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Abstract

We consider the unicity of types for various classes of supercuspidal representations

of reductive p-adic groups, with a view towards establishing instances of the inertial

Langlands correspondence. We introduce the notion of an archetype, which we de-

fine to be a conjugacy class of typical representations of maximal compact subgroups.

In the case of supercuspidal representations of a special linear group, we general-

ize the functorial results of Bushnell and Kutzko relating simple types in GLN (F )

and SLN (F ) to cover all archetypes; from this we deduce that any archetype for

a supercuspidal representation of SLN (F ) is induced from a maximal simple type.

We then provide an explicit description of the number of archetypes contained in a

given supercuspidal representation of SLN (F ). We next consider depth zero super-

cuspidal representations of an arbitrary group, where we are able to show that the

only archetypes are the depth zero types constructed by Morris.

We end by showing that there exists a unique inertial Langlands correspondence

from the set of archetypes contained in regular supercuspidal representations to the

set of regular inertial types. In the cases of SLN (F ) and depth zero supercuspidals

of arbitrary groups, we describe completely the fibres of this inertial correspondence;

in general, we formulate a conjecture on how these fibres should look for all regular

inertial types.
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Chapter 1

Introduction

1.1 Overview

Let F be a non-archimedean local field of residual characteristic p. Given a prime ` 6= p,

the local Langlands conjectures – which are now known to hold in many significant cases

– predict a natural parametrization of various classes of continuous `-adic representations

of the absolute Weil group of F in terms of the smooth `-adic irreducible representations

of the locally profinite groups of rational points of connected reductive algebraic groups

defined over F . We call such groups p-adic groups for short. The theory of Galois rep-

resentations has a well-deserved reputation for difficulty – in particular, there are few

general constructions of such representations (and those which are known, such as via

`-adic étale cohomology, are difficult to work with), and these constructions tend to be

rather non-uniform as p varies. In contrast, however, the representation theory of p-adic

groups admits a number of explicit constructions. One motivating hope for the work in

this thesis is that a sufficiently detailed understanding of explicit constructions in the

representation theory of p-adic groups should allow one to, via the local Langlands corre-

spondence, obtain new, explicit, information about Galois representations.

11
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The representation theory of p-adic groups is closely related to the structure of the under-

lying algebraic group. In particular, one obtains a natural notion of parabolic subgroups

of a p-adic group G = G(F ) and their Levi factors, which allows one to consider the pro-

cess of parabolic induction. Since the proper Levi subgroups of G are of strictly smaller

semisimple rank, their representation theory should be, in some sense, simpler. Parabolic

induction provides an extremely well-behaved collection of functors from the categories of

finite-length representations of proper Levi subgroups of G, to the category of finite-length

representations of G. However, not every irreducible representation of G arises as a sub-

quotient of some parabolically induced representation. We say that the representations

which do not come from parabolic induction are supercuspidal. This leads to a two-part

strategy for classifying the irreducible representations of G: firstly, one constructs the

supercuspidal representations of all of the Levi subgroups of G (including G itself), and

then one decomposes the resulting parabolically induced representations into irreducibles.

While neither of these steps is easy to deal with, the construction of supercuspidal rep-

resentations presents the more immediate problem of the two. Due to ideas originating

with Howe, it is expected that, given a supercuspidal representation π of G, there should

exist an open, compact-modulo-centre subgroup J̃ of G and an irreducible representation

Λ of J̃ such that π is isomorphic to the representation of G compactly induced from Λ.

However, this conjecture has a well-deserved reputation for difficulty, and remains wide-

open in general. Despite this, there has been substantial progress in many cases: the

conjecture is now known when G is a general or special linear group due to Bushnell and

Kutzko [BK93a, BK93b, BK94], a classical group (i.e. special orthogonal, symplectic or

unitary) when p is odd due to Stevens [Ste08], an inner form of a general linear group due

to Sécherre and Stevens [Séc05,SS08], for the “depth zero” supercuspidal representations

of an arbitrary group due to Moy–Prasad and Morris [MP94, MP96, Mor99], and for the

“tamely ramified” supercuspidal representations of an arbitrary group due to Yu and Kim

[Yu01, Kim07]. In this latter case, we only know that all such supercuspidals arise via

these constructions provided the field F satisfies certain assumptions, which in particular
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are satisfied when p is sufficiently large relative to the semisimple rank of G. Recently, a

construction has been given for the “epipelagic” supercuspidal representations by Reeder

and Yu, which is valid for any group provided that p is sufficiently large [RY14]; the con-

dition on p has since been removed by Fintzen [Fin15].

In each of these cases, the construction proceeds by first constructing a type for each of the

supercuspidal representations. Given a supercuspidal representation π of a p-adic group

G, a type for π is a pair (J, λ) consisting of a compact open subgroup J of G and an

irreducible representation λ of J such that any other irreducible (not necessarily super-

cuspidal) representation of G with a non-zero λ-isotypic component must be isomorphic

to π⊗ω, for some unramified character ω of G. This may be rephrased by saying that the

irreducible representations with non-zero λ-isotypic component are precisely those in the

same subcategory as π in the block decomposition of the category of smooth representa-

tions of G due to Bernstein and Deligne [Ber84]; in this way one also obtains a definition

of types for non-cuspidal representations. Continuing to focus on the supercuspidal case,

there is a close relationship between types and the compact inducing data that we expect

to exist for supercuspidals. Given such a datum (J̃ ,Λ) and a supercuspidal representation

π = c- IndG
J̃

Λ, an irreducible subrepresentation λ of the restriction of Λ to its maximal

compact subgroup will be typical for π. However, from the abstract definition of a type

it is not possible to show that a type (J, λ) extends to a compact inducing datum for π –

in order for this to be the case, one needs further, explicit information on the structure of

(J, λ).

In particular, no such problems arise for the known constructions of types. We expect that

there should not exist any types which do not arise from such compact inducing data, and

that these compact inducing data should be essentially unique (which is to say, unique

up to conjugacy and induction to intermediate open, compact-modulo-centre subgroups).

These expectations are the basic idea behind the central idea of this thesis: what we call

the unicity of types.
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Before elaborating on this, let us consider the implications of these ideas in terms of the lo-

cal Langlands correspondence, which (when restricted to the supercuspidal representations

of G) takes the form of a surjective, finite-to-one map from the set Cusp(G) of isomor-

phism classes of supercuspidal representations of G to a certain set L(G) of L-parameters

for G (i.e. certain homomorphisms from the Weil group of G to the Langlands dual of G).

Suppose that, to each π ∈ Cusp(G), we can associate at least one type (Jπ, λπ) for π; the

idea is that this should correspond to something on the Galois side of the picture. The

obvious guess is that this should correspond to the restriction to the inertia group IF of F

of the L-parameter associated to π by the local Langlands correspondence. Indeed, this is

essentially the case: given a type (J, λ), we may pick an arbitrary supercuspidal π in which

(J, λ) is contained, apply the local Langlands correspondence, and restrict the resulting

L-parameter to the inertia group. It is easy to see that the resulting map is independent

of the choice of π, and so we obtain a map from the set of types contained in supercuspidal

representations to a certain set of homomorphisms from IF to the Langlands dual of G;

we call the image of this map the set of cuspidal inertial types.

There is, however, an immediate problem with this. In order for this to be a useful pro-

cedure, it should behave in much the same way as the local Langlands correspondence.

In particular, it is desirable that this map is surjective and finite-to-one; but it is easy to

see that, in the above formulation, this cannot be the case – given a type (J, λ), one may

conjugate (J, λ) by an arbitrary element of G, or induce λ to a compact subgroup of G

containing J and take an irreducible component. Both of these processes result in a new

type which will be mapped to the same inertial type as (J, λ). In particular, the fibres of

this map will almost always be infinite.

The solution is to instead form the quotient by the equivalence relation which identifies

such closely related types, and consider the resulting correspondence. This is equivalent

to considering what we call archetypes : G-conjugacy classes of types which are defined on

maximal compact subgroups of G. We then get a map from the set of archetypes to the set

of cuspidal inertial types, which we hope to be surjective and finite-to-one. Recalling that
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we expect that all types for supercuspidal representations arise from an essentially unique

collection of compact inducing data, we are naturally led to conjecture the following:

Conjecture (The unicity of types for supercuspidals). Let π be a supercuspidal represen-

tation of a p-adic group G. There exists an archetype for π and, given a fixed maximal

compact subgroup K of G, there exists at most one archetype for π defined on K.

The point of this conjecture is that this gives us extremely strong control over the fibres

of the above map from archetypes to cuspidal inertial types which, moreover, is seen to

be surjective; if we have a sufficiently well-behaved such map, we refer to it as an inertial

Langlands correspondence for G.

This is a generalization of the unicity of types for GLN(F ) as considered by Henniart and

Paškūnas [BM02, Pas05]. Since GLN(F ) contains a unique conjugacy class of maximal

compact subgroups, it is not necessary for them to take as complex a setup as the one we

use. However, it is easy to see that they prove precisely the above conjecture for all super-

cuspidal representations of GLN(F ), and deduce an inertial Langlands correspondence –

which, in this case, takes the form of a bijection.

While the inertial Langlands correspondence is of interest in its own right, it has also

found many applications around the Langlands programme, particularly when one wishes

to consider modular representations. While this thesis will only be concerned with rep-

resentations taking characteristic zero coefficients, there are analogous Langlands corre-

spondences for positive characteristic coefficient fields; it is natural to ask whether these

correspondences are related. Through the Breuil–Mézard conjecture [BM02], the inertial

Langlands correspondence has been seen to be intimately related with such questions,

allowing one to describe congruence between Galois representations in terms of the theory

of types. One motivation of the work in this thesis is that it should allow for the possibility

of obtaining such relations for groups other than GLN(F ).

While we will, for the most part, only consider supercuspidal representations during this
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thesis, much of the above can be made to work for arbitrary irreducible representations.

Since parabolic induction is the natural means of constructing non-cuspidal representa-

tions, it is natural to ask whether there is a related process for, from types for supercuspi-

dal representations of Levi subgroups of G, producing types for the resulting parabolically

induced representations of G. Indeed, there is such a procedure, which is given by the

Bushnell–Kutzko theory of covers [BK98]: this reduces the problem to constructing a

cover of each type for a supercuspidal representation of a Levi subgroup of G. In many

cases, this has been completed: for general linear groups by Bushnell and Kutzko [BK99],

for special linear groups by Goldberg and Roche [GR02], for inner forms of general linear

groups by Sécherre and Stevens [SS12], for classical groups when p is odd by Stevens and

Miyauchi [MS14], and for depth zero representations of arbitrary groups by Morris [Mor99].

However, there are a number of complications which currently prevent us from being able

to formulate such general conjectures as those above for non-cuspidal representations.

Indeed, if one drops the adjective “supercuspidal” from our conjecture, then it is easily

seen to fail even for GL2(F ), where the Steinberg representation admits as types both

the trivial representation of GL2(O) and the representation of GL2(O) inflated from the

Steinberg representation of its reductive quotient. It seems that such conjectures would

be heavily reliant on completely general, uniform constructions of types which satisfy

certain additional properties; at the time of writing such constructions are beyond reach.

Nonetheless, in the case of GLN(F ), the unicity of types has been completely described

by Henniart when N = 2 [BM02], and recently by Nadimpalli in most other cases for

arbitrary N [Nad14, Nad15]. We will make some brief comments on how it should be

possible to generalize this to special linear groups.

1.2 Summary of results

The major results of this thesis are a combination of the results of three papers: [Lat16c],

[Lat16a] and [Lat16b]. Of these, the second is a generalization of the first, the results

of which correspond to those in Chapter 4, and the third considers a different question,
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corresponding to Chapter 5. Chapter 6 consists of an interpretation of the results of the

previous two chapters in terms of Galois theory.

1.2.1 Chapter 4

In this chapter, we consider the unicity of types for supercuspidal representations of spe-

cial linear groups. Since this problem is well-understood for general linear groups, the

approach is to exploit the close connection between the representation theories of these

groups in order to establish a form of functoriality for types, which allows us to transfer

over the unicity result from GLN(F ).

The starting point is the construction of maximal simple types due to Bushnell and Kutzko:

these are a collection of types, providing precisely one conjugacy class of such contained in

each supercuspidal representation of GLN(F ) which, essentially by Clifford theory, then

leads to a similar collection of types for the supercuspidal representations of SLN(F ).

In particular, there is a natural “functorial” relationship between these two collections

of types, corresponding to the inclusion SLN ↪→ GLN . On the other hand, the unic-

ity of types is known for GLN(F ): for each supercuspidal representation π of GLN(F ),

there exists a unique π-archetype, which is represented by a representation of the form

(GLN(O), τ), where τ is induced from a maximal simple type contained in π. We therefore

ask whether the functoriality for maximal simple types extends to archetypes.

So one considers the following setup: given a supercuspidal representation π of GLN(F )

and an irreducible subquotient π̄ of π �SLN (F ), suppose that we are also given an archetype

for π̄, which for the sake of simplicity we assume in this discussion to be of the form

(SLN(O), τ̄) (although there are N conjugacy classes of maximal compact subgroups of

SLN(F ) which must be considered, these are all conjugate under the action of GLN(F )).

The functorial relation which we would expect to hold is that, among the irreducible

subrepresentations of the infinite-length representation of GLN(O) induced from τ̄ , there

exists an archetype for π. Certainly, it is possible to identify among these representations

a canonical candidate Ψ for such an archetype, and it is a trivial matter to see that, at
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the very least, Ψ cannot be too far away from being a π-archetype. Indeed, one sees that

Ψ may only be contained in irreducible representations of the form π ⊗ (χ ◦ det), where

χ is a multiplicative character of F . Moreover, it is also easy to see that χN must be

unramified (Lemma 4.1.2).

So it remains to us to argue by contradiction and show that χ itself must be unramified.

This is the major technical step in the proof, and is one which we are currently only

able to complete under the additional assumption that π is essentially tamely ramified ;

in the general case one encounters significant problems of an arithmetic nature, due to

the possibility that there can exist wildly ramified order N characters which leave the

simple type contained in π invariant under twisting. The approach is to make use of

Paškūnas’ approach for GLN(F ): since the representation Ψ is contained in π �GLN (O),

we follow Paškūnas by splitting the irreducible subrepresentations of π �GLN (O) into three

classes: the unique typical representation, the “type A” subrepresentations, and the “type

B” subrepresentations. We show that if Ψ were of type A or B then we would obtain a

contradiction, and come to our first important result:

Theorem (4.6.1). The representation Ψ is a π-archetype.

This allows us to easily transfer the unicity results for GLN(F ) over to SLN(F ): since

the unique π-archetype is of the form Ind
GLN (O)
J λ for some maximal simple type (J, λ),

we obtain a non-zero map τ̄ → Res
GLN (O)
SLN (O) Ind

GLN (O)
J λ. Applying Bushnell and Kutzko’s

results on simple types for SLN(F ), we obtain the unicity of types for SLN(F ):

Theorem (4.7.2). Any archetype for an essentially tame supercuspidal representation π̄

of SLN(F ) is induced from a maximal simple type. In particular, there exists at most one

π̄-archetype on each conjugacy class of maximal compact subgroups of SLN(F ), which is

contained in π̄ with multiplicity one.

With this in place, an obvious follow-up question is to ask precisely how many π̄-archetypes

there are. From the above, it is clear that this is equivalent to counting the number of

inclusions of the group on which the maximal simple type for π̄ is defined into the various
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maximal compact subgroups of SLN(F ). This turns out to have an extremely satisfying

answer. Given a supercuspidal representation π̄ of SLN(F ) and a supercuspidal represen-

tation π of GLN(F ) such that π̄ is contained in π �SLN (F ), one defines the ramification

degree eπ̄ of π̄ by requiring that there are N/eπ̄ unramified characters χ of F× such that

π ' π ⊗ (χ ◦ det). This leads to the following:

Theorem (4.7.5). Let π̄ be an essentially tame supercuspidal representation of SLN(F ).

Then there exist precisely eπ̄ archetypes for π̄. Moreover, any two such archetypes are

conjugate under the action of GLN(F ).

This gives us a rather complete and explicit understanding of the theory of types for

supercuspidal representations of SLN(F ). While we are currently unable to make quite as

much progress for non-cuspidal representations, we end by making some remarks on the

extent to which these methods generalize.

1.2.2 Chapter 5

This chapter establishes the unicity of types for depth zero supercuspidal representations

of an arbitrary p-adic group G = G(F ), i.e. those supercuspidal representations with a

non-zero vector fixed by the maximal pro-p open normal subgroup of a parahoric subgroup

of G. The quotient of a parahoric subgroup by this pro-p radical is then naturally a finite

reductive group over the residue field of F ; through this quotient, depth zero representa-

tions admit a natural description in terms of the representation theory of finite reductive

groups, things are sufficiently simple for us to make progress.

The starting point here is the construction of the unrefined depth zero types for these con-

structions due to Moy–Prasad and Morris: these are pairs (Gx, σ), where Gx is a maximal

parahoric subgroup of G, and σ is inflated from a cuspidal irreducible representation of

a certain quotient of σ which identifies with a reductive group over the residue field of

F . We know that every depth zero supercuspidal representation of G contains a unique

conjugacy class of such types. However, we should point out that if Gx is not maximal as

a compact subgroup of G, then these may only be types in a slightly more general sense
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than that discussed thus far. In practice, however, this distinction is of little importance.

We approach the problem of unicity in two steps. We first establish the analogue of unic-

ity on the level of these unrefined depth zero types, before performing an extension step

to the corresponding maximal compact subgroup – which will be the maximal compact

subgroup of the normalizer of Gx, which leads to unicity in the usual sense.

For the first of these steps, we make use of connections with the representation theory of

finite reductive groups and the Bushnell–Kutzko theory of covers. We proceed in the usual

way: given a depth zero supercuspidal representation π of G and an unrefined depth zero

type (Gx, σ) for π, let Gy denote an arbitrary maximal parahoric subgroup of G. Then

we may embed π �Gy into the representation ResGGy c- IndGGx σ, and perform a Mackey

decomposition on this latter representation. In this decomposition, we identify a family of

conjugates of σ (which will be empty unless Gy is conjugate to Gx), along with a family

of irreducible representations Ξ which are induced from the inverse image in Gy of proper

parabolic subgroups of the reductive quotient of Gy. This eventually leads us to, for

each such Ξ, the construction of finitely many unrefined depth zero types for proper Levi

subgroups of G. We show that Ξ must intertwine with the Bushnell–Kutzko cover of one

of these types, which leads to our preliminary form of unicity:

Theorem (5.3.1). Let π be a depth zero supercuspidal representation of G, and let (Gx, σ)

be an unrefined depth zero type contained in π. Any representation of a parahoric subgroup

of G which is typical for the same Bernstein components as (Gx, σ) must be conjugate to

σ.

While the basic idea behind this result is a rather simple one, the proof ends up being quite

technical, requiring a lot of work involving Bruhat–Tits theory, which in essence reduces

the problem to choosing a compatible system of embeddings of buildings of various Levi

subgroups of G into that of G.
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It then remains for us to extend this result to cover archetypes in the usual sense. Given

the above result, this is quite straightforward, and leads to the following:

Theorem (5.4.2). Let π be a depth zero supercuspidal representation of G. Then there

exists a unique π-archetype, which is induced from an unrefined depth zero type contained

in π.

1.2.3 Chapter 6

This chapter consists of a reformulation of the results of the previous two in terms of

the inertial Langlands correspondence. Recall that we expect this to take the form of a

surjective, finite-to-one map from the set of archetypes contained in supercuspidal repre-

sentations of G = G(F ) to the set of cuspidal inertial types for G.

We first consider the case of SLN(F ). We begin by establishing a form of converse to

Theorem 4.6.1, which is considerably easier to do:

Theorem (6.2.2). Let π be a supercuspidal representation of GLN(F ), and let (GLN(O), τ)

be the unique π-archetype. For any irreducible subquotient π̄ of π �SLN (F ), there exist a

g ∈ G and an irreducible subrepresentation τ̄ of gτ �gSLN (O) such that (gSLN(O), τ̄) is a

π̄-archetype.

This allows us to justify our claim that our approach has been via functoriality between

GLN(F ) and SLN(F ): when combined with Theorem 4.6.1, it gives a relationship between

archetypes and L-packets for GLN(F ) and SLN(F ) (Theorem 6.2.4). From this, it is a

simple matter to obtain a complete description of the inertial Langlands correspondence

for SLN(F ):

Theorem (6.2.5). For G = SLN(F ), the inertial Langlands correspondence is a sur-

jective map with finite fibres. Each of its fibres consists of a single orbit of archetypes

under GLN(F )-conjugacy. If π̄ is a supercuspidal representation of SLN(F ) contained in

π �SLN (F ) for some supercuspidal representation π of GLN(F ), and ϕ is the inertial type

obtained by restricting the L-parameter associated to π̄ to the inertia group, then the fibre
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above ϕ is of cardinality eπ̄ · length(π �SLN (F )).

Moreover, there is a natural functorial diagram relating the inertial Langlands correspon-

dences for GLN(F ) and SLN(F ).

Next, we describe what we call the tame inertial Langlands correspondence, by which we

mean the inertial correspondence for depth zero supercuspidal representations of arbitrary

p-adic groups G = G(F ). Here, we obtain a similar statement, expressing the order of the

fibres of the inertial Langlands correspondence in terms of those of the local Langlands

correspondence, although we see that it is possible for a new form of complication to arise,

due to disconnectefdness phenomena on the level of parahoric subgroups. To each depth

zero supercuspidal representation π, we associate a finite set Sπ of inertia classes of depth

zero supercuspidal representations – the set of those classes, the elements of which contain

the same unrefined depth zero type as π. We then have the following result:

Theorem (6.3.7). Suppose that the local Langlands correspondence exists and is unique

for the depth zero supercuspidal representations of a p-adic group G. Let ϕ be an L-

parameter for G, and let π be in the L-packet corresponding to ϕ. Then the fibre of above

the restriction to the inertia group of ϕ is of cardinality
∑

#Sπ, as π ranges through the

elements of the L-packet above ϕ.



Chapter 2

Preliminaries

2.1 Local fields

We fix, once and for all, a non-archimedean local field F of residual characteristic p,

by which we mean a locally compact field, complete with respect to a non-archimedean

discrete valuation, and such that the residue field is finite of characteristic p. We write OF

for the ring of integers of F (i.e. its discrete valuation ring), pF for the maximal ideal of

OF , and kF = OF/pF for the residue field, which we take to be of cardinality qF . Whenever

there is no danger of ambiguity, we will drop the subscript F from the notation. We also

write ‖ · ‖F for the (normalized) multiplicative valuation on F , and vF = logqF ◦‖ · ‖F for

the additive valuation.

