
Optimal Metric Planning with State Sets in Automata Representation

Stefan Edelkamp and Björn Ulrich Borowsky
Fakultät für Informatik,

Technische Universität Dortmund, Germany

Abstract

This paper proposes an optimal approach to infinite-state ac-
tion planning exploiting automata theory. State sets and ac-
tions are characterized by Presburger formulas and repre-
sented using minimized finite state machines. The explo-
ration that contributes to the planning via model checking
paradigm applies symbolic images in order to compute the
deterministic finite automaton for the sets of successors. A
large fraction of metric planning problems can be translated
into Presburger arithmetic, while derived predicates are sim-
ply compiled away. We further propose three algorithms for
computing optimal plans; one for uniform action costs, one
for the additive cost model, and one for linear plan metrics.
Furthermore, an extension for infinite state sets is discussed.

Introduction
Our approach addresses planning problems which are ex-
pressible in PDDL 2.2 (Hoffmann & Edelkamp 2005). Due
to the limitations of Presburger arithmetics we have to im-
pose that the ranges of all functions are subsets of Z, that
all numerical expressions are linear, and that in the precon-
ditions and effects no divisions nor non-integer numbers are
used. We also exclude temporal planning, conditional ef-
fects and timed initial literals. The restriction to linear ex-
pressions is encountered in other metric planners (Hoffmann
2002), too. We present algorithms for three cost models:

• Uniform cost model: all actions have cost 1.
• Additive cost model: all actions have positive cost, which

may depend on the state an action is applied to.
• Metric cost model: actions have arbitrary cost which may

depend on the state an action is applied to.

In PDDL, additive costs can be modeled using temporal
actions that define their durations through single equations.
Another way is to use a monotonous problem metrics total-
cost. When using general metrics, the cost of an action ap-
plied to a state s1 is defined as the value the metric takes in
the successor state s2 minus the value of the metric in s1.

Since the problem of solving arbitrary problems of the
type described above is undecidable (Helmert 2002), our al-
gorithms are not guaranteed to terminate. But if there is an

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

optimal solution, it will be found in a finite amount of time.
Alternatives either compute non-optimal plans or convert the
problem into finite domain (Hoffmann et al. 2007).

The Presburger arithmetic is a first-order theory over inte-
gers. Terms in Presburger arithmetic are sums also of vari-
ables and integers. Atomic assertions are equations or in-
equations over terms. For the combination of atomic asser-
tions common logical operators apply. Numbers can be ex-
istentially and universally quantified. The Presburger arith-
metic is consistent and decidable, which remains true for
the extension to integers. We also allow subtraction and
unary −. Identical variables in a term can be merged to
constant coefficients. Examples for formulas in Presburger
arithmetics are

• 73x− 52y + 30z ≤ 778− u
• ∀x : ((∃k : 2k = x) ∨ (∃k : 2k + 1 = x))
• (∃y : x = 3y) ∧ (∃y : x = 7y)

A solution to a formula Φ is an assignment of all free vari-
ables such that Φ is satisfied. The satisfaction of a formula
can be decided in double exponential time complexity with
respect to the length of the formula (Fischer & Rabin 1974).

For each formula in Presburger arithmetic a deterministic
finite automaton (DFA) can be constructed that accepts ex-
actly the solution set of the formula. This work refers to the
algorithm presented in (Wolper & Boigelot 2000).

The paper is structured as follows. First, we illustrate the
transformation of formulas into automata. Then we show
how to compile planning problems into Presburger arith-
metics. We present planning algorithms based on basic au-
tomata operations to compute the image and pre-image of a
state set with respect to the automaton representation of each
action. Starting with BFS to minimize the number of steps,
we provide a variant for metric plan cost optimization and
a specialized version for additive action cost. Finally, we
consider the problem of non-singleton or even infinite initial
state sets and introduce the concept of multi plans.

