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Abstract

The concept of manipulative abduction is devoted to capture the role of action in many interesting

cognitive situations: action provides otherwise unavailable information that enables the agent to

solve problems by starting and performing a suitable abductive process of generation or selection

of hypotheses. We observe that many external things, usually inert from an epistemological point

of view, can be transformed into epistemic mediators. I will present some details derived from

the history of the discovery of the non-Euclidean geometries which illustrate the relationships

between strategies for anomaly resolution and visual thinking. Geometrical diagrams are external

representations which play both a mirror role (to externalize rough mental models), and an

unveiling role (as gateways to imaginary entities). I describe them as epistemic mediators able

to perform various explanatory, non-explanatory, and instrumental abductive tasks (discovery of

new properties or new propositions/hypotheses, provision of suitable sequences of models as able

to convincingly verifying theorems, etc.). I am also convinced they can be exploited and studied

in everyday non-mathematical applications also to the aim of promoting new trends in artificial

intelligence modeling of various aspects of hypothetical reasoning: finding routes, road signs,

buildings maps, for example, in connection with various zooming effects of spatial reasoning.

I also think the cognitive activities of optical, mirror, and unveiling diagrams can be studied

in other areas of manipulative and model-based reasoning, such as the ones involving creative,

analogical, and spatial inferences, both in science and everyday situations so that this can extend

the epistemological, computational, and the psychological theory.

1 Manipulative Abduction and Epistemic Mediators

More than a hundred years ago, the great American philosopher Charles Sanders Peirce coined the

term “abduction” to refer to inference that involves the generation and evaluation of explanatory

hypotheses. Peirce says that mathematical and geometrical reasoning “consists in constructing

a diagram according to a general precept,1 in observing certain relations between parts of that

diagram not explicitly required by the precept, showing that these relations will hold for all such

diagrams, and in formulating this conclusion in general terms. All valid necessary reasoning is in

fact thus diagrammatic” (Peirce, 1931-1958, 1.54). I contend that geometrical construction is a

kind of abductive reasoning, and more precisely, what I call manipulative abduction (cf. Magnani

(2001b)).2

1That is a kind of definition that prescribes “what you are to do in order to gain perceptual acquaitance
with the object of the world” (Peirce, 1931-1958, 2.330).
2The analysis of the role of diagrams and visualizations in mathematical reasoning has been recently
promoted by philosophers and historians of science (cf. for example the seminal studies by Brown (1997,
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What is abduction? Many reasoning conclusions that do not proceed in a deductive manner are

abductive. For instance, if we see a broken horizontal glass on the floor we might explain this fact

by postulating the effect of wind shortly before: this is certainly not a deductive consequence of

the glass being broken (a cat may well have been responsible for it). Hence, what I call theoretical

abduction Magnani (2001a) is the process of inferring certain facts and/or laws and hypotheses

that render some sentences plausible, that explain or discover some (eventually new) phenomenon

or observation; it is the process of reasoning in which explanatory hypotheses are formed and

evaluated. Following Nersessian (1992, 1995), I use the term “model-based reasoning” to indicate

the construction and manipulation of various kinds of representations, not mainly sentential

and/or formal, but mental and/or related to external mediators. Obvious examples of model-

based reasoning are constructing and manipulating visual representations, thought experiment,

analogical reasoning, occurring when models are built at the intersection of some operational

interpretation domain – with its interpretation capabilities – and a new ill-known domain.

Peirce gives an interesting example of model-based abduction related to sense activity: “A

man can distinguish different textures of cloth by feeling: but not immediately, for he requires

to move fingers over the cloth, which shows that he is obliged to compare sensations of one

instant with those of another” (Peirce, 1931-1958, 5.221). This idea surely suggests that abductive

movements also have interesting extra-theoretical characteristics and that there is a role in

abductive reasoning for various kinds of manipulations of external objects. When manipulative

aspects of external models prevail, like in the case of manipulating diagrams in the blackboard,

we face what I call manipulative abduction (or action-based abduction).

Manipulative abduction happens when we are thinking through doing and not only, in a

pragmatic sense, about doing. For instance, when we are creating geometry constructing and

manipulating a triangle, like in the case given by Kant in the “Transcendental Doctrine of

Method”. In the case of natural sciences the idea of manipulative abduction goes beyond the

well-known role of experiments as capable of forming new scientific laws by means of the results

(the nature’s answers to the investigator’s question) they present, or of merely playing a predictive

role (in confirmation and in falsification). Manipulative abduction refers to an extra-theoretical

behavior that seeks to create communicable accounts of new experiences to integrate them into

previously existing systems of experimental and linguistic (theoretical) practices.3

The study of the non-Euclidean revolution provided in the following sections will also provide

a powerful tool for illustrating the basic distinction between explanatory, non-explanatory, and

instrumentalist aspects of abductive cognition.4 My work furnishes an analysis of how the

importance of non-explanatory abduction in logical and mathematical reasoning is clearly present

in mathematical cognition. Certainly explanatory and non-explanatory abduction are linked to

the role, in a broad sense, of plausibility. However, there is also a “strategic” sense of plausibility

that has to be taken into account, the one which occurs in the case of instrumental abduction,

1999) and Giaquinto (1992, 1994, 2007)). At present research on visual and diagrammatic cognition is
a common topic in various areas of cognitive science, logic (Allwein and Barwise (1996)), and computer
science (Glasgow et al. (1995); Anderson et al. (2000)). In this tradition the role of visualizations and
diagrams as external tools that can be described in the framework of distributed and embodied cognition
has often been disregarded; however, an increasing attention is currently devoted to these aspects. A
fruitful feedback from cognitive science has favored new research in the area of mathematical reasoning
(cf. for example the recent special issue of Educational Studies in Mathematics, 2009 (70), “Gestures and
Multimodality in the Construction of Mathematical Meaning” – edited by L. Edwards, L. Radford and
F. Arzarello), which contains various studies on the role of embodiment (gestures), distributed cognition
(artifacts, external representations, etc.), and multimodality. The approach I present in this paper aims
at deepening the role of externalities in mathematical diagrammatization also taking advantage of the
clarifying role of the basic concept of abduction, which is a synthetical cognitive and epistemological tool
able to unify various aspects of hypothetical cognition.
3On the philosophical, computational, and cognitive aspects of the relationships between geometry and
space, also from a historical point of view, cf. Magnani (2001b).
4On the epistemological and eco-cognitive aspects of abductive cognition cf. my recent book Magnani
(2009b).
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where plausibility is no longer linked to characteristicness. For example, in scientific reasoning,

an abductive hypothesis can be highly implausible from the “propositional” point of view and

nevertheless it can be adopted for its instrumental virtues, such as in the Newtonian case

of action-at-a-distance. Highly implausible hypotheses from the “propositional” point of view

can be conjectured because of their high “instrumental” plausibility, where a different role of

characteristicness is at stake.

2 Geometrical Construction is a Kind of Manipulative Abduction

In the quotation by Peirce about constructions I have reported in the previous section Peirce says

that mathematical and geometrical reasoning the costruction of diagrams is fundamental. Not

dissimilarly Kant says that in geometrical construction “[. . . ] I must not restrict my attention

to what I am actually thinking in my concept of a triangle (this is nothing more than the mere

definition); I must pass beyond it to properties which are not contained in this concept, but yet

belong to it” (Kant, 1929, A718-B746, p. 580).