2.2 Reductive p-adic groups

We will be concerned with what we will refer to as p-adic groups. Strictly speaking, this

is an abuse of terminology: by a p-adic group, we will mean the group G = G(F ) of

F -rational points of a connected reductive algebraic group G defined over F , for F a

23
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non-archimedean local field of residual characteristic p. Such a group comes equipped

with a natural locally profinite (which is to say locally compact, Hausdorff and totally

disconnected) topology: G admits a faithful algebraic representation G→ GLN for some

N , which induces an embedding G ↪→ GLN(F ). The group GLN(F ), viewed as a dense

subset of the locally profinite space FN2
comes equipped with a locally profinite topology;

one then puts the subspace topology on G. This process is independent of the choice of

representation G ↪→ GLN .

2.3 Smooth representations

Our goal will be to study the representation theory of these p-adic groups. There are three

natural families of coefficient rings to consider representations over, indexed by a prime `:

the `-adic representations over Q̄`, the corresponding integral representations over Z̄`, and

the `-modular representations over F̄`. In each of these cases, there is a further division

depending on whether or not ` is equal to p. Our focus will be entirely on the case of

Q̄`-representations with ` 6= p. More specifically, we will consider smooth representations:

Definition 2.3.1. Let R be an algebraically closed field of characteristic zero, and let

G be a locally profinite group. We say that a representation π : G → AutR(V ) of G is

smooth if, for every vector v ∈ V , the stabilizer of v in G is open. We denote by RepR(G)

the category of smooth R-representations of G.

Equivalently, this says that a smooth representation must be continuous with respect

to the discrete topology on V . Since this is independent of the usual `-adic topol-

ogy, we may choose an isomorphism Q̄` ' C (and hence an equivalence of categories

RepQ̄`(G) ' RepC(G)) and instead consider smooth representations of G over C. This

will be our point of view for the majority of the thesis – we will often simply write Rep(G)

rather than RepC(G).

We now briefly record some of the fundamental properties of smooth representations of G

for later use.
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Theorem 2.3.2 (Schur’s lemma, [Ren10, Lemma B.II]). Suppose that π, π′ are irreducible

representations of a second countable locally profinite group G. Then HomG(π, π′) 6= 0 if

and only if π ' π′. If π ' π′, then EndG(π) = C.

In practice, the secound countability hypothesis is unimportant: every p-adic group is

second countable, as are all of its closed subgroups.

Definition 2.3.3. Let (π, V ) ∈ Rep(G). We say that (π, V ) is admissible if, for every com-

pact open subgroup K of G, the space V K of K-stable vectors in V is finite-dimensional.

These admissible representations satisfy a number of desirable properties. Again, this will

not be an issue for us:

Theorem 2.3.4 ([Ren10, Théorème VI.2.2]). Let π be a smooth irreducible representation

of G. Then π is admissible.

It then follows by induction and the exactness of the functor V 7→ V K that any finite

length representation of G is admissible. In particular, almost all of the representations

which we consider will be admissible.

2.4 Hecke algebras

We now describe the analogue for p-adic groups of the usual group algebra, which is given

by the Hecke algebra of G. We begin by recalling the notion of Haar measure:

Definition 2.4.1. A (left) Haar measure µ on G is a non-zero Radon measure µ on G

which is left-translation invariant, i.e. a measure µ : G → R ∪ {∞} which is finite on

compact sets, outer-regular on Borel sets and inner-regular on open sets, and such that,

for all measurable sets E and all g ∈ G, one has µ(gE) = µ(E).

Then any locally compact Hausdorff group admits a left Haar measure, which is unique

up to a multiplicative constant. One may define a right Haar measure in a similar way,

at which point it is natural to ask whether these measures coincide.
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Definition 2.4.2. Let µ be a left Haar measure on G. We define the modular function

δG : G → R×+ by requiring that, for all g ∈ G and all measurable sets E, one has

µ(Eg)δG(g) = µ(E).

The modular function then turns out to be a character of G.

Definition 2.4.3. We say that G is unimodular if δG is trivial, i.e. if every right Haar

measure is a left Haar measure.

Theorem 2.4.4 ([Ren10, Proposition V.5.4]). Let G be a reductive p-adic group. Then

G is unimodular.

So we are free to fix, once and for all, a choice µ of left Haar measure on G, with respect

to which we may perform Lebesgue integration.

Definition 2.4.5. We denote by C∞c (G) the set of locally constant compactly supported

functions G→ C.

Through Lebesgue integration with respect to µ, we may define a convergent convolution

product on C∞c (G) by

(f1 ∗ f2)(x) =

∫
G

f1(g)f2(xg−1) dµ(g).

This convolution product then gives C∞c (G) the structure of an associative (non-unital)

C-algebra.

Definition 2.4.6. We call the algebra (C∞c (G), ∗) the Hecke algebra of G, and denote it

by H(G).

Then H(G) fills the role of the group algebra for smooth representations:

Theorem 2.4.7 ([Ren10, Théorème III.1.4]). There is an equivalence of categories Rep(G) '

H(G)-Mod.

Remark 2.4.8. There is a slight issue with this approach, in that the above equivalence

is not natural – it is dependant on the choice of Haar measure. However, by being slightly

more careful and viewing the Hecke algebra as an algebra of distributions rather than of

functions, one may remove this problem.
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2.5 Induction

If H is a closed subgroup of G, then there is a natural containment H(H) ⊂ H(G), and

so we may define induction and restriction functors, respectively, by

IndGH : H(H)-Mod→ H(G)-Mod, M 7→ H(G)⊗H(H) M

ResGH : H(G)-Mod→ H(H)-Mod, M 7→ HomH(H)(M,H(H)).

By the usual tensor-hom adjunction, these functors (ResGH , IndGH) form an adjoint pair. In

the case that H is open, the restriction functor also admits a right-adjoint coinduction

functor c- IndGH : H(H)-Mod→ H(G)-Mod.

Fixing our choice µ of right Haar measure on G, and hence an equivalence of categories

Rep(G) ' H(G)-Mod, we may realise these as functors between representations as follows.

For a smooth representation (π, V ) ∈ Rep(G), restriction is simply the set-theoretic re-

striction functor. Now let (σ,W ) ∈ Rep(H). Then let IndGH (σ,W ) denote the set of

functions f : G → W which transform on the left according to σ, i.e. f(hg) = σ(h)f(g)

for h ∈ H and g ∈ G, and such that there is a compact open subgroup K of G such that

f(gk) = f(g) for g ∈ G and k ∈ K. Then IndGH (σ,W ) is naturally a representation of G

by left translation

Altenatively, we may define c- IndGH (σ,W ) to be the subrepresentation of IndGH (σ,W )

consisting of those functions which are compactly supported modulo H.

These functors realise the induction and coinduction functors on the Hecke algebra side

of the equivalence Rep(G) ' H(G)-Mod, and thus we have functors

IndGH : Rep(H)→ Rep(G), and

c- IndGH : Rep(H)→ Rep(G).

Then, of course, these functors will still form adjoint pairs:
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Theorem 2.5.1 (Frobenius reciprocity, [Ren10, Théorème III.2.5]). The functor ResGH is

left-adjoint to IndGH . If H is also open in G, then the functor ResGH is right-adjoint to

c- IndGH .

Remark 2.5.2. There are, of course, cases where IndGH coincides with c- IndGH , most

obviously when G is compact. Using the Iwasawa decomposition of G, one sees that

parabolic induction is another example of such, which we will discuss shortly.

2.6 Intertwining

Often, the notion of intertwining of representations will allow us to conveniently state

results.

Definition 2.6.1. Let J, J ′ be open subgroups of G, and let λ, λ′ be representations of

J, J ′, respectively. We say that λ intertwines with λ′ if there exists a g ∈ G such that

HomJ∩gJ ′(λ,
gλ′) 6= 0. In the case that λ = λ′, we say that g intertwines λ. Write IG(λ)

for the set of g ∈ G which intertwine λ.

We will often need to know that two representations intertwine in order to apply certain

results. To see this, one often uses the following:

Lemma 2.6.2. Let J, J ′ be open subgroups of G and λ, λ′ be irreducible representations

of J, J ′, respectively. Suppose that there exists an irreducible representation π′ of G which

contains both λ and λ′. Then λ intertwines with λ′.

Proof. Both HomJ(λ,ResGJ π) and HomJ ′(ResGJ ′ π, λ
′) are non-zero, so we may apply

Frobenius reciprocity and see that HomG(c- IndGJ λ, π) and HomG(π, IndGJ ′ λ
′) are nonzero;

hence HomG(c- IndGJ λ, IndGJ ′ λ
′) 6= 0. Then we compute

0 6= HomJ(λ,ResGJ IndGJ ′ λ
′)

= HomJ(λ,
⊕
J ′\G/J

IndJgJ ′∩J Res
gJ ′
gJ ′∩J

gλ′).

Hence λ is a subrepresentation of IndJgJ ′∩J Res
gJ ′
gJ ′∩J

gλ for some g. Applying Frobenius

reciprocity again, we see that g intertwines λ with λ′.
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2.7 Parabolic induction and supercuspidals

Our reductive p-adic group G = G(F ) comes equipped with a collection of special sub-

groups. Recall that an algebraic subgroup P of the algebraic group G is F -parabolic if

G/P is a projective variety and P is defined over F . We will usually drop the F from

our notation, and only speak of parabolic subgroups defined over F . Then a parabolic

subgroup of G is a group P = P(F ) of the F -rational points of an F -parabolic subgroup

P of G.

Parabolic subgroups of G will in general no longer be reductive; forming the quotient

by the unipotent radical N of a parabolic subgroup P of G will always give a reductive

group M, and there will exist subgroups of P which are naturally isomorphic to M; such

subgroups are the Levi factors of P. We say that a Levi subgroup of G is a group of the

form M = M(F ) where M is the Levi factor of some parabolic subgroup P = MN of G.

Thus, given a Levi subgroup M of G and a parabolic P with Levi factor M , there is a

natural inflation functor InfPM : Rep(M) → Rep(P ), where InfPM (σ,W ) is given by the

composition

P MN // //M
σ // AutC(W ).

This gives a procedure for constructing representations of a reductive p-adic group G from

smaller reductive subgroups M : we inflate to a parabolic P with Levi factor M , and then

induce to G. To simplify certain statements, it is convenient to normalize this process:

Definition 2.7.1. Let P = MN be a parabolic subgroup of G with Levi factor M . The

functor of normalized parabolic induction IndGM,P : Rep(M)→ Rep(G) is the composition

IndGM,P : ζ 7→ IndGP (δ
1/2
P ⊗ InfPM ζ).

By the Iwasawa decomposition of G, the functor obtained by performing the above process,

but with compact induction rather than induction, is identical to IndGM,P . Often, we will

simply drop the adjective “normalized” and speak of parabolic induction. One important

property of parabolic induction is that the resulting representations are never too large:
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Theorem 2.7.2 ([Ren10, Lemme VI.6.2]). Let P = MN be a parabolic subgroup of G,

and let ζ ∈ Rep(M) be admissible. Then IndGM,P ζ is admissible. If ζ is irreducible, then

IndGM,P ζ is of finite length.

If ζ is irreducible, then as IndGM,P ζ is finite length it will always have an irreducible

subrepresentation. In fact, allowing P to range over all parabolic subgroups Q of G with

Levi factor M , any irreducible subquotient of IndGM,P ζ will be realizable as an irreducible

subrepresentation of IndGM,Q ζ for some M .

The functor of parabolic induction admits a left-adjoint functor given by Jacquet restric-

tion. For a parabolic subgroup P = MN of G and a smooth representation (π, V ) of G,

denote by V (N) the space of N -coinvariants, i.e. V (N) = 〈v − π(n)v | v ∈ V, n ∈ N〉.

Restricting π to P , V/V (N) naturally gives a representation of M . This defines a functor

rN : Rep(G)→ Rep(M) by V 7→ V/V (N).

Definition 2.7.3. Let P = MN be a parabolic subgroup of G. The (normalized) Jacquet

restriction functor is the functor rGM,P : Rep(G) → Rep(M) given by rGM,P (π, V ) =

rN (π ⊗ δ−1/2
P , V ).

Theorem 2.7.4 ([Ren10, Théorème VI.1.1]). The functor rGM,P is left-adjoint to IndGM,P .

As before, one sees that IndGM,P should also have a right-adjoint. However, it is rather

more difficult to identify what this functor should be, despite the question having a rather

simple answer in the end:

Theorem 2.7.5 (Bernstein’s second adjunction theorem, [Ren10, Théorème VI.9.7]). Let

P = MN be a parabolic subgroup of G, and let P op = MNop be the opposite parabolic, i.e.

the unique parabolic with Levi factor M and unipotent radical Nop such that N∩Nop = {1}.

Then the functor rGM,P op is right-adjoint to IndGM,P .

One natural question is whether parabolic induction, allowing P to range over all proper

parabolic subgroups of G, leads to a construction of all representations of G as irreducible

subquotients of parabolically induced representations. This turns out not to be the case.
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Definition 2.7.6. Let π ∈ Irr(G).

(i) We say that π is cuspidal if it is not a quotient of IndGM,P ζ, for any parabolic

subgroup P = MN of G and any ζ ∈ Irr(M).

(ii) We say that π is supercuspidal if it is not a subquotient of IndGM,P ζ, for any parabolic

subgroup P = MN of G and any ζ ∈ Irr(M).

We write Irrsc(G) for the set of isomorphism classes of supercuspidal representations of G,

and Repsc(G) for the full subcategory of Rep(G) consisting of those representations all of

whose irreducible subquotients lie in Irrsc(G).

While these notions are a priori distinct, it turns out that when R = C or Q̄` a represen-

tation is cuspidal if and only if it is supercuspidal. This is not the case more generally.

Theorem 2.7.7. Let π ∈ Irr(G). The following are equivalent:

(i) The representation π is supercuspidal.

(ii) For any parabolic subgroup P = MN of G, one has rGM,P π = 0.

One of the central problems regarding the representation theory of G is the following

long-standing folklore conjecture:

Conjecture 2.7.8. Let π be a supercuspidal representation of G. Then there exists an

open, compact-modulo-centre subgroup J̃ of G and an irreducible representation Λ of J̃

such that π ' c- IndG
J̃

Λ.

This is now known in many cases, as we discussed in the introduction. A kind of converse

result which we will often make use of (and which is considerably easier to prove) is the

following:

Theorem 2.7.9 ([Car84, Proposition 1.5]). Let J̃ be an open, compact-modulo centre

subgroup of G, and let Λ be an irreducible representation of J̃ . If IG(Λ) = J̃ , then

c- IndG
J̃

Λ is irreducible and supercuspidal.
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2.8 Bernstein decomposition

Definition 2.8.1. A cuspidal datum in G is a pair (M, ζ) consisting of a Levi subgroup

M of G and an irreducible representation ζ of M .

It turns out that any irreducible representation of G comes from an essentially unique

cuspidal datum:

Theorem 2.8.2 ([Ren10, Lemme VI.7.1]). Let π ∈ Irr(G), and suppose that the two

cuspidal data (M, ζ) and (M ′, ζ ′) are such that, for some parabolics P = MN and P ′ =

M ′N ′, the representation π is a subquotient of both IndGM,P ζ and IndGM ′,P ′ ζ
′. Then there

exists a g ∈ G such that M ′ = gM and ζ ′ = gζ.

Definition 2.8.3. We call the conjugacy class of cuspidal data associated to π by the

above the supercuspidal support of π.

We put an equivalence relation on the collection of cuspidal data by saying that two

cuspidal data (M, ζ) and (M ′, ζ ′) are inertially equivalent if there exists an unramified

character ω of M ′ such that (M, ζ) is G-conjugate to (M ′, ζ ′ ⊗ ω). Denote the inertial

equivalence class of (M, ζ) by [M, ζ]G.

Definition 2.8.4. Let π ∈ Irr(G). The inertial support of π is the inertial equivalence

class of its supercuspidal support.

Denote by B(G) the set of inertial equivalence classes of cuspidal data. For each s ∈ B(G),

we may define a full subcategory Reps(G) of Rep(G) consisting of those representations

such that all irreducible subquotients have inertial support s. Then we have the following

result:

Theorem 2.8.5 (Bernstein decomposition, [Ber84]). The categories Reps(G) are inde-

composable. The category Rep(G) factors as a product:

Rep(G) =
∏

s∈B(G)

Reps(G).

Similarly, for any subset S of B(G), we write RepS(G) =
∏

s∈S Reps(G), and IrrS(G) =∐
s∈S Irrs(G).
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Example 2.8.6. If π is a supercuspidal representation of G, then the set Irrs(G) is

precisely the set of unramified twists of π, i.e. the set of representations π ⊗ ω, where ω

is an unramified character of G.

2.9 Types and archetypes

The Bernstein decomposition suggests that it may be profitable to study each subcate-

gory Reps(G) by restriction to compact open subgroups – for example, two supercuspidal

representations are in the same inertia class if and only if they agree upon restriction to

any compact open subgroup. This leads to the notion of a type:

Definition 2.9.1. Let S ⊂ B(G), and let (J, λ) be a pair consisting of a compact open

subgroup J of G and a smooth irreducible representation λ of J .

(i) We say that (J, λ) is S-typical if, for any π ∈ Irr(G), one has that HomJ(π �J , λ) 6=

0⇒ π ∈ IrrS(G).

(ii) We say that (J, λ) is an S-type if it is S-typical and one has that π ∈ IrrS(G) ⇒

HomJ(π �J , λ) 6= 0.

In the case that S = {s} is a singleton, we simply speak of s-types rather than {s}-types.

Thus, the idea of a type is that a construction of an s-type for each subcategory Reps(G)

of Rep(G) would allow for a description of Rep(G) entirely in terms of the identification

of the presence of certain representations of compact subgroups.

Example 2.9.2. The original example of a type is the trivial representation of the

Iwahori subgroup in GL2(F ), where an irreducible representation has an Iwahori-fixed

vector if and only if it is an unramified twist of the Steinberg representation St =

(Ind
GL2(F )
B 1B)/1GL2(F ), where B is the standard Borel subgroup of upper-triangular

matrices.

Our main question throughout this thesis will be: in the cases where types are constructed,

to what extent are these types unique? If one has a unique s-type for each s, it will be



34 Peter Latham

genuinely possible to completely describe the representation theory of G by looking for

a single s-type (J, λ) for each s in the restrictions to J of representations π of G. True

uniqueness isn’t possible due to the following simple observation:

Lemma 2.9.3. Let s ∈ B(G) and let (J, λ) be a s-type. If K is a compact open subgroup

of G containing J , then any irreducible subrepresentation of IndKJ λ is s-typical. If IndKJ λ

is itself irreducible, then it is an s-type.

Proof. This is immediate by Frobenius reciprocity.

However, one might hope that s-types (K, τ) with K maximal compact in G might be

unique. Again, there is a slight problem in that there exists inertia classes s which have

an s-type (J, λ) with J non-maximal, but which admit no s-type (K, τ) with τ maximal.

Consider, for example, the following:

Example 2.9.4. Let G = GL2(F ). Then, as noted above, the Steinberg representation

St = (IndGB 1B)/1G contains the [T,1T ]G-type (UI,1UI
), where UI is the standard Iwahori

subgroup of G and T is the split maximal torus in G. Let K = GL2(O) denote the standard

maximal compact subgroup of G. Then UI ⊂ K, but we claim that there does not exist a

[T,1T ]G-type of the form (K, τ). Indeed, by definition of St we have a short exact sequence

0 // 1G // IndGB 1B // St // 0.

As the functor V 7→ V K is exact, this gives a short exact sequence

0 // 1K // (IndGB 1B)K // StK // 0.

By the Iwasawa decomposition G = BK, we have (IndGB 1B)K = 1K , and so StK = 0.

But now, Irr[T,1T ]G(G) clearly contains the trivial representation of G, and so the only

possible [T,1T ]G-type defined on K is the trivial representation of K. As StK = 0, this

cannot be a type.

So the best we can hope for is that there is a unique s-typical representation (K, τ) with K

maximal compact for each s. Again, this will turn out to not quite be possible – although

it seems likely that when s = [G, π]G is a supercuspidal class and K is fixed, there will
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always be at most one s-typical representation defined on K. As we are free to conjugate

typical representations within G, it makes sense to consider conjugacy classes of typical

representations one at a time. This leads to the following modification of the definition of

a type:

Definition 2.9.5. Let s ∈ B(G). An s-archetype is a conjugacy class of s-typical repre-

sentations (K, τ) with K maximal compact in G.

We will usually abuse notation when discussing archetypes, referring to a single s-typical

representation of some maximal compact subgroup as an s-archetype; it should always be

understood that the action of G by conjugacy is implicit in such statements.

Remark 2.9.6. If s = [G, π]G is a supercuspidal inertia class, then the distinction between

s-types and s-typical representations is irrelevant. Indeed, suppose that (J, λ) is s-typical.

Then the compactly induced representation c- IndGJ λ has some irreducible subquotient π′

which is necessarily an unramified twist of π, say π′ = π⊗ω. Now π will be an irreducible

subquotient of (c- IndGJ λ) ⊗ ω−1 = c- IndGJ (λ ⊗ ω1). But, as ω is unramified and J is

compact, this is simply equal to c- IndGJ λ, and so (J, λ) is contained in every element of

Irrs(G).

Our main results will be focused on counting the number of archetypes contained in

representations in various situations. In particular, we will focus on the case of [G, π]G-

archetypes, where π is a supercuspidal representation of G. Building on the expectation

that such types correspond precisely to the compact inducing data for π, we conjecture

the following:

Conjecture 2.9.7 (The unicity of types for supercuspidals). Let π be a supercuspidal

representation of G. Then there exists a [G, π]G-archetype, and there exists at most one

[G, π]G-archetype defined on each conjugacy class of maximal compact subgroups of G.

The main technical results of this thesis will be the verification of this conjecture in a

number of cases.
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2.10 The Hecke algebra of a type

Let us discuss the role of types on the Hecke algebra side of the equivalence of categories

M : Rep(G) ' H(G)-Mod. Recall that we have a fixed right Haar measure µ on G.

Let (J, λ) be a pair consisting of an irreducible representation λ of a compact open sub-

group J of G. We associate to λ an idempotent element eλ of H(G) by setting

eλ(g) =
dim λ

µ(J)
tr λ(g−1)χJ(g),

where χJ is the characteristic function on J . Then eλ ∗ H(G) ∗ eλ is a unital subalgebra

of H(G) with identity eλ.

We may also associate a different algebra to λ by setting H(G, λ) = EndG(c- IndGJ λ).

Let Repλ(G) denote the full subcategory of Rep(G) consisting of those representations

generated by their λ-isotypic vectors. We describe a pair of functors between the cate-

gories Repλ(G), H(G, λ)-Mod and eλ ∗ H(G) ∗ eλ-Mod.

Let Mλ : Rep(G)→ eλ∗H(G)∗eλ-Mod be the functor mapping a smooth representation to

its λ-isotypic subspace, and let Mλ : Rep(G)→ H(G, λ)-Mod be the functor HomJ(λ,−).

Theorem 2.10.1 ([BK98]). With the notation above, the following are equivalent:

(i) The subcategory Repλ(G) of Rep(G) is closed under subquotients.

