees [54] or tournament trees [485].

Most memory-limited search algorithms base on A*, and differ in the
caching strategies when memory becomes exhausted. MREC [684] switches
from A* to IDA* if the memory limit is reached. In contrast, SMA* [645] re-
assigns the space by dynamically deleting a previously expanded node, prop-
agating up computed f -values to the parents in order to save re-computation
as far as possible. However, the effect of node caching is still limited. An
adversary may request the nodes just deleted. The best theoretical results
on search trees are O(|V ′|+M + |V ′|2/M) node expansions in the MEIDA*
search algorithm [260]. The algorithm works in two phases: The first phase
fills the doubly-ended priority queue D with at most M nodes in IDA* man-

240 Stefan Edelkamp

t

s

f∗

f∗/2i

Fig. 11.5. Divide step in undirected frontier search (left) and backward arc look-
ahead in directed frontier search (right).

ner. These nodes are expanded and re-inserted into the queue if they are safe,
i.e., if D is not full and the f -value of the successor node is still smaller than
the maximal f -value in D. This is done until D eventually becomes empty.
The last expanded node then gives the bound for the next IDA* iteration. Let
E(i) be the number of expanded nodes in iteration i andR(i) = E(i)−E(i−1)
the number of newly generated nodes in iteration i. If l is the last iteration
then the number of expanded nodes in the algorithm is

∑l
i=1 i ·R(l− i+ 1).

Maximizing
∑l

i=1 i·R(l−i+1) with respect to R(1)+. . .+R(l) = E(l) = |V ′|,
and R(i) ≥ M for fixed |V ′| and l yields R(l) = 0, R(1) = |V ′| − (l − 2)M
and R(i) = M , for 1 < i < l. Hence, the objective function is maximized at
−Ml2/2+(|V ′|+3M/2)l−M . Maximizing for l yields l = |V ′|/M +3/2 and
O(|V ′|+M + |V ′|2/M) nodes in total.

Frontier search [471] contributes to the observation that the newly gen-
erated nodes in any graph search algorithm form a connected horizon to
the set of expanded nodes, which is omitted to save memory. The technique
refers to Hirschberg’s linear space divide-and-conquer algorithm for comput-
ing maximal common sequences [400]. In other words, frontier search reduces
a (d+1)-dimensional search problem into a d-dimensional one. It divides into
three phases: in the first phase, a goal t with optimal cost f∗ is searched; in
the second phase the search is re-invoked with bound f∗/2; and by main-
taining shortest paths to the resulting fringe the intermediate state i from s
to t is detected, in the last phase the algorithm is recursively called for the
two subproblems from s to i, and from i to t. Fig. 11.5 depicts the recursion
step and indicates the necessity to store virtual nodes in directed graphs to
avoid falling back behind the search frontier, where a node v is called virtual,
if (v, u) ∈ E, and u is already expanded.

Many external exploration algorithms perform variants of frontier search.
In the O(|V ′|+sort(|V ′|+|E′|)) I/O algorithm of Munagala and Ranade [567]
the set of visited lists is reduced to one additional layer. In difference to the
internal setting above, this algorithm performs a complete exploration and
uses external sorting for duplicate elimination.

11. Memory Limitations in Artificial Intelligence 241

Fig. 11.6. Bootstrapping to build dead-end recognition tables.

Large dead-end recognition tables [441] are best built in sub-searches of
problem abstractions and avoid non-progressing exploration. Fig. 11.6 gives
an example of bootstrapping dead-end patterns by expansion and decompo-
sition in the Sokoban problem, a block-sliding game, in which blocks are only
to be pushed from an accessible side. Black ball patterns are found by sim-
ple recognizers, while gray ball patterns are inferred in bottom-up fashion.
Established sub-patterns subsequently prune exploration.

Another approach to speed up the search is to look for more accurate es-
timates. With a better heuristic function the search will be guided faster
towards the goal state and has to deal with less of nodes to be stored.
Problem-dependent estimates may have a large overhead to be computed
for each encountered state, calling for a more intelligent usage of memory.
Perimeter Search [253] is an algorithm that saves a large table in memory
which contains all nodes that surround the goal node up to a fixed depth. The
estimate is then defined as the distance of the current state and the closest
state in the perimeter.

11.4 Action Planning

Domain-independent action planning [29] is one of the central problems in
AI, which arises, for instance, when determining the course of action for a
robot. Problem domains and instances are usually specified in a general do-
main description language (PDDL) [312]. Its “fruit-flies” are Blocks World
and Logistics. Planning has effectively been applied for instance in robot
navigation [367], elevator scheduling [462], and autonomous spacecraft con-
trol [322].

