
Limits and Possibilities of BDDs in State Space Search∗

Stefan Edelkamp and Peter Kissmann
Faculty of Computer Science

TU Dortmund, Germany
{stefan.edelkamp, peter.kissmann}@cs.uni-dortmund.de

Abstract

The idea of using BDDs for optimal sequential planning is to
reduce the memory requirements for the state sets as problem
sizes increase. State variables are encoded binary and ordered
along their causal graph dependencies. Sets of planning states
are represented in form of Boolean functions, and actions are
formalized as transition relations. This allows to compute the
successor state set, which determines all states reached by
applying one action to the states in the input set. Iterating the
process (starting with the representation of the initial state)
yields a symbolic implementation of breadth-first search.
This paper studies the causes for good and bad BDD perfor-
mance by providing lower and upper bounds for BDD growth
in various domains. Besides general applicability to planning
benchmarks, our approach covers different cost models; it ap-
plies to step-optimal propositional planning as well as plan-
ning with additive action costs.

Exponential Lower Bound
Let us consider permutation games on(0, . . . , N − 1), such
as the(n2 − 1)-Puzzle, whereN = n2. The characteris-
tic function fN of all permutations on(0, . . . , N − 1) has
Ndlog Ne binary state variables and evaluates totrue, if ev-
ery block ofdlog Ne variables corresponds to the binary rep-
resentation of an integer and every satisfying path ofN inte-
gers is a permutation. Hung (1997) has shown that the BDD
for fN needs more thanb

√
2Nc BDD nodes for any variable

ordering. We validated the moderate savings for the BFS
layers of the15-Puzzle experimentally. The growth of BDD
nodes is smaller than the growth of states, but still the sym-
bolic exploration cannot be finished (within16 GB RAM).

Polynomial Upper Bound
In other state spaces, we obtain an exponential gain using
BDDs. In Gripper, there is one robot to transport2k = n
balls from one roomA to another roomB. The robot has
two grippers to pick up and put down a ball.

It is not difficult to observe that the state space grows ex-
ponentially. Since we have2n =

∑n
i=0

(
n
i

)
≤ n

(
n
k

)
, the

number of all states withk balls in one room is
(
n
k

)
≥ 2n/n.

∗Thanks to DFG for support in ED 74/3 and 74/2.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10

B1

B2B2

Bb

B3 B3

B4
Bb+1

Bb+2

Bn−b+1

Bn−b+2

Bn

A

BA

A

A

A

A

A

B
B

B

B

B

A

A

B

B

Figure 1: BDD structure for representingb balls in roomB.

Helmert and R̈oger (2007) have shown that the precise num-
ber of all reachable states isSn = 2n+1 + n2n+1 + n(n −
1)2n−1, whereS0

n := 2n+1 corresponds to the number of
all states with no ball in a gripper. The basic observation
is that all states with an even number of balls in each room
(apart from the two states with all balls in the same room
and the robot in other one) are part of an optimal plan. For
larger values ofn, therefore, heuristic search planners even
with a constant error of only1 are doomed to failure. The
robot’s cycle for delivering two balls from one room to the
other in any optimal plan has length six (picking up the two
balls, moving from one room to the other, putting down the
two balls, and moving back), such that every sixth BFS layer
contains the states on an optimal plan with no ball in a grip-
per. Yet there are still exponentially many of these states,
namelyS0

n − 2.

Theorem 1 There is a binary state encoding and an associ-
ated variable ordering, in which the BDD size for the char-
acteristic function of the states on any optimal path in the
breadth-first exploration of Gripper is polynomial inn.

Proof. To encode states in Gripper,1+2 · dlog(n+1)e+2n
bits are required: one for the location of the robot,dlog(n +
1)e for each of the grippers to denote which ball it currently
carries, and2 for the location of each ball.

According to BFS, we divide the set of states on an op-
timal path into layersl, 0 ≤ l ≤ 6k − 1. If both grippers
are empty, we are in levell = 6d and all possible states with
b = 2d balls in the right room have to be represented, which
is available usingO(bn) BDD nodes (see schema in Fig. 1).

The number of choices with1 or 2 balls in the gripper
that are addressed in the2dlog(n + 1)e variables is bounded
by O(n2), such that intermediate layers withl 6= 6d lead
to an at most quadratic growth. Hence, each layer re-

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 12 24 36 48 60 72 84 96 108 120

nodes

Figure 2: SBFS in Gripper-20.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14

nodes
states

new nodes
new states

Figure 3: SBBFS in Blocksworld-15-0.

stricted to the states on the optimal plan contains less than
O(n2 · dn) = O(dn3) = O(n4) BDD nodes in total. Accu-
mulating the numbers along the path, whose size is linear in
n, we arrive at less thanO(n5) BDD nodes needed for the
entire exploration. �

The Symbolic BFS (SBFS) exploration in Gripper forn =
42 in Fig. 2 validates the theoretical result (including the
reduction/increase of BDD nodes every sixth step).