(ii) The functor Mλ induces an equivalence of categories Repλ(G) ' eλ ∗H(G)∗eλ-Mod.

(iii) The functor Mλ induces an equivalence of categories Repλ(G) ' H(G, λ)-Mod.

(iv) There exists a finite set S ⊂ B(G) such that

Repλ(G) =
∏
s∈S

Reps(G).

(v) There exists a finite set S ⊂ B(G) such that (J, λ) is an S-type.
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This allows us to easily translate the properties of types between the viewpoints of repre-

sentations of G and of H(G)-modules. In particular, this will be useful when we come to

discuss G-covers of types.





Chapter 3

Simple and semisimple types

In this chapter, we give a terse overview of the Bushnell–Kutzko theory of simple and

semisimple types for general and special linear groups, focusing on a goal of making

sufficiently explicit their construction of types for each of the Bernstein components of

these groups in order for application to the subsequent chapters. We make no attempt to

be comprehensive, and will avoid going into the technical details wherever possible; the

full theory is developed in [BK93a,BK93b,BK94,BK98,BK99,GR02].

3.1 Hereditary orders

The starting point for the construction of types in GLN(F ) is the observation that

GLN(F ) is naturally the group of units of an algebra. Let V denote a fixed N -dimensional

F -vector space, and let A = EndF (V ). Then G ' AutF (V ) = A×. Inside of A, there live

a particular class of O-modules, which themselves give a natural means of working with

the parahoric subgroups of G (which will be introduced in complete generality in Chapter

5).

39
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Definition 3.1.1. A (left) hereditary O-order in A is a subring A of A which is a O-lattice

in A, such that every left A-lattice is A-projective.

When there is no danger of ambiguity, we will often drop the mention of O, and simple

speak of hereditary orders. Up to change of basis, every hereditary order A in A consists

of a ring of block matrices, with matrices on and above the diagonal taking entries in

O, and matrices below the diagonal taking entries in p. Working with such a basis, the

Jacobson radical P = rad A of a hereditary order A is the two-sided invertible fractional

ideal of A consisting of block matrices, with matrices above the diagonal taking values in

O, and matrices on and below the diagonal taking values in p. Define the lattice period of

A to be the least integer eA = eA/O such that P = $eAA. Viewing a hereditary order A

in the block form described above, we say that A is principal if each of its blocks is of the

same size.

The relationship between hereditary orders and parahoric subgroups is then that, given

a hereditary order A, the unit group UA = A× is a parahoric subgroup of G, and ev-

ery such subgroup arises in this way. Moreover, one recovers the Moy–Prasad filtration

of UA by setting Uk
A = 1 + Pk for k > 0. If one defines the normalizer of A to be

KA = {g ∈ G |gA = A}, then KA is an open, compact-modulo-centre subgroup of G nor-

malizing UA and containing UA as its maximal compact subgroup.

Finally, we note that a hereditary order A defines a valuation vA on A by vA(x) = max{n ∈

Z | x ∈ Pn}.

3.2 Strata

We fix, once and for all, a level 1 additive character ψ of F , i.e. a character of F trivial

on p but non-trivial on O.

Definition 3.2.1. A stratum in A is a quadruple [A, n, r, β] consisting of a hereditary

O-order A, integers n > r ≥ 0, and an element β of P−n.
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We say that two strata [A, n, r, β] and [A, n′, r, β′] are equivalent if β = β′ mod P−r; this

fits in with the point of view that a stratum may simply be viewed as a coset β + P−r.

Given a stratum [A, n, r, β] in A, if 0 ≤ bn
2
c ≤ r < n, then one obtains a character ψbeta

of U r+1
A /Un+1

A by setting ψβ = ψ ◦ trE/F (β(x−1)). Every such character arises in this way,

and strata [A, n, r, β] and [A, n, r, β′] satisfying 0 ≤ bn
2
c ≤ r < n define the same character

if and only if they are equivalent.

We will be particularly interested in certain classes of strata:

Definition 3.2.2. Let [A, n, r, β] be a stratum. We say that [A, n, r, β] is pure if:

(i) E = F [β] is a field;

(ii) E× ⊂ KA; and

(iii) n = −vA(β).

If F [β] = F , then we say that [A, n, r, β] is scalar.

Given such a pure stratum [A, n, r, β], one may view V as an E = F [β]-vector space, which

naturally leads one to consider the subalgebra B = Bβ = EndE(V ) of A. One then obtains

a hereditary OE-order B = Bβ = A ∩ B in B with Jacobson radical Q = Qβ = P ∩ B.

For k ∈ Z, set

Nk(β,A) = {x ∈ A | βx− xβ ∈ Pk}.

We then define a constant k0(β,A) by setting

k0(β,A) =

 max{k ∈ Z | Nk(β,A) 6⊂ B + P if F [β] 6= F

−∞ if F [β] = F

In particular, if [A, n, 0, β] is non-scalar, then k0(β,A) ≥ vA(β). Moreover, one may show

that equivalence of strata preserves k0.

Definition 3.2.3. We say that a pure stratum [A, n, r, β] is simple if r < −k0(β,A).
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Remark 3.2.4. While the definition of k0(β,A) seems unclear at first, it plays a rather

simple – although fundamental – role in the theory. As we will see in the next section,

one approximates strata in terms of a sequence of strata over finite field extensions E/F .

The constant k0(β,A) essentially measures how far along this sequence one is able to go

before being required to move on to the next field extension in the sequence.

3.3 Approximation of strata

There is an initial class of simple strata which are rather easy to describe; these are

those given by minimal elements. Given a field extension E = F [β]/F , we say that

β is minimal over F if either E = F or, whenever A is such that E× ⊂ KA, one has

that vA(β) = k0(β,A). If [A,−vA(β), r, β] is a stratum with β minimal over F , then

[A,−vA(β), r, β] will always be simple. Sometimes these minimal simple strata are called

alfalfa strata.

For the non-minimal simple strata, one must pass to larger extensions of F within A in

order to completely describe the stratum. The main tool in order to do this is the notion

of a tame corestriction:

Definition 3.3.1. Let β ∈ A be such that E = F [β] is a field, and let B = Bβ. A tame

corestriction on A relative to E/F is a linear (B,B)-bimodule homomorphism s : A→ B

such that, for any hereditary O-order A with E× ⊂ KA, one has s(A) = A ∩B.

There will always exist such a tame corestriction, which will be unique up to a scalar in

O×E. Given a pure stratum [A, n, r, β], together with a tame corestriction s : A→ Bβ, then

[Bβ, r, r − 1, s(β)] will be a stratum in B.

Proposition 3.3.2. Let [A, n, r, β] be a pure stratum in A.

(i) There exists a simple stratum [A, n, r, γ] equivalent to [A, n, r, β]. Moreover, if [A, n, r, β′]

is a pure stratum equivalent to [A, n, r, β], then [A, n, r, β′] is simple if and only if

F [β′]/F is of minimal degree among all such extensions of F .
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(ii) Suppose that r = −k0(β,A) and let [A, n, r, γ] be a simple stratum equivalent to

[A, n, r, β]. If sγ : A→ Bγ is a tame corestriction relative to F [γ]/F , then [Bγ, r, r−

1, sγ(β − γ)] is equivalent to a simple stratum in Bγ.

3.4 Simple characters

With this in place, we come to the technical heart of the theory – the theory of simple

characters. These are approximations to the types which we will eventually construct,

from which the large majority of the desirable properties of these types will be inherited.

the first step is to assign to a simple stratum some rings, the unit groups of which will be

pro-p subgroups of G.

Definition 3.4.1. Let [A, n, 0, β] be a simple stratum, and set r = −k0(β,A).

(i) If β is minimal over F , set

H(β,A) = Bβ + Pb
n
2
c+1.

(ii) If β is not minimal, let [A, n, r, γ] be a simple stratum equivalent to [A, n, r, β]. Pure

H(β,A) = Bβ + H(γ,A) ∩Pb
r
2
c+1.

There is also a slightly larger ring J(β,A) defined in a similar manner:

Definition 3.4.2. Let [A, n, 0, β] be a simple stratum, and set r = −k0(β,A).

(i) If β is minimal over F , set

J(β,A) = Bβ + Pb
n+1
2
c.

(ii) If β is not minimal, let [A, n, r, γ] be a simple stratum equivalent to [A, n, r, β]. Pure

J(β,A) = Bβ + J(γ,A) ∩Pb
r+1
2
c.

Each of these sets comes equipped with a natural filtration, by setting, for k ≥ 0,

Hk(β,A) = H(β,A) ∩PK and Jk(β,A) = J(β,A) ∩Pk.
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Proposition 3.4.3. (i) The sets H(β,A) and J(β,A) are well-defined O-orders in A

(and so, in particular, rings).

(ii) For each k ≥ 0, the sets Hk(β,A) and Jk(β,A) are Bβ-bimodules satisfying QβH
k(β,A) =

Hk(β,A)Qβ and QβJ
k(β,A) = Jk(β,A)Qβ, respectively.

(iii) For t ≤ r − 1, if [A, n, t, β′] is a simple stratum equivalent to [A, n, t, β], then

Hk(β′,A) = Hk(β,A) for k ≥ max{0, t + 1 − b r+1
2
c} and Jk(β′,A) = Jk(β,A) for

k ≥ max{0, t− b r
2
c}.

Definition 3.4.4. Let [A, n, 0, β] be a simple stratum, and let m ≥ 0. we set Hm(β,A) =

H(β,A) ∩ Um
A and Jm(β,A) = J(β,A) ∩ Um

A .

In particular, one has H0(β,A) = H(β,A)× and J0(β,A) = J(β,A)×. We will often denote

this latter group simple by J(β,A).

Proposition 3.4.5. Let [A, n, 0, β] be a simple stratum.

(i) The groups H0(β,A) and J0(β,A) are compact open subgroups of G with decreasing

filtrations by open normal subgroups given by Hm(β,A) and Jm(β,A), respectively.

Moreover, Hm(β,A) is open and normal in J0(β,A) for any m.

(ii) For any m, the groups Hm(β,A) and Jm(β,A) are normalized by KBβ .

(iii) The group J̃(β,A) = KBβJ
1(β,A) is compact modulo its centre, and contains J(β,A)

as its unique maximal compact subgroup. The group J(β,A) contains as a unique

maximal pro-p subgroup the group J1(β,A).

The point of introducing these groups is that the groups Hk(β,A) will come equipped

with an important class of characters – the simple characters – satisfying a number of

functorial properties. Eventually, this will lead to the definition of simple types defined

on the groups J(β,A).

Definition 3.4.6. Let [A, n, 0, β] be a simple stratum with n = −vA(β), and let 0 ≤ m <

n.
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(i) Suppose that β is minimal over F . If bn
2
c ≤ m < n, set C(A,m, β) = {ψβ}. If

0 ≤ m < bn
2
c, let C(A,m, β) be the set of characters θ of Hm+1(β,A) such that:

(a) the restriction of θ to Hb
n
2
c+1(β,A) is equal to ψβ; and

(b) the restriction of θ to Hm+1(β,A) ∩B×β factors through detBβ .

(ii) Now suppose that β is not minimal over F . Let r = −k0(β,A) and let [A, n, r, γ] be a

simple stratum equivalent to the pure stratum [A, n, r, β]. Suppose that C(A,m′, γ)

has already been defined for all m′. If r ≤ m < n, we let C(A,m, β) = C(A,m, β′).

Otherwise, we let C(A,m, β) be the set of characters θ of Hm+1(β,A) such that:

(a) if b r
2
c ≤ m < r, then θ = θ0ψβ−γ for some θ0 ∈ C(A,m, γ);

(b) if 0 ≤ m < b r
2
c, then the restriction of θ to Hb

r
2
c+1(β,A) is equal to θ0ψβ−γ for

some θ0 ∈ C(A, b r2c, γ);

(c) the restriction of θ to Hm+1(β,A) ∩B×β factors through detBβ ; and

(d) θ is normalized by KBβ .

We call any character θ contained in one of the sets C(A,m, β) for some simple stratum

[A, n, r, β] (with n = −vA(β)) a simple character.

Among the sets of simple characters, those sets C(A, 0, β) will be of the most significance:

Theorem 3.4.7. Let θ ∈ C(A, 0, β). There exists a finite set Sθ ⊂ B(G) such that θ is

an Sθ-type. Moreover, for every irreducible representation π of G, there exists a simple

stratum [A, n, 0, β] such that π contains some simple character θ ∈ C(A, 0, β).

Remark 3.4.8. It is important to point out that the sets Sθ do not partition B(G).

This is true if one restricts to supercuspidal representations, but in general a non-cuspidal

irreducible representation of G will contain multiple simple characters.

While these simple characters satisfy many important functorial properties, most of these

will not be relevant to our purposes. We only note the most significant of these properties,

the intertwining implies conjugacy property :
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Theorem 3.4.9. Let θ and θ′ be simple characters contained in the sets C(A, 0, β) and

C(A′, 0, β′), respectively. If IG(θ, θ′) 6= ∅, then there exists a g ∈ G such that gH1(β,A) =

H1(β′,A′) and gθ = θ′.

Moreover, a supercuspidal representation π of G contains precisely one G-conjugacy class

of simple characters.

The importance of simple characters is then made clear by the following:

Proposition 3.4.10. Let θ ∈ C(A, 0, β). The group J̃(β,A) = KBβJ
1(β,A) coincides

with the G-normalizer of θ.

This suggests that it should be possible to find, among the irreducible subrepresentations

of Ind
J̃(β,A)

H1(β,A) θ, a collection of irreducible representations Λπ for each supercuspidal rep-

resentation π in IrrSθ(G) such that π ' c- IndG
J̃(β,A)

Λπ. Indeed, this will turn out to be

the case.

3.5 Simple types in GLN(F )

So it remains to construct these representations Λπ of J̃(β,A), which will be done by first

constructing [G, π]G-types of the form (J(β,A), λ). We take advantage of the well-behaved

ascending chain of compact open subgroups of G given by

H1(β,A) ⊂ J1(β,A) ⊂ J(β,A).

Thus the first step is to understand the representation Ind
J1(β,A)

H1(β,A) θ. This turns out to be

rather simple:

Proposition 3.5.1. Let θ ∈ C(A, 0, β). There exists a unique irreducible representation

η of J1(β,A) which contains θ upon restriction to H1(β,A). Moreover, upon restric-

tion to H1(β,A), the representation η becomes isomorphic to a direct sum of (J1(β,A) :

H1(β,A))1/2 copies of θ.



Simple and semisimple types 47

We call η the Heisenberg extension of θ.

The next step is then to describe Ind
J(β,A)

J1(β,A) η. Since J1(β,A) is normal in J(β,A), it

suffices to construct an extension κ of η to J(β,A), and then form the representation

κ ⊗ Ind
J(β,A)

J1(β,A) 1J1(β,A). Due to our goal of describing supercuspidal representations as

being compactly induced from the groups J̃(β,A), we also require that this extension κ

satisfies an additional intertwining property:

Definition 3.5.2. Let θ ∈ C(A, 0, β) have Heisenberg extension η. A β-extension of η is

an irreducible representation κ of J(β,A) extending η which is intertwined by B×β .

Proposition 3.5.3. Let θ ∈ C(A, 0, β) have Heisenberg extension η.

(i) There exists a β-extension of η.

(ii) If κ is a β-extension of η, then all other β-extensions of η are of the form κ⊗ (χ ◦

detB), for some character χ of k×E, viewed as a character of O×E via inflation.

(iii) Distinct characters χ of k×E yield distinct β-extensions. Thus there are precisely

qE − 1 distinct β-extensions of η.

While it may seem troublesome that β-extensions are not unique, this is not an issue. It

remains for us to form an irreducible subrepresentation of κ⊗ Ind
J(β,A)

J1(β,A) 1J1(β,A), which is

to say that it remains for us to consider the representations κ⊗σ, where σ is an irreducible

representation of J(β,A)/J1(β,A). There are two cases: if σ is non-cuspidal, then κ⊗ σ

may only be contained in non-cuspidal irreducible representations of G (as we will see

during the proof of Lemma 4.4.2). On the other hand, if σ is cuspidal then so is any twist

σ ⊗ (χ ◦ det), which means that we may as well just fix a single choice of β-extension.

Remark 3.5.4. In the case that θ is a maximal simple character, i.e. Bβ ' MatN/[E:F ](OE)

is a maximal hereditary order, β-extensions become rather simple: unless UBβ/U
1
Bβ
'

GL(2, 2), every extension of η to J(β,A) is a β-extension.

We are then able to give the main definition:
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Definition 3.5.5. A simple type in G is a pair (J, λ) consisting of a compact open sub-

group J of G and an irreducible representation λ of J , of one of the two following forms.

(i) J = J(β,A) and λ = κ⊗ σ, where:

(a) A is a principal hereditary O-order in A and [A, n, 0, β] is a simple stratum with

n = −vA(β);

(b) κ is a β-extension of some θ ∈ C(A, 0, β); and

(c) making the identification

J(β,A)/J1(β,A) ' UBβ/U
1
Bβ
'

eBβ∏
i=1

GLN/[E:F ](kE),

the representation σ is the inflation to J(β,A) of an eBβ -fold tensor power σ
eBβ
0

of some cuspidal representation σ0 of GLN/[E:F ](kE).

(ii) J = UA for some principal hereditary O-order A, so that UA/U
1
A '

∏eA
i=1 GLN/eA(kF ),

and λ is the inflation to UA of the eA-fold tensor power σeA0 of some cuspidal repre-

sentation σ0 of GLN/eA(kF ).

The distinction between these two cases is really just a case of formality, since β-extensions

only make sense in the first case. In practice, the second case can be viewed as a degen-

erate case of the first.

The etymology of these simple types is then justified by the following:

Proposition 3.5.6. Let (J, λ) be a simple type in G. Then there exists an s ∈ B(G)

such that (J, λ) is an s-type. Moreover, if π is an irreducible representation of G con-

taining some simple type, then π lies in the discrete series of G, and every discrete series

representation of G contains some simple type.

(We recall that by a discrete series representation, we mean either a supercuspidal repre-

sentation, or a generalized Steinberg representation. This means that π lies in the discrete

series of G if it is an irreducible representation of inertial support of the form [M, ζ]G,

with M = G
N/M
M and ζ ' ζ

⊗N/M
0 for some M |N and some supercuspidal representation ζ0
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of GM).

In the case of the simple types contained in supercuspidal representations, one obtains a

particularly rich theory.

Definition 3.5.7. Let (J, λ) be a simple type in G. We say that (J, λ) is a maximal

simple type if the hereditary OE-order Bβ is maximal, i.e. if eBβ/OE = 1.

Note that in the second case of the definition of a simple type, this simply means that A

is a maximal O-order in A.

Theorem 3.5.8. (i) Let π be a supercuspidal representation of G. Then π contains

some maximal simple type (J, λ), which is a [G, π]G-type.

(ii) Conversely, if (J, λ) is a maximal simple type in G, then there exists a supercuspidal

representation π of G containing (J, λ).

(iii) Let (J, λ) be a maximal simple type associated to the simple stratum [A, n, 0, β], and

let E = F [β]. Then one has IG(λ) = E×J . Moreover, if π is a supercuspidal

representation of G containing (J, λ), then there exists a unique extension Λ of λ to

E×J such that π ' c- IndGE×J Λ.

From the fact that IG(λ) = E×J , one obtains as an immediate corollary the following fact

which will be fundamental to our work in the next chapter:

Corollary 3.5.9. Let (J, λ) be a maximal simple type in G, and suppose that K ⊃ J

is compact open. Then IndKJ λ is irreducible, and (K, IndKJ λ) is a type for the same

Bernstein component as (J, λ).

Finally, we note that the maximal simple types inherit an intertwining implies conjugacy

property from their underlying simple characters:

Theorem 3.5.10. Suppose that (J, λ) and (J ′, λ′) are maximal simple types in G such

that IG(λ, λ′) 6= ∅. Then there exists a g ∈ G such that gJ = J ′ and gλ ' λ′.



50 Peter Latham

3.6 Simple types in SLN(F )

With the construction of maximal simple types for G = GLN(F ) having been completed,

we wish to obtain a similar construction for Ḡ = SLN(F ), where one is essentially able

to transfer the results over from G by Clifford theory. Throughout this section, given a

closed subgroup H of G, we will write H̄ = H ∩ Ḡ.

Given a simple type (J, λ) in G, the restriction to J̄ of λ will split as a direct sum

of irreducible representations, however these are not quite the right representations to

consider: it is possible that one must consider representations on a slightly larger group

than J̄ , due to the fact that λ⊗ (χ ◦ det) �J̄' λ �J̄ for any character χ of F .

Definition 3.6.1. Let (J, λ) be a simple type in G arising from the simple stratum

[A, n, 0, β]. The projective normalizer of (J, λ) is the group J+ = J+(λ) consisting of

those x ∈ UA such that xλ ' λ⊗ (χ ◦ det) for some χ ∈ X(F ).

Proposition 3.6.2. Let (J, λ) be a simple type in G.

(i) The projective normalizer J+ contains J as a closed normal subgroup.

(ii) The quotient J+/J is a finite abelian p-group of exponent a divisor of N .

(iii) One has JJ̄+ = J+.

In particular, one has ResJ
+

J̄+ IndJ
+

J λ ' IndJ̄
+

J̄ ResJJ̄ λ.

Definition 3.6.3. A simple type in Ḡ is a pair of the form (J̄+, µ), where µ is an irreducible

subrepresentation of ResJ
+

J̄+ IndJ
+

J λ for some simple type (J, λ) in G. We say that (J̄+, µ)

is maximal if (J, λ) is maximal.

One then has results analogous to those for the maximal simple types in G:

Theorem 3.6.4. (i) Let π̄ be a supercuspidal representation of Ḡ. Then π̄ contains

some maximal simple type (J̄+, µ), which is a [Ḡ, π̄]Ḡ-type.

(ii) Conversely, if (J̄+, µ) is a maximal simple type in Ḡ, then the representation c- IndḠJ̄+ µ

is irreducible and supercuspidal.
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Here, part (ii) is simpler than the analogous result for G, since Ḡ has a compact centre.

One also has an intertwining implies conjugacy property for the maximal simple types in

Ḡ:

Theorem 3.6.5. Let (J̄+, µ) and (J̄ ′+, µ′) be two maximal simple types in Ḡ. If IḠ(µ, µ′) 6=

∅, then there exists a g ∈ Ḡ such that J̄ ′+ = gJ̄+ and µ′ ' gµ.

3.7 Covers and semisimple types

We have seen that the theory of simple types provides a construction of types for the

discrete series of GLN(F ) and SLN(F ). The obvious next question is whether one may

extend these constructions to all of the Bernstein components of these groups. This is

indeed possible, with the approach being the theory of types and covers, which provides

an abstract approach to extending types via parabolic induction. For this section, we

return to the general setting and let G = G(F ) denote an arbitrary connected reductive

p-adic group.