A classical (grounded) Strips planning problem [303] is formalized as a
quadruple P =< S,O, I,G >, with S ⊆ 2F being the set of states, 2F being
the power set of the set of propositional atoms F , I ∈ S, G ⊆ S, and O
being the set of operators that transform states into states. A state S ∈ S
is interpreted by the conjunct of its atoms. Operator o = (P,A,D) ∈ O is
specified with its precondition, add and delete lists, P,A,D ⊆ F . If P ⊆ S,

242 Stefan Edelkamp

the result S′ ∈ S of an operator o = (P,A,D) applied to state S ∈ S is de-
fined as S′ = (S \D) ∪A. Mixed propositional and numerical planning [312]
take S ⊆ 2F × IRk, k > 0, as the set of states, temporal planning includes
a special variable total-time to fix action execution time, and metric plan-
ning optimizes an additionally specified objective function. Strips planning
is PSPACE-complete [167] and mixed propositional and numerical planning
is undecidable [391].

Including a non-deterministic choice on actions effects is often used to
model uncertainty of the environment. Strong plans [204], are plans that
guarantee goal achievement despite all non-determinism. Strong plans are
complete compactly stored state-action tables, that can be best viewed as
a controller, that applies certain actions depending on the current state. In
contrast, in conformant planning [203] a plan is a simple sequence of actions,
that is successful for all non-deterministic behaviours. Planning with partial
observability interleaves action execution and sensing. In contrast to the suc-
cessor set generation based on action application, observations correspond to
“And” nodes in the search tree [120]. Both conformant and partial observ-
able planning can be cast as a deterministic traversal in belief space, defined
as the power set 2S of the original one planning state space S [142]. Belief
spaces and complete state-action tables are seemingly too large to be explic-
itly stored in main memory, calling for refined internal representation or fast
external storage devices.

In probabilistic planning [142], different action outcomes are assigned to
a probability distribution and resulting plans/policies correspond to com-
plete state-action tables. Probabilistic planning problems are often modeled
as Markov decision process (MDPs) and mostly solved either by policy or
value iteration, where the latter invokes successive updates to Bellmann’s
equation. The complexity of probabilistic planning with partial observability
is PPNP -complete [568]. Different caching strategies for solving larger partial
observable probabilistic planning problems are studied in [526], with up to
substantial CPU time savings for application dependent caching schemes.

Early planning approaches in Strips planning were able to solve only
small Strips problems, e.g., to stack five blocks, but planning graphs, SAT-
encodings, as well as heuristic search have changed the picture completely.
Graphplan [132] constructs a layered planning graph containing two types of
nodes, action nodes and proposition nodes. In each layer the preconditions of
all operators are matched, such that Graphplan considers instantiated actions
at specific points in time. Graphplan generates partially ordered plans to ex-
hibit concurrent actions and alternates between two phases: graph extension
to increase the search depth and solution extraction to terminate the plan-
ning process. Satplan [452] simulates a BFS according to the binary encoding
of planning states, with a standard representation of Boolean formulae as a
conjunct of clauses.

11. Memory Limitations in Artificial Intelligence 243

- - -+ ++ + + + - - -

operator

effects

preconditions

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

R F RQF

Fig. 11.7. Operator abstractions for the relaxed planning and the pattern database
heuristic (left); single and disjoint PDB for subsets R and Q of all atoms F (right).

In current heuristic search planning, relaxed plans [403] and pattern
databases (PDB) [266] turn out to be best (cf. Fig. 11.7). The relaxed planning
heuristic generates approximate plans to the simplified planning problem, in
which negative effects have been omitted in all operators, and is computed
in a combined forward and backward traversal for each encountered state.
The first phase determines a fix point on the set of reachable atoms similar
to Graphplan, while the second phase greedily extracts the approximate plan
length as a heuristic estimate.