As I have illustrated in the book Magnani (2001a) manipulative abduction is a kind of, usually

model-based (that is based on diagrams or other kinds of simulations), abduction that exploits

external models endowed with delegated (and often implicit) cognitive roles and attributes. It

captures a large part of scientific thinking where the role of action is central, and where the

features of this action are implicit and hard to be elicited: action can provide otherwise unavailable

information that enables the agent to solve problems by starting and by performing a suitable

abductive process of generation or selection of hypotheses. 1. The model (diagram) is external

and the strategy that organizes the manipulations is unknown a priori. 2. The result achieved

is new (if we, for instance, refer to the constructions of the first creators of geometry), and

adds properties not contained before in the concept (the Kantian to “pass beyond” or “advance

beyond” the given concept (Kant, 1929, A154-B194, p. 192)).5

2.1 External Representations

Humans and other animals make a great use of perceptual reasoning and kinesthetic and motor

abilities. We can catch a thrown ball, cross a busy street, read a musical score, go through

a passage by imaging if we can contort out bodies to the way required, evaluate shape by

touch, recognize that an obscurely seen face belongs to a friend of ours, etc. Usually the

“computations” required to achieve these tasks are not accessible to a conscious description.

Mathematical reasoning uses language explanations, but also non-linguistic notational devices

and models. Geometrical constructions represent an example of this kind of extra-linguistic

machinery we know as characterized in a model-based and manipulative – abductive – way.

Certainly a considerable part of the complicated environment of a thinking agent is internal, and

consists of the proper software composed of the knowledge base and of the inferential expertise

of that individual. Nevertheless any cognitive system consists of a “distributed cognition” among

people and “external” technical artifacts Hutchins (1995); Zhang (1997).

In the case of the construction and examination of diagrams in geometry, a sort of specific

“experiments” serve as states and the implied operators are the manipulations and observations

that transform one state into another. The mathematical outcome is dependent upon practices

and specific sensorimotor activities performed on the non-symbolic object, the diagram, which

acts as a dedicated external representational medium supporting the various operators at work.

There is a kind of an epistemic negotiation between the sensory framework of the mathematician

and the external reality of the diagram. This process involves an external representation consisting

of written symbols and figures that are manipulated “by hand”. The cognitive system is not merely

5Of course in the case we are using diagrams to demonstrate already known theorems (for instance in
didactic settings), the strategy of manipulations is already available and the result is not new. Further
details on this issue are illustrated in (Magnani, 2009b, chapter three).
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the mind-brain of the person performing the mathematical task, but the system consisting of

the whole body (cognition is embodied) of the person plus the external physical representation.

For example, in geometrical discovery the whole activity of cognition is located in the system

consisting of a human together with diagrams.

An external representation can modify the kind of computation that a human agent uses to

reason about a problem, because part of the computation is occurring outside, in the interplay

with the external tool, and then picked up: for example, the Roman numeration system eliminates,

by means of the external signs, some of the hardest parts of the addition, whereas the Arabic

system does the same in the case of the difficult computations in multiplication Zhang (1997).

All external representations, if not too complex, can be transformed in internal representations

by memorization. For example some human beings exploit the usual system for making addition

with paper and pencil just by representing in a inner way. But this is not always necessary if

the external representations are easily available. Internal representations can be transformed in

external representations by externalization, that can be productive “[. . . ] if the benefit of using

external representations can offset the cost associated with the externalization process” (ibid., p.

181). Hence, contrarily to the old view in cognitive science, not all cognitive processes happen

in an internal model of the external environment. The information present in the external world

can be directly picked out without the mediation of memory, deliberation, etc. Moreover, various

different external devices can determine different internal ways of reasoning and cognitively solve

the problems, as is well-known. Even a simple arithmetic task can completely change in presence

of an external tool and representation. In the Figure 1 an ancient external tool for division is

represented.6

Figure 1 Galley division, XVI Century, from an unpublished manuscript of a Venetian monk. The title
of the work is Opus Artimetica D. Honorati veneti monachj coenobij S. Lauretij.

In sum, human beings can delegate cognitive features to external representations through

semiotic attributions because for example in many problem solving situations the internal

computation would be impossible or it would involve a very great effort because of human

mind’s limited capacity. First a kind of “alienation” is performed, second a recapitulation is

accomplished at the neuronal level by re-representing internally that which was “discovered”

outside. Consequently only later on do we internally perform cognitive operations on the structure

of data that synaptic patterns have “picked up” in an analogical way from the environment. We

can maintain that internal representations used in cognitive processes like many events of meaning

creation have a deeper origin in the experience lived in the semiotic environment. (Hutchins, 2005,

p. 1575) further clarifies this process of recapitulation: “[. . . ] when a material structure becomes

very familiar, it may be possible to imagine the material structure when it is not present in

6The names galea and batello referred to a boat which the outline of the work was thought to correspond.
The process that underlies the galley division method is illustrated in (Smith, 1958, vol. II, pp. 137–144).
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the environment. It is even possible to imagine systematic transformations applied to such a

representation. This happened historically with the development of mathematical and logical

symbol systems in our own cultural tradition”.

Following the approach in cognitive science related to the studies in distributed cognition, I

contend that in the construction of mathematical concepts many external representations are

exploited, both in terms of diagrams and of symbols. I have been interested in my research in

diagrams which play an optical role7– microscopes (that look at the infinitesimally small details),

telescopes (that look at infinity), windows (that look at a particular situation), a mirror role

(to externalize rough mental models), and an unveiling role (to help create new and interesting

mathematical concepts, theories, and structures).

Moreover optical diagrams play a fundamental explanatory (and didactic) role in removing

obstacles and obscurities (for example the ambiguities of the concept of infinitesimal) and in

enhancing mathematical knowledge of critical situations (for example the problem of parallel

lines, cf. the following sections). They facilitate new internal representations and new symbolic-

propositional achievements. The mirror and unveiling diagrammatic representation of mathe-

matical structures activates perceptual operations (for example identifying the interplay between

conflicting structures: for example how the parallel lines behave to infinity). These perceptual op-

erations provide mirror and unveiling diagrammatic representations of mathematical structures.

To summarize we can say mathematics diagrams play various roles in a typical abductive way;

moreover, they are external representations which, in the cases I will present in the following

sections, are devoted to provide explanatory and non-explanatory abductive results. Two of them

are central:

• they provide an intuitive and mathematical explanation able to help the understanding

of concepts difficult to grasp or that appear obscure and/or epistemologically unjustified.

I will present in the following section some mirror diagrams which provided new mental

representations of the concept of parallel lines.

• they help abductively create new previously unknown concepts that are non-explanatory, as

illustrated in the case of the discovery of the non-Euclidean geometry.

3 Mirror Diagrams: Externalizing Mental Models to Represent Imaginary
Entities

Empirical anomalies result from data that cannot currently be fully explained by a theory. They

often derive from predictions that fail, which implies some element of incorrectness in the theory.

In general terms, many theoretical constituents may be involved in accounting for a given domain

item (anomaly) and hence they are potential points for modification. The detection of these points

involves defining which theoretical constituents are employed in the explanation of the anomaly.

Hence, anomalies require a change in the theory. We know that empirical anomalies are not alone

in generating impasses. The so-called conceptual problems represent a particular form of anomaly.

Resolving conceptual problems may involve satisfactorily answering questions about the status

of theoretical entities: conceptual problems arise from the nature of the claims in the principles

or in the hypotheses of the theory. Usually it is necessary to identify the conceptual problem that

needs a resolution, for example by delineating how it can concern the adequacy or the ambiguity

of a theory, and yet also its incompleteness or (lack of) evidence.

Of course formal sciences are especially concerned with conceptual problems. The discovery

of non-Euclidean geometries presents an interesting case of visual/spatial abductive reasoning,

where both explanatory and non-explanatory aspects are intertwined. First of all it demonstrates

a kind of visual/spatial abduction, as a strategy for anomaly resolution connected to a form of

explanatory and productive visual thinking. Since ancient times the fifth postulate has been

held to be not evident. This “conceptual problem” has generated many difficulties about the

7This method of visualization was invented by Stroyan (2005) and improved by Tall (2001).
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reliability of the theory of parallels, consisting of the theorems that can be only derived with

the help of the fifth postulate. The recognition of this anomaly was crucial to the development

of the non-Euclidean revolution. Two thousand years of attempts to resolve the anomaly have

produced many fallacious demonstrations of the fifth postulate: a typical attempt was that of

trying to prove the fifth postulate from the others. Nevertheless, these attempts have also provided

much theoretical speculation about the unicity of Euclidean geometry and about the status of

its principles.