Let P = MN be an F -parabolic subgroup of G with Levi factor M , and let P op = MNop

denote the opposite parabolic, i.e. the unique F -parabolic subgroup of G with Levi factor

M , the unipotent radical of which intersects trivially with N . Let ζ be a supercuspidal

representation of M , and let (JM , λM) be an [M, ζ]M -type. We wish to construct an

[M, ζ]G-type (J, λ) satisfying certain compatibility properties with respect to (JM , λM).

Definition 3.7.1. Let (JM , λM) be an [M, ζ]M -type. A G-cover of (JM , λM) is a pair

(J, λ) consisting of a compact open subgroup J of G satisfying J ∩ M = JM and an

irreducible representation λ of J extending λM such that:

(i) (J, λ) is decomposed with respect to (M,P ) in the sense that J = (J ∩ Nop)(J ∩

M)(J ∩N), and both J ∩Nop and J ∩N are contained in kerλ; and
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(ii) for every parabolic subgroup Q of G with Levi factor M ¡ there exists an invertible

element of H(G, λ) supported on a double coset JzQJ for some strongly (Q, J)-

positive element zQ of Z(M) (in the sense of [BK98, Def. 6.15]).

The point of this definition is the following:

Theorem 3.7.2. Let sM = [M, ζ]M and let s = [M, ζ]G. Let (J, λ) be a G-cover of

some sM -type (JM , λM). Then (J, λ) is an s-type. Moreover, there exists a family tQ :

H(G, λ) → H(M,λM) of ring homomorphisms as Q ranges over the parabolic subgroups

Q = MU of G with Levi factor M , such that the following diagrams commute:

Reps(G)
Mλ

∼ //

rU
��

H(G, λ)-Mod

t∗Q
��

RepsM (M)
MλM

∼ //H(M,λM)-Mod

Reps(G)
Mλ

∼ //H(G, λ)-Mod

RepsM (M)

IndGM,Q

OO

MλM

∼ //H(M,λM)-Mod

HomH(M,λM )(H(G,λ),−)

OO

Here, t∗Q denotes the restriction functor.

In the situations of interest to us, one will always be able to construct a cover of a maximal

simple type.

Theorem 3.7.3 ([BK99, GR02]). Let G = GLN(F ) or SLN(F ) and let (JM , λM) be a

maximal simple [M, ζ]M -type. Then there exists a G-cover (J, λ) of (JM , λM).

We call such a cover a semisimple type.

Remark 3.7.4. We emphasize that, while we have only defined semisimple types for

GLN(F ) and SLN(F ) (more generally, they have been defined for representations of clas-

sical groups and of inner forms of GLN(F )), the notion of a cover is completely general.

In particular, in Chapter 5 we will encounter covers of another class of types. However,

we restrict the nomenclature of semisimple types to covers of simple types.
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3.8 The unicity of types for GLN(F )

We end by discussing the resolution of Conjecture 2.9.7 in the case of F = GLN(F ),

together with its generalization to non-cuspidals.

Since G contains a unique conjugacy class of maximal compact subgroups – that of K =

GLN(O) – for each irreducible representation π of G (of inertial support [M, ζ]G, say),

there is a canonical identification between the set of [M, ζ]G-archetypes and the set of

[M, ζ]G-typical representations of K. This allows us to easily translate existing results on

unicity for G into our language of archetypes. We first discuss the supercuspidal case,

where the results are more complete:

Theorem 3.8.1 ([BM02, Pas05]). Let π be a supercuspidal representation of G. Then

there exists a unique [G, π]G-type (K, τ), which is obtained by taking a maximal simple

[G, π]G-type (J, λ) with J ⊂ K, and letting τ be the representation IndKJ λ.

Of course, the representation τ must be irreducible, since the K-intertwining of λ is the in-

tersection with K of its G-intertwining, which is to say IK(λ) = K∩IG(λ) = K∩E×J = J .

In the case that π is an irreducible non-cuspidal representation of G, the situation is

slightly more complicated. We have the following:

Theorem 3.8.2. Let π be an irreducible representation of G of inertial support [M, ζ]G,

and let (K, τ) be an [M, ζ]G-type. Then there exists a semisimple [M, ζ]G-type (J, λ) such

that τ ' IndKJ λ. Moreover, unless q = 2, there exists a single semisimple [M, ζ]G-type

such that the irreducible subrepresentations of IndKJ λ exhaust the [M, ζ]G-archetypes.

In the case of GL2(F ), this is due to Henniart in [BM02]. The general case is due to

Nadimpalli: the cases of GL3(F ) and a large number of other inertia classes in GLN(F ) are

dealt with in [Nad14] and [Nad15], while the remaining cases are completed but currently

not written up.





Chapter 4

The unicity of types for SLN (F )

In this chapter, we investigate the question of unicity for special linear groups, giving an

expanded exposition of the results of [Lat16c] and [Lat16a]. In order to simplify notation,

for the remainder of the chapter we introduce the convention that G = GLN(F ) and

Ḡ = SLN(F ). Given a closed subgroup H of G, we let H̄ = H ∩ Ḡ. We also denote by

K = GLN(O) the standard maximal compact subgroup of G, and K̄ = SLN(O). When

required to consider groups of various orders, we make use of the notation GNi = GLNi(F ),

etc. We also write X(F ) for the group of characters F× → C×, Xur(F ) for the subgroup

of unramified characters, and XN(F ) for the subgroup consisting of characters χ such that

χN is unramified.

4.1 The main lemma

Our approach is based on the following observation that there is a close relationship

between the representation theory of G and that of Ḡ:

Lemma 4.1.1. Let M = GN1 × · · · × GNr be a standard Levi subgroup of G, and let

55
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ζ = ζ1⊗· · ·⊗ ζr be a supercuspidal representation of M . If ζ ′ = ζ ′1⊗· · ·⊗ · · · ζ ′r is another

supercuspidal representation of M which becomes isomorphic to ζ upon restriction to M̄ ,

then there exists a χ ∈ X(F ) such that ζ ′ ' ζ(χ ◦ det).

Proof. Restricting further to ¯̄M = ḠN1 × · · · × ḠNr , the representations ζ and ζ ′ become

tensor products of representations, all of which are finite-length representations with all

irreducible subquotients supercuspidal. Hence, by [BK93b, Proposition 1.17], for each i

there must exist a χi ∈ X(F ) such that ζ ′i ' ζi(χi ◦ det).

Our claim is that one may find a χ ∈ X(F ) such that (χ1 ◦ det) · · · (χr ◦ det) = χ ◦ det.

We show this for r = 2; the claim then follows in general by induction. Let x = (x1, x2) ∈

M = GN1 × GN2 . As (χ1 ◦ det) · (χ2 ◦ det) is trivial on M̄ and for (x1, x2) ∈ M̄ one has

detx2 = detx−1
1 , it must be the case that χ1(detx1) = χ2(detx1) for all x = (x1, x2) ∈ M̄ .

As det is surjective, it follows that χ1 = χ2, so that (χ1 ◦ det) · (χ2 ◦ det) = χ1 ◦ det, as

required.

The idea is then the following. If π̄ is a supercuspidal representation of Ḡ, we may arbi-

trarily choose a (necessarily supercuspidal) irreducible representation π of G such that π̄

is a subquotient of π �Ḡ. Let (K, τ) be the standard representative of the unique [G, π]G-

archetype. Then as π is a subquotient of c- IndGK τ , it is certainly the case that π̄ is a

subquotient of
⊕

K\G/Ḡ IndḠgK̄ Res
gK
gK̄

gτ , and one might reasonably hope that, among the

irreducible subrepresentations of gτ �gK̄ one finds a complete set of representatives of the

[Ḡ, π̄]Ḡ-archetypes.

Indeed, this will turn out to be the case, but is a rather deep fact. If, however, one is

willing to ask for slightly less, it is possible to get an immediate result in this direction

which, moreover, holds true even for the case of non-cuspidal representations, where the

above justification for our approach is not quite as clear:

Lemma 4.1.2. Let π be an irreducible representation of G of inertial support [M, ζ]G, let

π̄ be an irreducible subquotient of π �Ḡ, and let s̄ be the inertial support of π̄. Suppose

that, for some g ∈ G, there exists an s̄-archetype (gK̄, τ̄). Then there exists an irreducible
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subrepresentation Ψ of π �gK which contains τ̄ . Moreover, (gK,Ψ) is S-typical for S =

{[M, ζ ⊗ (χ ◦ det)]G | χ ∈ XN(F )}.

Proof. Without loss of generality, we may as well just consider the case gK̄ = K̄. First,

note that such a Ψ clearly exists – by Frobenius reciprocity, one has

HomK(IndKK̄ τ̄ ,ResGK π) = HomK̄(τ̄ ,ResḠK̄ ResGḠ π) 6= 0,

and so some irreducible subrepresentation of IndKK̄ τ̄ is contained in π. Fix such a choice

of representation Ψ.

Now suppose that π′ is an irreducible representation of G such that HomK(π′ �K ,Ψ) 6= 0.

Then

0 6= HomK(IndKK̄ τ̄ ,ResGK π′) = HomK̄(τ̄ ,ResḠK̄ ResGḠ π′).

Hence π′ must contain π̄ upon restriction to Ḡ. Suppose that π′ is of inertial support

[M ′, ζ ′]G. Then, as π̄ is a subrepresentation of both ResG
Ḡ

IndGM,P ζ = IndḠM̄,P̄ ResMM̄ ζ and

ResGḠ IndGM ′,P ′ ζ
′ = IndḠM̄ ′,P̄ ′ ResM

′

M̄ ′ ζ
′, for some parabolic subgroups P and P ′, it follows

by the uniqueness of supercuspidal supports that ResMM̄ ζ and ResM
′

M̄ ′ ζ
′ must contain some

irreducible subquotients which are isomorphic up to Ḡ-conjugacy. In particular, we may

as well take M = M ′. By Clifford theory, the representations ResMM̄ ζ and ResMM̄ ζ ′ are

direct sums over a full orbit under M -conjugacy of irreducible representations of M̄ , and

so these two representations have a subquotient in common if and only if they are equal.

Hence, it follows from Lemma 4.1.1 that ζ ′ ' ζ ⊗ (χ ◦ det) for some χ ∈ X(F ).

So the representation π′ is of inertial support [M, ζ ⊗ (χ ◦ det)]G and contains Ψ. As π

also contains Ψ, we may compare central characters to see that ωπ′ �O×= ωπ �O× . As

F× ⊂M , one must have ωπ′ = ωπ ⊗ (χ ◦ det), so that χ ◦ det is trivial on O×, which is to

say that χN is unramified.

Remark 4.1.3. As the set {gK̄ | g ∈ G} exhausts the maximal compact subgroups of Ḡ,

we can now apply Frobenius reciprocity to see that, at the very least, every archetype in

Ḡ is restricted from some appropriate S-type.
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So we fix such an S-typical representation Ψ in the hopes that we may see that Ψ is

actually [G, π]G-typical. This would be sufficient to determine Ψ and show that any

archetype in Ḡ is contained in the restriction of an archetype in G.

4.2 Some results on simple characters

Before we move on to the proof that the representation Ψ constructed in Lemma 4.1.2

is [G, π]G-typical, we establish some preparatory results on simple characters. These will

essentially form the observations which a large part of our proof boils down to, in that

they allow us to resolve the fundamental difficulty that it can, a priori, be difficult to

distinguish between a simple character θ and its twist θ(χ ◦ det) for some χ ∈ X(F ).

Obviously, the first necessary observation is that this twist is itself a simple character.

This is the main point of the appendix to [BK94], and our proof is essentially a replication

of their proof, rephrased slightly in places in order to be more convenient for us. In

particular, the argument is completely unoriginal. We freely quote facts established by

Bushnell and Kutzko during their proof.

Lemma 4.2.1. Let θ ∈ C(A, 0, β) be a simple character, and let χ ∈ X(F ). Then θ(χ◦det)

is a simple character contained in C(A, 0, β′) for some β′. Moreover, one has C(A, 0, β′) =

{Θ(χ ◦ det) | Θ ∈ C(A, 0, β)}.

Proof. Let [A, n, 0, β] be the simple stratum giving rise to the set C(A, 0, β). If β ∈ F

then H1(β,A) = UA and C(A, 0, β) consists of characters of the form ω ◦ det, from which

the claim is clear.

So assume that β 6∈ F . Then, for c ∈ F , the stratum [A,−vA(β + c), 0, β + c] is simple,

and one has H(β,A) = H(β+ c,A) and J(β,A) = J(β+ c,A). Let χ ∈ X(F ) be such that

χ ◦ det agrees with ψc on U
b−vA(c)

2
c+1

A . Then C(A, 0, β + c) = C(A, 0, β)⊗ (χ ◦ det). So we

need only observe that, for any χ ∈ X(F ), one may find a c ∈ F such that χ ◦ det = ψc

on U
b−vA(c)

2
c+1

A .
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The next complication is that χ is viewed as a character of G through detF , while the

determinant with which the groups Hm(β,A) are most naturally compatible is detE, where

E = F [β]. This results in the presence of blocks of length eA in the filtration Hm(β,A) of

H1(β,A) on which χ ◦ det is essentially the same.

Lemma 4.2.2. Suppose that k ∈ N is such that χ ◦ det is non-trivial on HkeA+1(β,A).

Then χ ◦ det is non-trivial on H(k+1)eA(β,A).

Proof. As detF = NE/F ◦ detE, this follows from the observation that, for any m, one

has detF (Hm) = detF (Hm ∩ B×) = detF (Um
Bβ

), and that one has NE/F (1 + pm+1
E ) =

NE/F (1 + pmE ) for ke + 1 ≤ m ≤ (k + 1)e− 1, while NE/F (1 + pmE ) is strictly larger than

NE/F (1 + pm+1
E ) otherwise.

Finally, at the root of most of our arguments will be a use of Lemma 4.1.2 in order to see

that some simple character θ is conjugate to θ(χ ◦ det), for some χ ∈ XN(F ). In general,

it is possible for such a situation to arise, although this may only occur for certain wildly

ramified characters χ.

Definition 4.2.3. Let π be a supercuspidal representation of G containing the simple

stratum [A, n, 0, β]. We say that π is essentially tame if p is coprime to eA.

Similarly, say that a supercuspidal representation π̄ of Ḡ is essentially tame if it is con-

tained in an essentially tame supercuspidal representation of G. The reason for distin-

guishing these supercuspidals is the following [BK93a, Remark 3.5.14]:

Lemma 4.2.4. Let θ ∈ C(A,m, β) and θ ∈ C(A′,m, β′) be such that Hm+1(β,A) =

Hm+1(β′,A′), and suppose that p is coprime to eA (and hence also to eA′). If there exists

a g ∈ G such that gθ = θ′, then θ = θ′.

We will only complete the proof of our main result – that Ψ is a [G, π]G-type – in the

case that π is essentially tame. However, there are parts of the proof do not rely on this

assumption; we therefore prove some of the preliminary results in greater generality.

Remark 4.2.5. The possibility that simple characters defined on the same groupHm+1(β,A)

can intertwine without being equal leads to significant technical difficulties, as evidenced
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in [BK94]. While it should be expected that the results in this chapter remain true even

when π is not essentially tame, their proofs should become considerably more difficult.

In particular, the Bushnell–Kutzko theory alone appears to be insufficient to rule out the

possibility that Ψ is contained in π ⊗ (χ ◦ det) for some wildly ramified character χ of

sufficiently large level. Indeed, approaching the problem directly via Bushnell–Kutzko

theory only allows one to rule out the possibility that Ψ is contained in π ⊗ (χ ◦ det) for

and ramified character χ of level no greater than −k0(β,A) (via a simple application of

[BK93a, Lemma 3.5.10]).

4.3 Decompositions of π �K

Let us begin by fixing, once and for all, some notation. Let π be a supercuspidal represen-

tation of G, and let [A, n, 0, β] be a simple stratum such that π contains some (necessarily

maximal) simple character θ ∈ C(A, 0, β). Let κ be a β-extension of θ to J = J(β,A),

and let σ be a cuspidal irreducible representation of J/J1 such that π contains the simple

type (J, λ) = (J, κ⊗ σ). We write E = F [β].

In order to see that the representation Ψ constructed in 4.1.2 is actually [G, π]G-typical,

we proceed by contradiction. As π �K contains a unique [G, π]G-typical subrepresenta-

tion, if Ψ were not [G, π]G-typical then it would be contained in the complement of this

representation in π �K . In each of a number of cases, we then show that this implies the

existence of a representation π′ of G which contains Ψ but cannot possibly be of the form

π′ ' π ⊗ (χ ◦ det) for some χ ∈ XN(F ).

Writing J̃ for the G-normalizer of J , there exists a unique extension Λ of λ to J̃ such that

π ' c- IndG
J̃

Λ. This allows us to perform a Mackey decomposition of π �K :

π �K=
⊕
J̃\G/K

IndKgJ∩K Res
gJ
gJ∩K

gλ.

While this will be the main decomposition with which we work, it has the serious disad-

vantage that the coset space J̃\G/K is extremely difficult to describe. This forces us to
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also work with a slightly coarser decomposition. Let ρ = IndUA
J λ, and let ρ̃ = c- IndKA

J̃
Λ,

so that π ' c- IndGKA
ρ̃. This then gives us

π �K=
⊕

KA\G/K

IndKgUA∩K Res
gUA
gUA∩K

gρ.

This decomposition has the advantage that there is a natural set of distinguished coset

representatives for KA\G/K, which are described explicitly by Paskunas in [Pas05, Lemma

5.3]. In particular, these representatives consist of diagonal matrices with entries in $Z.

Whenever we discuss a coset in KA\G/K, we will implicitly assume that it is represented

in this form. We now recall Paskunas’ definition of type A and B cosets:

Definition 4.3.1. Let KAgK 6= KAK be a non-trivial coset.

(i) We say that KAgK is of type A if the map UA ∩ g−1
K → UA/U

1
A is not surjective; or

(ii) we say that KAgK is of type B if the map UA ∩ g−1
K → UA/U

1
A is surjective.

Often, we will simply refer to g being of type A or B, with the obvious meaning. Simi-

larly, we will say that an irreducible subrepresentation ξ of π �K is of type A or B if ξ is

a subrepresentation of IndKgUA∩K Res
gUA
gUA∩K

gρ, for g of type A or B, respectively.

This leads to three classes of irreducible subrepresentation ξ of π �K : the trivial summand

IndKUA
ρ, which represents the unique [G, π]G-archetype, the type A subrepresentations,

and the type B subrepresentations. We will show that Ψ cannot be of type A or B. In

each case, we are forced to use rather different approaches.

Remark 4.3.2. The notions of type A and B cosets are closely related to the lattice period

eA of the hereditary order A or, equivalently, the ramification degree of E/F . If eA = 1,

then every coset is of type A, while if eA = N then every coset is of type B. In particular,

for N prime the two cases correspond precisely to those considered by Henniart in the

appendix to [BM02]. In general though, a representation π will contain representations of

types both A and B in its restriction to K.
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4.4 Representations of type A

We first consider the type A subrepresentations of π �K . If KAgK is of type A, then the

map J ∩ g−1
K → J/J1 given by mod-J1 reduction is also not surjective. Let H denote its

image. The crucial observation is that H is a sufficiently small subgroup of J/J1 in the

sense of [Pas05, Definition 6.2]. This has a technical definition, but for us it suffices to say

that this means that H is unable to distinguish between the irreducible representations of

J/J1. The key result of Paskunas of which we will make use is the following:

Lemma 4.4.1 ([Pas05, Proposition 6.8]). For every irreducible subrepresentation ξ of σ �H

there exists an irreducible representation σ′ 6' σ of J/J1 such that HomH(σ′ �H , ξ) 6= 0.

So let Ψ be the representation constructed in Lemma 4.1.2, and suppose that Ψ is of

type A, corresponding to the coset KAgK. By the above lemma, there exists an ir-

reducible representation σ′ 6' σ of J/J1 such that Ψ is also a subrepresentation of

IndKgJ∩K Res
gJ
gJ∩K

g(κ ⊗ σ′). In the case that σ′ may be taken to be non-cuspidal, this

leads to an obvious contradiction:

Lemma 4.4.2. Suppose that there exists a non-cuspidal irreducible representation σ′ of

J/J1 such that Ψ ↪→ IndKgJ∩K Res
gJ
gJ∩K

g(κ ⊗ σ′). Then there exists a non-cuspidal irre-

ducible representation π′ of G which contains Ψ upon restriction to K.

Proof. Let σ′′ be any non-cuspidal irreducible representation of J/J1. Upon restriction

to H1, the representation κ ⊗ σ′′ becomes isomorphic to a sum of copies of θ, so any

irreducible representation π′ of G containing κ⊗ σ′′ must lie in IrrSθ(G). If such a repre-

sentation π′ were supercuspidal, then it would contain some maximal simple type (J, λ′).

As supercuspidal may contain only a single conjugacy class of simple characters, it must

be the case that λ′ = κ⊗Σ for some irreducible cuspidal representation Σ of J/J1. Then

we may perform a Mackey decomposition to obtain

π′ �J=
⊕
J\G/J

IndJhJ∩J Res
hJ
gJ∩J

hλ′.

Let h be a coset representative such that κ ⊗ σ′′ ↪→ IndJhJ∩J Res
hJ
hJ∩J

hλ′. By Frobenius

reciprocity, it follows that h ∈ IJ(κ ⊗ σ′′, κ ⊗ Σ). By [BK93a, Proposition 5.3.2], this
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intertwining set is contained in JIB×(σ′′ �UB
,Σ � UB)J . By [Pas05, Proposition 6.15], σ′′

and Σ do not intertwine, so that this set is empty, giving a contradiction. Hence π′ must

be non-cuspidal.

As we have

Ψ ↪→ IndKgJ∩K Res
gJ
gJ∩K

g(κ⊗ σ) ' IndKgJ∩K Res
gJ
gJ∩K

g(κ⊗ σ′) ↪→ ResGK c- IndGJ (κ⊗ σ′),

we may form the representation 〈Ψ〉 generated by Ψ in c- IndGJ (κ⊗σ′). This representation

will certainly admit some irreducible quotient π′ which contains Ψ. Hence, it suffices to

show that such an irreducible quotient of 〈Ψ〉 contains a representation of the form κ⊗σ′′

with σ′′ a non-cuspidal irreducible representation of J/J1. As 〈Ψ〉 ↪→ c- IndGJ (κ⊗ σ), we

have

ResGJ 〈Ψ〉 ↪→ ResKJ c- IndGJ (κ⊗ σ′)

=
⊕
J\G/J

IndJhJ∩J Res
hJ
hJ∩J

h(κ⊗ σ′).

Now, 〈Ψ〉 contains θ upon restriction to H1, which implies that 〈Ψ〉 ∈ RepSθ(G), as

〈Ψ〉 is generated by a single vector. Then any irreducible quotient of 〈Ψ〉 must contain

κ ⊗ Σ′ for some irreducible representation Σ′ of J/J1, and it remains to show that Σ′

cannot be cuspidal. If Σ′ were cuspidal then we would obtain an inclusion κ ⊗ Σ′ ↪→

IndJhJ∩J Res
hJ
hJ∩J

g(κ ⊗ σ′), which is to say that h ∈ IJ(κ ⊗ Σ′, κ ⊗ σ′). Applying [Pas05,

Proposition 6.16] again, we see that this intertwining set may only be non-empty if Σ′ is

non-cuspidal.

