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Abstract. Navigation systems assist almost any kind of motion in the physical
world including sailing, flying, hiking, driving and cycling. On the other hand,
traces supplied by global positioning systems (GPS) can track actual time and
absolute coordinates of the moving objects.
Consequently, this paper addresses efficient algorithms and data structures for
the route planning problem based on GPS data; given a set of traces and a current
location, infer a short(est) path to the destination.
The algorithm of Bentley and Ottmann is shown to transform geometric GPS
information directly into a combinatorial weighted and directed graph structure,
which in turn can be queried by applying classical and refined graph traversal
algorithms like Dijkstras’ single-source shortest path algorithm or A*.
For high-precision map inference especially in car navigation, algorithms for road
segmentation, map matching and lane clustering are presented.

1 Introduction

Route planning is one of the most important application areas of computer science in
general and graph search in particular. Current technology like hand-held computers,
car navigation and GPS positioning systems ask for a suitable combination of mobile
computing and course selection for moving objects.

In most cases, a possibly labeled weighted graph representation of all streets and
crossings, called the map, is explicitly available. This contrasts other exploration prob-
lems like puzzle solving, theorem proving, or action planning, where the underlying
problem graph is implicitly described by a set of rules.

Applying the standard solution of Dijkstra’s algorithm for finding the single-source
shortest path (SSSP) in weighted graphs from an initial node to a (set of) goal nodes
faces several subtle problems inherent to route planning:

1. Most maps come on external storage devices and are by far larger than main mem-
ory capacity. This is especially true for on-board and hand-held computer systems.
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2. Most available digital maps are expensive, since exhibiting and processing road in-
formation e.g. by surveying methods or by digitizing satellite images is very costly.

3. Maps are likely to be inaccurate and to contain systematic errors in the input sources
or inference procedures.

4. It is costly to keep map information up-to-date, since road geometry continuously
changes over time.

5. Maps only contain information on road classes and travel distances, which is often
not sufficient to infer travel time. In rush hours or on bank holidays, the time needed
for driving deviates significantly from the one assuming usual travel speed.

6. In some regions of the world digital maps are not available at all.

The paper is subdivided into two parts. In the first part, it addresses the process of
map construction based on recorded data. In Section 2, we introduce some basic defi-
nitions. We present the travel graph inference problem, which turns out to be a derivate
of the output sensitive sweep-line algorithm of Bentley and Ottmann. Subsequently,
Section 3 describes an alternative statistical approach. In the second part, we provide
solutions to accelerate SSSP computations for time or length optimal route planning
in an existing accurate map based on Dijkstra’s algorithm, namely A* with the Eu-
clidean distance heuristic and refined implementation issues to deal with the problem
of restricted main memory.

2 Travel Graph Construction

Low-end GPS data devices with accuracies of about 2-15 m and mobile data loggers
(e.g. in form of palmtop devices) that store raw GPS data entries are nowadays easily
accessible and widly distributed. To visualize data in addition to electronic road maps,
recent software allows to include and calibrate maps from the Internet or other sources.
Moreover, the adaption and visualization of topographical maps is no longer compli-
cated, since high-quality maps and visualization frontends are provided at low price
from organizations like the Surveying Authorities of the States of the Federal Republic
of Germany with the TK50 CD series. Various 2D and 3D user interfaces with on-line
and off-line tracking features assist the preparation and the reflection of trips.

In this section we consider the problem of generating a travel graph given a set of
traces, that can be queried for shortest paths. For the sake of clarity, we assume that the
received GPS data is accurate and that at each inferred crossing of traces, a vehicle can
turn into the direction that another vehicle has taken.

With current technology of global positioning systems, the first assumption is al-
most fulfilled: on the low end, (differential) GPS yields an accuracy in the range of
a few meters; high end positioning systems with integrated inertial systems can even
achieve an accuracy in the range of centimeters.

The second assumption is at least feasible for hiking and biking in unknown terrain
without bridges or tunnels. To avoid these complications especially for car navigation,
we might distinguish valid from invalid crossings. Invalid crossing are ones with an
intersection angle above a certain threshold and difference in velocity outside a certain
interval. Fig. 1 provides a small example of a GPS trace that was collected on a bike on
the campus of the computer science department in Freiburg.
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# latitude, longitude, date (yyyymmdd), time (hhmmss)

48.0131754,7.8336987,20020906,160241
48.0131737,7.8336991,20020906,160242
48.0131720,7.8336986,20020906,160243
48.0131707,7.8336984,20020906,160244
48.0131716,7.8336978,20020906,160245
48.0131713,7.8336975,20020906,160246

Figure 1. Small GPS trace.

2.1 Notation

We begin with some formal definitions. Points in the plane are elements of IR× IR, and
line segments are pairs of points. A timed point p = (x,y,t) has global coordinates x and
y and additional time stamp t, where t ∈ IR is the absolute time to be decoded in year,
month, day, hour, minute, second and fractions of a second. A timed line segment is a
pair of timed points. A trace T is a sequence of timed points p1 = (x1,y1, t1), . . . , pn =
(xn,yn,tn) such that ti, 1 ≤ i ≤ n, is increasing. A timed path P = s1, . . . ,sn−1 is the
associated sequence of timed line segments with si = (pi, pi+1), 1≤ i < n. The angle of
consecutive line segements on a (timed) path and the velocity on timed line segments
are immediate consequences of the above definitions.

The trace graph GT = (V,E,d, t) is a directed graph defined by v ∈V if its coordi-
nates (xv,yv) are mentioned in T , e = (u,v)∈ E if the coordinates of u and v correspond
to two successive timed points (xu,yu, tu) and (xv,yv, tv) in T , d(e) = ||u− v||2, and
t(e) = tv− tu, where ||u− v||2 denotes the Euclidean distance between (the coordinates
of) u and v.