Pattern databases (PDB) [232] are constant-time look-up tables generated
by completely explored problem abstractions. Subgoals are clustered and for
all possible combination of these subgoals in every state of the problem, the
relaxed problem is solved without looking on the other subgoals. Fig. 11.7
illustrates PDB construction. The planning state is represented as a set of
propositional atoms F , and the operators are projected to one or several dis-
joint subsets of F . The simplified planning problem is completely explored
with any SSSP algorithm, starting from the set of goal states. The abstract
states are stored in large hash tables together with their respective goal dis-
tance, to serve as heuristic estimates for the overall search. Retrieved values
of different databases are either maximized or added. PDBs optimally solved
the 15-Puzzle [232] and Rubik’s Cube [466]. A space-time trade-off for PDB is
analyzed in [405]; PDB size is shown to be inversely correlated to search time.
Since search time is proportional to the number of expanded nodes N ′ and
PDB-size is proportional to M , PDBs make very effective use of main mem-
ory. Finding good PDB abstractions is not immediate. The general search
strategy for optimal-sized PDBs [405] applies to a large set of state-space
problems and uses IDA* search tree prediction formula [469] as a guidance.
A general bin-packing scheme to generate disjoint PDBs [469] is proposed
in [263]. Recall that disjoint PDBs generate very fast optimal solutions to
the 24-Puzzle.

Some planners cast planning as model checking [334] and apply binary de-
cision diagrams(BDDs) [163] to reduce space consumption. BDDs are com-
pact acyclic graph data structures to represent and efficiently manipulate
Boolean functions; the nodes are labeled with Boolean variables with two
outgoing edges corresponding to the two possible outcomes when evaluating
a given assignment, while the 0- or 1-sink finally yield the determined re-

244 Stefan Edelkamp

x0x0

f -value h-value

x0

f0

x0

h0
Open H

Min

1 10 0

Fig. 11.8. Symbolic heuristic A* search with symbolic priority queue and estimate.

sult. Symbolic exploration refers to Satplan and realizes a BFS exploration
on BDD representations of sets of states, where a state is identified by its
characteristic function. Given the represented set of states Si(x) in itera-
tion i and the represented transition relation T the successor set Si+1(x) is
computed as Si+1(x) = ∃x (Si(x) ∧ T (x, x′))[x/x′]. In contrast to conjunc-
tive partitioning in hardware verification [544], for a refined image computa-
tion in symbolic planning disjunctive of the transition function is required:
if T (x, x′) = ∨o∈Oo(x, x′) then Si+1(x) = ∃x (Si(x) ∧ ∨o∈Oo(x, x′))[x/x′] =
∨o∈O(∃x (Si(x) ∧ o(x, x′)))[x/x′].

Symbolic heuristic search maintains the search horizon Open and the
heuristic estimate H in compact (monolithical or partitioned) form. The al-
gorithm BDDA* [272] steadily extracts, evaluates, expands and re-inserts the
set of states Min with minimum f -value (cf. Fig. 11.8). For consistent heuris-
tics, the number of iterations in BDDA* can be bounded by the square of
the optimal path length.

Although algebraic decision diagrams (ADDs), that extend BDDs with
floating point labeled sinks, achieve no improvement to BDDs to guide a
symbolic exploration in the 15-Puzzle [380], generalization for probabilistic
planning results in a remarkable improvement to the state-of-the-art [292].
Pattern databases and symbolic representations with BDDs can be combined
to create larger look-up tables and improved estimates for both explicit and
symbolic heuristic search [266]. In conformant planning BDDs also apply
best, while in this case heuristics have to trade information for exploration
gain [119].

Since BDDs are also large graphs, improving memory locality has been
studied e.g. in the breadth-first synthesis of BDDs, that constructs a diagram
levelwise [412]. There is a trade-off between memory overhead and memory
access locality, so that hybrid approaches based on context switches have
been explored [772]. An efficiency analysis shows that BDD reduction of a
decision diagram G can be achieved in O(sort(|G|)) I/Os, while Boolean

11. Memory Limitations in Artificial Intelligence 245

operator application to combine two BDDs G1 and G2 can be performed in
O(sort(|G1|+ |G2|)) I/Os [53].

Domain specific information can control forward chaining search [78]. The
proposed algorithm progresses first order knowledge through operator appli-
cation to generate an extended state description and may be interpreted as
a form of parameterized FSM pruning.

Another space efficient representation for depth-first exploration of the
planning space is a persistent search tree [78], storing and maintaining the set
of instantiations of planning predicates and functions. Recall that persistent
data structures only store differences of states, and are often used for text
editors or version management systems providing fast and memory-friendly
random access to any previously encountered state.

