
Cost-Algebraic Heuristic Search

Stefan Edelkamp1∗ and Shahid Jabbar2∗
Fachbereich Informatik
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Abstract

Heuristic search is used to efficiently solve the single-node
shortest path problem in weighted graphs. In practice, how-
ever, one is not only interested in finding a short path, but
anoptimalpath, according to a certain cost notion. We pro-
pose an algebraic formalism that captures many cost notions,
like typical Quality of Service attributes. We thus general-
ize A*, the popular heuristic search algorithm, for solving
optimal-path problem. The paper provides an answer to a
fundamental question for AI search, namely to which general
notion of cost, heuristic search algorithms can be applied. We
proof correctness of the algorithms and provide experimental
results that validate the feasibility of the approach.

Introduction
Heuristic search (Pearl 1985) is an efficient solution to ex-
ploration problems in many fields, including action plan-
ning (Bonet & Geffner 2001), single-agent games (Korf
1985), computational biology (Zhou & Hansen 2003), and
model checking (Edelkamp, Leue, & Lluch Lafuente 2003).
Basically, the idea is to apply algorithms that exploit the
information about the problem being solved in order to
guide the exploration process. The benefits are twofold: the
search effort is reduced and the solution quality is improved,
which in many cases means that solution paths are shorter or
cheaper.

In many practical domains, however, the quality of a path
depends on thenature of costs associated with the under-
lying graph. For instance, in wide area networks costs are
given by different Quality of Service (Xiao & Ni 1999)
attributes. Some past works have proposed general no-
tions of costs. Classical algorithms, see (Rote 1985) for
instance, use different kinds of semirings to formalize and
solve the algebraic path problem, a generalization of the all-
pairs shortest path problem. More recently, algebraic struc-
tures have been provided in the domain of network routing
with QoS (Sobrinho 2002), logics for wide area network
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applications with QoS (Lluch Lafuente & Montanari 2004;
Ferrari & Lluch Lafuente 2004) and soft constraint program-
ming (Bistarelli, Montanari, & Rossi 1997; 2002). However,
to the best of our knowledge our work is the first attempt to
define an abstract formalism for costs suited for heuristic
search algorithms like A*.

We first define a suitable algebraic structure for graphs
called cost algebra. Then, we generalize classical results
of heuristic search specially regarding algorithm A*, ac-
cording to a general notion of costs. The paper provides
an answer to a fundamental question for AI search, namely
to which general notion of cost, heuristic search algorithms
can be applied. At the practical front, we provide exper-
iments on different cost algebras explained in this paper
along with a real-world application in route-planning (Jab-
bar 2003) where maps are constructed by bicycle tours. Dur-
ing a tour several parameters are registered: distance, speed,
altitude, traffic density, hearth pulse, all of them formalized
by the cost algebra. After some processing, maps are repre-
sented by weighted graphs over which optimal path queries
are performed.

The paper is structured as follows. The next section de-
fines the cost algebra. Then we turn to cost algebraic search
in graphs, in particular for solving the optimality problem.
Cost-algebraic versions of Dijkstra’s algorithm and A* with
consistent and admissible estimates are proposed. We dis-
cuss their correctness and highlight the differences with re-
spect to the usual cost notion together with a note on the
optimal efficiency of A*. Sometimes, there can be more
than one type of cost attached with the edges of a graph, for
example, a routing graph can have travel time and distance
associated with each edge. A discussion on a method to
combine our cost algebras is presented next in the paper. To
validate the feasibility of our approach, we present two sets
of experiments. Last, but not least, we draw conclusions,
mainly on the level of generality that we have obtained.

Cost Algebra on Graphs

We open this section recalling some algebraic concepts.

Definition 1 LetA be a set and× : A×A→ A be a binary
operator. Amonoidis a tuple〈A,×, 1〉 if 1 ∈ A and for all



a, b, c ∈ A

(1) a× b ∈ A (closeness)
(2) a× (b× c) = (a× b)× c (associativity)
(3) a× 1 = 1× a = a (identity)

Definition 2 LetA be a set. A relation� ∈ A×A is a total
orderwhenever for alla, b, c ∈ A

(1) a � a (reflexivity)
(2) a � b ∧ b � a ⇒ a = b (anti-symmetry)
(3) a � b ∧ b � c ⇒ a � c (transitivity)
(4) a � b ∨ b � a (total)

In the rest of the papera ≺ b, a � b anda � b abbreviate
a � b ∧ a 6= b, b � a anda � b ∧ a 6= b, respectively.