Automata Construction
Consider the formula Φ := x = 1 ∧ x′ = x − y. First, au-
tomata Ax=1 and Ax′=x−y are created for the atoms. Ax=1

uses the alphabet {0, 1}. A sequence read by Ax=1 is inter-
preted as the two’s complement encoding (most significant
bit first) of the value x is currently assigned to. Automaton

Figure 1: Automata for x = 1 (left) and x′ = x− y (right).

states correspond to values of x, and, while reading a word,
Ax=1 keeps track of the current value by changing its state.
The complete automaton is shown in Fig. 1 (state labels are
showing corresponding values). If Ax=1 starts reading bit 1,
it moves from the initial state to the overall rejecting state,
because all words starting with 1 encode negative values.
By reading 0001, the automaton reaches the only accepting
state 1, which is correct as this is decimal value 1. Analo-
gously, Ax′=x−y uses alphabet {0, 1}3, where each bitvec-
tor position refers to one variable, and each state (except the
rejecting one) corresponds to a certain value of x′ − x + y.
Ax′=x−y is shown in Fig. 1 (100 means (1, 0, 0), using vari-
able ordering (y, x, x′)). Besides state 0, the initial state is
accepting, since the empty bit sequence is interpreted as 0.

Generally, an equation is first rewritten to a1x1 + · · · +
anxn = c. Then state c is generated. Due to the linear-
ity of the term and the properties of the two’s complement,
reading a bitvector (b1, . . . , bn) in a state p representing a
value v means that the successor state q must represent value
2v + a1b1 + . . . + anbn. With this relation it is also easy to
find the predecessors of a state. Starting in state c, the au-
tomaton is built up using a backward construction in order
to prevent the construction of states not reachable from the
initial state. The resulting automaton is already determinis-
tic. If c is reachable from the initial state, it is also minimal.
(For inequations, the construction is similar. The resulting
automaton may be nondeterministic, but in this special case,
determinization can be done in linear time.) In our exam-
ple, AΦ is computed by extending the alphabet of Ax=1

to {0, 1}3 (e.g., transition label 1 maps to transition label
{010, 011, 110, 111}), intersecting the extended automaton
with Ax′=x−y and minimizing the result.

Existential quantification maps to an automata operation
called projection. A projection removes the i-th bit from
each bitvector, where i is the position referring to the quan-
tified variable. There are possibilities of implementing all
these operations efficiently (Boigelot & Wolper 2002).

The worst-case number of states of a minimal DFA rec-
ognizing the solution set of a formula Φ is triple exponential
in the length of Φ (Klaedtke 2004).

(define (domain Boxes)

(:types Block Box - Object)

(:predicates (in ?b - Block ?x - Box))

(:functions (weight ?o - Object) (num ?x - Box))

(:action move

:parameters (?bl - Block ?from ?to - Box)

:precondition (in ?bl ?from)

:effect (and (in ?bl ?to) (not (in ?bl ?from))

(decrease (num ?from) 1) (increase (num ?to) 1)

(decrease (weight ?from) (weight ?bl))

(increase (weight ?to) (weight ?bl)))))

Figure 2: Domain Boxes.

Representation of Planning Problems
The problem and its domain have to be instantiated. A plan-
ning problem in the uniform cost model induces a planning
task R = (S,A, I,G). The set S is the state space, A is the
set of actions. The initial state is a set I ⊆ S (for ordinary
PDDL we have |I| = 1), the goal state is a set G ⊆ S.

If the planning problem uses the additive cost model then
it induces a planning task R = (S,A, C, I,G). S, A, I and
G are defined as before. The set C = {cA | A ∈ A} contains
for each action A ∈ A a linear function cA : S → Z+ that
assigns a positive cost to every reachable state s ∈ S.

