
The Branching Factor of Regular Search Spaces

Stefan Edelkamp
Institut für Informatik

Am Flughafen 17
79110 Freiburg

edelkamp@informatik.uni-freiburg.de

Richard E. Korf
Computer Science Department

University of California
Los Angeles, Ca. 90095

korf@cs.ucla.edu

Abstract

Many problems, such as the sliding-tile puzzles, gen-
erate search trees where different nodes have different
numbers of children, in this case depending on the po-
sition of the blank. We show how to calculate the
asymptotic branching factors of such problems, and
how to efficiently compute the exact numbers of nodes
at a given depth. This information is important for de-
termining the complexity of various search algorithms
on these problems. In addition to the sliding-tile puz-
zles, we also apply our technique to Rubik’s Cube.
While our techniques are fairly straightforward, the
literature is full of incorrect branching factors for these
problems, and the errors in several incorrect methods
are fairly subtle.

Introduction

Many AI search algorithms, such as depth-first search
(DFS), depth-first iterative-deepening (DFID), and
Iterative-Deepening-A* (IDA*) (Korf 1985) search a
problem-space tree. While most problem spaces are in
fact graphs with cycles, detecting these cycles in gen-
eral requires storing all generated nodes in memory,
which is impractical for large problems. Thus, to con-
serve space, these algorithms search a tree expansion of
the graph, rooted at the initial state. In a tree expan-
sion of a graph, each distinct path to a given problem
state gives rise to a different node in the search tree.
Note that the tree expansion of a graph can be expo-
nentially larger than the underlying graph, and in fact
can be infinite even for a finite graph.

The time complexity of searching a tree depends pri-
marily on the branching factor b, and the solution depth
d. The solution depth is the length of a shortest solu-
tion path, and depends on the given problem instance.
The branching factor, however, typically converges to
a constant value for the entire problem space. Thus,
computing the branching factor is an essential step in

Copyright c© 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

determining the complexity of a search algorithm on
a given problem, and can be used for selecting among
alternative problem spaces for the same problem.

The branching factor of a node is the number of chil-
dren it has. In a tree where every node has the same
branching factor, this is also the branching factor of
the tree. The difficulty occurs when different nodes
at the same level of the tree have different numbers
of children. In that case, we can define the branch-
ing factor at a given depth of the tree as the ratio of
the number of nodes at that depth to the number of
nodes at the next shallower depth. In most cases, the
branching factor at a given depth converges to a limit
as the depth goes to infinity. This is the asymptotic
branching factor, and the best measure of the size of
the tree.

In the remainder of this paper, we present some sim-
ple examples of problem spaces, including sliding-tile
puzzles and Rubik’s Cube, and show how to compute
their asymptotic branching factors, and how not to.
We formalize the problem as the solution of a set of
simultaneous equations, which can be quite large in
practice. As an alternative to an analytic solution, we
present an efficient numerical technique for determin-
ing the exact number of nodes at a given depth, and for
estimating the asymptotic branching factor to a high
degree of precision. Finally, we present some data on
the branching factors of various sliding-tile puzzles.

Example Problem Spaces

The Five Puzzle

Our first example is the Five Puzzle, the 2× 3 version
of the well-known sliding-tile puzzles (see Figure 1).
There are five numbered square tiles, and one empty
position, called the “blank”. Any tile horizontally or
vertically adjacent to the blank can be slid into the
blank position. The goal is to rearrange the tiles from
some random initial configuration into a particular goal
configuration, such as that shown at right in Figure 1.

c

c s

s c

c 3 4 5

21

Figure 1: Side and corner states in the Five Puzzle.

The branching factor of a node in this space depends
on the position of the blank. There are two different
types of locations in this puzzle, “side” or s positions,
and “corner” or c positions (see Figure 1). Similarly,
we refer to a node or state where the blank is in an
s or c position as an s or c node or state. For sim-
plicity at first, we assume that the parent of a node is
also generated as one of its children, since all opera-
tors are invertible. Thus, the branching factor of an s
node is three, and the branching factor of a c node is
two. Clearly, the asymptotic branching factor will be
between two and three.

The exact value of the branching factor will depend
on fs, the fraction of total nodes at a given level of
the tree that are s nodes, with fc = 1 − fs being the
fraction of c nodes. For a given level, fs will depend
on whether the initial state is an s node or a c node,
but we are interested in the limiting value of this ratio
as the depth goes to infinity, which is independent of
the initial state.