Mixed propositional, temporal and numerical planning aspects call for
plan schedules, in which each action is attached to a fixed time-interval.
In contrast to ordinary scheduling the duration of an action can be state-
dependent. The currently leading approaches2 are an interleaved plan gener-
ator and optimal (PERT) scheduler of the imposed causal structure (MIPS),
and a local search engine on planning graphs, optimizing plan quality by
deleting and adding actions of generated plans governed by Lagrange multi-
pliers (LPG).

Static analysis of planning domains [311] leads to a general efficient state
compression algorithm [268] and is helpful in different planners, especially in
BDD engines. Generic type analysis of domain classes [515] drives the design
of hybrid planners, while different forms of symmetry reduction based on
object isomorphisms, effectively shrink exploration space [313]: generic types
exploit similarities of different domain structures, and symmetry detection
utilizes the parametric description of domain predicates and actions.

Action planning is closely related to error detection in software [269] and
hardware designs [629], where systems are modeled as state transition graphs
of synchronous or asynchronous systems and analyzed by reasoning about
properties of states or paths. As in planning, the central problem is overcom-
ing combinatorial explosion; the number of system states is often exponential
in the number of state variables. The transfer of technology is rising: Bounded
model checking [124] exports the Satplan idea to error detection, symbolic
model checking has lead to BDD based planning, while directed model check-
ing [269] matches with the success achieved with heuristic search planning.

One approach that has not yet been carried over is partial order reduc-
tion [509], which compresses the state space by of avoiding concurrent actions,
thus reducing the effective branching factor. In difference to FSM pruning,
partial ordering sacrifices optimality, detects necessary pruning conditions on
the fly, and utilizes the fact that the state space is composed by the cross
product of smaller state spaces containing many local operators.
2 www.dur.ac.uk/d.p.long/competition.html

246 Stefan Edelkamp

4

4 -1 -7

4 8 9 5 -1 2 5 -7 9

4

4 -1 -7

4 8 9 5 -1 2 5 -7 9

≤ −1 ≤ −7

4

4 -1 -7

4 8 9 2 95-1 5-7

≤ −1 ≤ −7

Fig. 11.9. Mini-max game search tree pruned by αβ and additional move ordering.

11.5 Game Playing

One research area of AI that has ever since dealt with given resource limi-
tations is game playing [666]. Take for example a two-payer zero-sum game
(with perfect information) given by a set of states S, move-rules to modify
states and two players, called Player 0 and Player 1. Since one player is active
at a time, the entire state space of the game is Q = S×{0, 1}. A game has an
initial state and some predicate goal to determine whether the game has come
to an end. We assume that every path from the initial state to a final one is
finite. For the set of goal states G = {s ∈ Q | goal(s)} we define an evaluation
function v : G → {−1, 0, 1}, −1 for a lost position, 1 for a winning position,
and 0 for a draw. This function is extended to v̂ : Q→ {−1, 0, 1} asserting a
game theoretical value to each state in the game. More general settings are
multi-player games and negotiable games with incomplete information [628].

DFS dominates game playing and especially computer chess [531], for
which [387] provides a concise primer, including mini-max search, αβ prun-
ing, minimal-window and quiescence search as well as iterative deepening,
move ordering, and forward pruning. Since game trees are often too large to
be completely generated in time, static evaluation functions assert numbers
to root nodes of unexplored subtrees. Fig. 11.9 illustrates a simple mini-max
game tree with leaf evaluation, and its reduction by αβ pruning and move
ordering. In a game tree of height h with branching factor b the minimal
traversed part tree reduces from size O(bh) to O(

√
bh). Quiescence search

extends evaluation beyond exploration depth until a quiescent position is
reached, while forward pruning refers to different unsound cut-off techniques
to break full-width search. Minimal window search is another inexact approx-
imation of αβ with higher cut-off rates.

As in single-agent search, transposition tables are memory-intense contain-
ers of search information for valuable reuse. The stored move always provides
information, but the memorized score is applicable only if the nominal depth
does not exceed the value of the cached draft.

Since the early 1950s, from the “fruit-fly”-status, Chess has advanced to
one of the main successes in AI, resulting in the defeat of the human-world
champion in a tournament match. DeepThought [532] utilized IBM’s Deep-
Blue architecture for a massive-parallelized, hardware-oriented αβ search
scheme, evaluating and storing billions of nodes within a second, with a fine-

11. Memory Limitations in Artificial Intelligence 247

tuned evaluation function and a large, man-made and computer-validated
opening book.

Nine-Men-Morris has been solved with huge endgame databases
(EDB) [326], in which every state after the initial placement has been as-
serted to its game-theoretical value. The outcome of a complete search is
that the game is a draw. Note that the DeepBlue chess engine is also known
to have held complete EDB on the on-chip memories.