Here, I am primarily interested in showing how the anomaly is recognizable. A postulate that

is equivalent to the fifth postulate states that for every line l and every point P that does not lie

on l, there exists a unique line m through P that is parallel to l. If we consider its model-based

(diagrammatic) counterpart (cf. Figure 2), the postulate may seem “evident” to the reader, but

this is because we have been conditioned to think in terms of Euclidean geometry. The definition

above represents the most obvious level at which ancient Euclidean geometry was developed as

a formal science – a level composed of symbols and propositions.

Figure 2

Furthermore, when we also consider the other fundamental level, where model-based aspects

(diagrammatic) are at play, we can immediately detect a difference between this postulate and

the other four if we regard the first principles of geometry as abstractions from experience that

we can in turn represent by drawing figures on a blackboard or on a sheet of paper or on our

“visual buffer” (Kosslyn and Koenig (1992)) in the mind. We have consequently a double passage

from the sensorial experience to the abstraction (expressed by symbols and propositions) and

from this abstraction to the experience (sensorial and/or mental).

We immediately discover that the first two postulates are abstractions from our experiences

drawing with a straightedge, the third postulate derives from our experiences drawing with a

compass. The fourth postulate is less evident as an abstraction, nevertheless it derives from our

measuring angles with a protractor (where the sum of supplementary angles is 180◦, so that if

supplementary angles are congruent to each other, they must each measure 90◦) (Greenberg,

1974, p. 17).

In the case of the fifth postulate we are faced with the following serious problems: 1) we

cannot verify empirically whether two lines meet, since we can draw only segments, not lines.

Extending the segments further and further to find if they meet is not useful, and in fact we

cannot continue indefinitely. We are forced to verify parallels indirectly, by using criteria other
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than the definition; 2) the same holds with regard to the representation in the “limited” visual

buffer. The “experience” localizes a problem to solve, an ambiguity, only in the fifth case: in

the first four cases our “experience” verifies without difficulty the abstraction (propositional and

symbolic) itself. In the fifth case the formed images (mental or not) are the images that are able

to explain the “concept” expressed by the definition of the fifth postulate as problematic (an

anomaly): we cannot draw or “imagine” the two lines at infinity, since we can draw and imagine

only segments, not the lines themselves.

The chosen visual/spatial image or imagery (in our case the concrete diagram depicted in

Figure 2, derived from the propositional and symbolic level of the definition) plays the role of

an explanation of the anomaly previously envisaged in the definition itself. As stated above, the

image demonstrates a kind of visual abduction, as a strategy for anomaly localization related to

a form of explanatory visual/spatial thinking.

Once the anomaly is detected, the way to anomaly resolution is opened up – in our case, this

means that it becomes possible to discover non-Euclidean geometries. That Euclid himself did

not fully trust the fifth postulate is revealed by the fact that he postponed using it in a proof

for as long as possible – until the twenty-ninth proposition. As is well-known, Proclus tried to

solve the anomaly by proving the fifth postulate from the other four. If we were able to prove

the postulate in this way, it would become a theorem in a geometry which does not require that

postulate (the future “absolute geometry”) and which would contain all of Euclid’s geometry.

Without showing all the passages of Proclus’s argument (Greenberg, 1974, p. 119-121) we need

only remember that the argument seemed correct because it was proved using a diagram. Yet we

are not allowed to use that diagram to justify a step in a proof. Each step must be proved from

stated axioms or previously proven theorems. We may visualize parallel lines as railroad tracks,

everywhere equidistant from each other, and the ties of the tracks as being perpendicular to both

parallels. Yet this imagery is valid only in Euclidean geometry. In the absence of the parallel

postulate we can only consider two lines as “parallel” when, by the definition of “parallel”,

they do not possess any points in common. It is not possible implicitly to assume that they are

equidistant; nor can it be assumed that they have a common perpendicular. This is an example

in which a selected abduced image is capable of compelling you to make a mistake, and in this

way it was used as a means of evaluation in a proof: we have already stated that in this case it

is not possible to use that image or imagery to justify a step in a proof because it is not possible

to use that image or imagery that attributes to experience more than the experience itself can

deliver.

For over two thousand years some of the greatest mathematicians tried to prove Euclid’s fifth

postulate. For example, Saccheri’s strategy for anomaly resolution in the XVIII century was to

abduce two opposite hypotheses (Darden, 1991, pp. 272–275) of the principle, that is, to negate

the fifth postulate and derive, using new logical tools coming from non-geometrical sources of

knowledge, all theorems from the two alternative hypotheses by trying to detect a contradiction.

The aim was indeed that of demonstrating that the anomaly is simply apparent. We are faced

with a kind of explanatory abduction. New axioms are hypothesized and adopted in looking

for outcomes which can possibly help in explaining how the fifth postulate is unique and so

not anomalous. At a first sight this case is similar to the case of non-explanatory abduction

(cf. (Magnani, 2009b, chapter two)), speaking of reverse mathematics, but the similarity is

only structural (i.e. guessing “new axioms”): in the case of reverse mathematics axioms are

hypothesized to account for already existing mathematical theories and do not aim at explanatory

results.

The contradiction in the elliptic case (“hypothesis of obtuse angle”, to use the Saccheri’s

term designing one of the two future elementary non-Euclidean geometries) was found, but

the contradiction in the hyperbolic case (“hypothesis of the acute angle”) was not so easily

discovered: having derived several conclusions that are now well-known propositions of non-

Euclidean geometry, Saccheri was forced to resort to a metaphysical strategy for anomaly
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resolution: “Proposition XXXIII. The ‘hypothesis’ of acute angle [that is, the hyperbolic case] is

absolutely false, because repugnant to the nature of the straight line” Saccheri (1920). Saccheri

chose to state this result with the help of the somewhat complicated imagery of infinitely distant

points: two different straight lines cannot both meet another line perpendicularly at one point,

if it is true that all right angles are equal (fourth postulate) and that two different straight lines

cannot have a common segment. Saccheri did not ask himself whether everything that is true of

ordinary points is necessarily true of an infinitely distant point. In Note II to proposition XXI

some “physico-geometrical” experiments to confirm the fifth postulate are also given, invalidated

unfortunately by the same incorrect use of imagery that we have observed in Proclus’s case.

In this way, the anomaly was resolved unsatisfactorily and Euclid was not freed of every fleck:

nevertheless, although he did not recognize it, Saccheri had discovered many of the propositions

of non-Euclidean geometry (Torretti, 1978, p. 48).

Geometers were not content merely to manipulate proofs in order to discover new theorems and

thereby to resolve the anomaly without trying to answer questions about what the symbols of the

principles underlying Euclidean geometry represent. In the following sections I will illustrate the

example of Lobachevsky’s discovery of non-Euclidean geometry where we can see the abductive

role played in a discovery process by new considerations concerning visual sense impressions and

productive imagery representations.

3.1 Internal and External Representations

Lobachevsky was obliged first of all to rebuild the basic Principles and to this end, it was necessary

to consider geometrical principles in a new way, as neither ideal nor a priori. New interrelations

were created between two areas of knowledge: Euclidean geometry and the philosophical tradition

of empiricism/sensualism. In the following section I will describe in detail the type of abduction

that was at play in this case. Lobachevsky’s target is to perform a geometrical abductive process

able to create the new and very abstract concept of non-Euclidean parallel lines. The whole

epistemic process is mediated by interesting manipulations of external mirror diagrams.

