
Cost-Optimal External Planning

Stefan Edelkamp∗ and Shahid Jabbar∗
Computer Science Department,

Otto-Hahn Strasse 14, University of Dortmund,
Dortmund 44227, Germany

{stefan.edelkamp, shahid.jabbar }@cs.uni-dortmund.de

Abstract

This paper considers strategies for external memory based
optimal planning. An external breadth-first search explo-
ration algorithm is devised that is guaranteed to find the cost-
optimal solution. We contribute a procedure for finding the
upper bound on the locality of the search in planning graphs
that dictates the number of layers that have to be kept to avoid
re-openings.
We also discuss an external variant of Enforced Hill Climb-
ing. Using relaxed-plan heuristic without helpful-action
pruning we have been able to perform large explorations on
metric planning problems, providing better plan lengths than
have been reported earlier. A novel approach to plan recon-
struction in external setting with linear I/O complexity is pro-
posed. We provide external exploration results on some re-
cently proposed planning domains.

Introduction
In recent years, AI Planning has seen significant growth
in both theory and practice. Most of these approaches re-
volve around search. The underlying transition graph is
searched for the state where desired goal criteria are ful-
filled. PDDL (McDermott & others 1998), for Planning Do-
main Definition Language, provides a common framework
to define planning domains and problems. Starting from a
pure propositional framework, it has now grown into accom-
modating more complex planning problems. Inmetric plan-
ning, we see a numerical extension to the STRIPS planning
formalism, where actions modify the value of numeric state
variables. The task is then to

• find a path from an initial state to a state where all goal
criteria are fulfilled

• additionallyoptimize an objective function

Unfortunately, as the planning problems get complicated,
the size of the state and the number of states grows sig-
nificantly too - easily reaching the limits of main memory
capacity. Having a systematic mechanism to flush the al-
ready seen states to the disk can circumvent the problem.

∗Supported by the German Research Foundation (DFG)
projectsHeuristic SearchEd 74/3 andDirected Model Checking
Ed 74/2.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Algorithms that utilize secondary storage devices have seen
significant success in single-agent search, e.g., in (Korf &
Schultze 2005), we see a complete exploration of the state
space of 15-puzzle made possible by utilizing 1.4 Terabytes
of secondary storage. In (Jabbar & Edelkamp 2006), we
see a successful application of external memory heuristic
search for LTL model checking. An important issue that
arises in the designing of external memory algorithms is the
removal of duplicate nodes to avoid re-expansions. (Zhou &
Hansen 2004) proposed structured duplicate detection where
the state space structure is exploited to define a partition on
the state space. Removal of duplicates is then restricted only
to the neighboring partitions. The rest of the partitions can
then be removed from the main memory and flushed to the
disk. Among the reported results are applications of the ap-
proach on STRIPS planning problems. Unfortunately, the
approach is limited only to the state spaces where the neigh-
boring partitions and the active partition can fit into the main
memory.

The paper is structured as follows. We first discuss metric
planning problems with linear expressions. An overview of
the external memory model is presented afterward. Then,
we introduce external BFS algorithm for implicit undirected
graphs. Directed graphs are treated in the next section where
we contribute a formal basis to determine the locality of
planning graphs which dictates the number of previous lay-
ers to look at during duplicate removal to avoid re-expansion
of nodes. Introducing heuristic guidance in the form of
relaxed plan computation, we discuss an external memory
variant of enforced hill climbing for suboptimal metric plan-
ning problems. This treatment is followed by providing an
algorithmic solution for the optimality problem. Finally, we
contribute large exploration results to validate our approach
and discuss future extensions.