Four Connect has been proven to be a win for the first player in optimal
play using a knowledge-based approach [31] and mini-max-based proof num-
ber search (PNS) [32], that introduces the third value unknown into the game
search tree evaluation. PNS has a working memory requirement linear in the
size of the search tree, while αβ requires only memory linear to the depth of
the tree. To reduce memory consumption [32], solved subtrees are removed,
or leveled execution is performed. PNS also solved GoMoku, where the search
tree is partitioned into a few hundred subtrees, externally stored and com-
bined into a final one [32]. Proof Set Search is a recent improvement to PNS,
that saves node explorations for a more involved memory handling [564].

Hex is another PSPACE complete board game invented by the Danish
mathematician Hein [161]. Since the game can never result in a draw it is easy
to prove that the game is won for the first player to move, since otherwise
he can adopt the winning strategy of the second player to win the game.
The current state-of-the-art program Hexy uses a quite unusual approach
electrical circuit theory to combine the influence of sub-positions (virtual
connections) to larger ones [49].

Go has been addressed by different strategies. One important ap-
proach [562] with exponential savings in some endgames uses a divide-and-
conquer method based on combinatorial game theory [116] in which some
board situations are split into a sum of local games of tractable size. Par-
tial order bounding [563] propagates relative evaluations in the tree and has
also been shown to be effective in Go endgames. It applies to all mini-max
searchers, such as αβ and PNS.

An alternative to αβ search with minimax evaluation is conspiracy number
search (CNS) [537]. The basic idea of CNS is to search the game tree in a
manner that at least c > 1 leaf values have to change in order to change the
root one. CNS has been successfully applied to chess [516, 665].

Memory limitation is most apparent in the construction of EDBs [743].
Different to analytical machine learning approaches [673], that construct an
explanation why the concept being learned works for positive learning exam-
ples — to be stored in operational form for later re-use in similar cases —
EDBs do not discover general rules for infallible play, but are primary sources
of information for the game-theoretical value of the respective endgame posi-
tions. The major compression schemes for positions without pawns use sym-
metries along the axes of the chess board.

248 Stefan Edelkamp

EDB can also be constructed with symbolic, BDD-based exploration [89,
265], but an improving integration of symbolic EDBs in game playing has
still to be given. Some combinatorial chess problems like the total number of
33,439,123,484,294 complete Knight’s tours have been solved with the com-
pressed representation of BDDs [513].

For EDBs to fit into main memory the general principle is to find efficient
encodings. For external usage run-length encoding suits best for output in a
final external file [491]. Huffman encodings [215] are further promising candi-
dates. Thereby, modern game playing programs quickly become I/O bound,
if they probe external EDBs not only at the root node. In checkers [666] the
distributed generation of a very large EDBs has given the edge in favor to the
computer. Schaeffer’s checker program Chinook [667] has perfect EDB infor-
mation for all checker positions involving eight or fewer pieces on the board, a
total of 443,748,401,247 positions generated in large retrograde analysis using
a network of workstations and various high-end computers [491]. Commonly
accessed portions of the database are pre-loaded into memory and have a
greater than 99% hit rate with a 500MB cache [481]. Even with this large
cache, the sequential version of the program is I/O bound. A parallel search-
ing version of Chinook further increased the I/O rate such that computing
the database was even more I/O intensive than running a match.

Interior-node recognition [697] is another memorization technique in game
playing that includes game-theoretical information in form of score values
to cut-off whole subtrees for interior node evaluation in αβ search engines.
Recognizers are only invoked, if transposition table lookups fail. To enrich the
game theoretical information, material signatures are helpful. The memory
access is layered. Firstly, appropriate recognizers are efficiently detected and
selected before a lookup into an EDB is performed [387].

11.6 Other AI Areas

An apparent candidate for hierarchical memory exploitation is data or in-
formation mining [644]; the process of inferring knowledge from very large
databases. Web mining [474] is data mining in the Internet where intelligent
internet systems [502] consider user modeling, information source discover-
ing and information integration. Classification and clustering in data mining
links to the wide range of machine learning [553] techniques with decision-tree
and statistical methods, neural networks, genetic algorithms, nearest neigh-
bor search and rule induction. Association rules are implications of the form
X ⇒ I with I being a binary attribute. Set X has support s, if s% of all data
is in X , whereas a rule X ⇒ I has confidence c, if c% of all data that are in
X also obey I. Given a set of transactions D, the problem is to generate all
association rules that have user-specified minimum support and confidence.