The travel graph G′T = (V ′,E ′,d, t) is a slight modification of GT including its line
segment intersections. More formally, let si ∩ s j = r denote that si and s j intersect in
point p, and let I = {(r, i, j) | si∩ s j = r} be the set of all intersections, then V ′ = V ∪
{r | (r, i, j) ∈ I} and E ′ = E ∪ Ea \ Ed , where Ed = {(si,s j) | ∃r : (r, i, j) ∈ I}, and Ea =
{(p,r),(r,q),(p′,r),(r,q′) ∈ V ′ ×V ′ | (r, i, j) ∈ I and r = (si = (p,q)∩ s j = (p′,q′))}.
Note that intersection points r have no time stamp. Once more, the new cost values for
e = (u,v) ∈ E ′ \E are determined by d(e) = ||u− v||2, and by t(e) = t(e′)d(e)/d(e′)
with respect to the original edge e′ ∈ Ed . The latter definition of time assumes a uniform
speed on every line segment, which is plausible on sufficiently small line segments.

The travel graph G′D of a set D of traces T1, . . .Tl is the travel graph of the union
graph of the respective trace graphs GT1 , . . . ,GTk , Where the union graph G = (V,E) of
two graphs G1 = (V1,E1) and G2 = (V2,E2) is defined as V = V1∪V2 and E = E1∪E2.

For the sake of simplicity, we assume that all crossings are in general position, so
that not more than two line segments intersect in one point. This assumption is not a
severe restriction, since all algorithms can be adapted to the more general case. We also
might exclude matching endpoints from the computation, since we already know that
two consecutive line segments intersect at the recorded data point. If a vehicle stops
while the GPS recorder is running, zero-length sequences with strictly positive time
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delays are generated. Since zero-length segments cannot yield crossings, the problem
of self loops might be dealt with ignoring these segments for travel graph generation
and a re-inserting them afterwards to allow timed shortest path queries.

2.2 Algorithm of Bentley and Ottmann

The plane-sweep algorithm of Bentley and Ottmann [3] infers an undirected planar
graph representation (the arrangement) of a set of segments in the plane and their inter-
sections. The algorithm is one of the most innovative schemes both from a conceptual
and from a algorithmical point of view.

From a conceptional point of view it combines the two research areas of computa-
tional complexity and graph algorithms. The basic principle of an imaginary sweep-line
that stops on any interesting event is one of the most powerful technique in geome-
try e.g. to directly compute the Voronoi diagram on a set of n points in optimal time
O(n logn), and is a design paradigm for solving many combinatorial problems like the
minimum and maximum in a set of values in the optimal number of comparisons, or the
maximum sub-array sum in linear time with respect to the number of elements.

From an algorithmical point of view the algorithm is a perfect example of the ap-
plication of balanced trees to reduce the complexity of an algorithm. It is also the first
output-sensitive algorithm, since its time complexity O((n + k) logn) is measured in
both the input and the output length, due to the fact that n input segments may give rise
to k = O(n2) intersections.

The core observation for route planning is that, given a set of traces D in form of a
sequence of segments, the algorithm can easily be adapted to compute the correspond-
ing travel graph G′D. In difference to the original algorithm devised for computational
geometry problems, the generated graph structure has to be directed. The direction of
each edge e as well as its distance d(e) and travel time t(e) is determined by the two
end nodes of the segment. This includes intersections: the newly generated edges inherit
direction, distance and time from the original end points.

In Fig. 2 we depicted a snapshot of the animated execution of the algorithm in the
client-server visualization Java frontend VEGA [15] i) on a line segment sample set and
ii) on an extended trail according to Fig. 1. The sweep-line proceeds from left to right,
with the completed graph to its left.

The algorithm utilizes two data structures: the event queue and the status structure.
In the event queue the active points are maintained, ordered with respect to their x-
coordinate. In the status structure the active set of segments with respect to the sweep
line is stored in y-ordering. At each intersection the ordering of segments in the sta-
tus structure may change. Fortunately, the ordering of segments that participate in the
intersections simply reverses, allowing fast updates in the data structure. After new
neighboring segments are found, their intersections are computed and inserted into the
event queue. The abstract data structure needed for implementation are a priority queue
for the event queue and a search tree with neighboring information for the status data
structure. Using a standard heap for the former and a balance tree for the latter imple-
mentation yields an O((n + k) logn) time algorithm.

The lower bound of the problem’s complexity is Ω(n logn + k) and the first step
to improve time performance was O(n log2 n/ loglogn + k) [5]. The first O(n logn + k)
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Figure 2. Visualization of the sweep-line algorithm of Bentley and Ottmann on a i) tiny
and ii) small data set in the client-server visualization Java frontend VEGA.

algorithm [6] used O(n + k) storage. The O(n logn + k) algorithm with O(n) space is
due to Balaban [2].

For trace graphs the O((n + k) logn) implementation is sufficiently fast in practice.
As a small example trace file consider n = 216 = 65,536 segment end points with k =
28 = 256 intersections. Then n2 = 232 = 4,294,967,296, while (n + k) logn = (216 +
28) ·16 = 1,052,672 and n logn + k = 1,048,832.

3 Statistical Map Inference

Even without map information, on-line routing information is still available, e.g. a driv-
ing assistance system could suggest you are 2 meters off to the right of the best route, or
you have not followed the suggested route, I will recompute the shortest path from the
new position, or turn left in about 100 meter in a resulting angle of about 60 degrees.

Nevertheless, route planning in trace graphs may have some limitations in the pre-
sentation of the inferred route to a human, since abstract maps compact information and
help to adapt positioning data to the real-world.

In this section, an alternative approach to travel graphs is presented. It concentrates
on the map inference and adaptation problem for car navigation only, probably the most
important application area for GPS routing. One rationale in this domain is the follow-
ing. Even in one lane, we might have several traces that overlap, so that the number of
line segment intersections k can increase considerably. Take m/2 parallel traces on this
lane that intersect another parallel m/2 traces on the lane a single lane in a small angle,
then we expect up to Θ(m2) intersections in the worst case.