If the metric cost model is used, it is simpler to model
the metrics directly rather than modeling action specific cost
functions. Hence, the planning task has the form R =
(S,A, I,G,m). Function m : S ∪ {⊥} → Z maps each
s ∈ S to the value the metric evaluates to in s. We obtain
m by rescaling the metric to be integer-valued and a mini-
mization problem. Constant terms are eliminated. The value
m(⊥) is the coefficient for total-cost in the modified metric.
We assume m(⊥) > 0.

For each function symbol f of the domain we intro-
duce a state variable xf and a successor state variable x′f .
Now we are able to express binary comparisons and nu-
meric effects as atoms. If we instantiate a problem refer-
ring to domain Boxes (Fig. 2) and defining two boxes Box1,
Box2 and block B, we also obtain the parameterless action
move B Box1 Box2, which can be encoded as a formula Φ:
Φ = pin B Box1 = −1 ∧ p′in B Box2 = −1 ∧ p′in B Box1 = 0

∧ x′num Box1 = xnum Box1 − 1

∧ x′num Box2 = xnum Box2 + 1

∧ x′weight Box1 = xweight Box1 − xweight B

∧ x′weight Box2 = xweight Box2 + xweight B

Here, in analogy to the functions each predicate is en-
coded by a pair of variables, where value−1 means true and
value 0 means false. Formula Φ describes a set of state tran-
sitions (s1, s2) applicable in s1, where the components of
the successor state s2 are described by the primed variables.
Multiplications with a scalar can be expressed as a formula,
too. For division it is possible to simulate the behavior of
integer divisions as known in C and Java (Borowsky 2001).
More complex preconditions and goals are expressed using
non-atomic Presburger formulas.

Sometimes a more efficient encoding can be achieved by
representing several predicates by one pair of variables. The
most important alternative encoding (Helmert 2004) is to
partition the set of predicates, such that in each block of
the partition, at most one predicate is true in any reachable
state (in our example, {(in A Box1), (in A Box2)}would
be one block). Then each predicate is assigned to an index
which is unique within the predicate’s block. Each block is
represented by one pair of variables, where a variable is as-
signed to the index of the predicate valid in the state to be
described (there is another value indicating that no predicate
is valid)1. If a literal is negated in a goal or a precondition,
the formula may characterize not only desired, but also in-
valid states. For example, ¬(pin A Box1 = −1) includes
pin A Box1 = k for all k ∈ Z\{−1} even if we use only val-
ues 0 and −1. Invalid states may occur in the goal state set
and as the predecessor state s1 in state transitions (s1, s2).
But during exploration, no invalid state will ever be reached
as long as the representation of the initial state set does not
contain invalid states.

Before creating formulas for the instantiated problem and
domain, we compile away all derived predicates. Our ap-
proach of doing this assumes that in the instantiated domain,
dependencies between derived predicate literals are acyclic.
That is, the body of each derived predicate definition does
neither directly nor indirectly depend on the positive literal
forming the head of the definition. In this case the head
is nothing more than a macro for its body. By substituting
heads with their bodies in topological order and then replac-
ing all heads within preconditions and the goal, all derived
predicates are removed.

Solution sets map to sets of planning states or transitions.
The last step is to construct DFAs representing the solution
sets of the formulas. Let n be the number of state vari-
ables. The state sets I and G are represented by automata
with the alphabet Σstate := {0, 1}n. As actions induce tran-
sition sets, automata representing actions use the alphabet
Σtrans := {0, 1}2n. We use some fixed variable ordering
for Σstate. For i = 1, 3, . . . , 2n− 1, the bitvector position i
of Σtrans is assigned to the same variable as for the position
(i+1)/2 of Σstate, and the bitvector position i+1 of Σtrans

is assigned to the successor state variable corresponding to
the state variable at position i of Σtrans.