Theleastandgreatestoperations are defined as usual, i.e.,⊔
A = c such thatc � a for all a ∈ A, and

d
A = c such

that a � c for all a ∈ A. We sometimes say that� is
induced byt, if t is the leastoperation of�. We say that
a setA is isotoneif a � b implies botha × c � b × c and
c× a � c× b for all a, b, c ∈ A.

We finally define our cost formalism, which slightly ex-
tends the one of (Sobrinho 2002).

Definition 3 A cost algebra is defined as a 6-tuple
〈A,t,×,�, 0, 1〉, such that

(1) 〈A,×, 1〉 is a monoid
(2) � is a total order induced byt
(3) 0 =

d
A and1 =

⊔
A

(4) A is isotone

Intuitively, A is the domain set of cost values,× is the op-
eration used to cumulate values andt is the operation used
to select the best (the least) amongst values. Consider for
example, the following instances of cost algebras, typically
used as Quality of Service formalisms:

• 〈{true, false},∨,∧,⇒, false, true〉 (boolean): Net-
work/service availability.

• 〈R+ ∪ {+∞}, min,+,≤,+∞, 0〉 (optimization): Price,
propagation delay.

• 〈R+ ∪ {+∞}, max, min,≥, 0,+∞〉 (max/min): Band-
width.

• 〈[0, 1], min, ·,≥, 0, 1〉 (probabilistic): Performance and
rates.

• 〈[0, 1], max, min,≥, 0, 1〉 (fuzzy): Performance and rates.

More specific cost structures do no longer cope for all the
examples that we want to cover. For example, the slightly
more restricted property ofstrict isotonicity, where one re-
quiresa ≺ b to imply botha×c ≺ b×c andc×a ≺ c×b for
all a, b, c ∈ A, c 6= 0, is not satisfied in structure (max/min),
sincemin{3, 3} = min{3, 5}, but3 < 5.

Proposition 1 All introduced algebras are cost algebras.

Proof: The only non-trivial property to be checked is iso-
tonicity.
〈{true, false},∨,∧,⇒, false, true〉: We have to show that
a⇒ b implies botha∧ c⇒ b∧ c andc∧a⇒ c∧ b for all
a, b, c ∈ {true, false}. W.l.o.g. take the first implication
and toc = false. Conditiona ⇒ b implies (false⇒
false) = true in all cases.

〈R+ ∪ {+∞}, min,+,≤,+∞, 0〉: Here we have to show
thata ≤ b implies botha + c ≤ b + c andc + a ≤ c + b
for all a, b, c ∈ R+ ∪ {∞}, which is certainly true.

〈R+ ∪ {+∞}, max, min,≥, 0,+∞〉: a ≥ b implies
min{a, c} ≥ min{b, c} and min{c, a} ≥ min{c, b},
a, b, c ∈ R+ ∪ {∞}.
〈[0, 1], min, ·,≥, 0, 1〉: a ≥ b implies a · c ≥ b · c and
c · a ≥ c · b, a, b, c ∈ [0, 1].

〈[0, 1], max, min,≥, 0, 1〉: similar proof as for (max/min)
structure. 2

Tackling with multiple optimization criteria is very inter-
esting, since one is interested, in practice, in finding paths
that are optimal according to more than one attribute. Classi-
cal examples from network routing are widest-shortest paths
or shortest-widest path, whereas in the route planning do-
main we have shortest-quickest or quickest-shortest path
queries.

To include multi-criteria into the search, one can define
edge costs

∑
i λiwi, with

∑
i λi = 1. Despite the success

in many areas like game playing, the approach looses in-
formation (Müller 2001): all kinds of features are merged,
even those, for which merging does not make sense. On the
other hand, Multiobjective A* (Mandow & de la Cruz 2005)
based on a partial ordering of cost vectors (Steward & White
2001) turns out to be a complex exploration procedure with
respect to original A*. As a consequence, we consider the
ordered combination of different criteria in a cross product
cost algebra.