We give an overview of a system that automatically generates digital road maps
that are significantly more precise and contain descriptions of lane structure, including
number of lanes and their locations, and also detailed intersection structure. Our ap-
proach is a statistical one: we combine ’lots of bad’ GPS data from a fleet of vehicles,
as opposed to ’few but highly accurate’ data obtained from dedicated surveying vehi-
cles operated by specially trained personnel. Automated processing can be much less
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expensive. The same is true for the price of DGPS systems; within the next few years,
most new vehicles will likely have at least one DGPS receiver, and wireless technology
is rapidly advancing to provide the communication infrastructure. The result will be
more accurate, cheaper, up-to-date maps.

3.1 Steps in the Map Refinement Process

Currently commercially available digital maps are usually represented as graphs, where
the nodes represent intersections and the edges are unbroken road segments that con-
nect the intersections. Each segment has a unique identifier and additional associated
attributes, such as a number of shape points roughly approximating its geometry, the
road type (e.g., highway, on/off-ramp, city street, etc), speed information, etc. Gener-
ally, no information about the number of lanes is provided. The usual representation for
a a two-way road is by means of a single segment. In the following, however, we depart
from this convention and view segments as unidirectional links, essentially splitting
those roads in two segments of opposite direction. This will facilitate the generation of
the precise geometry.

The task of map refinement is simplified by decomposing it into a number of suc-
cessive, dependent processing steps. Traces are divided into subsections that correspond
to the road segments as described above, and the geometry of each individual segment
is inferred separately. Each segment, in turn, comprises a subgraph structure capturing
its lanes, which might include splits and merges. We assume that the lanes of a segment
are mostly parallel. In contrast to commercial maps, we view an intersection as a struc-
tured region, rather than a point. These regions limit the segments at points where the
traces diverge and consist of unconstrained trajectories connecting individual lanes in
adjacent segments.

The overall map refinement approach can be outlined as follows.

1. Collect raw DGPS data (traces) from vehicles as they drive along the roads. Cur-
rently, commercially available DGPS receivers output positions (given as longi-
tude/latitude/altitude coordinates with respect to a reference ellipsoid) at a regular
frequency between 0.1 and 1 Hz.
Optionally, if available, measurements gathered for the purpose of electronic safety
systems (anti-lock brakes or electronic stability program), such as wheel speeds
and accelerometers, can be integrated into the positioning system through a Kalman
filter [14]. In this case, the step 2 (filtering or smoothing) can be accomplished in
the same procedure.

2. Filter and resample the traces to reduce the impact of DGPS noise and outliers. If,
unlike in the case of the Kalman filter, no error estimates are available, some of the
errors can be detected by additional indicators provided by the receiver, relating to
satellite geometry and availability of the differential signal; others (e.g., so-called
multipath errors) only from additional plausibility tests, e.g., maximum accelera-
tion according to a vehicle model. Resampling is used to balance out the bias of
traces recorded at high sampling rates or at low speed. Details of the preprocessing
are beyond the scope of the current paper and can be found in a textbook such as
[23].
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3. Partition the raw traces into sequences of segments by matching them to an initial
base map. This might be a commercial digital map, such as that of Navigation
Technologies, Inc. [22]. Section 3.2 presents an alternative algorithm for inferring
the network structure from scratch, from a set of traces alone.
Since in our case we are not constrained to a real-time scenario, it is useful to
consider the context of sample points when matching them to the base map, rather
than one point at a time. We implemented a map matching module that is based
on a modified best-first path search algorithm based on the Dijkstra-scheme [9],
where the matching process compares the DGPS points to the map shape points
and generates a cost that is a function of their positional distance and difference in
heading. The output is a file which lists, for each trace, the traveled segment IDs,
along with the starting time and duration on the segment, for the sequence with
minimum total cost (a detailed description of map matching is beyond the scope of
this paper).

4. For each segment, generate a road centerline capturing the accurate geometry that
will serve as a reference line for the lanes, once they are found. Our spline fitting
technique will be described in Section 3.3.

5. Within each segment, cluster the perpendicular offsets of sample points from the
road centerline to identify lane number and locations (cf. Section 3.4).

3.2 Map Segmentation

In the first step of the map refinement process, traces are decomposed into a sequence
of sections corresponding to road segments. To this end, an initial base map is needed
for map matching. This can either be a commercially available map, such as that of
Navigation Technologies, Inc. [22]; or, we can infer the connectivity through a spatial
clustering algorithm, as will be described shortly.

These two approaches both have their respective advantages and disadvantages. The
dependence on a commercial input map has the drawback that, due to its inaccuracies
(Navigation Technologies advertises an accuracy of 15 meters), traces sometimes are
incorrectly assigned to a nearby segment. In fact, we experienced this problem espe-
cially in the case of highway on-ramps, which can be close to the main lanes and have
similar direction.

A further disadvantage is that roads missing in the input map cannot be learned at
all. It is impossible to process regions if no previous map exists or the map is too coarse,
thus omitting some roads.

On the other hand, using a commercial map as the initial baseline associates addi-
tional attributes with the segments, such as road classes, street names, posted speeds,
house numbers, etc. Some of these could be inferred from traces by related algorithms
on the basis of average speeds, lane numbers, etc. Pribe and Rogers [25] describe an
approach to learning traffic controls from GPS traces. An approach to travel time pre-
diction is presented in [13]. However, obviously not all of this information can be in-
dependently recovered. Moreover, with the commercial map used for segmentation, the
refined map will be more compatible and comparable with applications based on exist-
ing databases.
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Figure 3. Distance between candidate trace and cluster seed

Road Segment Clustering In this section, we outline an approach to inferring road
segments from a set of traces simultaneously. Our algorithm can be regarded as a spatial
clustering procedure. This class of algorithms is often applied to recognition problems
in image processing (See e.g. [10] for an example of road finding in aerial images).
In our case, the main questions to answer are to identify common segments used by
several traces, and to locate the branching points (intersections). A procedure should be
used that exploits the contiguity information and temporal order of the trace points in
order to determine the connectivity graph. We divide it into three stages: cluster seed
location, seed aggregation into segments, and segment intersection identification.