Planning Algorithms
Next we propose different algorithms for exploring the state
spaces and for the construction of plans. The algorithms
are inspired by methods for finite state spaces that use
BDDs (Cimatti et al. 1997), but considerable extensions
are needed. For improved readability, the descriptions of
the algorithms do not refer to the automata but to state and
transition sets. Intersection, union, complement, subset con-
tainment and emptiness checking of sets easily map to cor-
responding operations on DFAs. In addition to the standard
operations, we need two further operations: the computation
of the predecessors set and the successors set of a state set

1See (Borowsky 2001) for a formal definition and examination
of predicate encodings.

Algorithm 1 BFS
Input: Planning task R = (S,A, I,G), set I with ∅ 6= I ⊆ I
Output: A shortest sequential plan and a set I ′ ⊆ I or ’No plan.’

L := R := stack := I;
while L ∩ G = ∅ do

L′ := ∅
for all A ∈ A do

L′ := L′ ∪ succ(L, A)
if L′ ⊆ R then return ’No plan.’
R := R ∪ L′; stack.push(L′); L := L′

G := stack.pop() ∩ G
return Extract-Plan(R, stack, G)

with respect to a transition set. For a state set S ⊆ S and
a transition set T ⊆ S × S, the predecessors set pred(S, T)
and the successors set succ(S, T) are defined as follows:

pred(S, T) := {s1 ∈ S | ∃s2 ∈ S : (s1, s2) ∈ T}
succ(S, T) := {s2 ∈ S | ∃s1 ∈ S : (s1, s2) ∈ T}

Given automata AS and AT representing S and T ,
succ(S, T) can be computed by first extending AS to al-
phabet Σtrans (mapping the positions of AS to positions
i = 1, 3, . . . , 2n − 1), then intersecting extended AS with
AT , projecting out all bitvector positions of the obtained au-
tomaton that are assigned to state variables and minimizing
the automaton afterwards. The automaton for pred(S, T) is
computed similarly.

Breadth-First Search
Let R = (S,A, I,G) be a planning task. We search for a
shortest sequential plan which transforms a non-empty sub-
set of I in a subset of G. The problem graph induced by R
has node set S and edge set A. The problem graph is in-
finite, directed and unweighted. A shortest sequential plan
corresponds to a shortest path in the problem graph and can
be computed via set-based BFS (see Algorithm 1). Under
the i-th layer (i = 0, 1, . . .) we understand the set of all
states s ∈ S reachable from some state s0 ∈ I by executing
some plan that has exactly i steps. Note that for i 6= j the
i-th layer and the j-th layer are not necessarily disjoint. For
i = 0, 1, . . ., the algorithm computes the i-th layer, one after
another. Variable L contains the last completed layer. The
already computed subset of the next layer is stored in vari-
able L′ simulating the queue for explicit-state breadth-first
search. The set R contains all states that are contained in at
least one set being assigned to L. The algorithm initializes
L with I , such that I is the 0-th layer. The layers are main-
tained in stack, since they are needed in reverse order for
solution reconstruction. The next layer is the successors set
of L with respect to all applicable actions. The exploration
terminates if the current layer contains a goal state.

If Algorithm 1 has reached a goal state, it extracts an op-
timal sequential plan from the stack by calling Algorithm 2.
Additionally, with G ⊆ G the set of all reached goal states is
provided. In this case this is the intersection of the last layer
with G. First the algorithm searches for an action A with
the property that the set of predecessors of G with respect
to A has a non-empty intersection with the previous layer.

Algorithm 2 Extract-Plan
Input: Planning task R = (S,A, I,G), stack stack, G ⊆ G
Output: Sequential plan of length |stack|, I ′ ⊆ I

π := []; post := G
while stack 6= ∅ do

pre := stack.pop(); post′ := ∅
for all A ∈ A do

post′ := pred(post, A) ∩ pre
if post′ 6= ∅ then; a := A; break

post := post′; π := [a].π
return (π, post)

This action is the last action in the plan. Then the second
last action of the plan is computed analogously, where only
the predecessors in the currently active layer are considered.
The algorithm continues unless the bottom-most layer on the
stack has been encountered.