Thus it remains to consider the case that any such σ′ must be cuspidal. In this case, we

are able to see that σ′ must be of a rather specific form:

Lemma 4.4.3. Suppose that π is essentially tame, and suppose that there exists a cuspidal

representation σ 6' σ′ of J/J1 such that Ψ ↪→ IndKgJ∩K Res
gJ
gJ∩K

g(κ⊗σ′). Then there exist

a χ ∈ XN(F ) with χ trivial on det J1 such that σ′ ' σ ⊗ (χ ◦ det).

Proof. Let λ′ be the maximal simple type κ⊗ σ′, which must necessarily be contained in

some supercuspidal representation π′ of G which is contained in some inertia class other
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than that of π. Then Ψ must be a subrepresentation of π′ �K , and so, by Lemma 4.1.2,

we know that π′ ' π ⊗ (χ ◦ det) for some χ ∈ XN(F ). Hence the archetypes for π′ and

π ⊗ (χ ◦ det) coincide.

Respectively, these archetypes are represented by IndKJ λ′ and IndKJ (λ ⊗ (χ ◦ det)). As

π′ ' π ⊗ (χ ◦ det), it follows from Lemma 4.2.1 that π′ contains the simple character

θ(χ ◦ det). Hence, as supercuspidal representations may contain only a single conjugacy

class of simple characters, the simple characters θ and θ(χ ◦ det) must be G-conjugate.

Since π is essentially tame, simple characters contained in π may only be conjugate if they

are equal, hence χ is trivial on detH1 = det J1.

We now return to the isomorphism IndKJ λ′ ' IndKJ (λ ⊗ (χ ◦ det)). Then we have

IK(λ′, λ ⊗ (χ ◦ det)) 6= ∅. As detH1 = det J1, both λ′ and λ ⊗ (χ ◦ det) contain κ upon

restriction to J1. Thus, by [BK93a, Proposition 5.3.2], we have

IK(λ′, λ⊗ (χ ◦ det)) ⊂ K ∩ JIB×(λ′ �UBβ
, λ⊗ (χ ◦ det) �UBβ

)J ⊂ JB×J = J,

from which we see that λ′ ' λ⊗ (χ ◦ det). Now we apply the functor Kκ = HomJ1(κ,−),

which gives σ′ ' σ ⊗ (χ ◦ det).

4.5 Representations of type B

We now consider the case that the representation Ψ constructed in Lemma 4.1.2 is a type

B subrepresentation of π �K , corresponding to the coset KAgK. There are then two fur-

ther subcases which, despite allowing for essentially the same argument, require a slightly

different setup.

So let us suppose first that k0(β,A) 6= −1. In this case one has H1(β,A) = U1
Bβ
H2(β,A),

and so we may view a non-trivial character µ of (1+pE)/(1+p2
E) as a character of H1/H2

via

H1/H2 ∼ // U1
Bβ
/U2

Bβ

detBβ
// (1 + pE)/(1 + p2

E)
µ
// C×.



The unicity of types for SLN(F ) 65

On the other hand, if k0(β,A) = −1 then the above no longer works. Instead, let [A, n, 1, γ]

be a simple stratum equivalent to the pure stratum [A, n, 1, β]. Then θψ−1
β−γ is a simple

character in C(A, 0, γ).

To combine these two cases, we let µ be as above if k0(β,A) 6= −1, and let µ = ψ−1
β−γ

otherwise. As noted by Paskunas during the proofs of [Pas05, Propositions 7.3, 7.16], in

each of these two cases we then have θµ = θ on H1 ∩ g−1
K. Moreover, in each case the

character µ is trivial on H2.

Lemma 4.5.1. Suppose that π is essentially tame. Then the representation Ψ cannot be

of type B.

Proof. We have, for some integer n, a chain of inclusions

Ψ ↪→ IndKgJ∩K Res
gJ
gJ∩K

gλ

↪→ IndKgJ∩K Ind
gJ∩K
gH1∩K Res

gJ
gH1∩K

gλ

= IndKgH1∩K
gθ �⊕ngH1∩K

= IndKgH1∩K
g(θµ) �⊕ngH1∩K

↪→ ResGK c- IndGH1 θµ.

Now, by Lemma 4.1.2, any irreducible subquotient of c- IndGK Ψ is a supercuspidal repre-

sentation of the form π⊗(χ◦det) for some χ ∈ XN(F ). Hence there exists a supercuspidal

representation of this form which contains the simple character θµ. But now π⊗ (χ ◦ det)

clearly also contains the simple character θ(χ ◦ det), and so, since a supercuspidal repre-

sentation contains a unique conjugacy class of simple characters, there exists a χ ∈ XN(F )

such that θµ is conjugate to θ(χ ◦ det).

Suppose that χ is trivial on detH1. Then θµ is conjugate to θ, but Paskunas establishes

during the proofs of [Pas05, Propositions 7.3, 7.16] that, in either case this is not possible.

So χ is non-trivial on detH1. As we are assuming that Ψ is a representation of type B, it

must be the case that eA > 1; hence χ is non-trivial on detH2. But now, in either case,
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µ is trivial on H2 and so we see that θ is conjugate to θ(χ ◦ det) on H2, which, since π is

essentially tame, implies that χ is trivial on detH2, a contradiction.

4.6 Refinement of the main lemma for

supercuspidals

The results of the previous two sections complete all of the preparation needed to deduce

that the representation Ψ is [G, π]G-typical, for π supercuspidal. We retain our notation

from before, so that there exists a simple stratum [A, n, 0, β], a simple character θ ∈

C(A, 0, β) with β-extension κ and a cuspidal representation σ of J/J1 such that π contains

the simple type (J, λ) = (J, κ⊗ σ).

Theorem 4.6.1. Suppose that π is an essentially tame supercuspidal representation of G.

Then the representation Ψ constructed in Lemma 4.1.2 is a [G, π]G-type.

Proof. Suppose not. By Lemma 4.5.1 we see that Ψ must be a type A representation. By

Lemma 4.4.1, there exists an irreducible representation σ′ of J/J1 such that Ψ is a sub-

representation of IndKgJ∩K Res
gJ
gJ∩K

g(κ⊗ σ′). If σ′ may be taken to be non-cuspidal then,

by Lemma 4.4.2, there exists a non-cuspidal irreducible representation π′ of G containing

Ψ, which is impossible by Lemma 4.1.2.

So suppose that the only such irreducible representations σ′ of J/J1 are cuspidal, so that

we are assuming that Ind
J/J1

H ξ splits as a direct sum of cuspidal irreducible representa-

tions of J/J1. If the extension E/F is totally ramified then by [Pas05, Corollary 6.6] the

group H is contained in some proper parabolic subgroup of J/J1. But now, if the N is

the unipotent radical of a parabolic subgroup of J/J1 opposite to one containing H, then

the restriction to N of Ind
J/J1

H ξ surjects onto IndNH∩N ResHH∩N ξ. As H intersects trivially

with N , this is simply the regular representation of N , which certainly contains the trivial

representation of N , contradicting the cuspidality of Ind
J/J1

H ξ.
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Hence we need only consider the case that E/F is not totally ramified. If the only irre-

ducible representations σ′ of J/J1 such that Ψ ↪→ IndKgJ∩K Res
gJ
gJ∩K

g(κ⊗σ′) are cuspidal,

then all such representations σ′ are of the form σ′ ' σ ⊗ (χ ◦ det) for some character

χ ∈ XN(F ) trivial on det J1, by Lemma 4.4.3. Hence we see that all such representations

σ′ actually identify upon restriction to H. Moreover, these representations will identify

upon restriction to the product H · SLN/[E:F ](kE) ⊂ GLN/[E:F ](kE) ' J/J1.

Now, there are precisely gcd(N, qF − 1) characters χ ∈ XN(F ) which are trivial on det J1.

Thus, writing H = H · SLN/[E:F ](kE) ⊂ J/J1 and Ξ = σ �H , if we can show that

Ind
J/J1

H Ξ contains at least qF distinct irreducible subrepresentations then we will have

a contradiction, as every irreducible subrepresentation of Ind
J/J1

H σ �H� Ind
J/J1

H Ξ is a

twist of σ by such a χ.

Since H contains the commutator subgroup SLN/[E:F ](kE) of J/J1, the representation

Ind
J/J1

H 1 will split as a multiplicity-free direct sum of [J/J1 : H ] distinct characters of

J/J1; hence the number of distinct irreducible subrepresentations of Ind
J/J1

H Ξ is at least

the index of H in J/J1. Thus, it suffices for us to show that this index is no smaller than

qF .

As E/F is not totally ramified, kE/kF is a non-trivial extension. Then there exists a

proper subextension k of kE which contains kF and is of maximal degree among such

extensions of kF such that H contains only k-rational points of J/J1 (by combining

[Pas05, Lemma 6.5] and [Pas05, Corollary 6.6]). Thus, if f = f(E/F ) is the residue

class degree of E/F then k ' Fqf−1
F

, and so we may certainly take as a lower bound for

[J/J1 : H ] the number

|GLN/[E:F ](kE)|
|GLN/[E:F ](k) · SLN/[E:F ](kE)|

=
|GLN/[E:F ](kE)|
|SLN/[E:F ](kE)|

·
(

GLN/[E:F ](k)

SLN/[E:F ](k)

)−1

=
qfF − 1

qf−1
F − 1

.

This is then no less than qF , as required.

Remark 4.6.2. One actually obtains a slight strengthening of this result for free: by

arguing precisely as in Lemma 4.1.2, one sees that any irreducible subrepresentation of
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IndKK̄ τ̄ is contained in some supercuspidal representation π containing π̄ upon restriction

to Ḡ. Then every irreducible subrepresentation Ψ of IndKK̄ τ̄ is a [G, π]G-type for some

such π. This also means that an analogue of Lemma 4.1.1 holds true for τ̄ : if τ, τ ′ are two

irreducible representations of K which contain τ̄ upon restriction, then τ ′ ' τ ⊗ (χ ◦ det)

for some character χ ∈ X(F ).

4.7 The main unicity results

With the refinement of Lemma 4.1.2 having been completed, we are able to immediately

obtain a number of results on the unicity of types in Ḡ. We first discuss our results for

the supercuspidal representations, where we are able to easily deduce that any archetype

is represented by a representation induced from a simple type:

Lemma 4.7.1. Let π be an essentially tame supercuspidal representation of G, and let

(K, τ) be the unique [G, π]G-archetype. Then every irreducible component of τ �K̄ is in-

duced from a maximal simple type in Ḡ.

Proof. The representation τ must be of the form τ = IndKJ λ for some maximal simple

type (J, λ) in G. Then we may perform a Mackey decomposition to obtain

ResKK̄ IndKJ λ =
⊕
J\K/K̄

IndK̄gJ∩K̄ Res
gJ
gJ∩K̄

gλ

=
⊕
J\K/K̄

IndK̄g J̄+ Ind
g J̄+

g J̄ Res
gJ
g J̄

gλ

=
⊕
J\K/K̄

IndK̄g J̄+
g(IndJ̄

+

J̄ ResJJ̄ λ).

But now, as JJ̄+ = J+, one has IndJ̄
+

J̄ ResJJ̄ λ = ResJ
+

J̄+ IndJ
+

J λ. By definition, the

irreducible components of this representation are maximal simple types in Ḡ and the

result follows.

Theorem 4.7.2. Let π̄ be an essentially tame supercuspidal representation of Ḡ.

(i) If (K , τ̄) is a [Ḡ, π̄]Ḡ-archetype, then there exists a maximal simple type (J̄+, µ) with

J̄+ ⊂ K such that τ̄ ' IndK
J̄+ µ.
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(ii) If (J̄+, µ) is a maximal simple type contained in π̄ and K is a maximal compact

subgroup of Ḡ containing J̄+, then the representation IndK
J̄+ µ is the unique [Ḡ, π̄]Ḡ-

typical representation of K .

Proof. Without loss of generality, assume that K = K̄. By Theorem 4.6.1, if π is a su-

percuspidal representation of G which contains π̄ upon restriction, then τ̄ is an irreducible

component of the restriction to K̄ of (K, τ), where (K, τ) is the unique [G, π]G-archetype.

Then (i) follows immediately from Lemma 4.7.1.

For (ii), it remains to check that, given two distinct maximal simple types (J̄+, µ) and

(J̄ ′+, µ) contained in π̄ which are, moreover, contained in the same conjugacy class of

maximal compact subgroups, these simple types provide the same archetypes through

induction. Thus, we may as well assume that J̄+, J̄ ′+ ⊂ K̄. As (J̄+, µ) and (J̄ ′+, µ′) are

[Ḡ, π̄]Ḡ-types, π̄ will appear as an irreducible subquotient of the induced representations

c- IndḠJ̄+ µ and c- IndḠJ̄ ′+ µ′; hence we will have

0 6= HomḠ(c- IndḠJ̄+ µ, c- IndḠJ̄ ′+ µ′)

= HomJ̄+(µ,ResḠJ̄+ c- IndḠJ̄ ′+ µ′)

=
⊕

J̄ ′+\Ḡ/J̄+

HomJ̄+(µ, IndJ̄
+

g J̄+∩J̄ ′+ Res
g J̄+

g J̄+∩J̄ ′+
gµ′)

=
⊕

J̄ ′+\Ḡ/J̄+

Homg J̄ ′+∩J̄+(ResJ̄
+

g J̄ ′+∩J̄+ µ,Res
g J̄ ′+
g J̄ ′+∩J̄+

gµ′),

and so IḠ(µ, µ′) 6= ∅. But then, by the intertwining implies conjugacy property, there

will exist a g ∈ Ḡ such that g(IndK̄J̄+ µ) ' Ind
gK̄
J̄ ′+ µ′. As J̄ ′+ is contained in at most one

maximal compact subgroup in each Ḡ-conjugacy class, we must actually have gK̄ ′ = K̄,

and so (J̄+, µ) and (J̄ ′+, µ′) induce to the same archetype.

Given a fixed choice of maximal compact subgroup K , this gives a complete description of

the theory of [Ḡ, π̄]Ḡ-typical representations of K . However, it is natural to ask whether

it is possible to give a uniform description of the number of conjugacy classes of K for

which there exists a [Ḡ, π̄]Ḡ-typical representation of K . This turns out to have a rather

satisfying answer.
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Definition 4.7.3. Let π̄ be a supercuspidal representation of Ḡ, and let π be a super-

cuspidal representation of G which contain π̄ upon restriction. Suppose that π contains

some simple character θ ∈ C(A, 0, β). Then we define the ramification degree of π̄ to be

eπ̄ = eA.

Remark 4.7.4. This is indeed well-defined – any two such representations π containing π̄

are related by a twist by some character χ◦det, which does not affect the lattice period of

the hereditary order from which the (pairwise G-conjugate) simple characters contained

in π are constructed.

Theorem 4.7.5. Let π̄ be an essentially tame supercuspidal representation of Ḡ. Then

π̄ contains precisely eπ̄ archetypes. Moreover, each of these eπ̄ archetypes contained in π̄

are pairwise G-conjugate.

Proof. After Theorem 4.7.2, it remains only for us to show that, given a maximal simple

type (J̄+, µ) in Ḡ, the group J̄+ embeds into precisely eπ̄ conjugacy classes of maximal

compact subgroups of Ḡ.

Let (J̄+, µ) be a maximal simple type contained in π̄, of the form of an irreducible sub-

representation of IndJ̄
+

J̄ ResJJ̄ λ for some maximal simple type (J, λ) in G, and suppose

that (J, λ) is constructed via the simple stratum [A, n, 0, β]. Let E = F [β]. Let K be a

maximal compact subgroup of Ḡ containing J̄+, and let $E be a uniformizer of E. Then

the groups $jEK , 0 ≤ j ≤ eA − 1 are each contained in a different G-conjugacy class of

maximal compact subgroups of Ḡ and, since the G-normalizer of (J, λ) is precisely E×J ,

one sees that J̄+ is contained in each of the $jEK . Write Ki = $jEK for 0 ≤ j ≤ eA − 1.

Then we have seen that the eA representations IndKi

J̄+ µ are irreducible and represent

[Ḡ, π̄]Ḡ-archetypes. Moreover, since the powers of $E are contained in NG(J) = E×J ,

these representations are pairwise G-conjugate.

It remains to show that J̄+ does not admit a containment into a member of any other
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conjugacy class of maximal compact subgroups of Ḡ. Writing

ν =



0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

. . . . . . 0
...

...
...

...
. . . 0

0 0 0 0 · · · 1

$ 0 0 0 · · · 0


,

i.e. letting ν be the matrix with νi,i+1 = 1 for 1 ≤ i ≤ N − 1, νN,1 = $ and νi,j = 0

otherwise (with the point being that ν is then a uniformizer of the totally ramified degree

N extension F [ν]/F ), the N compact open subgroups νjK̄, 0 ≤ j ≤ N − 1 form a system

of representatives of the N conjugacy classes of maximal compact subgroups in Ḡ. With-

out loss of generality, assume that J̄+ ⊂ K̄; then there is a choice $E of uniformizer of

E such that $jEK̄ ⊂ νNj/eA K̄ for each 0 ≤ j ≤ eA − 1. The group J̄/J̄1 ' SLN/[E:F ](kE)

contains the kernel of the norm map NkL/kF on some degree N/[E : F ] extension kL/kF .

This kernel is a cyclic group of order qN/eA−1
q−1

. Suppose that J̄+ were contained in νkK̄

for some value of k other than the eA values constructed above. Then one would have

J̄+ ⊂
(⋂eA−1

i=0
νjN/eA K̄

)
∩ νkK̄. This group is equal to ŪC for some hereditary order C of

lattice period eA + 1 (note that no issue arises if eA = N ; one has already constructed all

possible archetypes).

By Zsigmondy’s theorem, unless N/eA = 2 and q = 2i − 1 or N/eA = 6 and q = 2, there

exists a prime r dividing qN/eA − 1 but not dividing qs − 1 for any 1 ≤ s < N/eA. If

N/eA = 6 and q = 2, let r = 63, and if N/eA = 2 and q = 2i − 1, let r = 4. While in

the latter two cases r is composite, it will be coprime to qs − 1 for every 1 ≤ s < N/eA,

which suffices for our purposes. Thus, via the embedding ker NkL/kF ↪→ J̄/J̄1 one obtains

in each case an order r element of J̄/J̄1, which, lifts to give an order r element of J̄ . The

inclusion

J̄/J̄1 ↪→ J/J1 ' GLN/[E:F ](kE) ↪→ GLN/eA(kF ) ↪→
eA∏
i=1

GLN/eA(kF )
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maps J̄/J̄1 to a block-diagonal embedding, with the blocks being pairwise Galois conju-

gate. Hence, each of the blocks GLN/eA(kF ) contains an order r element. However, as

one also has J̄ ⊂ ŪC, one again obtains an order r element of UC/U
1
C '

∏eA+1
i=1 GLNi(kF )

for some partition N = N1 + · · · + NeA+1 of N . Among these Ni, there will be eA − 1

which are equal to N/eA, and the remaining two will be distinct from N/eA. Hence, in

the image of ker NE/F ↪→ UC/U
1
C , one obtains an order r element in a block, which is

actually contained in the standard parabolic subgroup of GLN/eA(kF ) corresponding to

the Levi subgroup GLNl(kF ) × GLNk(kF ), for some l + k = N/eA. But the order of

this group is
(∏Nl−1

i=0 qi(qNl−i − 1)
)
·
(∏Nj−1

j=0 qi(qNk−1 − 1)
)

. Thus, r must divide one of

these factors. Clearly r cannot divide qt for any t; otherwise r could not divide qN/eA − 1.

Also, as Nl − i, Nk − i < N/eA for all relevant i, it cannot be the case that r divides

|GLNl(kF )×GLNk(kF )|, giving the desired contradiction.

Hence, the only way in which one might obtain more than eπ̄ archetypes is if π̄ contained

simple types which are G-conjugate but not Ḡ-conjugate. By the intertwining implies

conjugacy property, this cannot be the case.

Finally, a somewhat trivial observation is that archetypes necessarily appear with multi-

plicity 1, just as is clearly the case in G:

Proposition 4.7.6. Let π̄ be an essentially tame supercuspidal representation of Ḡ, and

let (K , τ̄) be a [Ḡ, π̄]Ḡ-archetype. Then τ̄ occurs in π̄ with multiplicity 1.

Proof. There exists a maximal simple type (J̄+, µ) contained in π̄ such that J̄+ ⊂ K and

τ̄ ' IndK
J̄+ µ, and one also has π̄ ' c- IndḠJ̄+ µ. Then we calculate

HomK (π̄ �K , τ̄) = HomK (ResḠK c- IndḠJ̄+ µ, IndK
J̄+ µ)

=
⊕

J̄+\Ḡ/J̄+

HomJ̄+(IndJ̄
+

g J̄+∩J̄+ Res
g J̄+

g J̄+∩J̄+
gµ, µ)

=
⊕

J̄+\Ḡ/J̄+

Homg J̄+∩J̄+(gµ, µ).
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The Ḡ-intertwining of µ is precisely J̄+ (as c- IndḠJ̄+ µ is irreducible and supercuspidal),

and thus one has Homg J̄+∩J̄+(gµ, µ) 6= 0 if and only if g ∈ J̄+, and so this space is

one-dimensional as required.

Remark 4.7.7. The reader should note that the results of this section only require that

the supercuspidal representations in question are essentially tame in order to apply The-

orem 4.6.1; if one assumes that Theorem ?? is true in general, then the results of this

section follow in complete generality, with identical proofs.

4.8 Remarks on the non-cuspidal case

Since Lemma 4.1.2 makes no assumptions on the cuspidality of π, one would expect that

our strategy of proof extends to cover the non-cuspidal representations. Indeed, this turns

out to very nearly be the case, although there are some complications due to the types un-

der consideration being induced from semisimple types, rather than from maximal simple

types. This means that we are unable to rule out a small family of additional possibilities

other than that the representation Ψ is typical.

We begin by setting up some notation. Let π be an irreducible representation of G of

supercuspidal support (M, ζ), where M = GN1 × · · · × GNr is a standard Levi subgroup

of G and ζ = ζ1 ⊗ · · · ⊗ ζr is a supercuspidal representation of M . Then there exist

simple strata [Ai, ni, 0, βi] in AutF (FNi), respectively, for 1 ≤ i ≤ r, giving rise to simple

characters θi ∈ C(Ai, 0, βi) and βi-extensions of θi to Ji = J(βi,Ai), together with cuspidal

representations σi of Ji/J
1
i such that, writing λi = κi ⊗ σi, for each i the pair (Ji, λi) is a

maximal simple [GNi , ζi]GNi -type . Thus, writing JM = J1×· · ·×Jr and λM = λ1⊗· · ·⊗λr,

the pair (JM , λM) is a maximal simple [M, ζ]M -type.