Cluster Seed Location Cluster seed location means finding a number of sample points
on different traces belonging to the same road. Assume we have already identified a
number of trace points belonging to the same cluster; from these, a mean values for
position and heading is derived. In view of the later refinement step described in Sec-
tion 3.3, we can view such a cluster center as one point of the road centerline.

Based on the assumption of lane parallelism, we measure the distance between
traces by computing their intersection point with a line through the cluster center that
runs perpendicular to the cluster heading; this is equivalent to finding those points on
the traces whose projection onto the tangent of the cluster coincides with the cluster
location, see Fig. 3.

Our similarity measure between a new candidate trace and an existing cluster is
based both on its minimum distance to other member traces belonging to the cluster,
computed as described above; and on the difference in heading. If both of these indi-
cators are below suitable thresholds (call them θ and δ, respectively) for two sample
points, they are deemed to belong to the same road segment.

The maximum heading difference δ should be chosen to account for the accuracy
of the data, such as to exclude sample points significantly above a high quantile of the
error distribution. If such an estimate is unavailable, but a number of traces have already
been found to belong to the cluster, the standard deviation of these members can give a
clue. In general we found that the algorithm is not very sensitive to varation of δ.

The choice of θ introduces a trade-off between two kinds of segmentation errors:
if it is too small, wide lanes will be regarded as different roads; in the opposite case,
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< d max

Figure 4. Example of traces with cluster seeds

nearby roads would be identified. In any case, the probablility that the GPS error ex-
ceeds the difference between the distance to the nearest road and the lane width is a
lower bound for the segmentation error. A suitable value depends on the expected GPS
errors, characteristics of the map (e.g., the relative frequencies of four-way intersec-
tions vs. freeway ramps), and also on the relative risks associated with both tyes of
errors which are ultimately determined by the final application. As a conservative lower
bound, θ should be at least larger than the maximum lane width, plus a tolerance (es-
timated standard deviation) for driving off the center of the lane, plus a considerable
fraction of an estimated standard deviation of the GPS error. Empirically, we found the
results with values in the range of 10–20 meters to be satisfying and sufficiently stable.

Using this similarity measure, the algorithm now proceeds in a fashion similar to the
k-means algorithm [19]. First, we initialize the cluster with some random trace point.
At each step, we add the closest point on any of the traces not already in the cluster,
unless θ or δ is exceeded. Then, we recompute the average position and heading of the
cluster center. Due to these changes, it can sometimes occur that trace points previously
contained in the cluster do no longer satisfy the conditions for being on the same road;
in this case they are removed. This process is repeated, until no more points can be
added.

In this manner, we repeatedly generate cluster seeds at different locations, until each
trace point has at least one of them within reach of a maximum distance threshold dmax.
This threshold should be in an order of magnitude such that we ensure not to miss any
intersection (say, e.g., 50 meters). A simple greedy strategy would follow each trace
and add a new cluster seed at regular intervals of length dmax when needed. An example
section of traces, together with the generated cluster centers, are shown in Fig. 4.

Segment Merging The next step is to merge those ones of the previously obtained clus-
ter centers that belong to the same road. Based on the connectivity of the traces, two
such clusters C1 and C2 can be characterized in that (1) w.l.o.g. C1 precedes C2, i.e., all
the traces belonging to C1 subsequently pass through C2, and (2) all the the traces be-
longing to C2 originate from C1. All possible adjacent clusters satisfying this condition
are merged. A resulting maximum chain of clusters C1,C2, . . . ,Cn is called a segment,
and C1 and Cn are called the boundary clusters of the segment.
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Figure 5. Merged cluster seeds result in segments

At the current segmentation stage of the map refinement process, only a crude ge-
ometric representation of the segment is sufficient; its precise shape will be derived
later in the road centerline generation step (Section 3.3). Hence, as an approximation,
adjacent cluster centers can either be joined by straight lines, polynomials, or one rep-
resentative trace part (in our algorithms, we chose the latter possibility). In Fig. 5, the
merged segments are connected with lines.

Intersections The only remaining problem is now to represent intersections. To capture
the extent of an intersection more precisely, we first try to advance the boundary clusters
in the direction of the split- or merge zone. This can be done by selecting a point from
each member trace at the same (short) travel distance away from the respective sample
point belonging to the cluster, and then again testing for contiguity as described above.
We extend the segment iteratively in small increments, until the test fails.

The set of adjacent segments of an intersection is determined by (1) selecting all
outgoing segments of one of the member boundary clusters; (2) collecting all incoming
segments of the segments found in (1); and iterating these steps until completion. Each
adjacent segment should be joined to each other segment for which connecting traces
exist.

We utilize the concept of a snake borrowed from the domain of image processing,
i.e., a contour model that is fit to (noisy) sample points. In our case, a simple star-
shaped contour suffices, with the end points held fixed at the boundary cluster centers
of the adjacent segments. Conceptually, each sample points exert an attracting force on
it closest edge. Without any prior information on the shape of the intersection, we can
define the ’energy’ to be the sum of the squared distances between each sample point
and the closest point on any of the edges, and then iteratively move the center point
in an EM-style fashion in order to minimize this measure. The dotted lines in Fig. 6
correspond to the resulting snake for our example.

Dealing with Noisy Data Gaps in the GPS receiver signal can be an error source for
the road clustering algorithm. Due to obstructions, it is not unusual to find gaps in the
data that span a minute. As a result, interpolation between distant points is not reliable.
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Figure 6. Traces, segments, and intersection contour model (dotted)

As mentioned above, checking for parallel traces crucially depends on heading in-
formation. For certain types of positioning systems used to collect the data, the heading
might have been determined from the direction of differences between successive sam-
ple points. In this case, individual outliers, and also lower speeds, can lead to even larger
errors in direction.