I have already said that for over two thousand years some of the greatest mathematicians

tried to prove Euclid’s fifth postulate. Geometers were not content merely to construct proofs

in order to discover new theorems and thereby to try to resolve the anomaly (represented by

its lack of evidence) without trying to reflect upon the status of the symbols of the principles

underlying Euclidean geometry represent. Lobachevsky’s strategy for resolving the anomaly of

the fifth postulate was first of all to manipulate the symbols, second to rebuild the principles,

and then to derive new proofs and provide a new mathematical apparatus; of course his analysis

depended on some of the previous mathematical attempts to demonstrate the fifth postulate.

The failure of the demonstrations – of the fifth postulate from the other four – that was present

to the attention of Lobachevsky, lead him to believe that the difficulties that had to be overcome

were due to causes traceable at the level of the first principles of geometry.

We simply can assume that many of the internal visualizations of the working geometers of

the past were spatial and imaginary because those mathematicians were precisely operating with

diagrams and visualizations. By using internal representations Lobachevsky has to create new

external visualizations and to adjust them tweaking and manipulating (Trafton et al. (2005)) the

previous ones in some particular ways to generate appropriate spatial transformations (the so-

called geometrical constructions).8 In cognitive science many kinds of spatial transformations

have been studied, like mental rotation and any other actions to improve and facilitate

the understanding and simplification of the problem. It can be said that when a spatial

transformation is performed on external visualizations, it is still generating or exploiting an

internal representation.

8I maintain that in general spatial transformations are represented by a visual component and a spatial
component (Glasgow and Papadias (1992)).
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Spatial transformations on external supports can be used to create and transform external

diagrams and the resulting internal/mental representations may undergo further mental trans-

formations. Lobachevsky mainly takes advantage of the transformation of external diagrams

to create and modify the subsequent internal images. So mentally manipulating both external

diagrams and internal representations is extremely important for the geometer that uses both

the drawn geometrical figure and her own mental representation. An active role of these external

representations, as epistemic mediators able to favor scientific discoveries – widespread during

the ancient intuitive geometry based on diagrams – can be curiously seen at the beginning of

modern mathematics, when new abstract, imaginary, and counterintuitive non-Euclidean entities

are discovered and developed.

There are in vivo cognitive studies performed on human agents (astronomers and physicists)

about the interconnection between mental representations and the external scientific visualiza-

tions. In these studies “pure” spatial transformations, that is transformations that are performed –

and based – on the external visualizations dominate: the perceptual activity seems to be prevalent,

and the mental representations are determined by the external ones. The researchers say that

there is, in fact, some evidence for this hypothesis: when a scientist mentally manipulates a

representation, 71% of the time the source is a visualization, and only 29% of the time it is a

“pure” mental representation. Other experimental results show that some of the time scientists

seem to create and interpret mental representations that are different from the images in the

visual display: in this case it can be hypothesized that scientists use a comparison process to

connect their internal representation with the external visualizations (Trafton et al. (2005)).

In general, during the comparison between internal and external representation the scientists

are looking for discrepancies and anomalies, but also equivalences and coherent shapes (like in

the case of geometers, as we will see below). The comparison between the transformations acted

on external representations and their previously represented “internal” counterpart forces the

geometer to merge or to compare the two sides (some aspects of the diagrams correspond to

information already represented internally as symbolic-propositional).9

External geometrical diagrams activate perceptual operations, such as searching for objects

that have a common shape and inspecting whether three objects lie on a straight line. They

contain permanent and invariant geometrical information that can be immediately perceived and

kept in memory without the mediation of deliberate inferences or computations, such as whether

some configurations are spatially symmetrical to each other and whether one group of entities has

the same number of entities as another one. Internal operations prompt other cognitive operations,

such as making calculations to get or to envision a result. In turn, internal representations may

have information that can be directly retrieved, such as the relative magnitude of angles or areas.

3.2 Mirror Diagrams and the Infinite

As previously illustrated the failure of the demonstrations (of the fifth postulate from the other

four) of his predecessors induced Lobachevsky to believe that the difficulties that had to be

overcome were due to causes other than those which had until then been focused on.

Lobachevsky was obliged first of all to rebuild the basic principles: to this end, it was necessary

to consider geometrical principles in a new way, as neither ideal nor a priori. New interrelations

were created between Euclidean geometry and some claims deriving from the philosophical

tradition of empiricism/sensualism.

9Usually scientists try to determine identity, when they make a comparison to determine the individuality
of one of the objects; alignment, when they are trying to determine an estimation of fit of one
representation to another (e.g. visually inspecting the fit of a rough mental triangular shape to an
external constructed triangle); and feature comparison, when they compare two things in terms of their
relative features and measures (size, shape, color, etc.). Cf Trafton et al. (2005).
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3.2.1 Abducing First Principles through Bodily Contact
From this Lobachevskyan perspective the abductive attainment of the basic concepts of any

science is in terms of senses: the basic concepts are always acquired through our sense impressions.

Lobachevsky builds geometry upon the concepts of body and bodily contact, the latter being the

only “property” common to all bodies that we ought to call geometrical. The well-known concepts

of depthless surface, widthless line and dimensionless point were constructed considering different

possible kinds of bodily contact and dispensing with, per abstractionem, everything but preserving

the contact itself: these concepts “exist only in our representation; whereas we actually measure

surfaces and lines by means of bodies” for “in nature there are neither straight lines nor curved

lines, neither plane nor curved surfaces; we find in it only bodies, so that all the rest is created

by our imagination and exists just in the realm of theory” (Lobachevsky, 1897, Introduction).

The only thing that we can know in nature is movement “without which sense impressions are

impossible. Consequently all other concepts, e.g. geometrical concepts, are generated artificially

by our understanding, which derives them from the properties of movement; this is why space in

itself and by itself does not exist for us” (ibid.).

It is clear that in this inferential process Lobachevsky performs a kind of model-based

abduction,10 where the perceptual role of sense impressions and their experience with bodies and

bodily contact is cardinal in the generation of new concepts. The geometrical concepts “generated

artificially by our understanding, which derives them from the properties of movement”. Are these

abductive hypotheses explanatory or not? I am inclined to support their basic “explanatory”

character: they furnish an explanation of our sensorial experience with bodies and bodily contact

in ideal and abstract terms.

On the basis of these foundations Lobachevsky develops the so-called absolute geometry, which

is independent of the fifth postulate: “Instead of commencing geometry with the plane and the

straight line as we do ordinarily, I have preferred to commence it with the sphere and the circle,

whose definitions are not subject to the reproach of being incomplete, since they contain the

generation of the magnitudes which they define” (Lobachevsky, 1929, p. 361).)

This leads Lobachevsky to abduce a very remarkable and modern hypothesis – anticipatory of

the future Einstein’s theoretical atmosphere of general relativily – which I consider to be largely

image-based: since geometry is not based on a perception of space, but constructs a concept of

space from an experience of bodily movement produced by physical forces, there could be place

in science for two or more geometries, governing different kinds of natural forces:

To explain this idea, we assume that [. . . ] attractive forces decrease because their

effect is diffused upon a spherical surface. In ordinary Geometry the area of a spherical

surface of radius r is equal to 4r2, so that the force must be inversely proportional

to the square of the distance. In Imaginary Geometry I found that the surface of the

sphere is

(er − e−r)2,

and it could be that molecular forces have to follow that geometry [. . . ]. After all,

given this example, merely hypothetical, we will have to confirm it, finding other

more convincing proofs. Nevertheless we cannot have any doubts about this: forces

by themselves generate everything: movement, velocity, time, mass, matter, even

distances and angles (Lobachevsky, 1897, p. 9).