Unfortunately, it is not possible to define a meaningful
composition operation of cost algebras, i.e., an operation
that permits to combine two cost algebras into one cost al-
gebra. The problem of Cartesian products and power con-
structions as defined for semirings (Bistarelli, Montanari,
& Rossi 1997) is that they provide partial orders. On the
other hand, Cartesian products that prioritize one criteria
over the other have the problem to deliver non-isotone alge-
bras in general (Sobrinho 2002). Indeed, the widest-shortest
path can be formalized by a cost algebra, while the shortest-
widest path cannot.

More formally, one can model a prioritized Cartesian
product as follows.

Definition 4 The prioritized Cartesian product of two cost
algebras C1 = 〈A1,t1,×1,�1, 01, 11〉 and C2 =
〈A2,t2,×2,�2, 02, 12〉, denoted byC1 ×p C2 is a tu-
ple 〈A1 × A2,t,×,�, (01, 02), (11, 12)〉, where(a1, a2)×
(b1, b2) = (a1 × b1, a2 × b2), (a1, a2) � (b1, b2) iff a1 ≺
b1 ∨ (a1 = b1 ∧ a2 � b2), anda t b = a iff a � b.

Proposition 2 If C1, C2 are cost algebras andC1 is strictly
isotone thenC1 ×p C2 is a cost algebra.

Proof: The only non-trivial part is isotonicity. If we have
(a1, a2) � (b1, b2) then there are two cases. First,a1 ≺ a2

in which case (by strict isotonicity) we havea1×c1 ≺ b1×c1

and c1 × a1 ≺ c1 × b1 which clearly implies(a1, a2) ×
(c1, c2) � (b1, b2) × (c1, c2) and (c1, c2) × (a1, a2) �
(c1, c2)× (b1, b2).



The second case isa1 = b1 anda2 � b2. This trivially
implies a1 × c1 = b1 × c1 anda1 × c1 = b1 × c1 and,
by isotonicity,a2 × c2 � b2 × c2 andc2 × a2 � c2 × b2.
Clearly, we have(a1, a2)×(c1, c2) � (b1, b2)×(c1, c2) and
(c1, c2)× (a1, a2) � (c1, c2)× (b1, b2). 2

Similarly, one can prove that ifC1 andC2 are strictly iso-
tone, thenC1 ×p C2 is strictly isotone.

Definition 5 An (edge-weighted) graphG is a tuple
〈V,E, in, out , ω〉 whereV is a set of nodes,E is a set of
edges,in, out : E → V are source and target functions,
andω : E → A is a weighting function.

Graphs usually have a distinguished start nodes, which
we denote withuG

0 , or justs if G is clear from the context.

Definition 6 A pathin a graphG is an alternating sequence
of nodes and edgesu0, e0, u1, . . . such that for eachi ≥ 0
we haveui ∈ V , ei ∈ E, in(ei) = ui andout(ei) = ui+1,
or, shortlyui

ei→ ui+1.

An initial path is a path starting ats. Finite paths are
required to end at nodes. The length of a finite pathp is de-
noted by|p|. The concatenation of two pathsp, q is denoted
by pq, where we requirep to be finite and end at the initial
node ofq. The cost of a path is given by the cumulative cost
of its edges. Formally,

Definition 7 Thecostof a finite pathp is denoted byω(p)
and defined as

ω(e)× ω(q) if p = (u e→ v)q
1 otherwise

Let P (u) denote the set of all paths starting at nodeu.
In the sequel we shall useδ(u, V ) to denote the cost of the
optimal path starting at a nodeu and reaching a nodev in a
setV . Formally,δ(u, V ) =

⊔
p∈P (u)|(p∩V ) 6=∅ ω(p). For the

ease of notation, we writeδ(u, {v}) asδ(u, v).
Next, we defineprefix optimality, which formalizes the

fact that for some paths all subpaths starting from the start
node are optimal.

Definition 8 A path p = u0
e0→ . . .

ek−1→ uk is prefix-
optimal, if all of its prefixes, i.e., all pathsu0

e0→ . . .
ei−1→ ui

with i < k, form an optimal path fromu0 to ui.