Therefore, in the first stage of our segmentation inference algorithm, filtering is
performed by disregarding trace segments in cluster seeds that have a gap within a
distance of dmax, or fall outside a 95 percent interval in the heading or lateral offset
from the cluster center. Cluster centers are recomputed only from the remaining traces,
and only they contribute to the subsequent steps of merging and intersection location
with adjacent segments.

Another issue concerns the start and end parts of traces. Considering them in the
map segmentation could introduce segment boundaries at each parking lot entrance. To
avoid a too detailed breakup, we have to disregard initial and final trace sections. Differ-
ent heuristics can be used; currently we apply a combined minimum trip length/speed
threshold.

3.3 Road Centerline Generation

We now turn our attention to the refinement of individual segments. The road center-
line is a geometric construct whose purpose is to capture the road geometry. The road
centerline can be thought of as a weighted average trace, hence subject to the relative
lane occupancies, and not necessarily a trajectory any single vehicle would ever follow.
We assume, however, the lanes to be parallel to the road centerline, but at a (constant)
perpendicular offset. For the subsequent lane clustering, the road centerline helps to
cancel out the effects of curved roads.

For illustration, Fig. 7 shows a section of a segment in our test area. The indicated
sample points stem from different traces. Clearly, by comparison, the shape points of
the respective NavTech segment exhibit a systematic error. The centerline derived from
the sample points is also shown.

It is useful to represent our curves in parametric form, i.e., as a vector of coordi-
nate variables C(u) = (x,y,z)(u) which is a function of an independent parameter u, for
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Figure 7. Segment part: NavTech map (bottom), trace points (crosses), and computed
centerline

0 ≤ u ≤ 1. The centerline is generated from a set of sample points using a weighted
least squares fit. More precisely, assume that Q0, . . . ,Qm−1 are the m data points given,
w0, . . . ,wm−1, are associated weights (dependent on an error estimate), and ū0, . . . , ūm−1′
their respective parameter values. The task can be formulated as finding a paramet-
ric curve C(u) from a class of functions S such that the Qk are approximated in the
weighted least square sense, i.e.

s :=
m−1

∑
k=0

wk · ‖Qk−C(ūk)‖2

in a minimum with respect to S , where ‖ · ‖ denotes the usual Euclidean distance (2-
norm). Optionally, in order to guarantee continuity across segments, the algorithm can
easily be generalized to take into account derivatives; if heading information is avail-
able, we can use coordinate transformation to arrive at the desired derivative vectors.

The class S of approximating functions is composed of rational B-Splines, i.e.,
piecewise defined polynomials with continuity conditions at the joining knots (for de-
tails, see [24; 27]). For the requirement of continuous curvature, the degree of the poly-
nomial has to be at least three.

If each sample point is marked with an estimate of the measurement error (standard
deviation), which is usually available from the receiver or a Kalman filter, then we can
use its inverse to weight the point, since we want more accurate points to contribute
more to the overall shape.

The least squares procedure [24] expects the number of control points n as input,
the choice of which turns out to be critical. The control points define the shape of the
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spline, while not necessarily lying on the spline themselves. We will return to the issue
of selecting an adequate number of control points in Section 3.3.

Choice of Parameter Values for Trace Points For each sample point Qk, a parameter
value ūk has to be chosen. This parameter vector affects the shape and parameterization
of the spline. If we were given a single trace as input, we could apply the widely used
chord length method as follows. Let d be the total chord length d = ∑m−1

k=1 |Qk−Qk−1|.
Then set ū0 = 0, ūm−1 = 1, and ūk = ūk−1 + |Qk−Qk−1|

d for k = 1, . . . ,m− 2. This gives
a good parameterization, in the sense that it approximates a uniform parameterization
proportional to the arc length.

For a set of k distinct traces, we have to impose a common ordering on the combined
set of points. To this end, we utilize an initial rough approximation, e.g., the polyline
of shape points from the original NavTech map segment s; if no such map segment is
available, one of the traces can serve as a rough baseline for projection. Each sample
point Qk is projected onto s, by finding the closest interpolated point on s and choosing
ūk to be the chord length (cumulative length along this segment) up to the projected
point, divided by the overall length of s. It is easy to see that for the special case of a
single trace identical to s, this procedure coincides with the chord length method.

Choice of the Number of Control Points The number of control points n is crucial
in the calculation of the centerline; for a cubic spline, it can be chosen freely in the
valid range [4,m−1]. Fig. 8 shows the centerline for one segment, computed with three
different parameters n.

Note that a low number of control points may not capture the shape of the centerline
sufficiently well (n = 4); on the other hand, too many degrees of freedom causes the
result to “fit the error”. Observe how the spacing of sample points influences the spline
for the case n = 20.

From the latter observation, we can derive an upper bound on the number of control
points: it should not exceed the average number of sample points per trace, multiplied
by a small factor, e.g., 2∗m/k.

While the appropriate number of control points can be easily estimated by human
inspection, its formalization is not trivial. We empirically found that two measures are
useful in the evaluation.

The first one is related to the goodness of fit. Averaging the absolute offsets of the
sample points from the spline is a feasible approach for single-lane roads, but otherwise
depends on the number and relative occupancies of lanes, and we do not expect this
offset to be zero even in the ideal case. Intuitively, the centerline is supposed to stay
roughly in the middle between all traces; i.e., if we project all sample points on the
centerline, and imagine a fixed-length window moving along the centerline, then the
average offset of all sample points whose projections fall into this window should be
near to zero. Thus, we define the approximation error εfit as the average of these offsets
over all windows.