Equal Likelihood The simplest hypothesis is that
fs is equal to 2/6 or 1/3, since there are two different
s positions for the blank, out of a total of six pos-
sible positions. This gives an asymptotic branching
factor of 3 · 1/3 + 2 · 2/3 = 2.333. Unfortunately, this
assumes that all possible positions of the blank are
equally likely, which is incorrect. Intuitively, the s po-
sitions are more centrally located in the puzzle, and
hence overrepresented in the search tree.

Random-Walk Model A better hypothesis is the
following. Consider the six-node graph at left in Fig-
ure 1. In a long random walk of the blank over this
graph, the fraction of time that the blank spends in any
particular node will eventually converge to an equilib-
rium value, subject to a minor technicality. If we divide
the six positions into two sets, consisting of 1, 3, and
5 verses 2, 4, and the blank in Figure 1, every move
takes the blank from a position in one set to a position
in the other set. Thus, at even depths the blank will
be in one set, and at odd depths in the other. Since
the two sets are completely symmetric, however, we
can ignore this issue in this case.

The equilibrium fraction from the random walk is
easy to compute. Since s nodes have degree three, and

c nodes have degree two, the equilibrium fraction of
time spent in an individual s state versus an individual
c state must be in the ratio of three to two(Motwani
& Raghavan 1995). Since there are twice as many c
states as s states, c states are occupied 4/7 of the time
and s states are occupied 3/7 of the time. This gives
a branching factor of 3 · 3/7 + 2 · 4/7 ≈ 2.42857, which
differs from the value of 2.3333 obtained above.

Unfortunately, this calculation is incorrect as well.
While the random-walk model accurately predicts the
probability of being in a particular state given a long
enough random walk down the search tree, if the tree
has non-uniform branching factor, this is not the same
as the relative frequencies of the different states at that
level of the tree. For example, consider the simple
tree fragment in Figure 2. If we randomly sample the
three leaf nodes at the bottom, each is equally likely
to appear. However, in a random walk down this tree,
the leftmost leaf node will be reached with probability
1/2, and the remaining two nodes with probability 1/4
each.

.5

1

.5 .25

.5 .5

.25

.5

Figure 2: Tree with Nonuniform Branching Factor.

The Correct Answer The correct way to compute
the equilibrium fraction fs is as follows. A c node
at one level generates an s node and another c node
at the next level. Similarly, an s node at one level
generates another s node and two c nodes at the next
level. Thus, the number of c nodes at a given level is
two times the number of s nodes plus the number of c
nodes at the previous level, and the number of s nodes
is the number of c nodes plus the number of s nodes
at the previous level. Thus, if there are nfs s nodes
and nfc c nodes at one level, then at the next level we
will have 2nfs + nfc c nodes and nfs + nfc s nodes
at the next level. Next we assume that the fraction fs

converges to an equilibrium value, and hence must be
the same at the next level, or

fs =
nfs + nfc

nfs + nfc + 2nfs + nfc
=

fs + 1− fs

fs + 1− fs + 2fs + 1− fs
=

1
fs + 2

Cross multiplying results in the quadratic equation
f2

s + 2fs − 1 = 0, which has positive root
√

2 − 1 ≈
.4142. This gives an asymptotic branching factor of
3fs + 2(1 − fs) = 3(

√
2 − 1) + 2(2 −√

2) =
√

2 + 1 ≈
2.4142.

The assumption we made here is that the parent of
a node is generated as one of its children. In practice,
we wouldn’t generate the parent as one of the children,
reducing the branching factor by approximately one. It
is important to note that the reduction is not exactly
one, since pruning the tree in this way changes the
equilibrium fraction of s and c states. In fact, the
branching factor of the five puzzle without generating
the parent as a child is 1.3532, as we will see below.

Rubik’s Cube

As another example, consider Rubik’s Cube, shown in
Figure 3. In this problem, we define any 90, 180, or
270 degree twist of a face as a single move. Since there
are six different faces, this suggests a branching fac-
tor of 18. However, it is immediately obvious that we
shouldn’t twist the same face twice in a row, since the
same result can be obtained with a single twist. This
reduces the branching factor to 5 ·3 = 15 after the first
move.

The next thing to notice is that twists of opposite
faces are independent of one another, and hence com-
mutative. Thus, if two opposite faces are twisted in
sequence, we restrict them to be twisted in one par-
ticular order, to eliminate the identical state resulting
from twisting them in the opposite order. For each pair
of opposite faces, we label one a “first” face, and the
other a “second” face, depending on an arbitrary or-
der. Thus, Left, Up and Front might be the first faces,
in which case Right, Down, and Back would be the sec-
ond faces. After a first face is twisted, there are three
possible twists of each of the remaining five faces, for a
branching factor of 15. After a second face is twisted,
however, there are three possible twists of only four
remaining faces, leaving out the face just twisted and
its corresponding first face, for a branching factor of
12. Thus, the asympotic branching factor is between
12 and 15.