Lobachevsky did not doubt that something, not yet observable with a microscope or analyzable

with astronomical techniques, accounted for the reliability of the new non-Euclidean imaginary

geometry. Moreover, the principles of geometry are held to be testable and it is possible to prepare

10Further details on model-based abduction are illustrated in ((Magnani, 2009b, chapter one)).
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an experiment to test the validity of the fifth postulate or of the new non-Euclidean geometry, the

so-called imaginary geometry. He found that the defect of the triangle formed by Sirius, Rigel and

Star No. 29 of Eridanus was equal to 3.727 + 10−6 seconds of arcs, a magnitude too small to be

significant as a confirmation of imaginary geometry, given the range of observational error. Gauss

too had claimed that the new geometry might be true on an astronomical scale. Lobachevsky

says:

Until now, it is well-known that, in Geometry, the theory of parallels had been

incomplete. The fruitlessness of the attempts made, since Euclid’s time, for the space

of two thousand years, aroused in me the suspicion that the truth, which it was

desired to prove, was not contained in the data themselves; that to establish it the

aid of experiment would be needed, for example, of astronomical observations, as in

the case of other laws of nature. When I had finally convinced myself of the justice

of my conjecture and believed that I had completely solved this difficult question

I wrote, in 1826, a memoir on this subject Exposition succincte des principes de la

Géométrie (Lobachevsky, 1897, p. 5).

With the help of the explanatory abductive role played by the new sensualist considerations

of the basic principles, by the empiricist view and by a very remarkable productive visual

hypothesis, Lobachevsky had the possibility to proceed in discovering the new theorems. Following

Lobachevsky’s discovery the fifth postulate will no longer be considered in any way anomalous

– we do not possess any proofs of the postulate, because this proof is impossible. Moreover, the

new non-Euclidean hypothesis is reliable: indeed, to understand visual thinking we have also to

capture its status of guaranteeing the reliability of a hypothesis. In order to prove the relative

consistency of the new non-Euclidean geometries we should consider some very interesting visual

and mathematical “models” proposed in the second half of XIX century (i.e. the Beltrami-Klein

and Poincaré models), which involve new uses of visual images in theory assessment.

In summary, the abductive process of Lobachevsky’s discovery can be characterized in the

following way, taking advantage of the nomenclature introduced in my recent book (Magnani,

2009b, chapters one and two):

1. the inferential process Lobachevsky performs to rebuild the first principles of geometry is

prevalently a kind of manipulative and model-based abduction, endowed with an explanatory

character: the new abduced principles furnish an explanation of our sensorial experience with

bodies and bodily contact in ideal and abstract terms;

2. at the same time the new principles found offer the chance of further multimodal11 and

distributed abductive steps (that is based on both on both visual and sentential aspects, and

on both internal and external representations) which are mainly non-explanatory and provide

unexpected mathematical results. These further abductive processes:

(a) first of all have to provide a different multimodal way of describing parallelism (both

from a diagrammatical and propositional perspective, cf. subsection 3.2.4 and Figure 5);

(b) second, on the basis of the new concept of parallelism it will be possible to derive new

theorems of a new non-Euclidean geometrical system exempt from inconsistencies just like

the Euclidean system. Of course this process show a moderately instrumental character,

more or less present in all abductions (cf. below section 4).

Let us illustrate how Lobachevsky continues to develop the absolute geometry. The immediate

further step is to define the concept of plane, which is defined as the geometrical locus of the

intersections of equal spheres described around two fixed points as centers, and, immediately

after, the concept of straight line (for example BB′ in the mirror diagram of the Figure 3) as the

geometrical locus of the intersections of equal circles, all situated in a single plane and described

11On multimodal abduction cf. (Magnani, 2009b, chapter four).
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around two fixed points of this plane as centers. The straight line is so defined by means of “finite”

parts (segments) of it: we can prolong it by imaging a repeatable movement of rotation around

the fixed points (cf. Figure 3) (Lobachevsky, 1829-1830, 1835-1838, §25).

Figure 3

Figure 4

Rectilinear angles (which express arcs of circle) and dihedral angles (which express spherical

lunes) are then considered; and the solid angles too, as generic parts of spherical surfaces –

and in particular the interesting spherical triangles. π means for Lobachevsky the length of a

semicircumference, but also the solid angle that corresponds to a semisphere (straight angle). The

surface of the spherical triangles is always less than π, and, if π, coincides with the semisphere.

The theorems about the perpendicular straight lines and planes also belong to absolute geometry.

3.2.2 Expansion of Scope Strategy
We have to note some general cognitive and epistemological aspects which characterize the

development of this Lobachevskyan absolute geometry.

Spherical geometry is always treated together with the plane geometry: the definitions about

the sphere are derived from the ones concerning the plane when we substitute the straight lines

(geodetics in the plane) with the maximal circles (geodetics in the spherical surface). Lobachevsky

says that the maximal circle on the sphere with respect to the other circles presents “properties”

that are “similar” to the ones belonging to the straight line with respect to all the segments in

the plane (Lobachevsky, 1829-1830, 1835-1838, §66). This is an enhancement, by means of a kind

of analogical reasoning, reinforced by the external mirror diagrams, of the internal representation

of the concept of straight line. The straight line can be in some sense thought (because it is

“seen” and “imagined” in the various configurations provided by the external diagrams) as

“belonging” to various types of surfaces, and not only to the plane. Consequently, mirror diagrams

not only manage consistency requirements, they can also act in a creative way, providing new

“perspectives” on old entities and structures. The directly perceivable information strongly guides
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the discoverer’s selections of moves by servicing the discovery strategy expansion-of-the-scope (of

the concept of straight line). This possibility was not indeed available at the simple level of

the internal representation. The Figure 4 (Lobachevsky, 1829-1830, 1835-1838, §79) is another

example of the exploitation of the analogy plane/spherical surface by means of a diagram that

exploits the perspective of the two-dimensional flat plane.

3.2.3 Infinite/Finite Interplay
In all the previous cases the external representations are constructions that have to respect

the empirical attitude described above: because of the fact that the geometrical bodies are

characterized by their “finiteness” the external representation is just a coherent mirror of finite

internal images. The “infinite” can be perceived in the “finite” constructions because the infinite is

considered only as something potential that can be just mentally and artificially thought: “defined

artificially by our understanding”. As the modern axiomatic method is absent, the geometer has

to conceptualize infinite situations exploiting the finite resources offered by diagrams. In front

of the question: “How is it that the finite human resources of internal representations of human

mind can conceptualize and formalize abstract notions of infinity?” – notions such as the specific

ones embedded in the non-Euclidean assumptions – the geometer is aware we perceive a finite

world, act upon it, and think about it. Moreover, the geometer operates in “a combination of

perceptual input, physical output, and internal mental processes. All three are finite. But by

thinking about the possibility of performing a process again and again, we can easily reach out

towards the potential infinite” Tall (2001). Lobachevsky states: “Which part of the lines we would

have to disregard is arbitrary”, and adds, “our senses are deficient” and it is only by means of the

“artifice” consisting of the continuum “enhancement of the instruments” that we can overcome

these limitations (Lobachevsky, 1829-1830, 1835-1838, §38). Given this epistemological situation,

it is easy to conclude saying that instruments are not just and only telescopes and laboratory

tools, but also diagrams.

Let us continue to illustrate the geometer’s inventions. In the Proposition 27 (a theorem

already proved by Euler and Legendre) of the Geometrical Researches of the Theory of Parallels,

published in 1840 (Lobachevsky (1891)), Lobachevsky states that if A, B, and C are the angles

of a spherical triangle, the ratio of the area of the triangle to the area of the sphere to which it

belongs will be equal to the ratio of

1

2
(A + B + C − π)

to four right angles; that the sum of the three right angles of a rectilinear triangle can never

surpass two right angles (Prop. 19), and that, if the sum is equal to two right angles in any

triangle, it will be so in all (Prop. 20).

3.2.4 Non-Euclidean Parallelism: Coordination and Inconsistency Detection
The basic unit is the manipulation of diagrams. Before the birth of the modern axiomatic method

the geometers still and strongly have to exploit external diagrams, to enhance their thoughts. It

is impossible to mental imaging and evaluating the alternative sequences of symbolic calculations

being only helped by the analytic tools, such as various written equations and symbols and marks:

it is impossible to do a complete anticipation of the possible outcomes, due to the limited power

of working memory and attention. Hence, because of the complexity of the geometrical problem

space and the limited power of working memory, complete mental search is impossible or difficult.