The second measure checks for overfitting. As illustrated in Fig. 8, using a large
number of control points renders the centerline “wiggly”, i.e., tends to increase the
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Figure 8. Trace points and centerlines computed with varying number of control points

curvature and makes it change direction frequently. However, according to construc-
tion guidelines, roads are designed to be piecewise segments of either straight lines or
circles, with clothoids between as transitions. These geometric concepts constrain the
curvature to be piecewise linear. As a consequence, the second derivative of the cur-
vature is supposed to be zero nearly everywhere, with the exception of the segment
boundaries where it might be singular. Thus, we evaluate the curvature of the spline at
constant intervals and numerically calculate the second derivative. The average of these
values is the curvature error εcurv.

Fig. 9 plots the respective values of εfit and εcurv for the case of Fig. 8 as a function of
the number of control points. There is a tradeoff between εfit and εcurv; while the former
tends to decrease rapidly, the latter increases. However, both values are not completely
monotonic.

Searching the space of possible solutions exhaustively can be expensive, since a
complete spline fit has to be calculated in each step. To save computation time, the
current approach heuristically picks the largest valid number of control points for which
εcurv lies below an acceptable threshold.

3.4 Lane Finding

After computing the approximate geometric shape of a road in the form of the road
centerline, the aim of the next processing step is to infer the number and positions
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of its lanes. The task is simplified by canceling out road curvature by the following
transformation. Each trace point P is projected onto the centerline for the segment, i.e.,
its nearest interpolated point P′ on the map is determined. Again, the arc length from the
first centerline point up to P′ is the distance along the segment; the distance between
P and P′ is referred to as its offset. An example of the transformed data is shown in
Fig. 10.

Intuitively, clustering means assigning n data points in a d-dimensional space to k
clusters such that some distance measure within a cluster (i.e., either between pairs of
data belonging to the same cluster, or to a cluster center) is minimized (and is maxi-
mized between different clusters). For the problem of lane finding, we are considering
points in a plane representing the flattened face of the earth, so the Euclidean distance
measure is appropriate.

Since clustering in high-dimensional spaces is computationally expensive, methods
like the k-means algorithm use a hill-climbing approach to find a (local) minimum so-
lution. Initially, k cluster centers are selected, and two phases are iteratively carried out
until cluster assignment converges. The first phase assigns all points to their nearest
cluster center. The second phase recomputes the cluster center based on the respective
constituent points (e.g., by averaging) [19].

Segments with Parallel Lanes If we make the assumption that lanes are parallel over
the entire segment, the clustering is essentially one-dimensional, taking only into ac-
count the offset from the road centerline. In our previous approach [26], a hierarchical
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agglomerative clustering algorithm (agglom) was used that terminated when the two
closest clusters were more than a given distance apart (which represented the maximum
width of a lane). However, this algorithm requires O(n3) computation time. More re-
cently, we have found that it is possible to explicitly compute the optimal solution in
O(k ·n2) time and O(n) space using a dynamic programming approach, where n denotes
the number of sample points, and k denotes the maximum number of clusters [27].

Segments with Lane Splits and Merges We have previously assumed the ideal case
of a constant number of lanes at constant offsets from the road centerline along the
whole segment. However, lane widths may gradually change; in fact, they usually get
wider near an intersection. Moreover, new lanes can start at any point within a segment
(e.g., turn lanes), and lanes can merge (e.g., on-ramps). Subsequently, we present two
algorithms that can accommodate the additional complexity introduced by lane merges
and splits.

One-dimensional Windowing with Matching One solution to this problem is to augment
the one-dimensional algorithm with a windowing approach. We divide the segment into
successive windows with centers at constant intervals along the segment. To minimize
discontinuities, we use a Gaussian convolution to generate the windows. Each window
is clustered separately as described above, i.e., the clustering essentially remains one-
dimensional. If the number of lanes in two adjacent windows remains the same, we can
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associate them in the order given. For lane splits and merges, however, lanes in adjacent
windows need to be matched.

To match lanes across window boundaries, we consider each trace individually (the
information as to which trace each data point belongs to has not been used in the cen-
terline generation, nor the lane clustering). Following the trajectory of a given trace
through successive windows, we can classify its points according to the computed lanes.
Accumulating these counts over all traces yields a matrix of transition frequencies for
any pair of lanes from two successive windows. Each lane in a window is matched to
that lane in the next window with maximum transition frequency.

3.5 Experimental Results

We have now completed our account of the individual steps in the map refinement pro-
cess. In this section, we report on experiments we ran in order to evaluate the learning
rate of our map refinement process. Our test area in Palo Alto, CA, covered 66 segments
with a combined length of approximately 20 km of urban and freeway roads of up to
four lanes, with an average of 2.44 lanes.

One principal problem we faced was the availability of a ground truth map with
lane-level accuracy for comparison. Development of algorithms to integrate vision-
based lane tracker information is currently under way. Unfortunatly, however, these
systems have errors on their own and therefore cannot be used to gauge the accuracy
of the pure position-based approach described in this article. Therefore, we reverted to
the following procedure. We used a high-end real-time kinematic carrier phase DGPS
system to generate a base map with few traces [32]. According to the announced accu-
racy of the system of about 5 cm, and after visual inspection of the map, we decided to
define the obtained map as our baseline. Specifically, the input consisted of 23 traces at
different sampling rates between 0.25 and 1Hz.

Subsequently, we artificially created more traces of lower quality by adding varying
amounts of gaussian noise to each individual sample position (σ = 0.5 . . .2 m) of copies
of the original traces. For each combination of error level and training size, we generated
a map and evaluated its accuracy.

Fig. 11 shows the resulting error in the number of lanes, i.e., the proportion of
instances where the number of lanes in the learned map differs from the number of
lanes in the base line map at the same position. Obviously, for a noise level in the
range of more than half a lane width, it becomes increasingly difficult to distinguish
different clusters of road centerline offsets due to overlap. Therefore, the accuracy of
the map for the input noise level of σ = 2 m is significantly higher than that of the
lower ones. However, based on the total spread of the traces, the number of lanes can
still be estimated. For n = 253 traces, their error is below 10 percent for all of them.
These remaining differences arise mainly from splits and merges, where in absence of
the knowledge of lane markings it is hard to determine the exact branch points, whose
position can heavily depend on single lane changes in traces.