Metric Planning
A planning problemcan be regarded as a state space explo-
ration problem in implicit graphs. A vertex or a state in this
graph consists of a set offactsthat holds in that state. Suc-
cessors are generated by applying operators. An operatorO
is a 3-ary tuple〈pre(O), add(O), del(O)〉, wherepre(O) is a
set of pre-conditions for applyinga; add(O), the set of new
facts to be added to the new state; and,del(O) being the set
of facts to be deleted from the new state. We can now for-

(:action fly

:parameters (?a - aircraft ?c1 ?c2 - city)

:precondition (and (at ?a ?c1)

(>= (fuel ?a) (* (dist ?c1 ?c2) (slow-burn ?a))))

:effect (and (not (at ?a ?c1)) (at ?a ?c2)

(increase total-fuel-used

(* (dist ?c1 ?c2) (slow-burn ?a)))

(decrease (fuel ?a)

(* (dist ?c1 ?c2) (slow-burn ?a))))

)

Figure 1: An metric operator in PDDL, Level 2.

mally define the planning task asP = (V, I,G,O), where
V is the set of states,I ∈ V , the initial state,G ⊆ V the set
of goal states, andO : V → V , the set of operator.

Metric planning (Fox & Long 2003) involves reason-
ing about continuous state variables and arithmetic expres-
sions. Preconditions are of the formexp⊗ exp′, whereexp
and exp′ are arithmetic expressions over{+,−, ∗, /} and
⊗ ∈ {≥,≤, >, <, =}. Assignments are of the formv ⊕ exp
with variable headv and assignment operator⊕. An ex-
ample for a metric operator in PDDL notation is given in
Figure 1. Metric planning is a considerable extension in lan-
guage expressiveness. As one can encode arbitrary Turing
machine computations into real numbers even the decision
problem becomes undecidable (Helmert 2002). For this text,
we restrict preconditions and effects to be linear expressions.
This is not a severe limitation in planning practice, as all
planning benchmarks released so far can be compiled to a
linear representation (Hoffmann 2003).

Optimization in metric planning calls for improved ex-
ploration algorithms. Besides A*, depth-first branch-and-
bound is a common choice. For efficient optimization
in metric domains, both state-of-the-art planners LPG-
TD (Gerevini, Saetti, & Serina 2006) and SGPlan (Wah
& Chen 2006) apply Lagrangian optimization techniques
to gradually improve a (probably invalid) first plan. Both
planners extend the relaxed planning heuristic as proposed
in Metric-FF.

A recently added feature of PDDL is the facility to
define plan and preference constraints (Gerevini & Long
2005). Annotating individual constraints with preferences
models soft constraints. For example, if we prefer block
a to reside on the table after the plan’s execution, we
write (preference p (on-table a)) with a valid-
ity check(is-violated p) in the plan objective. Such
propositions are interpreted as natural numbers that can be
included into the plan’scost function. This (linear) function
allows planners to search for cost-optimal plans. For plan-
ning with preferences the cost function first scales and then
accumulates the numerical interpretation of the propositions
referring to the violation of the preference constraints. Even
though we conduct experiments in problems with preference
constraints by using the PDDL3-to-PDDL2 compilation ap-
proach of (Edelkamp 2006), the input of the exploration en-
gine is Level 2 metric planning problem.

External Exploration
The standard model for comparing the performance of exter-
nal algorithms consists of a single processor, a small internal
memory that can hold up toM data items, and an unlimited
secondary memory. The size of the input problem (in terms
of the number of records) is abbreviated byN . Moreover,
theblock sizeB governs the bandwidth of memory transfers.
It is usually assumed that at the beginning of the algorithm,
the input data is stored in contiguous block on external mem-
ory, and the same must hold for the output. Only the number
of block reads and writes are counted, computations in in-
ternal memory do not incur any cost. The single disk model
for external algorithms is devised by (Aggarwal & Vitter
1988). It is convenient to express the complexity of external-
memory algorithms using a number of frequently occurring
primitive operations:scan(N) for scanningN data items,
with an I/O complexity ofΘ(N/B) andsort(N) for exter-
nal sorting, with an I/O complexity ofΘ(N

B logM/B
N
B). In

our case,N is replaced with the number of nodes|V | or the
number of edges|E|.