Geometers may use perceptual external biases to make decisions. Moreover, in those cognitive

settings, lacking in modern axiomatic theoretical awareness, certainly perceptual operations were

epistemic mediators which need less attentional and working memory resources than internal

operations. “The directly perceived information from external representations and the directly

retrieved information from internal representation may elicit perceptual and cognitive biases,

respectively, on the selections of actions. If the biases are inconsistent with the task, however,
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they can also misguide actions away from the goal. Learning effect can occur if a task is performed

more than once. Thus, the decision on actions can also be affected by learned knowledge” (Zhang,

1997, p. 186).

The new external diagram proposed by Lobachevsky (the diagram of the drawn parallel lines

of Figure 5) (Lobachevsky (1891)) is a kind of analogous both of the mental image we depict in

the mental visual buffer and of the symbolic-propositional level of the postulate definition. It no

longer plays the explanatory role of showing an anomaly, like it was in the case of the diagram of

Figure 2 (and of other similar diagrams) during the previous centuries. I have already said I call

this kind of external tool in the geometrical reasoning mirror diagram. In general this diagram

mirrors the internal imagery and provides the possibility of detecting anomalies, like it was in

the case of the similar diagram of Figure 2. The external representation of geometrical structures

often activates direct perceptual operations (for example, identify the parallels and search for the

limits) to elicit consistency or inconsistency routines. Sometimes the mirror diagram biases are

inconsistent with the task and so they can make the task more difficult by misguiding actions

away from the goal. If consistent, we have already said that they can make the task easier by

guiding actions toward the goal. In certain cases the mirror diagrams biases are irrelevant, they

should have no effects on the decision of abductive actions, and play lower cognitive roles.

In the case of the diagram of the parallel lines of the similar Figure 2 it was used in the history

of geometry to make both consistent and in-consistent the fifth Euclidean postulate and the new

non-Euclidean perspective (more details on this epistemological situation are given in Magnani

(2001b)).

Figure 5 Non-Euclidean parallel lines.

I said that in some cases the mirror diagram plays a negative role and inhibits further creative

abductive theoretical developments. As I have already indicated (p. 7), Proclus tried to solve the

anomaly by proving the fifth postulate from the other four. If we were able to prove the postulate

in this way, it would become a theorem in a geometry which does not require that postulate (the

future “absolute geometry”) and which would contain all of Euclid’s geometry. We need only

remember that the argument seemed correct because it was proved using a diagram. In this case

the mirror diagram biases were consistent with the task of justifying Euclidean geometry and

they made this task easier by guiding actions toward the goal, but they inhibited the discovery of

non-Euclidean geometries (Greenberg, 1974, pp. 119–121); cf. also (Magnani, 2001b, pp. 166–167).

In sum, contrarily to the diagram of Figure 2, the diagram of Figure 5 does not aim at

explaining anything given, it is fruit of a non-explanatory and instrumental abduction, as I have

anticipated at p. 11: the new related principle/concept of parallelism offers the chance of further
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multimodal and distributed abductive steps (based on both visual and sentential aspects, and on

both internal and external representations) which are mainly non-explanatory and instrumental.

On the basis of the new concept of parallelism it will be possible to derive new theorems of a new

non-Euclidean geometrical system exempt from inconsistencies just like the Euclidean system (cf.

below section 4).

The diagram now favors the new definition of parallelism (Lobachevsky, 1891, Prop. 16), which

introduces the non-Euclidean atmosphere: “All straight lines which in a plane go out from a point

can, with reference to a given straight line in the same plane, be divided in two classes – into

cutting and not-cutting. The boundary lines of the one and the other class of those lines will be

called parallel to the given lines” (p. 13).

The external representation is easily constructed like in Figure 5 of (Lobachevsky, 1891, p.

13), where the angle HAD between the parallel HA and the perpendicular AD is called the angle

of parallelism, designated by Π(p) for AD = p. If Π(p) is < 1

2
π, then upon the other side of AD,

making the same angle DAK = Π(p) will lie also a line AK, parallel to the prolongation DB of the

line DC, so that under this assumption we must also make a distinction of sides in parallelisms.

Because of the fact that the diagrams can contemplate only finite parts of straight lines it is

easy to represent this new postulate in this mirror image: we cannot know what happens at the

infinite neither in the internal representation (because of the limitations of visual buffer), nor in

the external representation: “[. . . ] in the uncertainty whether the perpendicular AE is the only

line which does not meet DC, we will assume it may be possible that there are still other lines,

for example AG, which do not cut DC, how far so ever they may be prolonged” (ibid.). So the

mirror image in this case is seen as consistently supporting the new non-Euclidean perspective.

The idea of constructing an external diagram of a non-Euclidean situation is considered normal

and reasonable.The diagram of Figure 5 is now exploited to unveil new fruitful consequences.

A first analysis of the exploitation of what I call unveiling diagrams in the discovery of the

notion of non-Euclidean parallelism is presented in the following section related to the exploitation

of diagrams at the stereometric level. 12 Taking advantage of the Lobachevskyan case I have

illustrated that in mirror diagrams the coordination between perception and cognition is central,

from both static and dynamic (constructions) points of view; in the case of the abduced unveiling

diagrams allocating and switching attention between internal and external representation govern

the reasoning strategy, by integrating internal and external representation in a more dynamical

and complicated way – essentially non-explanatory and instrumental – as we will see in the

following section.

4 Unveiling Diagrams in Lobachevsky’s Discovery as Gateways to
Imaginary Entities

4.1 Euclidean/Non-Euclidean Model Matching Strategy

Lobachevsky’s target is to perform a geometrical abductive process able to create new and very

abstract entities: the whole epistemic process is mediated by interesting manipulations of external

unveiling diagrams. The first step toward the exploitation of what I call unveiling diagrams is

the use of the notion of non-Euclidean parallelism at the stereometric level, by establishing

relationships between straight lines and planes and between planes: Proposition 27 (already

proved by Lexell and Euler): “A three-sided solid angle equals the half sum of surface angles

less a right-angle” (p. 24, Figure 6). Proposition 28 (directly derived from Prop. 27): “If three

planes cut each other in parallel lines, then the sum of the three surface angles equals two rights”

(p. 28), Figure 7. These achievements are absolutely important: it is established that for a certain

geometrical configuration of the new geometry (the three planes cut each other in parallel lines

that are parallel in Lobachevskyan sense) some properties of the ordinary geometry hold.

12(Magnani and Dossena (2005); Dossena and Magnani (2007)) illustrate that external representations
like the ones I call unveiling diagrams can enhance the consistency of a cognitive process but also provide
more radically creative suggestions for new useful information and discoveries.
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Figure 6

Figure 7

The important notions of oricycle and orisphere are now defined to search for a possible

symbolic counterpart able to express a foreseen consistency (as a justification) of the non-

Euclidean theory. This consistency is looked at from the point a view of a possible “analytic”

solution, that is in terms of verbal-symbolic (not diagrammatic) results (equations).

Such is the case of the Proposition 31. “We call boundary line (oricycle) that curve lying in a

plane for which all perpendiculars erected at the mid-ponts of chords are parallel to each other.

[. . . ] The perpendicular DE erected upon the chord AC at its mid-point D will be parallel to the

line AB, which we call the Axis of the boundary line” (pp. 30-31), cf. Figure 8. Proposition 34.

“Boundary surface13 we call that surface which arises from the revolution of the boundary line

about one of its axes, which, together with all other axes of the boundary-line, will be also an axis

of the boundary surface” (p. 33). Moreover, the intersections of the orisphere by its diametral

planes are limit circles. The limit circle arcs are called the sides, and the dihedral angles between

the planes of these arcs the angles of the “orisphere triangle”.