With this in place, we assume that an appropriate form of unicity is satisfied by π:

Hypothesis 4.8.1. Let π be an irreducible representation of G of inertial support [M, ζ]G,

and let (K, τ) represent a [M, ζ]G-archetype. Then there exists a maximal simple [M, ζ]M -
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type (JM , λM), together with a G-cover (J, λ) of (JM , λM) with J ⊂ K, such that τ is

isomorphic to an irreducible subrepresentation of IndKJ λ.

Remarks 4.8.2. (i) This hypothesis is certainly expected to be satisfied, and is known

in many cases: for GL2(F ) due to Henniart [BM02], and for many inertia classes of

representations in GLN(F ) due to Nadimpalli [Nad14,Nad15].

(ii) Moreover, when q 6= 2, it is expected that a single choice (J, λ) of semisimple [M, ζ]G-

type will suffice in order to construct a representative of all of the [M, ζ]G-archetypes

as above.

We begin by combining our results on supercuspidal representations with parabolic in-

duction in order to rule out most of the alternatives to our desired unicity result. So, let

π be an irreducible representation of G as above. By choosing ζ and P appropriately, we

may realize π as a subrepresentation of IndGM,P c- IndM˜JM ΛM , where J̃M = E×MJM and ΛM

is an appropriate extension of λM to J̃M . Here, EM is the étale F -algebra E1 × · · · × Er,

with Ei = F [βi] for each i.

For H a closed subgroup of G, write KH = K ∩H. Then the restriction to K of π embeds

into the Mackey decomposition of a representation as follows:

π �K ↪→ ResGK IndGM,P c- IndM
J̃M

ΛM

= IndKKM ,KP ResMKM c- IndM
J̃M

ΛM

=
⊕

J̃M\M/KM

IndKKM ,KP IndKMgJM∩KM Res
gJM
gJM∩KM

gλM .

Here, the first equality follows from the Iwasawa decomposition, where we are abusing

notation slightly by writing IndKKM ,KP for the composition of IndKKP with the inflation

functor Rep(KM)→ Rep(KP ).

Proposition 4.8.3. The representation Ψ constructed in Lemma 4.1.2 must be isomorphic

to a subrepresentation of IndKKM ,KP IndKMJM λM .
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Proof. We proceed much as in the supercuspidal case. Since many of the arguments will be

exactly the same, we will be rather more brief. Since Ψ is a subrepresentation of π �K , there

exists a g ∈ G such that Ψ is a subrepresentation of IndKKM ,KP IndKMgJM∩KM Res
gJM
gJM∩KM

gλM .

We say that an element g ∈ G such that J̃MgKM 6= J̃MGKM is of type B if, for some

1 ≤ i ≤ r, the map gUAi ∩Ki → UAi/U
1
Ai

is not surjective; if not, say that g is of type A.

Arguing precisely as in Lemma 4.5.1, we see that Ψ may not be contained in the represen-

tation IndKKM ,KP IndKMgJM∩KM Res
gJM
gJM∩KM

gλM for g of type B. So suppose for contradiction

that g is of type A, and suppose first that, for some 1 ≤ j ≤ r, there exists an irreducible

non-cuspidal representation σ′j of Jj/J
1
j such that Ψ ↪→ IndKKM ,KP IndKMgJM∩KM Res

gJM
gJM∩KM

gλ′M ,

where λ′M is the representation
⊗r

i=1 κi ⊗ σ′i, where σ′i = σi for i 6= j. Then, just as in

Lemma 4.4.2, Ψ is contained in an irreducible representation of G, the supercuspidal sup-

port of which is defined on a proper Levi subgroup of M , which cannot be the case.

So it remains to treat the case that there is no such σ′j. Then, arguing as in Lemma 4.4.3,

we see that, for each i, and any r irreducible representations σ′i of Ji/J
1
i , 1 ≤ i ≤ r such

that Ψ ↪→ IndKKM ,KP IndKMgJM∩KM Res
gJM
gJM∩KM

gλ′M , where λ′M =
⊗r

i=1 κi ⊗ σ′i, there must

exist characters χi ∈ XN(F ) with each χi trivial on det J1
i such that σ′i ' σ ⊗ (χ ◦ det).

In particular, fix a choice of 1 ≤ i ≤ r. Then we may use the argument from the proof of

Theorem 4.6.1 to see that there are more non-isomorphic such σ′i than there are choices

for χi, giving the desired contradiction.

Note that this is precisely the statement of Theorem 4.6.1 if we specify M = G. However,

in the case that M is a proper Levi subgroup of G, this result doesn’t immediately show

that Ψ must be an [M, ζ]G-type: the representation IndKKM ,KP IndKMJM λM certainly contains

the representation of K induced from the semisimple type (J, λ) covering (JM , λM), but

it is of infinite length, and also contains many subrepresentations which are not induced

from a cover of (JM , λM). It seems likely that in order to rule out the possibility that Ψ

is an atypical subrepresentation of IndKKM ,KP IndKMJM λM , one must make use of the results

in [Nad15].





Chapter 5

The unicity of types for depth zero

supercuspidals

The focus of this chapter is to establish the unicity of types for depth zero supercuspidal

representations of an arbitrary semisimple, simply connected group. We begin by recalling

some of the necessary background, before presenting the main results of [Lat16b].

5.1 Background on Bruhat–Tits theory

We begin by recalling some of the basic constructions from Bruhat–Tits theory which we

will need in later sections. Unless specified otherwise, we will follow the constructions

from [SS97, Section 1].

5.1.1 Affine apartments

We begin by fixing some notation, which will remain in place for the rest of the paper.

Let G be a connected reductive group defined over F with Lie algebra g, and denote by

77
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G = G(F ) the F -rational points of G, taken with its natural locally profinite topology.

Let S be a maximal F -split torus in G, which will contain the split component Z0
G of G.

Let T denote the centralizer in G of S; then T is a minimal F -Levi subgroup of G. Let

Φ ⊂ X∗(S) be the complete root system for G relative to S, and let Φaff denote the corre-

sponding set of affine roots: the elements of Φaff are then of the form ψ = φ+n, for some

n ∈ Z, and there is a gradient function ψ 7→ ψ̇ from Φaff to Φ, given by φ+n 7→ φ. Let WG

be the Weyl group of G, i.e. WG = NG(S(F ))/T(F ), and let Waff
G = NG(S(F ))/T(O)

denote the affine Weyl group. Let Φ̌ ⊂ X∗(S) be the set of coroots dual to Φ, and denote

by φ 7→ φ̌ the natural duality between Φ and Φ̌.

Since Z0
G is a subtorus of S, its cocharacter lattice identifies with a sublattice of the

cocharacter lattice of S.

Definition 5.1.1. The (affine) apartment associated to the maximal F -split torus S of

G is the Euclidean space A (G,S) = (X∗(S)/X∗(Z
0
G))⊗Z R.

Note that A (G,S) naturally inherits the structure of a simplicial complex from the un-

derlying quotient lattice.

5.1.2 Root subgroups

To each root φ ∈ Φ, we may associate a root subgroup: we let Uφ denote the unique

smooth connected F -group subscheme of G such that Uφ is normalized by S and such that

Lie(Uφ), together with its natural S-action, identifies with the weight space gφ + g2φ ⊂ g.

We then write Uφ = Uφ(F ).

More generally, to each point x ∈ A (G,S), we may associate a subgroup of Uφ. A

root φ ∈ Φ naturally induces a linear form A (G,S) → R, as well as an involution

sφ ∈ WG, which acts on A (G,S) as sφ · x = x − φ(x)φ̌. For each u ∈ Uφ\{1}, the

set U−φuUφ ∩ NG(S(F )) then contains a single element m(u) whose image in WG is

the reflection corresponding to φ. There exists a real number l(u) such that, for all

x ∈ A (G,S), one has m(u)x = sφ · x − l(u)φ̌. This defines a discrete filtration of Uφ by
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Uφ,r = {u ∈ Uφ(F )\{1} | l(u) ≥ r}∪{1}, where it is to be understood that Uφ,∞ is trivial.

Each x ∈ A (G,S) then induces a function fx : Φ → R ∪ {∞} by φ 7→ −φ(x); we let Ux

denote the subgroup of G generated by the Uφ,fx(φ), as φ runs through Φ.

5.1.3 The affine and enlarged buildings

We now impose the temporary assumption that G is F -quasi-split. We define an equiva-

lence relation ∼ on G×A (G,S) by saying that (g, x) ∼ (h, y) if and only if there exists

an n ∈ NG(S(F )) such that nx = y and g−1hn ∈ Ux. Let B(G) denote the quotient

(G×A (G,S))/ ∼.

As G quasi-splits over some finite unramified extension, we define the building in general

by Galois descent. Let E/F be a finite unramified extension over which G becomes quasi-

split. Then the natural action of Gal(E/F ) on G(E) extends to an action on B(G(E)).

Definition 5.1.2. Let E/F be a finite unramified extension over which G quasi-splits.

The (affine) Bruhat–Tits building of the p-adic group G = G(F ) is the space B(G) =

B(G(E))Gal(E/F ) of Gal(E/F )-fixed points in B(G(E)).

This space then carries a natural action of G via left translation.

Theorem 5.1.3 ([BT72, BT84]). The space B(G) is a contractible, finite-dimensional,

locally finite Euclidean simplicial complex on which G acts properly by simplicial automor-

phisms.

Here, the simplices in B(G) are inherited from those in the apartments A (G,S). We call

such a simplex a facet.

In the case that ZG(F ) is not compact, it will be more convenient for us to work with a

slight modification of this building. Denote by V1 the dual of X∗(G)⊗Z R.

Definition 5.1.4. The enlarged Bruhat–Tits building of the p-adic group G = G(F ) is

B1(G) = B(G)× V1. The action of G on B(G), viewed as the subspace B(G)× {1} of
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B1(G), extends to an action on B1(G) via g · (x, v) = (g · x, v + θ(g)), where θ(g)(χ) =

−vF (χ(g)).

Say that a facet of B1(G) is a subspace of the form V × V1, where V ⊂ B(G) is a facet

in the above sense. We adopt the convention that facets in B(G) are closed – the reader

should note that some other authors take the facets to be the interior of these simplices

(with the interior of a vertex being the vertex itself). We will always make it clear when we

wish only to consider the interior. While a point x ∈ B(G) may be contained in multiple

facets, there will always exist a unique facet of minimal dimension which contains x; we

denote the facet in B1(G) associated to this facet by x̄.

Given a vertex x ∈ B(G), we say that the link of x is the union of the facets in which x

is contained.

5.1.4 Parahoric group schemes

Proposition 5.1.5 ([BT72,BT84]). Let x ∈ B(G).

(i) The G-isotropy subgroup G̃x of x̄ ⊂ B1(G) is a compact open subgroup of G.

(ii) There exists a unique smooth affine O-group subscheme G̃x of G with generic fibre

G such that G̃x(O) = G̃x.

In general, the schemes G̃x will not be connected. The special fibre of G̃x will identify

with a reductive k-group scheme; the inverse image under the projection onto the special

fibre of the connected component of this k-group scheme is then a smooth connected O-

group subscheme of G̃x, which we denote by Gx. We call the connected group scheme Gx

the parahoric group scheme associated to x. Its group Gx = Gx(O) of O-rational points is

then a compact open subgroup of G, which we call the parahoric subgroup of G associated

to x.

Proposition 5.1.6 ([BT72,BT84]). The group Gx contains a unique maximal pro-p nor-

mal subgroup G+
x , which identifies with the group of O-rational points of the pro-unipotent
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radical of Gx. The quotient Gx/G
+
x is isomorphic to the group of k-rational points of the

connected component of the special fibre of G̃x, which is a finite reductive group over k.

Moreover, we may explicitly describe the groups Gx and G+
x in terms of generators and

relations, see, for example, [Fin15, 2.3]. In order to do so, we need to generalize the notion

of a root subgroup, associating to each affine root a similar root subgroup: for ψ ∈ Φaff ,

let Uψ = {u ∈ Uψ̇(F ) | u = 1 or αψ̇(u) ≥ ψ〉; here, αψ̇ is the unique affine function on

A (G,T) with gradient ψ̇ which vanishes on the hyperplane of points fixed by v(m(u)),

where v : ZG(F ) → X∗(S) ⊗Z R is the function defined by χ(v(z)) = −vF (χ(z)) for

z ∈ ZG(F ) and χ ∈ X∗(ZG).

Proposition 5.1.7. Let x ∈ B(G) and, for r ≥ 0, denote by Tr the subgroup of T(F )∩Gx

generated by those t ∈ T(F ) ∩Gx such that, for all χ ∈ X∗(S), one has vF (χ(t)− 1) ≥ r.

Then one has:

(i) Gx = 〈T(F ) ∩Gx, Uψ | ψ ∈ Φaff , ψ(x) ≥ 0〉; and

(ii) G+
x = 〈T(F ) ∩Gx, Uψ | ψ ∈ Φaff , ψ(x) > 0〉.

One also has an order-reversing bijection between the set of parahoric subgroups of G and

the simplicial skeleton of B(G):

Proposition 5.1.8 ([BT72,BT84]). Let x, y ∈ B(G). Then one has Gx ⊂ Gy if and only

if ȳ ⊂ x̄.

In particular, the Iwahori subgroups of G correspond to the facets of maximal dimension

(the chambers), while the maximal parahoric subgroups of G correspond to the vertices.

In a closely related manner, we may also associate to the interior of each facet in B(G)

an F -Levi subgroup of G. The intuition behind this is as follows: if Gy ⊂ Gx is a strict

containment of parahoric subgroups of G, then the image in Gx/G
+
x of Gy identifies with

a proper parabolic subgroup of Gx/G
+
x . The Levi subgroup M we construct will then be

precisely the one such that the image in Gx/G
+
x of M ∩ Gx identifies with the standard

Levi factor of the image of Gy.



82 Peter Latham

Proposition 5.1.9 ([MP96, Proposition 6.4]). Let x ∈ B(G). The algebraic subgroup

M of G generated by T, together with the root subgroups Uφ for those φ ∈ Φ such that

some affine root φ + n, n ∈ Z, vanishes on x̄, is an F -Levi subgroup of G. The group

M(F )∩Gx is a maximal parahoric subgroup of M(F ), and there is a natural identification

(M(F ) ∩Gx)/(M(F ) ∩Gx)
+ = Gx/G

+
x .

5.1.5 An example

We end our discussion of Bruhat–Tits theory by looking at the explicit example of SLN(F ),

where the above may all be described explicitly.

Theorem 5.1.10 ([Gar97, Chapter 19]). Let G = SLN(F ), and fix a frame F =

{µ1, . . . , µn} of an N-dimensional F -vector space V . Let V (F ) denote the set of ho-

mothety classes of O-lattices L in V which may be written as L = L1 + · · · + Ln, where

each Li is in the span of µi. Define an incidence relation ∼ on V (F ) by L ∼ L′ if there

exist representatives of L and L′ with L′ ⊂ L and such that p annihilates the quotient

O-module L/L′.

Let G act on the resulting simplicial complex generated by the vertices V (F ) and the inci-

dence relation ∼ by left translation. There exists a G-equivariant simplicial isomorphism

between this complex and some affine apartment of B(G). The G-stabilizer of a point in

this apartment is equal to the intersection of the stabilizers of the vertices in the closure

of the point.

In particular, one may see that B(G) is a regular simplicial complex, the apartments of

which are n− 1 dimensional regular simplicial complexes.

Given this formulation, it is simple to see that the parahoric subgroups of G are then

simply the intersections with G of the unit groups of the hereditary orders considered in

Chapter 3. Moreover, given a parahoric subgroup G ∩ UA of G, its pro-unipotent radical

is G ∩ U1
A.
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Figure 5.1: The affine building of SL2(Q2).

If one has a non-maximal parahoric subgroup Gz and a maximal parahoric subgroup Gx

with Gz ⊂ Gx, then the image in Gx/G
+
x of Gz is easily seen to be a proper Levi subgroup

of Gx/G
+
x ' SLN(kF ) which is naturally isomorphic to Gz/G

+
z . It is also simple to see

what the Levi subgroup of G associated to the point z ∈ B(G) should be: the Levi

subgroup of Gx/G
+
x corresponding to Gz is the kF -rational points of a kF -group scheme

M; the Levi subgroup of G associated to z is then the group of F -rational points of the

generic fibre of the O-group scheme M ×Spec kF Spec O – in other words, it is the Levi

subgroup which is “of the same shape” as M(kF ), but with coefficients in F .

5.2 Depth zero types

In [MP94, MP96, Mor99], Moy–Prasad and Morris independently construct natural con-

jugacy classes of [G, π]G-types for depth zero supercuspidals π. We briefly recall these

constructions.

Definition 5.2.1. An (unrefined) depth zero type in G is a pair (Gx, σ) consisting of a
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parahoric subgroup Gx of G and an irreducible cuspidal representation σ of Gx/G
+
x .

The etymology of these depth zero types is due to the following:

Theorem 5.2.2 ([Mor99, Theorem 4.5]). Let (Gx, σ) be an unrefined depth zero type in

G. Then there exists a finite set Sσ ⊂ B(G) such that (Gx, σ) is an Sσ-type. Any depth

zero irreducible representation π of G contains a unique G-conjugacy class of unrefined

depth zero types. Moreover, if Gx is a maximal parahoric subgroup of G, then IrrSσ(G)

consists only of supercuspidal representations.

Morris also shows that there are natural relations between the unrefined depth zero types

in G and those in its Levi subgroups: certain of the unrefined depth zero types in G are

covers of those defined on a maximal parahoric subgroup of M , in the sense of [BK98].

We will require a slightly different formulation to that given by Morris in the non-cuspidal

case. Unravelling Morris’ approach, he takes an F -Levi subgroup M of G and an unrefined

depth zero type (Mx, σ) in M , to which one associates a finite set Sσ ⊂ B(M) as usual.

This set then defines a finite subset S′σ of B(G): the set S′σ consists of the inertia classes

[M, ζ]G, for those [M, ζ]M ∈ Sσ. Morris then chooses an embedding B(M) ↪→ B(G)

which maps the vertex x ∈ B(M) into some facet of positive dimension in B(G) which is

associated to M by Proposition 5.1.9. To this facet corresponds a non-maximal parahoric

subgroup J of G, and the representation σ of Mx ⊂ J extends by the trivial character

to a representation of J ; the resulting pair (J, σ) is then a G-cover of (Mx, σ). since one

may freely conjugate the resulting cover by elements of G, we may use Morris’ result in

the following form:

Theorem 5.2.3. [[Mor99, Theorem 4.8]] Let x ∈ B(G), and let M = M(F ) be the F -

Levi subgroup of G associated to x̄. Let xM ∈ B(M) be such that MzM = M ∩Gx, and let

(MxM , σ) be a depth zero type in M . Choose an embedding jM : B(M) ↪→ B(G) such that

jM(xM) = x̄. Then there exists a G-cover of (MxM , σ) which is of the form (GjM (xM ), λ),

where λ �MxM
= σ. Moreover, the group GjM (xM ) has an Iwahori decomposition with respect

to the standard parabolic subgroup of G with Levi factor M , and λ is trivial on the upper-

and lower-unipotent parts of M in this decomposition.
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The significance of this cover is that it will be an S′σ-type. In particular, any irreducible

subquotient of c- IndGGjM (xM )
λ must be non-cuspidal.

Given a depth zero type (Gx, σ), we wish to “refine” this type in order to obtain an s-type

for each s ∈ Sσ. Let K denote the maximal compact subgroup of the G-normalizer of

Gx; if Gx is a maximal parahoric subgroup of G then K is a maximal compact subgroup

of G which contains Gx as a normal subgroup of finite index.

Theorem 5.2.4 ([Mor99, Theorem 4.7]). Suppose that Gx is a maximal parahoric sub-

group of G. For each irreducible subrepresentation τ of IndKGx σ, there exists an s ∈ Sσ

such that (K, τ) is an s-type. Conversely, for every s ∈ Sσ, there exists an s-type of this

form.

Thus, for each depth zero supercuspidal representation π of G, we have a construction of

a [G, π]G-archetype. Our goal is to show that these exhaust all such archetypes.

5.3 Unicity on the level of parahoric subgroups

We first establish a partial result, which may be viewed as a unicity result on the level of

unrefined types. This is our main technical result, and the proof will occupy the remainder

of this section.

Theorem 5.3.1. Let π be a depth zero supercuspidal representation of G, and let (Gx, σ)

be an unrefined depth zero type contained in π. Suppose that y is a vertex in B(G) such

that there exists some Sσ-typical representation σ′ of Gy. Then (Gy, σ
′) is G-conjugate to

(Gx, σ).

Since our approach will rely on identifying explicit relations among the parahoric sub-

groups of G, we begin by fixing a notion of a standard parahoric subgroup. Fix, once and

for all, a chamber X ⊂ B(G), and let i be an element of the interior of X; thus I = Gi

is an Iwahori subgroup of G. We refer to X as the standard chamber of B(G). Let P∅

denote a parabolic subgroup of G with Levi factor the Levi subgroup associated to i and
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such that Gi = (P ∩Gi)G
+
i , so that P∅ is a minimal F -parabolic subgroup of G. We say

that a parabolic subgroup P of G is standard if P ⊃ P∅, and that a parahoric subgroup

Gx of G is standard if x ∈ X.

Proof of Theorem 5.3.1. Since every parahoric subgroup of G is conjugacy to a standard

parahoric subgroup, π contains a depth zero type (Gx, σ) such that Gx is standard. Our

claim is then that, given any maximal parahoric subgroup Gy of G, the irreducible sub-

representations τ of π �Gy are atypical, unless Gx is conjugate to Gy and τ is conjugate to

σ. Alternatively, it suffices to check this for the standard maximal parahoric subgroups

Gy, so that we don’t need to worry about conjugacy.

Certainly, π appears as a subquotient of c- IndGGx σ, and so we may embed π �Gy into the

Mackey decomposition of ResGGy c- IndGGx σ:

π �Gy ↪→
⊕

Gx\G/Gy

Ind
Gy
Kg

Res
Gy
Kg

gσ,

where we write Kg = gGx ∩Gy. Any double coset in the space Gx\G/Gy admits a repre-

sentative in Waff
G ; we will always assume that the representative g is such a representative

which is of shortest length. In particular, this guarantees the following:

Lemma 5.3.2 ([Mor93, Lemma 3.19, Corollary 3.20]). If g is a shortest length coset

representative for Gx\G/Gy in Waff
G and either Gx 6= Gy or g 6∈ NG(Gx), then the image

in Gy/G
+
y of Kg is a proper parabolic subgroup P of Gy/G

+
y . The preimage in Gy of P

is G+
yKg, and there exists a point z in the link of y such that Gz = G+

yKg.