Munagala and Ranade’s algorithm (Munagala & Ranade
1999) for explicit Breadth-First Search has been adapted for
implicit graphs. The new algorithm is known asdelayed
duplicate detectionfor frontier search. It assumes an undi-
rected search graph. The algorithm maintains BFS layers
on disk. LetOpen(i) represents the set of states at layeri.
LayerOpen(i − 1) is scanned and the set of successors are
put into a buffer of size close to the main memory capac-
ity. If the buffer becomes full, internal sorting followed by
a scanning generates a sorted duplicate-free state sequence
in the buffer that is flushed to the disk. This results in a
file with states belonging to depthi stored in the form of
sorted buffers. To remove the duplicates,external sortingis
applied to unify the buffers into one sorted file. Due to sort-
ing, all duplicates will come close to each other and a simple
scan is enough to generate a duplicate free file. One also has
to eliminate/subtract previous layers fromOpen(i) to avoid
re-expansions. In (Munagala & Ranade 1999), the authors
argue that for undirected graphs, subtracting two previous
layers is enough to guarantee that no state is expanded twice.

The corresponding pseudo-code is shown in Figure 2.
Succrepresents the successor generation function whileA-
sets correspond to temporary files. Note that the partition
of the set of successors into blocks is implicit. Termina-
tion is not shown, but imposes no additional implementation
problem. As with the algorithm of Munagala and Ranade,
delayed duplicate detection appliesO(sort(|Succ(Open(i −
1))|)+scan(|Open(i−1)|+|Open(i−2)|)) I/Os. Since each
edge contributes to one state,

∑
i |Succ(Open(i))| = O(|E|)

and
∑

i |Open(i)| = O(|V |). This gives a total I/O com-
plexity isO(sort(|E|) + scan(|V |)) I/Os.

To highlight the optimality of the approach we refer the
reader to (Aggarwal & Vitter 1988), who showed a match-
ing I/O lower bound for external sorting. (Arge, Knudsen,
& Larsen 1993) extended this work to the issue of duplicate
detection, which is a necessity when substituting the hash
table while allowing the elimination of repeated states.

The sorting complexity can be improved in practice by us-

Procedure External-BFS
Open(−1)← ∅, Open(0)← {I}
i← 1
while (Open(i− 1) 6= ∅)

A(i)← Succ(Open(i− 1))
A′(i)← remove duplicates fromA(i)
Open(i)← A′(i) \ (Open(i− 1) ∪Open(i− 2))
i← i + 1

Figure 2: External Breadth-First Search with delayed dupli-
cate detection;I is the initial state andSuccis the successor
generation function.

ing a Hash-based delayed duplicate detection scheme. Fron-
tier Search with Hash-based delayed duplicate detection has
been used to fully explore the 15-Puzzle with 1.4 Terabytes
of harddisk in about three weeks (Korf & Schultze 2005).
The algorithm is similar to the internalfrontier searchalgo-
rithm (Korf & Zhang 2000) that has been used for solving
multiple sequence alignment problem.

Locality in Planning Domains
A crucial issue in external memory algorithms is the removal
of duplicates. Since there is no hash table involved, dupli-
cate nodes have to be removed by scanning previous lay-
ers. The number of layers sufficient for full duplicate de-
tection depends on a property of the search graph calledlo-
cality. Let I be the start state of the problem. For integer
weighted problem graphs, thelocality is defined as the max-
imum max{δ(I, u) − δ(I, v), 0} of all nodesu, v, with v
being a successor ofu andδ(u, v) being the shortest path
distance between two nodesu andv. For undirected graphs
we always have thatδ(I, u) and δ(I, v) differ by at most
one so that the locality is 1.

Let l be the graph’s locality, andz the number of stored
layers. In breadth-first search, when layerm is expanded, all
previous layers with depth smaller thanm have been closed,
and are known by their optimal depth value. Thus, if a node
u at levelm is expanded, and its successorv has a shorter
optimal distance toI, i.e., m = δ(I, v) < δ(I, u) = m′,
thenv must have been encountered earlier in the search, in
the worst case at layerm′ = m − l. The re-expansion ofv
will be avoidediff it is contained in the stored layersm −
z . . .m − 1; i.e., z ≥ l. This is the basis of the following
theorem due to (Zhou & Hansen 2006):

Theorem 1 (Locality Determines Boundary) The number of
previous layers of a breadth-first search graph that need to
be retained to prevent duplicate search effort is equal to the
locality of the search graph.

As a special case, in undirected graphs, the locality is 1
and we need to store the immediate previous layer only to
check for duplicates.