As an example consider the (max/min) cost algebra of a
graph with nodesv1, v2, v3, andv4, and edgesv1

e1→ v2,
v2

e2→ v3, v1
e3→ v3 andv3

e4→ v4 with weightsω(e1) = 4,
ω(e2) = 4, ω(e3) = 2, andω(e4) = 2. Pathv1

e3→ v3
e4→ v4

and pathv1
e1→ v2

e2→ v3
e4→ v4 are optimal with cost 2, but

only the latter is prefix-optimal.

Cost-Algebraic Analysis of Graphs
The reachability problemconsists of finding a nodet such
that a predicategoal(t) is true. Theoptimality problem
consists of finding an initial prefix-optimal pathp ending
at a nodet such thatgoal(t) is true andω(p) = δ(s, T ),

whereT = {u | goal(u) = true}. Reachability and op-
timality problems can be solved with traditional graph ex-
ploration and shortest-path algorithms1. For the reachability
problem, for instance, one can use, amongst others, depth-
first search, hill climbing, greedy best-first search, Dijkstra’s
algorithm (and its simplest version breadth-first search) or
A* (Pearl 1985). For the optimality problem, on the other
hand, only the last two are suited. Nevertheless, Dijkstra’s
algorithm or A* are traditionally defined over a simple in-
stance of our cost algebra, namely the optimization cost al-
gebra〈R+ ∪ {+∞}, R ∪ {+∞}, min,+,≤,+∞, 0〉. We
need thus to generalize the results that ensure theadmissi-
bility of the exploration algorithms, i.e., the fact that they
correctly solve the optimality problem.

Principle of Optimality
Admissibility depends on thePrinciple of Optimality, which
intuitively means that the optimality problem can be decom-
posed.

Definition 9 ThePrinciple of Optimalityrequiresδ(s, v) =⊔
{δ(s, u) × ω(e) | u e→ v}, wheres is the start node in a

given graphG.

Proposition 3 Any cost algebra〈A,+,×,�, 0, 1〉 satisfies
the principle of optimality.

Proof: Observe that
⊔
{δ(s, u)× ω(e)| u e→ v} =

(1)
=

⊔
{
⊔
{ω(p) | p = (s, .., u)} × ω(e)|u e→ v}

(2)
=

⊔
{ω(p)× ω(e) | p = s→ . . .→ u

e→ v}
(3)
=

⊔
{ω(p′) | p′ = s→ . . .→ v}

(4)
= δ(s, v),

where (1) is by definition, (2) is by distributivity of×, (3) is
by isotonicity sincec×b � a×b for all a implies

⊔
{S}×b =⊔

{a | a ∈ S} × b =
⊔
{a × b | a ∈ S}, and (4) is by

definition. 2

Cost-Algebraic Dijkstra’s Algorithm
The core of our generalized Dijkstra’s algorithm is sketched
below. Basically, the algorithm maintains a set ofOpen
nodes to be explored. It iteratively selects the most promis-
ing node (the with the currently optimal initial path which
cost is represented byf ) to explore from that set which is
expanded, i.e., the set of nodes reachable via a single edge
is computed and introduced in the setOpen.

Initialization 2 f(u0) ← 1; Open← {u0}; for each
u 6= u0 : f(u)← 0

1Abusing notation we refer here to a slight modification of the
original algorithms, consisting of terminating the algorithm when
a goal node is reached and returning the corresponding path.

2Note that the initialization off(u) ← 0 for all u 6= u0 can
be avoided by keeping track of all nodes that have been expanded
so far in a listClosed. This is essential for exploration domains,
where the state space graph is not accessible prior to the search.
For the whole algorithm we refer to (Cormenet al. 2001).



Selection Selectu ∈ Openwith f(u) =
⊔
{f(v) | v ∈

Open}
Update f(v)←

⊔
{{f(v)}∪{f(u)×ω(e) | u e→ v}}

Proposition 4 Cost-algebraic Dijkstra’s algorithm solves
the optimality problem.