If the set of all reachable states SI := {s ∈ S |
∃(s0, s1), (s1, s2), . . . , (sl−1, sl) ∈ A : (s0 ∈ I ∧ sl = s)}
is finite, or if SI ∩ G 6= ∅, the algorithm terminates.

BFS guarantees that all goal states with the shortest dis-
tance l are found before all other goal states.

Algorithm 3 Metric-BFS
Input: Planning task R = (S,A, I,G, m), set I with ∅ 6= I ⊆ I
Output: An optimal sequential plan and a set I ′ ⊆ I or ’No plan.’

L := R := stack := I; stack′ := ∅; b := ∞; G := ∅
while true do

B := {s ∈ S | m(s) < b−m(⊥) · (|stack| − |stack′| − 1)};
X := L ∩ G ∩B
if X 6= ∅ then

b := MinVal(m, X); stack′ := stack; stack′.pop();
G := X ∩ {s ∈ S | m(s) = b}

L′ := ∅
for all A ∈ A do

L′ := L′ ∪ succ(L, A)
if L′ ⊆ R then

if b = ∞ then return ’No plan.’;
else return Extract-Plan(R, stack′, G)

else R := R ∪ L′; stack.push(L′); L := L′

Algorithm 3 is a metric variant of BFS. Its loop does not
terminate when reaching a goal state, because subsequent
layers may contain other goal states which let the metric take
a smaller value. Variable b stores the value m(s) of a state
s ∈ G belonging to the best states reached so far. Every
new layer is examined for new goal states which are better
than all the goal states reached in older layers. When com-
paring the values with b, it is important to consider that the
original metric may depend on total-cost. If this is the case,
the monom containing total-cost will yield different values
for new goal states and goal states discovered in an older
layer. If the current layer contains better goal states, then
the algorithm calls MinVal (see Algorithm 4) which uses a
geometric search to determine the minimal value m takes for
at least one of these goal states. In contrast to many known
approaches, Metric-BFS does not require to extend the state
space by another dimension representing total-cost.

Proposition 1 For m : S ∪ {⊥} → Z and S with ∅ 6= S ⊆

Algorithm 4 MinVal
Input: Metric m : S ∪ {⊥} → Z, state set S with ∅ 6= S ⊆ S
Output: Minimal value m(s) takes for s ∈ S

U ′ := U := m(s) for an arbitrary element s ∈ S;
D := 128; L := U −D

while S ∩ {s ∈ S | m(s) ≤ L} 6= ∅ do
U ′ := L; D := 2 ·D; L := U −D

U := U ′

while L ≤ U do
V := b(L + U)/2c
if S ∩ {s ∈ S | m(s) ≤ V } 6= ∅ then U := V − 1
else L := V + 1

return V

S, MinVal computes the smallest value m(s) takes for some
s ∈ S, if a smallest value exists.2

In the following, we require that there is always a smallest
value w within S. In particular, this is true if I is finite. If SI

is finite then Metric-BFS will terminate, since case R = SI

will occur after a finite amount of iterations and in the next
iteration condition L′ ⊆ R will be fulfilled. If I is finite and
SI is infinite, however, Metric-BFS will not terminate.

Proposition 2 If there is a plan, then – after a finite amount
of iterations – stack′ will be assigned to a content from
which Extract-Plan computes an optimal plan, which uses
the smallest number of actions among all optimal ones. If
Metric-BFS terminates, such a plan will be returned.

One can also think of manually aborting the planning pro-
cess and return the best solution found so far.

Dijkstra Algorithm
Now we consider planning tasks of the form R =
(S,A, C, I,G). They are specializations of the metric prob-
lems examined in the previous section because action cost
are restricted to positive values. The problem graph induced
by R can basically be modeled as the one for non-metric
problems. But here, edges are assigned to cost. As a tran-
sition (s1, s2) can be executed by more than one action,
we have to model transitions as triplets (s1, c, s2), where
c ∈ {1, 2, . . .} is the cost of the transition when applying
the action belonging to the transition to state s1. An opti-
mal plan corresponds to a path from an initial state to a goal
state such that the sum of the weights of all the edges form-
ing the path is minimal. The planning problem reduces to a
weighted shortest paths problem, which can be solved by an
algorithm based on single-source-shortest-paths finding.