The conditionmax{δ(I, u) − δ(I, v), 0} over all nodes
u, v, with v being a successor ofu is not a graph property.
So the question is, can we find a sufficient condition or upper

bound for it? The following theorem proves the existence of
such a bound.

Theorem 2 (Upper-Bound on Locality) The locality of a
uniformly weighted graph for breadth-first search can be
bounded by the minimal distance to get back from a suc-
cessor nodev to u, maximized over allu. In other words,
with v ∈ Succ(u), we have

max
u∈V
{δ(v, u)} ≥ max

u∈V
{δ(I, u)− δ(I, v), 0}

Proof: For any nodesI, u, v in a graph, the triangu-
lar property of shortest pathδ(I, u) ≤ δ(I, v) + δ(v, u)
is satisfied, in particular forv ∈ Succ(u). Therefore
δ(v, u) ≥ δ(I, u) − δ(I, v) and maxu∈V {δ(v, u)} ≥
maxu∈V {δ(I, u)− δ(I, v)}. In positively weighted graphs,
we haveδ(v, u) ≥ 0 such thatmaxu∈V {δ(v, u)} is larger
than the locality.

As for graphs without self-loops withv ∈ Succ(u), we
havemaxu∈V {δ(v, u)} = maxu∈V {δ(u, u)} − 1. Hence,
in order to bound the locality, we have to look for the largest
minimal cycle in the graph.

The question then arises is: How can we find out the
largest minimal cycle in an implicitly given graph as they ap-
pear in action planning? The answer to this question lies in
the rules or operators in a state space. Without loss of gener-
ality, we consider STRIPS planning operators in the form of
〈pre(O)add(O), del(O)〉, representing preconditions, add,
and delete lists for an operatorO. A duplicate node in an
implicit graph appears when a sequence of operators applied
to a state generates the same state again, i.e., they cancel the
effects of each other. Hence the following definition:

Definition 1 (no-op Sequence) A sequence of operators
O1, O2, . . . , Ok is a no-op sequenceif its application on a
state produces no effects, i.e.,Ok ◦ . . . ◦O2 ◦O1 = no-op,

This definition provides us the basis to bound the locality
of the implicit graphs in the following theorem. It general-
izes undirected search spaces, in which for each operatorO1

we find an inverse operatorO2 such thatO2 ◦O1 = no-op.

Theorem 3 (no-opSequence determines Locality) LetO be
the set of operators in the search space andl = |O|. If
for all operatorsO1 we can provide a sequenceO2, . . . , Ok

with Ok ◦ . . . ◦O2 ◦O1 = no-op, whereno-opis the identity
mapping, then the locality of the implicitly generated graph
is at mostk − 1.

Proof: If Ok ◦ . . . ◦ O2 ◦ O1 = no-op we can reach
each stateu again in at mostk steps. This implies
that maxu∈V {δ(u, u)} = k. Theorem 2 shows that
maxu∈V {δ(u, u)} − 1 is an upper bound on the locality.

The conditionOk ◦ . . . ◦ O2 ◦ O1 = no-opcan be tested
in O(lk) time. It suffices to check that the cumulative add
effects of the sequence is equal to the cumulative delete ef-
fects. Using the denotation by (Haslum & Jonsson 2000),
the cumulative addCA and deleteCD effects of a sequence
can be defined inductively as,

CA(Ok) = Ak

CD(Ok) = Dk and,

Procedure External-EHC-BFS(u, h)
Open(−1, h)← ∅, Open(0, h)← u, i← 1
while (Open(i− 1, h) 6= ∅)

A(i)← Succ(Open(i− 1, h))
forall v ∈ A(i)

h′ = Heuristic(v)
if h′ < h return (v, h′)

A′(i)← remove duplicates fromA(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

return ∞

Figure 3: External BFS for External Enforced Hill Climb-
ing; u is the new start state with the heuristic estimateh.

Procedure External Enforced Hill-Climbing
u← I, h = Heuristic(I)
while (h 6= 0)

(u′, h′)← External-EHC-BFS(u, h)
if (h′ =∞) return ∅
u← u′

h← h′

return ConstructSolution(u)

Figure 4: External Enforced Hill-Climbing;I is the start
state.