Proof: Let p = (s = u0
e0→ . . .

ek−1→ uk) be the first goal
path found by the algorithm, withuk ∈ T . It suffices to
show, that if a nodeu is selected we havef(u) = δ(s, u).
Let u be the first selected node withf(u) 6= δ(s, u), which
clearly impliesf(u) � δ(s, u). Let s . . . x

e→ y . . . u be
an optimal path foru with y being the first node that is not
expanded. We are interested in the existence of at least one
such path which is prefix-optimal. We havef(x) = δ(s, x)
by the minimality ofu and δ(s, x) × ω(e) = δ(s, y) by
the principle of optimality, so thatf(y) � f(x) × ω(e) =
δ(s, x) × ω(e) = δ(s, y) � δ(s, T ) ≺ f(u), in con-
tradiction to the selection ofu ∈ Open with f(u) =⊔
{f(v) | v ∈ Open}. For the inequalityδ(s, y) � δ(s, u)

we used the fact thatω(p) � 1, for all pathsp. 2

Cost-Algebraic A*
Once stated the admissibility of the generalized Dijkstra’s
algorithm, we concentrate on A* (Hart, Nilsson, & Raphael
1968), an improvement that makes use of heuristic functions
to accelerate the search process. We begin by adapting the
usual notions of admissibility and consistency of heuristic
functions (Pearl 1985).

Definition 10 A heuristic functionh : V → A with h(t) =
1 for each goal nodet ∈ T is

• admissible, if for all u ∈ V we haveh(u) � δ(u, T ), i.e.,
h is a lower bound.

• consistent, if for eachu, v ∈ V and e ∈ E such that
u

e→ v, we haveh(u) � ω(e)× h(v).

Next we generalize the fact that consistency implies ad-
missibility.

Proposition 5 If h : V → A is consistent, thenh is admis-
sible.

Proof: Let p = (u = u0
e0→ u1

e1→ . . . uk−1
ek−1→ uk = t) be

any solution path withδ(u, T ) = ω(p). It is easy to see that
h(u) � w(e0)×h(u1) � w(e1)×w(e2)× . . .×ω(ek−1)×
h(uk) = δ(u, T ). 2

Now we can define A* with the following (underlined)
changes to Dijkstra’s algorithm.

Initialization f ′(u0) ← h(u0), Open← {u0}; for
eachu 6= u0 : f ′(u)← 0

Selection Select u ∈ Open with f ′(u) =⊔
{f ′(v) | v ∈ Open}

Update f(v)←
⊔
{{f(v)}∪{f(u)×ω(e) | u e→ v}}

f ′(v)← f(v)×h(v)

Proposition 6 Cost-algebraic A* for consistent estimates
solves the optimality problem.

Proof: Let p = (u = u0
e0→ u1

e1→ . . . uk−1
ek−1→ uk = t) be

a prefix-optimal least-cost solution path in the labeled edge-
weighted graph as computed by A*. We have

f ′(p) = ω(p)× h(t) = ω(p) = f(p).

Therefore, the cost values at goal nodes of Dijkstra’s algo-
rithm and A* match. If the heuristic is consistent, goal paths
in the algorithm of Dijkstra and A* are looked at in the same
order. Sincef ′(v) = f(v)× h(v) = f(u)× ω(e)× h(v) �
f(u)× h(u) = f ′(u) for all e with in(e) = u andout(e) =
v, we have thatf ′ costs on solution paths are monotonic in-
creasing with respect to�. Thus, A* terminates with the
optimal solution. 2

For non-consistent heuristics, the above proof is invalid
as thef ′ costs are no longer monotonic increasing. This is
dealt with re-opening(Pearl 1985), namely re-considering
nodes that have already been expanded.

We can prove the following invariance result.

Proposition 7 Let p = u0 → . . . → uk be a prefix-optimal
least-cost path from the start nodes = u0 to a goal node
uk. At each selection of a nodeu fromOpen, there is a node
ui in Opensuch thatf ′(ui) = δ(s, ui)× h(ui).

Proof: At the start of the algorithm, we have the trivial path
p = (s) with f ′(s) = h(s), so thatui = s preserves the
property. On the other hand any call toUpdatemaintains
the property as follows. Without loss of generality leti be
maximal among the nodes satisfying the property.

If node u is not onp or f ′(u) � δ(s, u) × h(u), node
ui 6= u remains inOpen. No successorv of u alonge on p
in Openwith f ′(v) = δ(s, v)× h(v) � f(u)×ω(e)× h(v)
is changed.

If nodeu is onp andf ′(u) = δ(s, u) × h(u) we distin-
guish the following cases. Ifu = uk, the algorithm termi-
nates and there is nothing to show.