Let τ be an irreducible subrepresentation of π �Gy , and suppose that τ is a subrepresen-

tation of Ind
Gy
Kg

Res
gGx
Kg

gσ for some g satisfying the above hypotheses (if Gx = Gy and

g ∈ NG(Gx), then τ is necessarily a conjugate of σ). Then there exists an irreducible

subrepresentation Ξ of Res
gGx
Kg

gσ such that τ ↪→ Ind
Gy
Kg

Ξ. Note that Ξ is clearly trivial

on gGx ∩Gy.
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Let M = M(F ) denote the F -Levi subgroup of G associated to z by Proposition 5.1.9,

and let P = P(F ) denote the standard parabolic subgroup of G with Levi factor M . From

Proposition 5.1.9, we obtain the following:

Lemma 5.3.3. There exists a vertex zM ∈ B(M) such that MzM = M ∩ Gz. One has

M+
zM

= M ∩G+
z = M ∩G+

y , which induces a natural identification MzM/M
+
zM

= M .

We now need to choose an embedding of B(M) into B(G), which comes down to choosing

the image of zM . We let jM : B(M) ↪→ B(G) be an embedding which maps zM into the

link of g · x in a way that g · x lies on the unique geodesic γ from jM(zM) to y, and such

that M ∩ GjM (zM ) = MzM . Note that, while such an embedding exists (since the open

facets containing zM and jM(zM) are of the same dimension; by a density argument it

an be assumed that jM(zM) lies on the geodesic), it is clearly not unique, it is essentially

unique for our purposes: its restriction to the link of zM in B(M) is unique up to the

image in γ ∩ jM(zM) of zM , which has no effect on the parahoric subgroups which will be

defined via this embedding.

With this in place, we are ready to begin our examination of the representation τ . The

crucial observation is the following, which is a simple consequence of Proposition 5.1.7,

once one recalls that M is the Levi subgroup associated to the point z:

Lemma 5.3.4. We have M+
zM
⊂ gG+

x . In particular, the representation Ξ is trivial on

M+
zM

.

Proof. By Propositions 5.1.7 and 5.1.9, it suffices to check that if ψ ∈ Φaff is an affine

root such that ψ̇ + n vanishes on jM(zM) for some n and the restriction ψM of ψ to an

affine root for M satisfies ψ(zM) > 0, then one has ψ(gx) > 0. Since ψ̇ + n vanishes on

jM(zM), we see that ψ̇M is constant on z̄M , hence ψ̇ is constant and takes the same value

on jM(zM), and hence on the closure of jM(zM). Since gx lies in the closure of jM(zM),

the claim follows.

So, in particular, the representation Ξ �MzM
identifies with a representation ofMzM/M

+
zM

=

M . Given an irreducible subrepresentation ξ of Ξ �MzM
, we therefore have a notion of
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the cuspidal support of ξ, as the unique M -conjugacy class of pairs (Lξ, ζξ) of cuspidal

representations of Levi subgroups of M such that ξ is contained in the representation

parabolically induced from (Lξ, ζξ). Let Qξ be a parabolic subgroup of M with Levi

factor Lξ, standard in the sense that it contains the image in M of our fixed Iwahori

subgroup I of G (which, upon intersection with M , gives an Iwahori subgroup of M).

The following is then a simple observation:

Lemma 5.3.5. The inverse image in Gy of Qξ is a standard parahoric subgroup of G, cor-

responding to some point w in the standard chamber of B(G), and one has a containment

Gw ⊂ Gz.

Indeed, this inverse image must certainly be a parahoric subgroup of G contained in Gz.

Moreover, since it contains the inverse image of the minimal Levi in Gy/G
+
y corresponding

to our fixed Iwahori subgroup of G, it contains this Iwahori subgroup, and so corresponds

to a point in the standard chamber.

As before, let L = L(F ) denote the F -Levi subgroup associated to the point w ∈ B(G),

and let wL ∈ B(L) be a vertex such that LwL = L ∩ MzM . Choose some embedding

ι : B(L) ↪→ B(M) such that LwL = L ∩Mι(wL). The embedding jM : B(M) ↪→ B(G)

then gives us an embedding jL = jM �B(L): B(L) ↪→ B(G). With this in place, by

Theorem 5.2.3, we are able to construct a G-cover (Jξ, λξ) of the depth zero type (LwL , ζξ)

such that Jξ = GjL(wL).

We begin by considering, for each fixed choice of irreducible representation ξ of MzM/M
+
zM

as above, the space

HomG(c- IndGJξ λξ, c- IndGKg Ξ) = HomJξ(λξ,ResGJξ c- IndGKg Ξ)

=
⊕

Kg\G/Jξ

HomJξ(λξ, Ind
Jξ
Jξ∩hKg

Res
hKg
Jξ∩hKg

hΞ)

=
⊕

Kg\G/Jξ

HomJξ∩hKg(λξ,
hΞ).

This space then surjects onto the summand corresponding to h = 1, namely onto the

spaceHomJξ∩Kg(λξ,Ξ).
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Since λξ is an extension of (LwL , ζξ) by the trivial character of the unipotent subgroups in

the Iwahori decomposition of GjL(wL) with respect to L, it must certainly be the case that

λξ �Jξ∩Kg is trivial on the upper and lower unipotent parts of the Iwahori decomposition

of GjM (zM ) with respect to the standard parabolic subgroup of G with Levi factor MzM .

This means that, if we knew that Jξ ∩Kg ⊂MzM
gG+

x , then we would be able to make the

identification

HomJξ∩Kg(λξ,Ξ) = HomJξ∩MzM
(λξ,Ξ),

where the latter space is clearly non-zero due to the construction of λξ as a cover of

the cuspidal support of an irreducible subrepresentation of Ξ �MzM
. So it remains to

check that Jξ ∩ Kg ⊂ MzM
gG+

x . Since Jξ = GjL(wL) ⊂ GjM (zM ) and gGx = Ggx, it suf-

fices to check that any of the generators obtained from Proposition 5.1.7 for the group

GjM (zM ) ∩Kg = GjM (zM ) ∩Ggx ∩Gy are contained in MzMG
+
gx. That is to say, if ψ ∈ Φaff

is an affine root such that ψ(jM(zM)), ψ(gx) andψ(y) are all non-negative, then we must

check that either ψ(gx) is strictly positive, or the restriction ψM of ψ to an affine root of

M satisfies ψM(zM) ≥ 0. Suppose that ψ(gx) = 0. Since ψ(jM(zM)) is non-negative by

assumption, it follows that ψM(zM) is non-negative.

Now we return to the representation τ . Since, as ξ ranges over the irreducible subrepre-

sentation the image in ξ of HomKg(
⊕

ξ Ind
Kg
Jξ

λξ,Ξ) generate Ξ, composing the non-zero

maps c- IndGJξ λξ → c- IndGKg Ξ and c- IndGKg Ξ → c- IndGGy τ results in, for some ξ, a

non-zero map c- IndGJξ λξ → c- IndGGy τ .

So the representation τ is contained in some irreducible subquotient of c- IndGJξ λξ, for

some irreducible subrepresentation ξ of Ξ �MzM
. Since λξ is a G-cover of (Lξ, ζξ), any such

irreducible subquotient must be non-cuspidal, and so τ is contained in some non-cuspidal

irreducible representation of G, and hence cannot be Sσ-typical.

In the next section, it will be convenient for us to have a slight generalization of this

result, showing that there do not exist any Sσ-types defined on non-maximal parahoric

subgroups of G:
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Proposition 5.3.6. Let y ∈ B(G), and let π be a depth zero supercuspidal representation

of G. If y is not a vertex, then no irreducible subrepresentation of π �Gy may be Sσ-typical,

where (Gx, σ) is the unrefined depth zero type contained in π.

Proof. Suppose that y is not a vertex. Since y is contained in the interior of a facet of posi-

tive dimension, there exists a vertex z ∈ B(G) such that Gy ⊂ Gz. Let Ξ be an irreducible

subrepresentation of π �Gy= π �Gz�Gy . By Theorem 5.3.1, unless z is conjugate to x under

the action of G, we may find a non-cuspidal irreducible representation π′ of G in which Ξ is

contained. Similarly, we conclude that if z is conjugate to x, then Ξ must be isomorphic to

an irreducible subrepresentation of gσ �Gy , for some g ∈ NG(Gx). So without loss of gen-

erality, let us assume that Gy ⊂ Gz and that Ξ is an irreducible subrepresentation of σ �Gy .

Projecting onto the reductive quotient Gx/G
+
x , we see that Ξ is an irreducible subrepre-

sentation of the restriction of σ to the proper parabolic subgroup P = Gy/(Gy ∩ G+
x )

of Gx/G
+
x . Let P have a standard Levi decomposition P = MN , and let ξ be an

irreducible subrepresentation of the restriction to M of Ξ, so that ξ has cuspidal support

(L , ζ), say. Let Q denote the standard parabolic subgroup of Gx/G
+
x with Levi factor L ,

and let Qop denote the parabolic subgroup opposite to Q. Forming the inverse image in

Gx of Qop, we obtain a standard parahoric subgroup Gw corresponding to some point w in

the standard chamber of B(G). One obtains an identification Gw/G
+
w = L , and the pair

(Gw, ζ) is an unrefined depth zero type. Now, just as in the proof of Theorem 5.3.1, the

space HomG(c- IndGGw ζ, c- IndGGy Ξ) surjects onto the space HomGw∩Gy(ζ,Ξ). The group

Gw ∩Gy is the inverse image in Gx of Qop ∩P, which is precisely L . Since ζ is the cus-

pidal support of the irreducible subrepresentation ξ of Ξ �M , this latter space is certainly

non-zero. So we see that c- IndGGy Ξ contains a non-cuspidal irreducible subquotient, which

is to say that Ξ must be atypical.

5.4 Extension to archetypes

So it remains for us to consider the impact of Theorem 5.3.1 once one performs an exten-

sion to refined depth zero types. Any maximal compact subgroup of G contains finitely
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many parahoric subgroups of G, but not every maximal compact subgroup must contain a

maximal parahoric subgroup – for example, given a ramified quadratic extension E/F , the

group U(1, 1)(E/F ) contains a maximal compact subgroup isomorphic to O2(F ), the only

parahoric subgroup in which is an Iwahori subgroup. Given a maximal compact subgroup

K of G, the maximal compact subgroup of the G-normalizer of the largest parahoric

subgroup contained in K coincides with K. We wish to see that if a [G, π]G-type τ is

defined on K, then K must contain Gx and τ must be isomorphic to a subrepresentation

of IndKGx σ – that is to say, we wish to see that the refined depth zero types are precisely

the archetypes for depth zero supercuspidals.

In order to avoid worrying about conjugacy, let us adopt the convention that, when speak-

ing of an archetype (K, τ), any parahoric subgroup contained in K is standard (as is clearly

possible).

Lemma 5.4.1. Let π be a depth zero supercuspidal representation of G, and let (K, τ)

be a [G, π]G-archetype. Then K contains the maximal parahoric subgroup Gx of G on

which the unrefined depth zero type for π is defined, and τ �Gx is isomorphic to a sum of

unrefined depth zero types, which are pairwise K-conjugate.

Proof. Let y be such that Gy is the largest parahoric subgroup contained in K, so that

K is the maximal compact subgroup of the normalizer of Gy (note that y will be a vertex

if and only if K normalizes the parahoric subgroup corresponding to some vertex). Since

τ ↪→ π �K , we have that τ �Gy ↪→ π �Gy , and we have seen by Proposition 5.3.6 that

any irreducible subrepresentation of this latter representation which is not an unrefined

depth zero type (as may only happen when y is a conjugate of x) must be contained in

an irreducible depth zero non-cuspidal representation of G. So pick an irreducible sub-

representation ρ of τ �Gy , and suppose for contradiction that ρ is contained in such a

non-cuspidal representation π′. The representation π′ contains an unrefined depth zero

type (Gw, σ
′) with Gw a non-maximal standard parahoric subgroup of G; let R denote

the subrepresentation of c- IndGGw σ′ generated by ρ. Since ρ is irreducible, it is generated

by a single vector v, say, and so R coincides with the subrepresentation of c- IndGGw σ
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generated by v.

As this representation is finitely generated, it admits an irreducible quotient Ψ, say. Since

Ψ contains σ, it has a vector fixed by G+
w , and so ρ has a non-zero vector fixed by Gy∩G+

w .

In particular, τ must also have a vector fixed by Gy ∩G+
w . We claim that, given any point

w ∈ B(G) and any point y ∈ B(G) contained in the interior of a facet of higher dimension

than y, there exists a g ∈ G such that G+
w ⊂ Ggy. Indeed, G+

w is contained in the pro-

unipotent radical of an Iwahori subgroup, and hence in the Iwahori subgroup itself. There

is an element of the orbit of y in the chamber corresponding to this Iwahori subgroup, and

the claim follows. So we may conjugate our choice of depth zero type (Gw, σ
′) and assume

without loss of generality that G+
w ⊂ Gy. Hence τ has a non-zero vector fixed by G+

w , and

so there exists an irreducible subquotient of c- IndGK τ with such a vector. On the other

hand, (K, τ) is a [G, π]G-type, and so any such subquotient must be supercuspidal. But

a supercuspidal may not possess a non-zero vector fixed by the pro-unipotent radical of

any non-maximal parahoric subgroup of G.

In order to avoid this contradiction, we conclude that the restriction to Gy of τ is a sum

of unrefined depth zero types. So by Proposition 5.3.6 y must be a vertex and, moreover,

by Theorem 5.3.1, y must be conjugate to x under the action of G. The result follows.

With this in place, we come to our main result:

Theorem 5.4.2 (The unicity of types for depth zero supercuspidals). Let π be a depth

zero supercuspidal representation of G.Then there exists a unique [G, π]G-archetype (K, τ).

The group K contains a maximal parahoric subgroup Gx of G, and the restriction to Gx

of τ is isomorphic to a sum of unrefined depth zero types contained in π.

Proof. Let (K, τ) be such an archetype, and let (Gx, σ) be an unrefined depth zero type

contained in π, with Gx standard. We have seen that, without loss of generality, we may

assume that K contains Gx and τ �Gx is isomorphic to a sum of conjugates of σ (possibly

with multiplicity). So the [G, π]G-archetypes are exhausted by the [G, π]G-typical subrep-
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resentations of IndKGx σ. There is a unique conjugacy class of such representations.

Indeed, let τ ′ be another such representation. Since both τ and τ ′ are [G, π]G-types, π

arises as a subquotient of both c- IndGK τ and c- IndGK τ ′, so that τ and τ ′ intertwine in G.

Certainly τ �Gx must then also intertwine with τ ′ �Gx , which is to say that there exists a

g ∈ G such that

0 6= HomgGx∩Gx(τ,
gτ ′) = HomGx(ResKGx τ, IndGxgGx∩Gx Res

gGx
gGx∩Gx

gτ ′).

We have seen that the restriction to Gx of τ is a sum of unrefined depth zero types, say

τ �Gx=
⊕

h
gσ⊕m(σ). On the other hand, we have seen that any subrepresentation of

IndGxgGx∩Gx Res
gGx
gGx∩Gx

gτ ′ = IndGxgGx∩Gx Res
gGx
gGx∩Gx

g

 ⊕
K/NK(σ)

hσ⊕m(σ)


such that g 6∈ NG(Gx) must be atypical. So g ∈ NG(Gx). Since gK contains gGx = Gx

and K is the unique maximal compact subgroup in which Gx is contained, we must have

gK = K, so that τ ′ ' gτ for some g ∈ NG(K).

In particular, we have established Conjecture 2.9.7 in the case of a depth zero supercuspidal

representation of an arbitrary group.





Chapter 6

Some instances of the inertial

Langlands correspondence

6.1 Background on the local Langlands

correspondence

6.1.1 The Weil group

We fix, once and for all, a separable algebraic closure F̄ /F . We wish to study the rep-

resentation theory of the absolute Galois group Gal(F̄ /F ). It turns out that this is not

quite the right group to consider; instead we make a slight modification. Recall that

one has a canonical surjection Gal(F̄ /F ) � Gal(k̄F/kF ) ' Ẑ; the inertia group of F

is IF = ker(Gal(F̄ /F ) � Gal(k̄F/kF )). Let Frob ∈ Gal(k̄F/kF ) denote the q-th power

Frobenius automorphism. Say that an element σ ∈ Gal(F̄ /F ) is a geometric Frobenius

automorphism if its image in Gal(k̄F/kF ) is Frob−1.

Definition 6.1.1. The Weil group of F is the subgroup WF of Gal(F̄ /F ) generated by

95
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IF and the geometric Frobenius elements, equipped with the product topology, where the

topology on IF ' Gal(F̄ /F ur) is that inherited from the Krull topology on Gal(F̄ /F ).

Recalling that local class field theory gives rise to a continuous injective homomorphism

F× ↪→ Gal(F̄ /F )ab, we note that the image of F× is precisely W ab
F . That is to say, the

Weil group arises naturally, and really is the correct object to work with.

6.1.2 Representations of the Weil group

While Gal(F̄ /F ) is a profinite group, WF is a locally profinite dense subgroup of Gal(F̄ /F ).

In particular, WF can be understood to have more representations than Gal(F̄ /F ): via

the embedding WF ↪→ Gal(F̄ /F ), every representation of Gal(F̄ /F ) determines a repre-

sentation of WF . Since WF is dense in Gal(F̄ /F ), no two distinct Galois representations

determine the same representation of WF . On the other hand, not every representation

of WF arises in this manner.

We have been deliberately vague about the coefficient fields of Galois representations so far.

We will be, at least initially, concerned with continuous representations WF → AutQ̄`(V ),

for some finite-dimensional Q̄`-vector space V , and some prime ` 6= p. Denote the category

of such representations by Repfin
Q̄`(WF ). Since these representations are topological in

nature, it is convenient to give a different, purely algebraic way of working with them. To

this end, we recall the following:

Definition 6.1.2. The Weil–Deligne group of F is the group W ′
F = WF × SL2(C).

Theorem 6.1.3 ([GR10, Section 2.10]). There is an equivalence of categories between

Repfin
Q̄`(WF ) and the category of finite-dimensional complex representations of W ′

F which

are smooth on WF and algebraic on SL2(C), under which the resulting action of Frob is

semisimple.

In a slight abuse of notation, let us denote this latter category by Rep(W ′
F ). It is well

known that Repfin
Q̄`(WF ) is equivalent to the category of finite-dimensional Deligne repre-

sentations of WF ; see for example [BH06, Theorem 32.6]. The above equivalence then
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comes from transporting the nilpotent operator n occurring in the Deligne representa-

tion to a representation of SL2(C); we call the representation of SL2(C) occurring in a

representation in Rep(W ′
F ) the monodromy operator.

6.1.3 Langlands dual groups

Given a connected reductive group G defined over F , we may uniquely determine G by

its root datum [X∗,Φ,X∗, Φ̌]. Here, X∗ is the group of F -rational characters of G and

Φ ⊂ X∗ is a complete reduced set of roots. Dually, X∗ is the set of F -rational cocharacters

of G and Φ̌ ⊂ X∗ is the set of coroots dual to Φ. This induces a natural duality on the set

of all such root data by [X∗,Φ,X∗, Φ̌] 7→ [X∗, Φ̌,X
∗,Φ]. The root datum dual to that of G

then defines a unique connected reductive algebraic group over C, which we denote by LG0.

As suggested by the notation, this will be the connected component of some other algebraic

group. Since WF naturally acts on the root datum of G, we obtain an induced action on

that of LG0, and hence an action of WF on LG0 itself.

Definition 6.1.4. The Langlands dual group of G = G(F ) is the complex reductive group

LG = LG0 oWF .

Examples 6.1.5. When one takes G to be a classical group, the Langlands dual group

will clearly have a classical group as its connected component, corresponding to the usual

dualities between the classical groups. In particular, we have the following:

(i) LGLN = GLN ;

(ii) LSLN = PGLN ;

(iii) LSO2N+1 = Sp2N ;

(iv) LSO2n = SO2N .
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6.1.4 The local Langlands conjecture

Definition 6.1.6. An L-parameter for G is a homomorphism ϕ : W ′
F → LG which is

smooth upon restriction to WF and algebraic upon restriction to SL2(C), under which the

action of Frob is semisimple, and such that the composition ϕ �WF
with the projection

W ′
F → WF is the identity. We say that two L-parameters are equivalent if they are

LG0-conjugate, and denote by L(G) the set of equivalence classes of L-parameters for G.

Among the L-parameters for G, there are certain subsets of parameters which will be

of particular interest for us. We call the algebraic action of SL2(C) encoded in an L-

parameter its associated monodromy operator, and say that an L-parameter ϕ is regular if

it has a trivial monodromy operator. We say that ϕ is discrete if its image is not contained

in any proper Levi subgroup of LG. We say that ϕ is tame if it is trivial upon restriction

to the wild inertia group I+
F ⊂ IF , i.e. the maximal normal open pro-p subgroup of IF .

Conjecture 6.1.7 (The local Langlands conjecture). There exists a unique surjective

finite-to-one map rec : Irr(G)→ L(G) satisfying a number of properties, among which are

the following:

(i) rec(π) is discrete if and only if π is discrete series.

(ii) ϕ ∈ L(G) is regular if and only if every representation in the fibre of rec above ϕ is

supercuspidal.

(iii) ϕ ∈ L(G) is tame if and only if every representation in the fibre of rec above ϕ is of

depth zero.

(iv) If π, π′ are supercuspidal representations of G which are unramified twists of one

another, than there exists an unramified character ω of WF such that rec(π′) '

rec(π)⊗ ω.

We emphasize that the above four properties are not strong enough to uniquely character-

ize rec: one needs to impose a number of additional, much stronger conditions. However,

these require a large amount of work to state, and will not be of direct relevance to the
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application we have in mind.

We call the finite fibres of rec the L-packets in Irr(G).

Remarks 6.1.8. While the local Langlands conjecture is still unknown in full generality,

there are now many situations in which the conjecture is known to be true. In [HT01,

Hen00], Harris–Taylor and Henniart proved the conjecture in the case of G = GLN(F )

(in which case rec is a bijection Irr(G) → L(G)). From this, Labesse–Langlands and

Gelbart–Knapp obtain a proof of the conjecture for SLN(F ) [LL79,GK82]. More recently,

Arthur has used endoscopic transfer to deduce from the work of Harris and Taylor the

local Langlands conjecture for quasi-split classical groups [Art13]. In [GT11], Gan and

Takeda prove the conjecture for GSp4(F ). Finally, in [DR09], DeBacker and Reeder

construct a map rec satisfying the above properties, as well as a number of additional

desirable properties between a large number of depth zero supercuspidal representations

and the tame regular discrete L-parameters; in Section 6.3.1, we will give an overview of

this construction.

6.1.5 Existence of the inertial Langlands correspondence

We now construct what we call the inertial Langlands correspondence, under assumption

of the local Langlands conjecture, for a certain class of irreducible representations. While

this construction is straightforward, in order for it to be useful one needs to show that it

satisfies additional properties – this will require the unicity of types.