CA(O1, . . . , Ok) = (CA(O1, . . . , Ok−1)−Dk) ∪Ak

CD(O1, . . . , Ok) = (CD(O1, . . . , Ok−1)−Ak) ∪Dk

Theorem 3 provides us the missing link to the success-
ful application of external breadth first search on planning
graphs. Subtractingk previous layerplus the current layer
from the successor list in an external breadth-first search
guarantees its termination on finite planning graphs.

External Enforced Hill Climbing
Enforced Hill Climbing (EHC) is aconservativevariant of
hill climbing search. Starting from a start state, a breadth-
first search is performed for a successor with a better heuris-
tic value. As soon as such a successor is found, the hash
tables are cleared and a fresh breadth-first search is started.
The process continues until the goal is reached. Since EHC
performs a complete breadth-first search on every state with
a strictly better heuristic value, for directed graphs without
dead-ends, Enforced Hill Climbing is complete and guaran-
teed to find a solution (Hoffmann & Nebel 2001).

Having external breadth-first search in hand, an external
algorithm for enforced hill limbing can be constructed by
utilizing the heuristic estimates and limiting the subtraction
of previous layers to the locality of the graph as computed in
the previous section. In Figure 4, we show the algorithm in
pseudo-code format for external enforced hill-climbing. The
externalization is embedded in the sub-procedure (Figure 3)

that performs external breadth-first search for a state with
better heuristic estimate.

As heuristic guidance, we chose relaxed plan heuristics
for metric domains (Hoffmann 2003). The metric version
of the propositional relaxed plan heuristic analyzes an ex-
tended layered plan graph, where each fact layer includes
the encountered propositional atoms and numeric fluents.
The forward construction of the plan graph iteratively ap-
plies operators until all goals are satisfied. The length of this
relaxed plan is then used as a heuristic estimate to guide the
search. The heuristic is neither admissible nor consistent,
but very effective in practice.

In the worst case, External EHC performs a complete
external breadth-first search for every improvement in the
heuristic value starting fromh(I). This gives an I/O com-
plexity of O(h(I) · (sort(|E|) + locality · scan(|V |))) I/Os.
The termsort(|E|) is due to external sorting the list of suc-
cessors, while the second term is for subtracting the ele-
ments already expanded in the previous layers.

Plan-Reconstruction: In an internal non memory-limited
setting, a plan is constructed by backtracking from the goal
node to the start node. This is facilitated by saving with ev-
ery node a pointer to its predecessor. For memory-limited
frontier search, a divide-and-conquer solution reconstruc-
tion is needed for which certain relay layers have to be stored
in main memory. In external search divide-and-conquer so-
lution reconstruction and relay layers are not needed, since
the exploration fully resides on disk.

There is one subtle problem: predecessor pointers are not
available on disk. We propose to reconstruct plans by saving
the predecessor together with every state and backtracking
along the stored files while looking for matching predeces-
sors. This results in an I/O complexity that is at most linear
to the number of stored states. In the pseudo-codes, this pro-
cedure is denoted byConstructSolution.

Cost-Optimal External BFS
In planning, we often have a monotone decreasing instead
of a monotonic increasing cost function for the minimiza-
tion problem. Consequently, we cannot prune states with an
evaluation larger than the current one, and hence, are forced
to look at all states.

Figure 5 shows the pseudo-code for external BFS in-
crementally improving an upper boundU on the solution
length. The state sets that are used are represented in form
of files. The search frontier denoting the current BFS layer
is tested for an intersection with the goal, and this intersec-
tion is further reduced according to the already established
bound. The I/O complexity of Cost-Optimal External BFS
is O(sort(|E|) + locality · scan(|V |)) I/Os.