The shortest-paths algorithm of Dijkstra (1959) is adapted
in Algorithm 5. The priority queue is represented by data
structures D and open. Set D contains all key-value pairs
already inserted into the queue, whereas open contains only
those pairs which have not yet been retrieved through a
deleteMin operation. The union of all state sets retrieved
through deleteMin is stored in R. (The first two rows of the
loop correspond to a deleteMin operation.) If the extracted
state set M contains a goal state, the algorithm proceeds
with solution reconstruction. Otherwise R is updated and

2Proofs are found in (Borowsky 2001)

successor sets are computed with respect to single actions.
In case of non-constant action cost, first M is partitioned
into blocks consisting of states with an identical cost. For
each block the set consisting of all successors not retrieved
from queue earlier is inserted into the priority queue using
the appropriate key, if the set is not empty. State sets inserted
under different keys are not necessarily disjoint as we do not
detect duplicates. That the problem graph is actually a multi
graph does not affect the correctness of the algorithm.

Algorithm 5 Dijkstra-Search
Input: Planning task R = (S,A, C, I,G), set I ⊆ I
Output: Optimal sequential plan and set I ′ ⊆ I or ’No plan.’

D := {(0, I)}; open := {(0, I)}; R := ∅
while open 6= ∅ do

(t, M) := pair from open with smallest key;
open := open\{(t, M)}
if M ∩ G 6= ∅ then G := M ∩ G; k := t;

return Extract-Additive-Cost-Plan(R, D, k, G, R)
R := R ∪M
for all A ∈ A do

if cA constant then
t′ := t + cA(s), s ∈ S;
M ′ := succ(M, A)\R
if M ′ 6= ∅ then

if ∃M ′′ : (t′, M ′′) ∈ D then
M ′ := M ′ ∪M ′′;
D := D\{(t′, M ′′)}; open := open\{(t′, M ′′)}

D := D ∪ {(t′, M ′)}; open := open ∪ {(t′, M ′)}
else
P := Partition(cA, M)
for all (d, P) ∈ P do

t′ := t + d;
M ′ := succ(P, A)\R
if M ′ 6= ∅ then

if ∃M ′′ : (t′, M ′′) ∈ D then
M ′ := M ′ ∪M ′′;
D := D\{(t′, M ′′)}; open := open\{(t′, M ′′)}

D := D ∪ {(t′, M ′)}; open := open ∪ {(t′, M ′)}
return ’No plan.’

The extraction of a sequential plan makes use of the struc-
tures R, D and R, and needs also set G of all goal states re-
trieved from the queue in the last iteration of the while loop
and the corresponding key k (the last value of t). Here, too,
the plan is extracted in inverse order of execution. Obvi-
ously, the result must be a plan with cost k. Variable t in
Algorithm 7 stores the current cost of plan execution, there-
fore the initial value for t is k. Set M is a superset of the set
of all intermediate states generated by the plan at time point
t (similar to post in Algorithm 2). We have completed plan
extraction as soon as we reach cost 0.

For Dijkstra-Search it is not difficult to see that if SI is
finite or if SI ∩ G 6= ∅ the while-loop terminates, and if I is
finite and SI is infinite, and if SI ∩ G = ∅, then the while
loop does not terminate.

Proposition 3 The call Extract-Additive-Cost-Plan(R, D,
k, G, R) invoked in Dijkstra-Search computes a sequential
plan of cost k transforming a nonempty subset I ′ of I into a
nonempty subset of G.