To compute it exactly, we need to determine the
equilibrium frequencies of first (f) and second (s)
nodes, where an f node is one where the last move
made was a twist of a first face. Each f node generates
six f nodes and nine s nodes as children, the difference
being that you can’t twist the same face again. Each s
node generates six f nodes and six s nodes, since you
can’t twist the same face or the corresponding first
face immediately thereafter. Let ff be the equilibrium
fraction of f nodes at a given level, and fs = 1 − ff

the equilibrium fraction of s nodes. Since we assume
that this equilibrium fraction eventually converges to
a constant, the fraction of f nodes at equilibrium must
be

ff =
6ff + 6fs

6ff + 6fs + 9ff + 6fs
=

6ff + 6(1− ff)
15ff + 12(1− ff)

=
6

3ff + 12
=

2
ff + 4

Cross multiplying gives us the quadratic equation
f2

f +4ff−2 = 0, which has a positive root at ff =
√

6−
2 ≈ .44949. This gives us an asymptotic branching
factor of 15ff + 12(1− ff) ≈ 13.34847.

Figure 3: Rubik’s Cube.

The System of Equations

The above examples required only the solution of a sin-
gle quadratic equation. In general, a system of simul-
taneous equations is generated. As a more representa-
tive example, we use the Five Puzzle with predecessor
elimination, meaning that the parent of a node is not
generated as one of its children. To eliminate the in-
verse of the last operator applied, we have to keep track
of the last two positions of the blank. Let cs denote a
state or node where the current position of the blank
is on the side, and the immediately previous position
of the blank was in an adjacent corner. Define ss, sc
and cc nodes analogously.

Figure 4 shows these different types of states, and
the arrows indicate the children they generate in the
search tree. For example, the double arrow from ss
to sc indicates that each ss node in the search tree
generates two sc nodes.

cs

cc sc

ss

Figure 4: The graph of the Five Puzzle with predeces-
sor elimination.

Let n(t, d) be the number of nodes of type t at depth
d in the search tree. Then, we can write the following
recurrence relations directly from the graph in figure
4. For example, the last equation comes from the fact
that there are two arrows from ss to sc, and one arrow
from cs to sc.

n(cc, d + 1) = n(sc, d)
n(cs, d + 1) = n(cc, d)
n(ss, d + 1) = n(cs, d)
n(sc, d + 1) = 2n(ss, d) + n(cs, d)

Note that we have left out the initial conditions.
The first move will either generate an ss node and
two sc nodes, or a cs node and a cc node, depending
on whether the blank starts on the side or in a corner,
respectively. The next question is how to solve these
recurrences.

Numerical Solution
The simplest way is to iteratively compute the val-
ues of successive terms, until the relative frequencies
of the different types of states converge. At a given
search depth, let fcc, fcs,fss and fsc be the number
of nodes of the given type divided by the total num-
ber of nodes at that level. Then we compute the ra-
tio between the total nodes at two successive levels to
get the branching factor. After about a hundred iter-
ations of the equations above we get the equilibrium
fractions fcc = .274854, fcs = .203113, fss = .150097,
and fsc = .371936. Since the branching factor of ss
and cs states is two, and the branching factor of the
others is one, this gives us the asymptotic branching
factor fcc + 2fcs + 2fss + 1fsc = .274854 + .406226 +
.300194 + .371936 = 1.35321. If q is the number of
different types of states, four in this case, and d is the
depth to which we iterate, the running time of this
algorithm is O(dq).

Analytical Solution
To solve for the branching factor analytically, we as-
sume that the fractions converge to a set of equilibrium
fractions that remain the same from one level to the
next. This fixed point assumption gives rise to a set of
equations, each being derived from the corresponding
recurrence. Let b be the asymptotic branching factor.
If we view, for example, fcc as the normalized number
of cc nodes at depth d, then the number of cc nodes
at depth d + 1 will be bfcc. This allows us to directly
rewrite the recurrences above as the following set of
equations. The last one expresses the fact that all the
normalized fractions must sum to one.

bfcc = fsc

bfcs = fcc

bfss = fcs

bfsc = 2fss + fcs

1 = fcc + fcs + fss + fsc

We have five equations in five unknowns. As we try
to solve these equations by repeated substitution to
eliminate variables, we get larger powers of b. Even-
tually we can reduce this system to the single quartic
equation, b4 − b − 2 = 0. It is easy to check that
b ≈ 1.35321 is a solution to this equation.