Experimental Evaluation
In this section, we present two sets of experiments. All ex-
periments are run on a Pentium-4 with 600 GB of hard-disk
space and 2GB RAM running Linux. In the first set, we
present non-optimal planning results with external enforced
hill climbing. This set of experiments are performed on

Procedure Cost-Optimal-External-BFS
U ←∞; i← 1
Open(−1)← ∅; Open(0)← {I}
while (Open(i− 1) 6= ∅)

A(i)← Succ(Open(i− 1))
forall v ∈ A(i)

if v ∈ G and Metric(v) < U
U ← Metric(v)
ConstructSolution(v)

A′(i)← remove duplicates fromA(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

Figure 5: Cost-Optimal External BFS;I is the start state,U
represents the best solution cost found so far andG is the set
of goal states.

one of the most challenging domains called Settlers, used
in the third and the fourth international planning competi-
tions. The distinguishing feature of the domain is that most
of the domain semantics is encoded with numeric variables.
The whole problem set for this domain has been solved by
only one planner, SGPlan, which is based on goal-ordering
and Lagrange optimization and finds plans very fast but with
large plan lengths.

We have extended the state-of-the-art planning system
Metric-FF for external exploration. Metric-FF uses helpful-
action pruning to use the actions that are used in the relaxed-
plan construction. This pruning destroys the completeness
of the method but can be very effective in practice. Run-
ning external enforced hill climbing without helpful-action
pruning resulted in shorter plan lengths while consuming
lesser internal memory. Our plans are validated by VAL tool
3.2 (Howey, Long, & Fox 2005). In Table 1, we compare
the plan lengths as found by external enforced hill climbing
to the ones found by SGPlan. The first 5 problems can be
solved by internal Enforced Hill Climbing too when using
helpful-action pruning. All the experiments in this table are
performed without using helpful-action pruning except for
problem 3. We also report the internal memory and external
space consumption by our algorithm. Note that the inter-
nal memory requirement can be scaled down to an arbitrary
amount by using small internal buffers. The locality we en-
countered during this domain is 3 as observed by checking
the duplicates in all previous layers for every BFS invoked.

The exploration for problem 7 was canceled in the mid-
dle because of time constraints. The total time taken was
3 days and 14 hours. It consumed 48.89 Gigabytes of ex-
ternal storage while internal process remained constant at
526 Megabytes. Starting from a heuristic estimate of 87,
the algorithm climbed down to 8 with a total depth of 132.
The bottleneck in this exploration is the computationally ex-
pensive calculations for the heuristic estimates. Figure 6
shows the histogram of states’ distribution across different
BFS layers for this problem. Here we see different groups

P. # SGPlan Ex-FF Memory(MB) Space(MB)
1 106 53 115 11
2 82 27 114 1
3 133 52 117 75
4 199 64 264 1,384
6 193 79 281 186
7 292 >132 526 >43,670

Table 1: Exploration Results on Settlers Domain.

of layers that actually correspond to starting a new external
BFS when a state with a better heuristic value is found.

For the second set, we present optimal planning results
on one of the hardest problem in the Traveling Purchase
Problem (TPP) domain introduced for the fifth international
planning competition. In order to avoid a conflict with the
on-going competition, we only considered preferences p0A,
p1A, p2A and p3A, in the goal condition. Table 2 shows the
results of our exploration. We report the number of nodes
in each layer obtained after refinement with respect to the
previous layers. The locality as observed by the refinement
with respect to all previous layers was 2. An entry in the
Goal Costcolumn corresponds to the best goal cost found
in that layer. The exploration had to be paused because of
some technical problems in the machine making it unusable
for two weeks. Total time consumed in exploration and du-
plicates removal is 29 days. The active layer being expanded
is 23 with the best cost of 93 also found at this layer. The (*)
in the 24-th row indicates that the reported node count and
the space consumption for this layer does not reflect the fi-
nal count. About2× 109 states have been generated. Space
consumption lies by 450 Gigabytes taken by858, 535, 767
nodes residing on the harddisk. Time is largely consumed
by intermediate duplicate detections, i.e., instead of waiting
till a whole layer is generated, to save harddisk space. As is
apparent from Table 2 that the branching factor has started
to go down by a factor of 0.05 for each layer and a com-
pletion of this exploration is foreseen. The internal process
size remained constant at 992 Megabytes. The exploration
has been restarted using the pause-and-resume support im-
plemented in the software.