Fig. 12 plots the mean absolute difference of the offsets of corresponding lanes
between the learned map and the base map, as a function of the training size (number of
traces). Again, the case σ = 2 m needs significantly more training data to converge. For
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Figure 11. Error in determining the number of lane clusters

σ <= 1.5 m, the lane offset error decreases rapidly; it is smaller than 15 centimeters
after n = 92 traces, and thus in the range of the base map accuracy.

4 Searching the Map Graph

Let us now turn our attention to the map usage in on-line routing applications. In some
sense, both maps and travel graphs can be viewed as embeddings of weighted general
graphs. Optimal paths can be searched with respect to accumulated shortest time t or
distance d or any combination of them. We might assume a linear combination for a
total weight function w(u,v) = λ · t(u,v)+ (1−λ) · d(u,v) with parameter λ ∈ IR and
0≤ λ≤ 1.

4.1 Algorithm of Dijkstra

Given a weighted graph G = (V,E,w), |V |= n, |E|= e, the shortest path between two
nodes can be efficiently computed by Dijkstra’s single source shortest path (SSSP) al-
gorithm [9].

Table 1 shows a implementation of Dijkstra’s algorithm for implicitly given graphs
that maintains a visited list Closed in form of a hash table and a priority queue of the
nodes to be expanded, ordered with respect to increasing merits f .

The run time of Dijkstra’s algorithm depends on the priority queue data structure.
The original implementation of Dijkstra runs in O(n2), the standard textbook algo-
rithm in O((n + e) logn) [7], and utilizing Fibonacci-heaps we get O(e + n logn) [12].
If the weights are small, buckets are preferable. In a Dial the i-th bucket contains all
elements with a f -value equal to i [8]. Dials yields O(e + n ·C) time for SSSP, with
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C←max(u,v)∈E{w(u,v)}. Two-Level Buckets have top level and bottom level of length

�√C + 1+1, yielding the run time O(e+n
√

C). An implementation with radix heaps
uses buckets of sizes 1,1,2,4,8, . . . and imply O(e + n logC) run time, two-level heap
improve the bound to O(e+n logC/ loglogC) and a hybrid with Fibonacci heaps yields
O(e + n

√
logC) [1]. This algorithm is almost linear in practice, since when assuming

32 bit integers we have �√logC ≤ 6. The currently best result are component trees:
with O(n + e) time for undirected SSSP on a random access machine of word length w
with integer edge weights in [0..2w−1] [31]. However, the algorithm is quite involved
and likely not to be practical.

4.2 Planar Graphs

Travel graphs have many additional features. First of all, the number of edges is likely
to be small. In the trail graph the number of edges equals the number of nodes minus
1, and for l trails T1, . . . ,Tl we have |T1|, . . . , |Tl| − l edges in total. By introducing k
intersections the number of edges increases by 2k only. Even if intersections coincide
travel graphs are still planar, and by Eulers formula the number of edges is bounded by
at most three times the number of nodes. Recall, that for the case of planar graphs linear
time algorithms base on graph separators and directly lead to network flow algorithms
of the same complexity [17].

If some intersections were rejected by the algorithms to allow non-intersecting
crossing like bridges and tunnels, the graph would loose some of its graph theoreti-
cal properties. In difference to general graphs, however, we can mark omitted crossings
to improve run time and storage overhead.
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Dijkstra: A*

Open←{(s,0)} Open← {(s,h(s))}
Closed← {}
while (Open �= /0)

u← Deletemin(Open)
Insert(Closed,u)
if (goal(u)) return u
for all v in Γ(u)

f ′(v)← f (u)+w(u,v) +h(v)−h(u)
if (Search(Open,v))

if ( f ′(v) < f (v))
DecreaseKey(Open(v, f ′(v))

else if not (Search(Closed,v))
Insert(Open,(v, f ′(v))

Table 1. Implementation of Dijkstra’s SSSP algorithm vs. A*.

4.3 Frontier Search

Frontier search [18] contributes to the observation that the newly generated nodes in any
graph search algorithm form a connected horizon to the set of expanded nodes, which
is omitted to save memory.

The technique refers to Hirschberg’s linear space divide-and-conquer algorithm for
computing maximal common sequences [16]. In other words, frontier search reduces
a (d + 1)-dimensional memorization problem into a d-dimensional one. It divides into
three phases. In the first phase, a goal t with optimal cost f ∗ is searched. In the second
phase the search is re-invoked with bound f ∗/2; and by maintaining shortest paths to
the resulting fringe the intermediate state i from s to t is detected. In the last phase the
algorithm is recursively called for the two subproblems from s to i, and from i to t.

4.4 Heuristic Search

Heuristic search includes an additional node evaluation function h into the search. The
estimate h, also called heuristic, approximates the shortest path distance from the cur-
rent node to one of the goal nodes. A heuristic is admissible if it provides a lower bound
to the shortest path distance and it is consistent, if w(u,v)+h(v)−h(u)≥ 0. Consistent
estimates are admissible.

Table 1 also shows the small changes in the implementation of A* for consistent
estimates with respect to Dijkstra’s SSSP algorithm. In the priority queue Open of gen-
erated and not expanded nodes, the f -values are tentative, while in set Closed the f -
values are settled. On every path from to the initial state to a goal node the accumulated
heuristic values telescope, and if any goal node has estimate zero, the f values of each
encountered goal node in both algorithms are the same. Since in Dijkstra’s SSSP al-
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gorithm the f -value of all expanded nodes match their graph theoretical shortest path
value we conclude that for consistent estimates, A* is complete and optimal.