If u = ui, Updatewill be called for successorv = ui+1 of
u; for all other successor nodes, the above argument holds.
If v is already expanded thenf ′(v) � δ(s, v)× h(u), and it
will be re-inserted intoOpenwith f ′(v) = f(u) × ω(e) ×
h(v) = δ(s, v) × h(v). If v is brand new, it is inserted into
Openwith this merit. Otherwise,Updatesets it toδ(s, v)×
h(v). In either case,v guarantees the invariance.

Now supposeu 6= ui. By the maximality assumption
of i we haveu = ul with l < i. If v = ui, no call to
Updatecan change it becauseui already has optimal merit
f ′(v) = f(u)× ω(e)× h(v) = δ(s, v)× h(v). Otherwise,
ui remains inOpenwith unchangedf -value, thus,ui still
preserves the invariance. 2

Proposition 8 Cost-algebraic A* with re-openings solves
the optimality problem for admissible estimates.

Proof: Assume the algorithm terminates at goalv with
f ′(v) � δ(s, T ). According to Proposition 7, there is a
nodeu with f ′(u) = δ(s, u) × h(u) in Open, which lies
on a prefix-optimal least-cost solution pathp to t. We have
f ′(v) � δ(s, T ) = δ(s, u) × δ(u, T ) � δ(s, u) × h(u) =
f ′(u), in contradiction to the fact thatv is selected from
Open. As h is admissible we have usedh(u) � δ(u, T ).



Since there is still one nodeui in Openfor which we have
f ′(ui) = δ(s, ui) × h(ui), the algorithm cannot terminate
without eventually selecting this node, while extending a
least-cost prefix-optimal solution path. 2

It is often said that A* does not only yield an optimal so-
lution, but that it expands the minimal number of nodes (up
to tie-breaking) (Dechter & Pearl 1983). The result, how-
ever, holds only forconsistentheuristics, as there are ex-
ample graphs in which we have exponential re-openings for
admissibleheuristics (Pijls & Kolen 1992).

With the algorithm of Bellman and Ford there is a re-
opening strategy, which selects the element inOpenthat was
inserted first, and re-insert all successors not inOpen. It can-
not terminate at the first goal node, as the first obtained solu-
tion will not necessarily be optimal. An extension is needed
that improves a solution cost bound.

It is not difficult to see that the cost-algebraic version of
the Bellman-Ford then solves the optimality problem. The
algorithm terminates only when setOpenbecomes empty.
According to Proposition 7, throughout the algorithm there
is a nodeui in Openfor which we havef ′(ui) = δ(s, ui)×
h(ui). Selectingui extends a prefix-optimal least-cost solu-
tion pathp with goal nodet by one edge. At the end, for the
stored solution we havef ′(t) = δ(s, T ) = ω(p). It is also
obvious that the algorithm is of polynomial time.

Experiments
We performed our experiments on an AMD Athlon, 1.3 GHz
machine with 512 MB of main memory running Linux op-
erating system. The experiments are ran on two different
sets: random graphs to show the feasibility of our gener-
alized cost-algebraic approach, and route-planning graphs,
constructed from Global Positioning System (GPS) traces,
to demonstrate the real world applicability of the Cartesian
product approach. For the first set we generated different
random graphs based on theG(n, p) model, wheren is the
number of nodes and0 ≤ p ≤ 1 determines the probability
of the existence of an edge between two nodes. The start
and goal nodes are also selected at random. The compar-
isons between two algorithms are done by using the same
random nodes.

We have implemented our approach in C++. The gener-
alized cost structure is made possible to be implemented by
the use ofTemplatesfacility in C++. The results for differ-
ent cost structures are shown in Tables 1. Columnsv andt
denote the number of visited edges, and the time taken by
Dijkstra’s algorithm, respectively.