Conclusions
Large graphs are often met in planning domains. Though
inadmissible heuristics or some other technique to guide the
search can result in faster search times, the plan lengths are
often very large. We contribute two algorithms in this paper:
Cost-optimal external breadth-first search and external en-
forced hill climbing search for metric planning. The crucial
problem in external memory algorithms is the duplicate de-
tection with respect to previous layers. Using the locality of
the graph calculated directly from the operators themselves,
we provide a bound on the number of previous layers that
have to be looked at to avoid re-expansions.

We report the largest exploration with breadth-first search
in planning domains - traversing a state space as large as
about 500 Gigabytes in about 30 days. To the best of au-

BFS-Layer Nodes Space (GB) Goal Cost
0 1 0.000000536 105
1 2 0.00000107 -
2 10 0.00000536 -
3 61 0.0000327 -
4 252 0.000137 -
5 945 0.000508 104
6 3,153 0.00169 -
7 9,509 0.00585 -
8 26,209 0.0146 103
9 66,705 0.0361 -
10 158,311 0.0859 -
11 353,182 0.190 101
12 745,960 0.401 -
13 1,500,173 0.805 -
14 2,886,261 1.550 97
15 5,331,550 2.863 -
16 9,481,864 5.091 -
17 16,266,810 8.735 96
18 26,958,236 14.476 -
19 43,199,526 23.197 -
20 66,984,109 35.968 95
21 100,553,730 53.994 -
22 146,495,022 78.663 -
23 205,973,535 110.601 93
24 231,540,651* 103.699* -

SUM 858,535,767* 440.378* 93

Table 2: Exploration Results on Problem-5 of TPP Domain.

thors’ knowledge, this is the longest running exploration re-
ported in planning literature.

In future, we are also interested in exploring the idea of
external beam-search, where only a set of best nodes are
picked for the next iteration. Moreover, since states are kept
on disk, external algorithms have a large potential for paral-
lelization. We noticed that most of the execution time is con-
sumed while calculating heuristic estimates. The approach
we are currently working on, splits the layer that is being
expanded, into several ones, and distributes the work among
different processors. As states can be expanded indepen-
dently of each other, an optimal speedup is foreseen.

References
Aggarwal, A., and Vitter, J. S. 1988. The input/output
complexity of sorting and related problems.Journal of the
ACM31(9):1116–1127.
Arge, L.; Knudsen, M.; and Larsen, K. 1993. Sorting
multisets and vectors in-place. InWorkshop on Algorithms
and Data Structures (WADS), LNCS, 83–94.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. InICAPS, To Appear.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains.JAIR
20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical report, Department of
Electronics for Automation, University of Brescia.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120 140

N
od

es

BFS Layer

Figure 6: Histogram (logarithmic scale) on Number of
Nodes in BFS Layers for External Enforced Hill-Climbing
on Problem-7 of Settlers.

to temporal planning and scheduling in domains with pre-
dictable exogenous events.JAIR25:187–231.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. InAIPS, 150–158.
Helmert, M. 2002. Decidability and undecidability results
for planning with numerical state variables. InAIPS, 303–
312.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.JAIR
14:253 – 302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables.JAIR20:291–341.
Howey, R.; Long, D.; and Fox, M. 2005.Plan Valida-
tion and Mixed-Initiative Planning in Space Operations,
volume 117 ofFrontiers in Artificial Intelligence and Ap-
plications. IOS Press. chapter 6, 60–70.
Jabbar, S., and Edelkamp, S. 2006. Parallel external di-
rected model checking with linear I/O. InVMCAI, 237–
251.
Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. InAAAI, 1380–1385.
Korf, R. E., and Zhang, W. 2000. Divide-and-conquer
frontier search applied to optimal sequence allignment. In
AAAI, 910–916.
McDermott, D., et al. 1998.The PDDL Planning Domain
Definition Language. The AIPS-98 Planning Competition
Committee.
Munagala, K., and Ranade, A. 1999. I/O-complexity of
graph algorithms. InSODA, 687–694.
Wah, B., and Chen, Y. 2006. Constrained partitioning in
penalty formulations for solving temporal planning prob-
lems.Artificial Intelligence170(3):187–231.
Zhou, R., and Hansen, E. 2004. Structured duplicate detec-
tion in external-memory graph search. InAAAI. 683–689.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search.Artificial Intelligence170:385–408.