The main association rule induction algorithm is AIS [18]. For fast discov-
ery, the algorithm was improved in Apriori. The first pass of the algorithm

11. Memory Limitations in Artificial Intelligence 249

simply counts the number of occurrences of each item to determine itemsets
of cardinality 1 with minimum support. In the k-th pass the itemset with
(k− 1) elements and minimum support of phase (k− 1) are used to generate
a candidate set, which by scanning the database yields the support of the
candidate set and the k-itemset with minimum support. The running time of
Apriori is O(|C| · |D|), where |D| is the size of the database and |C| the total
number of generated candidates. Even advanced association rule inference
requires substantial processing power and main memory [757]. An example
to hierarchical memory usage is a distributed rule discovery algorithm [189].

Case-based reasoning (CBR) [449] systems integrate database storage
technology into knowledge representation systems. CBR systems store pre-
vious experiences (cases) in memory and in order to solve new problems, i)
retrieve similar experience about similar situation from memory ii) complete
or partial re-use or adapt the experience in the context of the new situation,
iii) store new experience in memory. We give a few examples that are re-
ported to explicitly use secondary memory. Parka-DB [706] is a knowledge
base with a reduction in primary storage with 10% overhead in time, decreas-
ing the load time by more than two orders of magnitude. Framer [369] is a
disk-based object-oriented knowledge based system, whereas Thenetsys [609]
is a semantic network system that employs secondary memory structure to
transfer network nodes from the disk into main memory and vice versa.

Automated theorem proving procedures draw inferences on a set of clauses
Γ → ∆, with Γ and ∆ as multisets of atoms. A top-down proof creates a
proof tree, where the node label of each interior node corresponds to the
conclusion, and the node labels of its children correspond to the premises
of an inference step. Leaves of the proof tree are axioms or instances of
proven theorems. A proof state represents the outer fragment of a proof tree:
the top-node, representing the goal and all leaves, representing the subgoals
of the proof state. All proven leaves can be discharged, because they are
not needed for further proof search. If all subgoals have been solved, the
proof is successful. Similar to action planning, proof-state based automated
theorem proving spans large and infinite state spaces. The overall problem is
undecidable and can be tackled by user invention and implicit enumeration
only. While polynomial decision procedures exists for restricted classes [538],
first general heuristic search algorithms to accelerate exploration have been
proposed [270].

11.7 Conclusions

The spectrum of research in memory limited algorithms for representing
and exploring large or even infinite problem spaces is enormous and encom-
passes large subareas of AI. We have seen alternative approaches to exploit
and memorize problem specific knowledge and some schemes that explic-
itly schedule external memory. Computational trade-offs under bounded re-

250 Stefan Edelkamp

sources become increasingly important, as e.g. a recent issue of Artificial In-
telligence [381] with articles on recursive conditioning, algorithm portfolios,
anytime algorithms, continual computation, and iterative state space reduc-
tion indicates. Improved design of hierarchical memory algorithms, probably
special-tailored to AI exploration, are apparently needed.

Nevertheless, there is much more research, sensibility, and transfer of re-
sults needed, as two feedbacks of German AI researchers illustrate. For the
case of external algorithms, Bernhard Nebel [578] mentions that current mem-
ory sizes of 256MB up to several GB make the question of refined secondary
memory access no longer that important. This argument neglects that even
by larger amount of main memory the latency gap still rises, and that with
current CPU speed, exploration engines often exhaust main memory in less
than a few minutes.

For the case of processor performance tuning, action execution in robotics
has a high frequency of 10-20 Hz, but there is almost no research in improved
cache performance: Wolfram Burgard [165] reports some successes by restruc-
turing loops in one application, but has also seen failures for hand-coded
assembler inlines to beat the optimized compiler outcome in another.

The ultimative motivation for an increased research in space limitations
and hierarchical memory usage in AI is its inspirator, the human brain,
with an hierarchical layered organization structure, including ultra short time
working memory, as well as short and long time memorization capabilities.

Acknowledgments. The work is supported by DFG in the projects heuristic
search and its application to protocol verification and directed model checking.

	11.1 Introduction
	11.2 Hierarchical Memory
	11.3 Single-Agent Search
	11.4 Action Planning
	11.5 Game Playing
	11.6 Other AI Areas
	11.7 Conclusions