In the result tables, the columns with subscriptsφ corre-
sponds to the results due to the use of abstraction heuris-
tics. To generate heuristic estimates we applied graph ab-
stractions which ensure that if there is an initial goal path
in the concrete graph, there is one in the abstract system,
and the cost of the optimal initial goal path in the concrete
system is smaller (w.r.t.�) than the cost of the one in the
abstract system. The inverse graph of the abstract system
is explored in order to create a pattern database (Culber-
son & Schaeffer 1998) that stores the exact distances from
abstract states to the set of abstract goal states. The dis-

Optimization
n e v t vφ tφ

1,000 30,111 25,929 0.22s 5,612 0.08s
5,000 749,826 372,802 5.62s 41,397 0.73s
7,500 1,684,978 947,908 13.29s 100,120 1.71s
10,000 2,997,625 1,700,163 28.85s 66,379 1.31s

Probabilistic
n e v t vφ tφ

1,000 30,111 16,330 0.14s 902 0.01s
5,000 749,826 365,066 5.72s 7,607 0.08s
7,500 1,684,978 1,636,157 19.04s 22,250 0.33s
10,000 2,997,625 2,743,029 36.32s 56,021 1.07s

Max/Min
n e v t vφ tφ

1,000 30,111 24,226 0.24s 23,570 0.27s
5,000 749,826 600,615 7.69s 264,523 4.13s
7,500 1,684,978 233,162 4.57s 159,229 3.1s
10,000 2,997,625 1,109,862 23.62s 1,028,962 19.59s

Table 1: Results on Optimization, Probabilistic and
Max/Min cost structures.

tance database is used as heuristic for analyzing the concrete
graph. Therefore, the second set of experiments are per-
formed by first generating an abstract graph by iteratively
merging two randomly chosen nodes. For instance, if we
merge nodesv1, v2 and there are edgesv1

e1→ v3, v2
e2→ v3

or there are edgesv3
e1→ v1, v3

e2→ v2 we merge them and
set ω({e1, e2}) = ω(e1) t ω(e1). Note that merging of
edges may reduce the search effort but is not mandatory in
multiple-edge graphs. Similarly, self-loops are eliminated as
they do not contribute to a better solution. It is not difficult
to see that a complete exploration with the cost-algebraic
version of Dijkstra’s algorithm on this abstract and inverse
graph yields a consistent heuristic.

The results show the effectiveness of cost algebraic
heuristic search for all structures we studied. We achieved
an exploration gain of up to two orders of magnitudes. The
savings are considerably smaller in the fuzzy and (max/min)
structures as there are more plateaus with the samef -value.
The savings in explored edges increases with the size of the
graph. Note that the tables should be read with the com-
parison of visited edges in generalized Dijkstra with that in
generalized A*.

For the second set we utilized an already existing route-
planning system called GPS-Route (Jabbar 2003) that when
fed with a set of GPS points, can construct searchable maps.
It is extended to work on Cartesian product of two differ-
ent costs: travel distance and travel time, with both be-
ing instances of optimization cost structure discussed ear-
lier. A shortest-quickest path between two nodes is sought
for, which would give us the quickest path among all the
shortest paths. Table 2 shows the results on some real-world
maps from Southern Germany. The columnsvφ andtφ de-
note the generated nodes and the time taken by A*. Another
useful application of our Cartesian product approach would
be to search for the shortest-straightest path, i.e., the short-
est path involving least number of turns. This is possible



n e v t vφ tφ
1,473 1,669 1,301 0.02s 242 0.01s
1,777 1,848 1,427 0.02s 459 0.01s
2,481 2,609 1,670 0.02s 1,602 0.02s
54,278 58,655 44,236 0.17s 18,815 0.10s

Table 2: Results on Shortest-quickest path search.

by taking a Cartesian product of optimization structure with
〈N,min, +,≤,+∞, 0〉 and initializing the new component
of all edges to 1.

Conclusion
We have proposed a general approach for finding optimal
paths in graphs, where the notion of optimality is formalized
by an algebraic structure to model costs. We generalized
two algorithms to solve the generalized optimal path prob-
lem, Dijkstra and A*, and provided formal proofs of their
correctness. Finally, we provided empirical evidence of the
feasibility of our approach.

We expect that there is not much room for a more general
cost structure than the one that we have chosen. Isotonicity
appears to be mandatory, as it is easy to generate cases in
which without istonicity theonly optimal path is not prefix-
optimal, as in the shortest-widest path.

In future we plan to extend our approach to other optimal
path problems, for instance, by generalizing AO* algorithm
used to solve the optimality problem in AND/OR graphs.
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