While quartic equations can be solved in general,
this is not true of higher degree polynomials. In gen-
eral, the degree of the polynomial will be the number
of different types of states. The Fifteen Puzzle, for
example, has six different types of states.

General Formulation
In this section we abstract from the above examples
to exhibit the general structure of the equations and
their fixed point. We begin with an adjacency matrix
representation P of the underlying graph G = (V, E).
For Figure 4, the rows Pj of P , with j ∈ {cc, cs, ss, sc},
are Pcc = (0, 1, 0, 0), Pcs = (0, 0, 1, 1), Pss = (0, 0, 0, 2)
and Psc = (1, 0, 0, 0). Without loss of generality, we
label the vertices V by the first |V | integers, starting
from zero. We represent the fractions of each type
of state as a distribution vector F . In our example,
F = (fcc, fcs, fss, fsc). We assume that this vector con-
verges in the limit of large depth, resulting in the equa-
tions bF = FP , where b is the asymptotic branching
factor. In addition, we have the equation

∑
i∈V fi = 1,

since the fractions sum to one. Thus, we have a set of
|V |+ 1 equations in |V |+ 1 unknown variables.

The underlying mathematical issue is an eigenvalue
problem. Transforming bF = FP leads to 0 = F (P −
bI) for the identy matrix I. The solutions for b are the
roots of the characteristic equation det(P − bI) = 0
where det is the determinant of the matrix. In the
case of the Five Puzzle we have to calculate

det

−b 1 0 0

0 −b 1 1
0 0 −b 2
1 0 0 −b

 = 0

which simplifies to b4 − b− 2 = 0.
Note that the assumption of convergence of the

fraction vector and the asymptotic branching factor
is not true in general, since for example the asymp-
totic branching factor in the Eight Puzzle of Figure

5 alternates between two values, as we will see be-
low. Thus, here we examine the structure of the re-
currences in detail. Let nd

i be the number of nodes
of type i at depth d in the tree, and nd be the total
number of nodes at depth d. Let Nd be the count
vector (nd

0, n
d
1, ..., n

d
|V |−1). Similarly, let fd

i be the frac-
tion of nodes of type i out of the total nodes at depth
d in the tree, and let F d be the distribution vector
(fd

0 , fd
1 , ..., fd

|V |−1) at level d in the tree. In other words,
fd

i = nd
i /nd, for all i ∈ V . We arbitrarily set the initial

count and distribution vectors, F 0 and N0 to one for
i equal to zero, and to zero otherwise. Let the node
branching factor bk be the number of children of a node
of type k, and let B be the vector of node branching
factors, (b0, b1, ..., b|V |−1). In terms of P the value bk

equals
∑

j∈V pk,j , with the matrix element pk,j in row
k and column j denoting the number of edges going
from state k to state j. We will derive the iteration
formula F d = F d−1P/F d−1B to determine the distri-
bution F d given F d−1. For all i ∈ V we have

fd
i = nd

i /nd

=
Nd−1(PT)i∑

j∈V Nd−1(PT)j

=

∑
j∈V nd−1

j pj,i∑
j∈V

∑
k∈V nd−1

k pk,j

=

∑
j∈V fd−1

j nd−1pj,i∑
k∈V

∑
j∈V fd−1

k nd−1pk,j

=
F d−1(PT)i∑

k∈V fd−1
k

∑
j∈V pk,j

= F d−1(PT)i/F d−1B.

It is not difficult to prove that the branching factor
of depth d+1 equals F d ·B. Therefore, if the iteration
formula reaches equilibrium F the branching factor b
reaches equilibrium as well. In this case b equals F ·B
and we get back to the formula bF = PF as cited
above. Even though we have established a neat re-
currence formula, up to now we have not found a full
answer to the convergence of the simulation process to
determine the asymptotic branching factor. A solution
to this problem might be found in connections to ho-
mogenous Markov processes (Norris 1997), where we
have a similar iteration formula F d = QF d−1, for a
well defined stochastic transition matrix Q.

Experiments
Here we apply our technique to derive the branching
factors for square sliding-tile puzzles up to 10 × 10.
Table 1 plots the odd and even asymptotic branching

factors in the (n2−1)-puzzle with predecessor elimina-
tion. As n goes to infinity, the values in both columns
will converge to three, the asymptotic branching factor
of an infinitely large sliding-tile puzzle, with predeces-
sor elimination.

n n2 − 1 even depth odd depth
3 8 1.5 2
4 15 2.1304 2.1304
5 24 2.30278 2.43426
6 35 2.51964 2.51964
7 48 2.59927 2.64649
8 63 2.6959 2.6959
9 80 2.73922 2.76008

10 99 2.79026 2.79026

Table 1: The asymptotic branching factor for the (n2−
1)-Puzzle.