Algorithm 6 Partition
Input: Function d : S → Z+, state set S ⊆ S
Output: Set {(c1, P1), . . . , (cn, Pn)}with c1, . . . , cn ∈ Z+, ci 6=
cj , i 6= j, partition {P1, . . . , Pn} of S, ∀s ∈ Pi : d(s) = ci

U := d(s) for an arbitrary element s ∈ S; D := 128
while S ∩ {s ∈ S | d(s) ≤ U −D} 6= ∅ do D := 2 ·D
L := U −D; D := 128
while S ∩ {s ∈ S | d(s) ≥ U + D} 6= ∅ do D := 2 ·D
U := U + D; P := ∅; B := true
while B do

B := false; U ′ := U ; L′ := L
while L′ ≤ U ′ do

V := b(L′ + U ′)/2c
if S ∩ {s ∈ S | L′ ≤ d(s) ≤ V } 6= ∅ then

U ′ := V − 1; B := true; else L′ := V + 1
if B then L := V + 1; P := S ∩ {s ∈ S | d(s) = V };

P := P ∪ {(V, P)}
return P

Algorithm 7 Extract-Additive-Cost-Plan
Input: Planning task R = (S,A, C, I,G), set D of key-value
pairs, key k ∈ N0, G ⊆ G, set R of all states
Output: Sequential plan with cost k, I ′ ⊆ I

t := k; M := G; π := []
while t > 0 do

for all A ∈ A do
M ′ := pred(M, A)
if cA constant then

t′ := t− cA(s) for an arbitrary s ∈ S
if ∃M ′′ : (t′, M ′′) ∈ D and M ′ ∩M ′′ 6= ∅ then

π := [A].π; M := M ′ ∩M ′′; t := t′; break
else

M ′ := M ′ ∩R; P := Partition(cA, M ′)
for all (d, P) ∈ P do

t′ := t− d
if ∃M ′′ : (t′, M ′′) ∈ D and P ∩M ′′ 6= ∅ then

π := [A].π; M := P ∩M ′′; t := t′; break
return π

Proposition 4 If Dijkstra-Search terminates the algorithm
returns a plan that transforms I ′ ⊆ I into G with ∅ 6= G ⊆
G and minimal cost.

Sets of Initial States
One property of finite automata is the ability of recognizing
infinite languages. Any automaton representing a nonempty
solution set of a Presburger formula already recognizes an
infinite language, as in the two’s complement system the
sign bit can be duplicated an arbitrary number of times with-
out changing the numeric value encoded by the bit string.
Due to the restriction |I| = 1 all represented state sets
S ⊆ S are finite for a classical PDDL input. To exploit
the potential of finite automata, we allow the specification
of a set of initial states instead of a single initial state. This
is accomplished by using a goal description. We wish to
compute a plan, which transforms each initial state into a
goal state, being optimal for each initial state. Of course,
such a plan rarely exists. For this reason the planning sys-
tem should compute a finite set of plans, where each plan is
an optimal solution for a subset of I. In the ideal case, each

Algorithm 8 Multi-Search
Input: Planning task R = (S,A, [C,]I,G[, m])
Output: An optimal multi plan for R

P := ∅; I := I
while I 6= ∅ do

if [C] then r := Dijkstra-Search(R, I)
else

if [m] then r := Metric-BFS(R, I)
else r := BFS(R, I)

if r = (π, I ′) then P := P ∪ {(I ′, π)}; I := I\I ′

else return P
return P

initial state is covered by one of these subsets.
A multi plan forR is a set P = {(C1, P1), . . . , (Cn, Pn)}

with ∅ 6= Ci ⊆ I and the property that for all
s0 ∈ Ci Pi is a (possibly suboptimal) plan for R′ =
(S,A, [C,]{s0},G[,m]). Sets C1, . . . , Cn are pairwise dis-
joint. If R′ = (S,A, [C,]{s0},G[,m]) is unsolvable for
all s0 ∈ I\

⋃
1≤i≤n Ci then we say P is complete . If

P is complete and for all s0 ∈ Ci plan Pi is optimal for
R′ = (S,A, [C,]{s0},G[,m]) (i = 1, . . . , n), P is optimal.