Figure 8

A part of the surface of the orisphere bounded by three limit circle arcs will be called an

orisphere triangle. From Prop. 28 follows that the sum of the angles of an orisphere triangle

is always equal to two right angles: “everything that is demonstrated in the ordinary geometry

of the proportionality of the sides or rectilinear triangles can therefore be demonstrated in the

13Also called limit sphere or orisphere.
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same manner in the pangeometry”14 (Lobachevsky, 1929, p. 364) of the orisphere triangles if only

we will replace the lines parallel to the sides of the rectilinear triangle by orisphere arcs drawn

through the points of one of the sides of the orisphere triangle and all making the same angle

with this side. To conclude, the orisphere is a “partial” model of the Euclidean plane geometry.

The last constructions of the Lobachevskyan abductive process give rise to two fundamental

unveiling diagrams (cf. Figures 9 and 11) that accompany the remaining proofs. They are

more abstract and exploit “audacious” representations in the perspective of three dimensional

geometrical shapes.

The construction given in Figure 9 aims at diagrammatically “representing” a stereometric

non-Euclidean form built on a rectilinear right angled triangle ABC to which the Theorem

28 above can be applied (indeed the parallels AA′, BB′, CC′, which lie on the three planes

are parallels in non-Euclidean sense), so that Lobachevsky is able to further apply symbolic

identifications; the planes make with each other the angles Π(a) at AA′, a right angle at CC′,

and, consequently Π(a′) at BB′.15 The diagram is enhanced by constructing a spherical triangle

mnk, in which the sides are mn = Π(c), kn = Π(β), mk = Π(a) and the opposite angles are Π(a),

Π(α′), 1

2
π realizing that with the “existence” of a rectilinear triangle with the sides a, b, c (like

in the case of the previous one) “we must admit” the existence of a related spherical triangle

(cf. Figure 10), etc. Not only, a boundary surface (orisphere) can be constructed, that passes

through the point A with AA′ as axis, and those intersections with the planes the parallels

form a boundary triangle (that is a triangle situated upon the given orisphere), whose sides

are B′′C′′ = p, C′′A = q, B′′A = r, and the angles opposite to them Π(α), Π(α′), 1

2
π and where

consequently (this follows from the Theorem 34):

p = r sin Π(a), q = r cos Π(a)

.

Figure 9

As I will illustrate in the following subsections in this way Lobachevsky is able to further

apply symbolic identifications and to arrive to new equations which consistently (and at the same

time) connect Euclidean and non-Euclidean perspectives. This kind of diagram strongly guides

the geometer’s selections of moves by eliciting what I call the Euclidean-inside non-Euclidean

“model matching strategy”.

14Lobachevsky called the new theory “imaginary geometry” but also “pangeometry”.
15Given that Lobachevsky designates the size of a line by a letter with an accent added, e.g. x′, in order
to indicate this has a relation to that of another line, which is represented by the same letter without
the accent x, “which relation is given by the equation Π(x) + Π(x′) = 1

2
π” (Prop. 35).
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Inside the perspective representations (given by the fundamental unveiling diagram of a non-

Euclidean structure, cf. Figure 9), a Euclidean spherical triangle and the orisphere (and its

boundary triangle where the Euclidean properties hold) are constructed. The directly perceivable

information strongly guides the geometer’s selections of moves by eliciting the Euclidean-inside

non-Euclidean “model matching strategy” I have quoted above. This maneuver also constitutes

an important step in the affirmation of the modern “scientific” concept of model. We have to note

that other perceptions activated by the diagram are of course disregarded as irrelevant to the

task, as it usually happens when exploiting external diagrammatic representations in reasoning

processes. Because not everything in external representations is always relevant to a task, high

level cognitive mechanisms need to use task knowledge (usually supplied by task instructions) to

direct attention and perceptual processes to the relevant features of external representations.

Figure 10

The different selected representational system – that still uses Euclidean icons – determines

in this case quite different possibilities of constructions, and thus different results from iconic

experimenting. New results are derived in diagrammatic reasoning through modifying the

representational systems, adding new meaning to them, or in reconstructing their systematic

order.

4.2 Consistency-Searching Strategy

This external representation in terms of the unveiling diagram illustrated in Figure 9 activates

a perceptual reorientation in the construction (that is identifies possible further constructions);

in the meantime the consequent new generated internal representation of the external elements

activates directly retrievable information (numerical values) that elicits the strategy of building

further non-Euclidean structures together with their analytic counterpart (cf. below the non-

Euclidean trigonometry equations). Moreover, the internal representation of the stereometric

figures activates cognitive operations related to the consistency-searching strategy. In this process,

new “imaginary” and strange mathematical entities, like the oricycle and the orisphere, are

– non-explanatorily and instrumentally – abduced and unveiled, and related to ordinary and

unsuspected perceptive entities.

Finally, it is easy to identify in the proof the differences between perceptual and other cognitive

operations and the differences between sequential – the various steps of the constructed unveiling

diagram – and parallel perceptual operations. Similarly, it is easy to distinguish between the

forms that are directly perceptually inspected and the elements that are mentally computed or

computed in external symbolic configurations.

To arrive to the second unveiling diagram the old diagram (cf. Figure 9) is further enhanced

by a new construction, by breaking the connection of the three principal planes along the line

BB′, and by turning them out from each other so that they, together with all the lines lying in

them, come to lie in one plane, where consequently the arcs p, q, r will unite to a single arc of

a boundary-line (oricycle), which goes through the point A and has AA′ as its axis, in such a

manner that (Figure 11) on the one side will lie, the arcs q and p, the side b of the triangle, which

is perpendicular to AA′ at A, the axis CC′ going from the end of b parallel to AA′ and through

C′′ the union point of p and q, the side a perpendicular to CC′ at the point C, and from the

end-point of a the axis BB′ parallel to AA′ which goes through the end-point B′′ of the arc p,
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Figure 11

etc. Finally, taking CC′ as axis, a new boundary line (an arc of oricycle) from the point C to its

intersection with the axis BB′ is constructed. What happens?

4.3 Loosing Intuition

In this case we see that the external representation completely looses its spatial explanatory

intuitive interest and/or its capacity to simulate internal spatial representations: it is not useful

to represent it as an internal spatial model in order to enhance the problem solving activity.

The diagram of Figure 11 does not have to depict internal forms coherent from the intuitive

spatial point of view, it is just devoted to instrumentally “unveil” the possibility of further

calculations by directly activating perceptual information that, in conjunction with the non-

spatial information and cognitive operations provided by internal representations in memory,

determine the subsequent problem solving behavior. This diagram does not have to prompt an

internal “spatially” intuitively coherent model. Indeed perception often plays an autonomous and

central role, it is not a peripheral device. In this case the end product of perception and motor

operations coincides with the intermediate data highly analyzed, processed, and transformed,

that is prepared for high-level cognitive mechanisms in terms of further analytic achievements

(the equations).16

We have to note that of course it cannot be said that the external representation would work

independently without the support of anything internal or mental. The mirror and unveiling

diagrams have to be processed by perceptual mechanisms that are of course internal. And in this

sense the end product of the perceptual mechanisms is also internal. But it is not an internal

model of the external representation of the task: the internal representation is the knowledge and

structure of the task in memory; and the external representation is the knowledge and structure of

the task in the environment. The end product of perception is merely the situational information

in working memory that usually only reflects a fraction (crucial) of the external representation

(cf. Zhang (1997)). At this point it is clear that the perceptual operations generated by the

external representations “mediated” by the unveiling diagrams are central as mechanisms of the

whole geometrical abductive and manipulative process; they are not less fundamental than the

cognitive operations activated by internal representations, in terms of images and/or symbolic-

propositional. They constitute an extraordinary example of complex and perfect coordination

between perceptual, motor, and other inner cognitive operations.