Roughly speaking, permutation games are bad for BDDs,
and counting games are good.

Symbolic Bidirectional Search
Bidirectional search algorithms are distributed in the sense
that two search frontiers are searched concurrently. For
explicit-state search, they solve the one-pair shortest path
problem. Since the seed in symbolic search can be any state
set, symbolic bidirectional BFS (SBBFS) algorithms start
immediately from the partial goal assignment.

In the Blocksworld planning domain, towers of labeled
blocks have to be built. As a full tower can be casted as
a permutation, we do not expect polynomially sized BDDs.
For given benchmark instances, SBFS can solve problems
with no more than9 blocks step-otimally, whereas SBBFS
can solve all up to one of the instances with15 blocks. Fig. 3
gives insights to the exploration for problem15-0. Back-
ward search (sorted to the left of the plot to avoid an inter-
leaved order) shows that it contains a large number of illegal
states, and forward search shows that the number of states
gradually exceeds the number of BDD nodes.

We next look at the Sokoban domain, a problem that is
well studied in AI research (Junghanns 1999). A level rep-
resents a maze of cells, where stones appear to be randomly
placed. The player, also located in one of the cells, pushes
the stones around the maze so that, at the end, all stones are
on a target location. We observe another exponential gap
between explicit-state and symbolic representation.

Theorem 2 If all
(
n
k

)
· (n − k) configurations withk balls

in a maze ofn cells in Sokoban are reachable, there is a
binary state encoding and an associated variable ordering,

Table 1: Results in Sokoban (runtimes in seconds).
Prob PDB SBBFS SBFS Prob PDB SBBFS SBFS

7 297.2 82.6 122.5 118 209.3 99.8 94.2
35 177.1 17.31 16.27 121 547.3 414.5 361.5
54 199.5 42.6 41.2 123 1018 783.2
65 164.7 25.4 24.37 125 134.5 36.5 35.2
78 768.2 257.6 259.7 126 1014.2 1636 1611
83 392.8 41.5 40.2 129 242.9 127.7 130.3
87 124 63.93 62.5 130 261.6 38.6 37.9
95 321.6 64.2 277.4 131 65 13.8 12.5
97 286.9 115.5 109.2 133 234.6 218
99 1682 1292 134 695.4 161.2 158.9

102 149 115.2 107.2 137 1208 327.5 301.6
106 823.9 432.5 190.1 138 880 827.8
107 1272 733 140 1116.8 401.8 379
108 101.2 100.4 141 183 702.7 695
112 2169 1813 143 3607.2 5185 6355
113 213.2 206 148 721.9 94.6 93.77
114 1963 1720 150 1059.8 296.7 282
115 394.6 243.1 217.8 151 168.3 39.2 37.2
117 2824 2545

in which the BDD size for the characteristic function of all
reachable states in Sokoban is polynomial inn.

Proof. To encode states in Sokoban,2n bits are required,
i.e., 2 bits for each cell (stone/player/none). If we were to
omit the player , we would observe the same pattern that
was shown in Fig. 1, where the left branch would denote an
empty cell and the right branch a stone, leaving a BDD of
O(nk) nodes. Integrating the player gives us a second BDD
of sizeO(nk) with links from the first to the second. There-
fore, the complexity for representing all reachable Sokoban
positions requires a polynomial number of BDD nodes.�

As
(
n
k

)
≤ (n

k)k, the number of all reachable states is
clearly exponential. In Table 1, we compare exploration re-
sults of symbolic uni-/bidirectional BFS with explicit-state
pattern database heuristic search by Haslum et al. (2007). In
all but instances126, 141 and143, SBBFS is faster. More-
over, it solves9 of the12 unsolved instances (out of the40
problem instances of Haslum et al.) in reasonable time. The
discrepancy between uni- and bidirectional search is often
small; the former is often slightly better in finding long plans
(due to saturation of the reachable set) and sometimes worse
on small-sized plans (due to non-saturation).

References
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. InAAAI,
1007–1012.
Helmert, M., and R̈oger, G. 2007. How good is almost
perfect? InICAPS-Workshop on Heuristics for Domain-
Independent Planning.
Hung, N. N. W. 1997. Exploiting symmetry for formal ver-
ification. Master’s thesis, Faculty of the Graduate School,
University of Texas at Austin.
Junghanns, A. 1999.Pushing the Limits: New Develop-
ments in Single-Agent Search. Ph.D. Dissertation, Univer-
sity of Alberta.