In order to obtain an automaton for I the automaton con-
structed for the goal description defined in the :init block is
to be intersected with an automaton representing the state
space S. The reason for the additional operation is that
the problem of characterizing invalid states through goal
descriptions cannot be ignored here because invalid states
would be reachable.

All algorithms presented in section already allow ar-
bitrary initial state sets as input and also return a subset
M1 6= ∅ of the input state set. If another exploration is
started with I\M1 as the initial state set, a set M2 ⊆ I mit
M2 ∩ M1 = ∅ is returned. By repeating exploration with
more and more restricted initial state sets (see Algorithm 8),
a multi plan can be computed.

Proposition 5 The returned multi plan is optimal, if any.

The result of Multi-Search is influenced by the output of
the underlying exploration algorithm, which are themselves
the output of the plan extraction algorithms. The data struc-
ture built up during exploration implicitly contains all opti-
mal plans found. For both extraction algorithms, which plan
is extracted depends on the order in which actions are tested.
It is possible that there is a plan Popt which transforms each
state s ∈ I into a goal state in an optimal way, whereas for
each s ∈ I there is an optimal plan Ps which only trans-
forms s into one goal state. In case of a bad test order, |I|
plans Ps are inserted into the multi plan instead of Popt. In
case of |I| = ∞ the while loop of Multi-Search does not
terminate. In order to avoid this behavior and similar phe-
nomena, a random test order should be chosen before the
next action is extracted. In our worst-case scenario, the ex-
plorations may extract plans Ps first, but Popt is still applica-
ble to the remaining states. As the number of plans already
found is always finite (in each exploration the optimal plans
found have the same cost) and Popt is chosen with a proba-
bility greater than zero, Popt is extracted after and expected
time which is finite.

The ”meta exploration” offers the possibility of comput-
ing deterministic plans even if there is uncertainty about the
actual initial state. If an initial state is given later, we just
have to determine if and which set Ci contains that state.

Conclusion and Outlook
We have seen approaches for optimally solving PDDL2.2
action planning problems. A distinguished advantage is the
processing of infinite state sets. An adaption of A* search
is desirable. Currently, only an inefficient implementation
exists, but we are developing a more efficient one, which
also will support real-valued variables and the integration
of different automata libraries, such as the very efficient
LIRA (Becker et al. 2007), for instance.

Acknowledgement Thanks to DFG for support in the
projects ED 74/2 and ED 74/3.

References
Becker, B.; Dax, C.; Eisinger, J.; and Klaedtke, F. 2007.
LIRA: Handling constraints of linear arithmetics over the
integers and the reals. In CAV.
Boigelot, B., and Wolper, P. 2002. Representing arithmetic
constraints with finite automata: An overview. In ICLP,
1–19.
Borowsky, B. 2001. Optimal metric planning with state
sets in automata representation. Master’s thesis, TU Dort-
mund.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: A decision proce-
dure for AR. In ECP, 130–142.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Fischer, M. J., and Rabin, M. O. 1974. Super-
exponential complexity of Presburger arithmetic. MIT.
http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-
TM-043.ps.
Helmert, M. 2002. Decidability and undecidability results
for planning with numerical state variables. In AIPS, 44–
53.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence 24:519–579.
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT encodings of state-space reachability problems
in numeric domains. In IJCAI, 1918–1923.
Hoffmann, J. 2002. Extending FF to numerical state vari-
ables. In ECAI.
Klaedtke, F. 2004. On the automata size for Presburger
arithmetic. In LICS, 110–119.
Wolper, P., and Boigelot, B. 2000. On the construction
of automata from linear arithmetic constraints. In TACAS,
1–19.