Optimal solving the SSSP problem for admissible estimates and negative values of
w(u,v)+ h(v)−h(u) leads to re-openings of nodes: already expanded nodes in Closed
are pushed back into the search frontier Open. If we consider w(u,v)+ h(v)− h(u) as
the new edge costs, Fig. 13 gives an example for such a re-weighted graphs that leads to
exponentially many re-openings. The second last node is re-opened for every path with
weight {1,2, . . . ,2k− 1}. Recall that if h is consistent, no reopening will be necessary
at all.

In route planning the Euclidean distance of two nodes is a heuristic estimate de-
fined as h(u) = ming∈G ||g− u||2 for the set of goal nodes G is both admissible and
consistent Admissibility is granted, since no path on any road map can be shorter than
the flight distance, while consistency follows from the triangle inequality for shortest
path. For edge e = (u,v) we have ming∈G ||g− v||2 ≤ming∈G ||g−u||2 +w(u,v) . Since
nodes closer to the goal are more attractive, A* is likely to find the optimum faster.
Another benefit from this point of view is that all above advanced data structures for
node maintenance in the priority as well as space saving strategies like frontier search
can be applied to A*.

5 Related Work

Routing schemes often run on external maps and external maps call for refined memory
maintenance. Recall that external algorithms are ranked according to sorting complex-
ity O(sort(n)), i.e., the number of external block accesses (I/Os) necessary to sort n
numbers, and according to scanning complexity O(scan(n)), i.e., the number of I/Os
to read N numbers. The usual assumption is that N is much larger than B, the block
size. Scanning complexity equals O(n/B) in a single disk model. On planar graphs,
SSSP runs in O(sort(n)) I/Os, where n is the number of vertices. As for the internal
case the algorithms apply graph separation techniques [30]. For general BFS at most
O(
√

n · scan(n + e)+ sort(n+e)) I/Os [20] are needed, where e is the number of edges
in the graph. Currently there is no o(n) algorithm for external SSSP. On the other hand,
O(n) I/Os are by far too much in route planning practice.

Fortunately, one can utilize the spatial structure of a map to guide the secondary
mapping strategy with respect to the graph embedding. The work of [11] provides the
new search algorithm and suitable data structures in order to minimize page faults by
a local reordering of the sequence of expansions. Algorithm Localized A* introduces
an operation deleteSome instead of strict deleteMin into the A* algorithm. Nodes cor-
responding to an active page are preferred. When maintaining an bound α on obtained
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solution lengths until Open becomes empty the algorithm can be shown to be complete
and optimal. The loop invariant is that there is always a node on the optimal solution
path with correctly estimated accumulated cost. The authors prove the correctness and
completeness of the approach and evaluate it in a real-world scenario of searching a
large road map in a commercial route planning system.

In many fields of application, shortest path finding problems in very large graphs
arise. Scenarios where large numbers of on-line queries for shortest paths have to be
processed in real-time appear for example in traffic information systems. In such sys-
tems, the techniques considered to speed up the shortest path computation are usually
based on pre-computed information. One approach proposed often in this context is a
space reduction, where pre-computed shortest paths are replaced by single edges with
weight equal to the length of the corresponding shortest path. The work of [29] gives
a first systematic experimental study of such a space reduction approach. The authors
introduce the concept of multi-level graph decomposition. For one specific application
scenario from the field of timetable information in public transport, the work gives a
detailed analysis and experimental evaluation of shortest path computations based on
multi-level graph decomposition.

In the scenario of a central information server in the realm of public railroad trans-
port on wide area networks a system has to process a large number of on-line queries
for optimal travel connections in real time. The pilot study of [28] focuses on travel time
as the only optimization criterion, in which various speed-up techniques for Dijkstra’s
algorithm were analyzed empirically.

Speed-up techniques that exploit given node coordinates have proven useful for
shortest-path computations in transportation networks and geographic information sys-
tems. To facilitate the use of such techniques when coordinates are missing from some,
or even all, of the nodes in a network [4] generate artificial coordinates using methods
from graph drawing. Experiments on a large set of train timetables indicate that the
speed-up achieved with coordinates from network drawings is close to that achieved
with the actual coordinates.

6 Conclusions

We have seen a large spectrum of efficient algorithms to tackle different aspects of the
route planning problem based on a given set of global positioning traces.

For trail graph inference the algorithm of Bentley and Ottmann has been modified
and shown to be almost as efficient as the fastest shortest path algorithms. Even though
this solves the basic route planning problem, different enhanced aspects are still open.
We indicate low memory consumption, localized internal computation, and fast on-line
performance as the most challenging ones.

Map inference and map matching up to lane accuracy suite better as a human-
computer interface, but the algorithmic questions include many statistical operations
and are non-trivial for perfect control. On the other hand, map inference based on
GPS information saves much money especially to structure unknown and continuously
changing terrains.
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Low-end devices will improve GPS accuracy especially by using additional iner-
tia information of the moving object, supplied e.g. by a tachometer, an altimeter, or a
compass. For (3D) map generation and navigation other sensor data like sonar and laser
(scans) can be combined with GPS e.g. for outdoor navigation of autonomous robots
and in order to close uncaught loops.

The controversery if the GPS routing problem is more a geometrical one (in which
case the algorithm of Bentley/Ottmann applies) or a statistical one (in which clustering
algorithms are needed) is still open. At the moment we expect statistical methods to
yield better and faster results due to their data reduction and refinement aspects and
we expect that a geometrical approach will not suffice to appropriately deal with a large
and especially noisy data set. We have already seen over-fitting anomalies in the statistic
analyses. Nevertheless, a lot more research is needed to clarify the the quest of a proper
static analysis of GPS data, which in turn will have a large impact in the design and
efficiency of the search algorithms.

We expect that in the near future, the combination of positioning and precision map
technology will give rise to a range of new vehicle safety and convenience applications,
ranging from warning, advice, up to automated control.
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