To understand the even-odd effect, consider the
Eight Puzzle, shown in Figure 5. At every other level of
the search tree, all states will be s states, and all these
states will have branching factor two, once the parent
of the state has been eliminated. The remaining levels
of the tree will consist of a mixture of c states and m
states, which have branching factors of one and three,
respectively. We leave the analytic determination of
the branching factor at these levels as an exercise for
the reader.

sc

s

c s

m s

c

c 1 2 3

4

567

8

Figure 5: Side and Corner and Middle States in the
Eight Puzzle.

In general, if we color the squares of a sliding-tile
puzzle in a checkerboard pattern, the blank always
moves from a square of one color to one of the other
color. For example, in the Eight Puzzle, the s states
will all be one color, and the rest will be the other color.
If the two different sets of colored squares are entirely
equivalent to each other, as in the five and fifteen puz-
zles, there will be a single branching factor at all levels.
If the different colored sets of squares are different how-
ever, as in the Eight Puzzle, there will be different odd
and even branching factors. In general, a rectangular
sliding-tile puzzle will have a single branching factor if

at least one of its dimensions is even, and alternating
branching factors if both dimensions are odd.

Application to FSM Pruning
So far, we have pruned duplicate nodes in the sliding-
tile puzzle search trees by eliminating the inverse of
the last operator applied. This pruning process can be
represented and implemented by the finite state ma-
chine (fsm) shown in Figure 6. A node represents the
last operator applied, and the arcs include all legal
operators, except for the inverse of the last operator
applied. Thus, the FSM gives the legal moves in the
search space, and can be used to prune the search.

However, even more duplicates can be eliminated by
the use of a more complex FSM. For example, there
is cycle of twelve moves in the sliding-tile puzzles that
comes from rotating the same three tiles in a two by
two square pattern. Taylor and Korf (Taylor & Korf
1993) show how to automatically learn such duplicate
patterns and express them in an FSM for pruning the
search space. For example, they generate an FSM with
55,441 states for pruning duplicate nodes in the Fif-
teen Puzzle. An incremental learning strategy for FSM
pruning is addressed by Edelkamp (Edelkamp 1997).

The techniques described here can be readily applied
to determine the asymptotic branching factor of these
pruned spaces. Since the number of different types of
nodes is so large, only the numerical simulation method
is practical for solving the resulting system of equa-
tions. For example, we computed a branching factor
of 1.98 for the above mentioned FSM, after about 50
iterations of the recurrence relations. This compares
with a branching factor of 2.13 for the Fifteen Puzzle
with just inverse operators eliminated.

Left RightStart

 Up

Down

Figure 6: An automaton for predecessor elimination in
the sliding tile puzzle.

Conclusions
We showed how to compute the asymptotic branching
factors of search trees where different types of nodes
have different numbers of children. We begin by writ-
ing a set of recurrence relations for the generation of
the different node types. These recurrence relations
can then be used to determine the exact number of
nodes at a given depth of the search tree, in time lin-
ear in the depth. They can also be used to estimate the
asymptotic branching factor very accurately. Alterna-
tively, we can rewrite the set of recurrence relations
as a set of simultaneous equations involving the rela-
tive frequencies of the different types of nodes. The
number of equations is one greater than the number of
different node types. For relatively small numbers of
node types, we can solve these equations analytically,
by finding the roots of the characteristic equation of a
matrix, to derive the exact asymptotic branching fac-
tor. We give asymptotic branching factors for Rubik’s
Cube, the Five Puzzle, and the first ten square sliding-
tile puzzles.

Acknowledgments S. Edelkamp is supported by
DFG within graduate program on human and machine
intelligence. R. Korf is supported by NSF grant IRI-
9619447. Thanks to Eli Gafni and Elias Koutsoupias
for helpful discussions concerning this research.

References
Edelkamp, S. 1997. Suffix tree automata in state
space search. In KI–97, 381–385.

Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27:97–109.

Motwani, R., and Raghavan, P. 1995. Randomized
Algorithms. Cambridge University Press, Cambridge,
UK.

Norris, J. R. 1997. Markov Chains. Cambridge Uni-
versity Press, Cambridge, UK.

Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate
nodes in depth-first search. In AAAI–93, 756–761.