Let us conclude the survey on Lobachevsky’s route to an acceptable assessment of its non-

Euclidean theory. By means of further symbolic/propositional designations taken from both

16In other problems solving cases, the end product of perception – directly picked-up – is the end product
of the whole problem solving process.
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internal representations followed from previous results and “externalized” calculations, the

reasoning path is constrained to find a general “analytic” counterpart for (some aspects of) the

non-Euclidean geometry (we skip the exposition of this complicated passage – cf. Lobachevsky

(1891)). Therefore we obtain the equations

sin Π(c) = sin Π(a) sin Π(b)

sin Π(β) = cos Π(α) sin Π(a)

Hence we obtain, by mutation of the letters,

sin Π(α) = cos Π(β) sin Π(b)

cos Π(b) = cos Π(c) cos Π(α)

cos Π(a) = cos Π(c) cos Π(β)

that express the mutual dependence of the sides and the angles of a non-Euclidean triangle.

In these equations of plane non-Euclidean geometry we can pass over the equations for spherical

triangles. If we designate in the right-angled spherical triangle (Figure 10) the sides Π(c), Π(β),

Π(a), with the opposite angles Π(b), Π(α′), by the letters a, b, c, A, B, then the obtained

equations take of the form of those which we know as the equations of spherical trigonometry for

the right-angled triangle

sin(a) = sin(c) sin(A)

sin(b) = sin(c) sin(B)

cos(A) = cos(A) sin(B)

cos(B) = cos(B) sin(A)

cos(c) = cos(a) cos(b)

.

The equations are considered to “attain for themselves a sufficient foundation for considering

the assumption of imaginary geometry as possible” (p. 44). The new geometry is considered

exempt from possible inconsistencies together with the acknowledgment of the reassuring fact that

it presents a very complex system full of surprisingly harmonious conclusions. A new contradiction

which could have emerged and which would have forced to reject the principles of the new

geometry would have been already contained in the equations above. Of course this is not true

from the point of view of modern deductive axiomatic systems and a satisfactory model of non-

Euclidean geometry has not yet been built (as Beltrami and Klein will do with the so-called

“Euclidean models of non-Euclidean geometry”).17 As for now the argument rests on a formal

agreement between two sets of equations, one of which is derived from the new non-Euclidean

geometry. Moreover, the other set of equations does not pertain to Euclidean geometry; rather

they are the equations of spherical trigonometry that does not depend on the fifth postulate (as

maintained by Lobachevsky himself). Nevertheless, we can conclude that Lobachevsky is not far

from the modern idea of model.

We can say that geometrical diagrammatic thinking represented the capacity to extend

finite perceptual experiences to give known (Euclidean) and infinite unknown (non-Euclidean)

mathematical structures that appear consistent in themselves and that have quite different

properties each other.

Many commentators (and myself in Magnani (2001b)) contend that Kant did not imagine that

non-Euclidean concepts could in some way be constructed in intuition18(a Kantian expression

17On the limitations of the Lobachevskyan perspective cf. Torretti (1978) and Rosenfeld (1988).
18We have seen how Lobachevsky did this by using the Figure 9.
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which indicated our iconic external representation), through the mediation of a model, that is

preparing and constructing a Euclidean model of a specific non-Euclidean concept (or group of

concepts). Yet Kant also wrote that “the use of geometry in natural philosophy would be insecure,

unless the notion of space is originally given by the nature of the mind (so that if anyone tries

to frame in his mind any relations different from those prescribed by space, he will labor in vain,

for he will be compelled to use that very notion in support of his figment)” (Kant, 1968, Section

15E).

(Torretti, 2003, p. 160) observes:

I find it impossible to make sense of the passage in parentheses unless it refers precisely

to the activity of constructing Euclidean models of non-Euclidean geometries (in a

broad sense). We now know that one such model (which we ought rather to call

quasi-Euclidean, for it would represent plane Lobachevskian geometry on a sphere

with radius
√
−1) is mentioned in the Theorie der Parallellinien that Kant’s fellow

Königsbergian Johann Heinrich Lambert (cf. Lambert (1786)) wrote about 1766.

There is no evidence that Kant ever saw this tract and the few extant pieces of

his correspondence with Lambert do not contain any reference to the subject, but,

in the light of the passage I have quoted, it is not unlikely that Kant did hear about

it, either from Lambert himself, or from a shared acquaintance, and raised the said

objection.

I agree with Torretti, Kant had a very wide perspective about the resources of “intuition”,

anticipating that a geometer would have been “compelled” to use the notion of space “given

by nature”, that is the one that is at the origins of our external representation, “in support of

his figment”, for instance the non-Euclidean Lobachevskyan abstract structures we have treated

above in Figure 9, which exhibits the non-Euclidean through the Euclidean.

5 Conclusion

The mirror and unveiling diagrams we have described provide a better understanding of

the discovery of the elementary non-Euclidean geometry. They improve and complete the

epistemological and cognitive analysis of this important scientific revolution. Moreover: i) the

role of other diagrams (called optical) in the calculus and non-standard analysis and in a calculus

teaching environment seems relevant. I have proposed a study devoted to detect the details of

their didactic effects on the calculus students (mathematics and engineering curricula); but I

am also convinced they can be exploited and studied in everyday non-mathematical applications

also to the aim of promoting new trends in artificial intelligence modeling of various aspects of

hypothetical reasoning (finding routes, road signs, buildings maps, for example), in connection

with various zooming effects of spatial reasoning; ii) I think the cognitive activities of optical,

mirror, and unveiling diagrams can be studied in other areas of manipulative and model-based

reasoning, such as the ones involving creative, analogical, and spatial inferences, both in science

and everyday situations so that this can extend the epistemological and the psychological theory.

A research tradition that has acknowledged the importance of visualizations and dia-

grams in mathematical reasoning is active in artificial intelligence. For example the program

ARCHIMEDES (Lindsay (1994, 1998, 2000b,a)) represents geometrical diagrams (points, line

segments, polygons, and circles) both as pixels arrays and as propositional statements.19 The

program is able to manipulate and modify its own representations of diagrams, that is it is able

to make geometrical constructions (called “simulation constructions”): adding parts or elements,

moving components about, translating and rotating by preserving metric properties, of course

subordinated to the given specific constraints and to the whole structure of the two-dimensional

19This approach in computer science, involving the use of diagram manipulations as forms of acceptable
methods of reasoning, was opened by Gelernter’s Geometry Machine (Gelertner (1959)), but the diagrams
played a very secondary role.
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space. Some knowledge of algebra is added, and of the taxonomic hierarchy of geometric figures

(all square are rectangles, etc.); moreover, additional knowledge is also included, like side-angle-

side congruency theorem and the sum of the interior angles of a triangle, knowledge of problem

solving strategies and heuristics, knowledge of logic (for example: a universal statement can be

disproved by a single counterexample) (cf. Lindsay (2000a)). When the program manipulates the

specific diagram, it records the new information that comes out, then it can for example detect

sets of area equivalences, and so on: for example, it is able to verify that a demonstration of the

Pythagorean Theorem is correct, mirroring its truth in terms of constructions and manipulations.

To account for the universality of geometrical theorems and propositions many different methods

for learning and “generalizing” the specific instance of the constructed diagram are exploited

(Lindsay, 1998, pp. 260-264).

Further emphasis on the importance in hypothetical cognition of the external materiality of

diagrams could improve future programs and simulations. I have recently emphasized (cf. Magnani

(2009a)) the importance in artificial intelligence of taking into account the role of the creative

abductive construction of external “samples” as a special kind of fruitful “experimentation”.

I have stressed that abductive steps are often occurring in a continuous interplay among the

reasoner and its external cognitive environment in which new experimental data (new evidence)

are built and at the same time re-offered to the reasoner in a process of manipulative abduction:

this also refers to the role of this process of building new experimental data (new evidence) in

triggering smart inductive inferences.

Finally, the mathematical example studied in this paper provides a powerful tool for clarifying

the basic aspects of abductive cognition: theoretical vs. manipulative, creative vs. selective,

explanatory vs. non-explanatory, instrumental, and model-based.
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