So suppose that we have a surjective, finite-to-one map rec : Irr(G)→ L(G). Let Lreg(G)

denote the subset of L(G) consisting of equivalence classes of regular L-parameters, and

let Irrreg(G) denote its inverse image under rec; thus Irrreg(G) is precisely the union of

those L-packets in Irr(G) which consist only of supercuspidal representations.

Definition 6.1.9. An inertial type for G is a homomorphism IF × SL2(C)→ LG which

is smooth on IF , algebraic on SL2(C), and extends to an L-parameter for G. We say that
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two inertial types for G are equivalent if they admit equivalent extensions, and denote by

I(G) the set of equivalence classes of inertial types for G.

Thus, by definition, the map Res
W ′F
IF×SL2(C) maps L(G) surjectively onto I(G); denote by

Ireg(G) the image of Lreg(G). Since Lreg(G) and Ireg(G) then consist of L-parameters and

inertial types with trivial monodromy operator, we can – and will – identify elements of

these sets with homomorphisms WF → LG and IF → LG, respectively.

Definition 6.1.10. Suppose that, for each s ∈ B(G) such that Irrs(G) ∩ Irrreg(G) 6= ∅,

there exists an s-archetype, and denote by As(G) the set of equivalence classes of s-

archetypes. Let Areg(G) denote the union of the As(G) over all such s.

Proposition 6.1.11 (Existence of the inertial Langlands correspondence). Suppose that

the local Langlands conjecture is true for G. Then there exists a unique surjective map

iner : Areg(G)→ Ireg(G) such that, for any map T : Irrreg(G)→ Areg(G) which assigns to

π a [G, π]G-archetype, the following diagram commutes:

Irrreg(G) rec //

T
��

Lreg(G)

Res
WF
IF

��

Areg(G)
iner

// Ireg(G)

Proof. Pick a map R : Areg(G)→ Irrreg(G) which, to each s-archetype (K, τ), assigns an

element of Irrs(G), and set iner = ResWF
IF
◦ rec ◦ R. We claim that iner is well-defined.

Indeed, take two such maps R,R′, and pick an archetype (K, τ) such that R(K, τ) 6=

R′(K, τ). Then R(K, τ) and R′(K, τ) must be unramified twists of one another. Since rec

respects unramified twisting, we see that ResWF
IF
◦rec ◦ R(K, τ) = ResWF

IF
◦rec ◦ R′(K, τ).

The claimed properties of iner then follow immediately.

However, in order for the map iner to be genuinely interesting, one would need to have a

more explicit understanding of its fibres. In particular, these should be finite – we note

that this follows from Conjecture 2.9.7 (indeed, the statement that the fibres of iner are

finite can be viewed as a weak form of the unicity of types). In the remainder of this

chapter, we will describe what is already known about iner in the case of G = GLN(F ),
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and establish the properties of its fibres in two new cases: that of SLN(F ), and that of

depth zero supercuspidal representations of an arbitrary group.

6.2 The inertial Langlands correspondence for

SLN(F )

The aim of this section is to completely describe the map iner for G = SLN(F ), making

use of the unicity results contained in Chapter 4. We resume the notation of Chapter 4.

In particular, we let G = GLN(F ) and Ḡ = SLN(F ).

6.2.1 The correspondence for GLN(F )

Although not stated in the language of the preceding section, the inertial correspon-

dence for GLN(F ) is already known, due to Henniart and Paškūnas [BM02,Pas05]. Since

GLN(F ) contains a unique conjugacy class of maximal compact subgroups – that of

GLN(O), they use the equivalent formulation that any supercuspidal representation π of

GLN(F ) contains a unique [G, π]G-typical representation of GLN(O). This leads to the

following result:

Theorem 6.2.1 ([BM02,Pas05]). The inertial Langlands correspondence for GLN(F ) is

a bijection Areg(GLN(F ))→ Ireg(GLN(F )).

6.2.2 Restriction of archetypes from GLN(F ) to SLN(F )

Theorem 4.6.1 describes how one may “lift” supercuspidal archetypes from Ḡ to G; a

natural question to ask after this is whether there is an analogous result for the restriction

of archetypes from G to Ḡ. This turns out to be rather simpler than going from Ḡ to G.

Proposition 6.2.2. Let π be a supercuspidal representation of G, and let G(K, τ) be the

unique [G, π]G-archetype. Let π̄ be an irreducible component of π �G. Then there exists a

g ∈ G and an irreducible component τ̄ of gτ �gK̄ such that Ḡ(gK̄, τ̄) is an archetype for π̄.
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Proof. We may assume without loss of generality, by conjugating if necessary, that π̄ =

c- IndḠK̄ µ̃, where µ̃ = c- IndK̄J̄+ µ is the induction to K̄ of a maximal simple type. Let {τ̄j}

be the finite set of irreducible components of τ �K̄ . We first show that any π′ ∈ Irr(Ḡ)

containing one of the τ̄j upon restriction must appear in the restriction to Ḡ of π. We

have

0 6=
⊕
j

HomK̄(τ̄j, π
′)

= HomK̄(ResKK̄ τ,ResḠK̄ π′)

= HomḠ(c- IndḠK̄ ResKK̄ τ, π′),

and so we obtain π′ � c- IndḠK̄ ResKK̄ τ ↪→ ResGḠ c- IndGK τ . Every irreducible subquotient

of the representation c- IndGK τ is a twist of π, and hence coincides with π upon restriction

to Ḡ, so that any such representation π′ must be of the required form. Hence the possible

representations π′ all lie in a single G-conjugacy class of irreducible representations of Ḡ.

Let g ∈ Ḡ be such that gπ′ ' π̄, so that π′ ' c- IndḠgK̄
gµ̃, and choose j so that π′ contains

τ̄j. We claim that (gK̄, g τ̄j) is the required type.

It suffices to show that any G-conjugate of π̄ containing (gK̄, g τ̄j) is isomorphic to π̄.

Suppose that, for some h ∈ G, we have HomgK̄(hπ̄, g τ̄j) 6= 0. The representation hπ̄ is of

the form hπ̄ = c- IndḠhJ̄+
hµ, and so g τ̄j must be induced from some maximal simple type

(J̄ ′+, µ′), say. Then

0 6= HomgK̄(ResḠgK̄ π̄, g τ̄j)

= HomJ̄ ′+(ResḠJ̄ ′+ c- IndḠhJ̄+
hµ, µ′)

=
⊕

hJ̄+\Ḡ/J̄ ′+
HomJ̄ ′+(c- IndJ̄

′+
xhJ̄+∩J̄ ′+ Res

xhJ̄+

xhJ̄+∩J̄ ′+
xhµ, µ′)

=
⊕

hJ̄+\Ḡ/J̄ ′+
HomxhJ̄+∩J̄ ′+(Res

xhJ̄+

xhJ̄+∩J̄ ′+
xhµ,ResJ̄

′+
xhJ̄+∩J̄ ′+ µ′).

Then hµ and µ′ must intertwine in Ḡ, and the intertwining implies conjugacy property

shows that the types hµ and µ′ must actually be Ḡ-conjugate, hence π′ is Ḡ-conjugate to

π̄. Then π′ ' π, and the result follows.
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6.2.3 The correspondence

We start by recalling how the local Langlands correspondence for G leads to the cor-

respondence for Ḡ, following [LL79] and [GK82]. Given an irreducible representation π

of G, by Clifford theory it restricts to Ḡ as a semisimple representation, the irreducible

components of which consist of a single orbit under G-conjugacy of irreducible represen-

tations. Moreover, it may be seen that π �Ḡ is multiplicity-free. These conjugacy classes

of representations will be the L-packets in Irr(Ḡ). On the other hand, there is a canonical

map LGLN = GLN(C) → PGLN(C) = LSLN given by composition with the projection

P : GLN(C)→ PGLN(C). We then obtain a diagram

Irr(G) rec // L(G)

P
��

Irr(Ḡ)

I

OO

L(Ḡ)

where I is any map Irr(Ḡ)→ Irr(G) which maps an irreducible representation π̄ of Ḡ to

an irreducible subquotient of IndGḠ π̄.

Theorem 6.2.3 ([LL79,GK82]). The composition P ◦ rec◦ I : Irr(Ḡ)→ L(G) is indepen-

dent of the choice of I, and is the local Langlands correspondence for Ḡ. The L-packets

in Ḡ are precisely the orbits under G-conjugacy of irreducible representations of Ḡ.

With this, we may combine Theorem 4.6.1 with Proposition 6.2.2 in order to give a

functorial description of the relationship between types in G and types in Ḡ:

Theorem 6.2.4. Let π be a supercuspidal representation of G, and let (K, τ) be the unique

[G, π]G-archetype. Let Π be the L-packet of irreducible components of π �Ḡ. Then the set

of archetypes for the representations in Π is precisely the set of the (K , τ̄), for (K , τ̄) an

irreducible component of gτ �gK̄, for some g ∈ G.

Proof. We show that the set of typical representations of K̄ for some π̄ ∈ Π is equal to

the set of irreducible components of τ �K ; the general result then follows immediately.

Let (K̄, τ̄) be an archetype for some π̄ ∈ Π. By Theorem 4.6.1, τ̄ is of the required form.

Conversely, the irreducible components of τ �K are all K-conjugate by Clifford theory,
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and so if one of them is a type for some element of Π then they all must be. Applying

Proposition 6.2.2, at least one of these irreducible components must be a type for some

π̄ ∈ Π, as required.

With this in place, we come to the main result of this section:

Theorem 6.2.5 (Inertial local Langlands correspondence for SLN(F )). There exists a

unique surjective map iner : Asc(Ḡ) � Isc(Ḡ) with finite fibres such that, for any map T

assigning to a supercuspidal representation π̄ of Ḡ one of the eπ̄ archetypes contained in

π̄, the following diagram commutes:

Irrsc(Ḡ) rec // //

T
��

Lsc(Ḡ)

Res
WF
IF

��

Asc(Ḡ)
iner
// // Isc(Ḡ)

Each of the fibres of iner consists of the full orbit under G-conjugacy of an archetype, with

the fibre above an inertial type ϕ being of cardinality eϕ`ϕ.

Moreover, for any map R assigning to each [G, π]G-archetype a [Ḡ, π̄]Ḡ-archetype, for π̄

an irreducible subquotient of π �Ḡ, there is a commutative diagram

Asc(G) iner // //

R
��

Isc(G)

��

Asc(Ḡ)
iner
// // Isc(Ḡ)

where the map Isc(G) → Isc(Ḡ) is given by composition with the projection GLN(C) →

PGLN(C).

Proof. Let S be any map which assigns to an archetype a (necessarily supercuspidal) irre-

ducible representation of Ḡ in which the archetype is contained. Then we let iner denote

the composition ResWF
IF
◦rec ◦ S. Let ϕ ∈ Isc(Ḡ), and let ϕ̃ be an irreducible extension

of ϕ to WF . Let Π = rec−1(ϕ̃). Then Π = {π̄i} is an L-packet of supercuspidal rep-

resentations of Ḡ, which consists precisely of the set of irreducible subquotients of some

supercuspidal representation π of G. Let ψ = rec(π). Then, by [Pas05, Corollary 8.2],
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there exists a unique smooth irreducible representation τ of K such that, for all irre-

ducible representations ρ of G, we have that ρ contains τ upon restriction to K if and

only if rec(ρ) �IF' ψ �IF . Then (K, τ) is the unique [G, π]G-archetype, and by Theorem

6.2.4 we know that the (finite) set {(Ki, τ̄i)} of [Ḡ, π̄i]Ḡ-archetypes is precisely the set of

archetypes representated by the irreducible subrepresentations of (gK̄, gτ �gK̄), as g ranges

over G. Let S be the set of inertial equivalence classes of representations in Π. As each

of the (Ki, τ̄i) is an archetype, it follows that, for all irreducible representations π̄ of Ḡ,

we have that π̄ contains one of the τ̄i upon restriction to Ki if and only if [Ḡ, π̄]Ḡ ∈ S,

if and only if π̄i ∈ Π, if and only if rec(π̄) �IF' ϕ. Thus the map iner = ResWF
IF
◦rec ◦ S

defines the unique map which can make the necessary diagram commute.

We now consider the fibres of iner. Let ϕ ∈ Isc(Ḡ). Then each of the archetypes in

iner−1(ϕ) is represented by a representation of the form τ̄ = IndK
J̄+ µ, for some max-

imal simple type (J̄+, µ) and some maximal compact subgroup K of Ḡ. Moreover,

any G-conjugate of (K , τ̄) is also in the fibre above ϕ. Indeed, given g ∈ G, one has

gτ = Ind
gK
g J̄+

gµ. If π̄ is a supercuspidal representation of Ḡ containing (J̄+, µ), then gπ̄

contains (gJ̄+, gµ), and hence contains (gK , g τ̄). Since π̄ and gπ̄ are contained in some

common supercuspidal representation π of G upon restriction, they lie in the same L-

packet and are therefore in the same fibre of iner. Conversely, we have already seen that

each of the archetypes in iner−1(ϕ) are pairwise G-conjugate.

So it remains only to calculate the cardinality of iner−1ϕ. Let ϕ̃ ∈ L(Ḡ) be such that

ResWF
IF

ϕ̃ = ϕ, and let π̄ be contained in the L-packet rec−1(ϕ̃) corresponding to ϕ̃. Then

the cardinality of this L-packet is precisely the length of π �Ḡ, where π is some supercus-

pidal representation of G such that π̄ is a subquotient of π �Ḡ, i.e. #rec−1(ϕ̃) = `ϕ. The

fibre iner−1(ϕ) is then equal to the disjoint union of the sets of archetypes contained in

each of the `ϕ elements of the L-packet rec−1(ϕ̃). As these elements are precisely an orbit

under G-conjugacy of supercuspidal representations of Ḡ, they each contain the same num-

ber of archetypes, which is eπ̄ by Theorem 4.7.5. We therefore see that #iner−1(ϕ) = eπ̄`π̄.
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The commutativity of the second diagram is then simply a reinterpretation of Theorem

6.2.4 in terms of the inertial correspondences.

Remark 6.2.6. It is possible to give a more explicit description of the fibres of the inertial

correspondence, by describing more explicitly the length `ϕ. We freely make use of the

results of section 1 of [BK94] in order to do so. Given a supercuspidal representation π

of G and an irreducible subrepresentation π̄ of π �Ḡ, the length of π �Ḡ is equal to the

cardinality of the finite group G(π) = G/NG(π̄), which is isomorphic to the dual group of

S (π) = {χ ∈ X(F ) | π ' π⊗(χ◦det)}. Since this group is finite abelian, it is of the same

cardinality as its dual; so we see that length(π �Ḡ) = #{χ ∈ X(F ) | π ' π ⊗ (χ ◦ det)}.

This group partitions according to the level of characters into a disjoint union of finitely

many sets of the same cardinality; thus it must be of cardinality a multiple (k, say) of the

cardinality of the group of unramified characters χ of F which preserve π via twisting,

which we know to be N/eπ̄. So, in particular, there exists a positive integer k such that

iner−1(ϕ) = eπ̄kN/eπ̄ = kN .

6.3 The tame inertial Langlands corespondence

The focus of this section is to describe completely the fibres of the restriction of the

inertial correspondence the the depth zero supercuspidal representations of an arbitrary

group, using the results of Chapter 5.

6.3.1 The DeBacker-Reeder construction

We begin by briefly recalling some of the relevant details of the construction of a Langlands

correspondence for (a certain subset of) the depth zero supercuspidal representations of

(certain) reductive p-adic groups due to DeBacker and Reeder [DR09].

Recall that an inner form of a p-adic group G = G(F ) is a group H = H(F ) such that

G(F̄ ) = H(F̄ ). The inner forms of G are naturally parametrized by the Galois cohomology

group H1(Gal(F̄ /F ),Gad), where Gad = G/ZG denotes the adjoint form of G. There is



The inertial Langlands correspondence 107

then a natural map H1(Gal(F̄ /F ),G) → H1(Gal(F̄ /F ),Gad) which is neither injective

nor surjective in general; an inner form in the image of this map is said to be pure. For

the remainder of this section, we impose the following hypothesis:

Hypothesis 6.3.1. We suppose that G is a pure inner form of an unramified group,

i.e. there exists an F -quasi split pure inner form of G which is E-split for some finite

unramified extension E/F .

The DeBacker–Reeder construction associates a finite L-packet to each of the L-parameters

in a certain subset of the set of equivalence classes of tame regular L-parameters for such

a group G. Denote by Itame
F the quotient IF/I

+
F .

Definition 6.3.2. A tame regular semisimple elliptic L-parameter (TRSELP) is a pair

ϕ = (s, f) consisting of:

(i) a continuous homomorphism s : Itame
F → T̂ for some maximal torus T̂ in LG satis-

fying CLG(T̂) = T̂; and

(ii) an element f ∈ N̂ = NLG(T̂) satisfying certain conditions which will not be impor-

tant for our purposes; see [DR09, Section 4.1].

We denote by Ltame,reg(G) the set of equivalence classes of TRSELPs.

Since we will need to define a rather large number of objects via TRSELPs, we will

abuse terminology slightly and drop the adjective “semisimple elliptic” from our notation.

In the case that the centre of G is connected, the TRSELPs should be precisely those

tame regular parameters corresponding to L-packets which consist only of depth zero

supercuspidal representations. In the case that G does not have a connected centre,

then the TRSELPs should be the tame regular parameters corresponding to L-packets

consisting of supercuspidal representations which are generic in some sense – for example,

when F is of odd residual characteristic, then the L-packets in Irr(SL2(F )) which contain

depth zero supercuspidals generically contain two elements; there exists a unique such

packet containing four elements (corresponding to the unique irreducible supercuspidal
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representation of GL2(kF ) which restricts reducibly to SL2(kF )), the parameter of which

is not a TRSELP.

Definition 6.3.3. A tame regular inertial type for G is the restriction to IF of an element

of Ltame,reg(G). Note that this is equivalent to defining a tame regular inertial type to

be a homomorphism s : Itame
F → LG as in Definition 6.3.2. Say that two tame regular

inertial types s, s′ are equivalent if there exist choices f, f ′ such that the TRSELPs (s, f)

and (s′, f ′) are equivalent, and denote by Itame,reg(G) the set of equivalence classes of tame

regular inertial types.

In particular, a TRSELP consists precisely of the data of an underlying tame regu-

lar inertial type together with a compatible action of Frob; thus we get a well-defined

surjective map ResWF
IF

: Ltame,reg(G) → Itame,reg(G). With this in place, we are ready

to sketch out the construction of the L-packet associated to a TRSELP. Fix a choice

ϕ = (s, f) ∈ Ltame,reg(G) of TRSELP. By duality on the root datum of G, the maximal

torus T̂ ⊂ LG determines a unique maximal split torus T ⊂ G; let X = X∗(T). Let ϑ̂

denote the automorphism of LG arising from the action of Frob (via the action of WF

on LG inherited from the action of WF on the root datum of G). This automorphism ϑ̂

then gives a dual automorphism ϑ of X. Moreover, upon restriction to T̂, the element

ϕ(Frob) of LG normalizes T̂ and acts by an element of the form ϑ̂ŵ, for some ŵ in the

Weyl group of T̂. This element ŵ then also gives a dual automorphism w of X. We de-

note by Xw the pre-image in X of the torsion subgroup [X/(1−wϑ)X]tors of X/(1−wϑ)X.

Now fix a choice of λ ∈ Xw. To λ, one may associate a certain 1-cocycle uλ [DR09, Sec-

tion 2.7]; the twisted Frobenius Fλ = Ad(uλ) ◦ Frob acts on the apartment A (G,T) and

stabilizes a unique vertex xλ; we therefore obtain for each λ ∈ Xw a maximal parahoric

subgroup Gλ of G.

Moreover, by the local Langlands correspondence for tori (which is well-known, but re-

proved in [DR09, Section 4.3]), the homomorphism s : Itame
F → T̂ corresponds to a char-

acter of T(F ). DeBacker and Reeder associate to (ϕ, λ) a certain conjugate Tλ of T(F ),
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and hence a character θλ of Tλ. This character will be of depth zero in the sense that

it will be trivial on Tλ ∩ G+
λ , but non-trivial on Tλ ∩ Gλ. In particular, we may identify

θλ with a character of the torus in the reductive quotient Gλ/G
+
λ obtained as the image

of Tλ ∩ Gλ. Deligne–Lusztig theory then gives a virtual representation Rθλ
Tλ

of Gλ/G
+
λ .

At this point, the “genericity” property of a TRSELP (as opposed to an arbitrary tame

regular L-parameter) guarantees that the character θλ is in general position, so that one

of ±Rθλ
Tλ

will be an irreducible cuspidal representation σλ of Gλ/G
+
λ . We therefore obtain

an unrefined depth zero type (Gλ, σλ).

At this point, the elements of Irr(G) which arise as subquotients of c- IndGGλ σλ for some

TRSELP ϕ and some λ ∈ Xw are grouped into L-packets Π(ϕ) according to, in particular,

the following rules:

(i) As λ ranges through a set of elements of Xw such that no two representations σλ

are conjugate in G, and all possible conjugacy classes of unrefined depth zero types

(Gλ, σλ) arise, there exists for each λ a unique element πλ of Π(ϕ) containing the

unrefined depth zero type (Gλ, σλ). In other words, the elements of Π(ϕ) are precisely

a choice of irreducible subquotient of c- IndGGλ σλ for each λ; this choice is determined

by f , and will turn out to be irrelevant to our purposes.

(ii) As f varies through all possible TRSELPs (s, f) with the equivalent inertial type as

that of ϕ, the union of the packets Π(ϕ) is equal to the set of irreducible subquotients

of the representations c- IndGGλ σλ, as λ varies. Moreover, if f, f ′ are such that

Π(s, f) ∩ Π(s, f ′) 6= ∅, then the TRSELPs (s, f) and (s, f ′) are equivalent.

Moreover, DeBacker and Reeder show that this process results in (at least once one views

TRSELPs as simultaneously being L-parameters for the class of pure inner forms of G)

L-packets which are stable in a technical, character-theoretic sense, and that these are

the smallest such stable L-packets. Thus, while they do not show that the resulting

correspondence satisfies all of the conditions which are expected of the local Langlands

correspondence, it is extremely likely that it is the correct such correspondence.
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Hypothesis 6.3.4. We assume that the assignment of an L-packet of depth zero supercus-

pidals to each TRSELP given by DeBacker and Reeder is the such assignment satisfying

all of the expected properties of the local Langlands correspondence.

We note that, in particular, properties (i) – (ii) in Conjecture 6.1.7 are known to hold for

the DeBacker–Reeder correspondence.

Definition 6.3.5. Say that an representation ofG is tame regular (semisimple elliptic) if it

is contained in Π(ϕ) for some TRSELP ϕ. Denote by Irrtame,reg(G) the set of isomorphism

classes of tame regular representations of G.

Note that a tame regular representation is necessarily an irreducible depth zero supercus-

pidal representation of G.

We realize the DeBacker–Reeder construction as a surjective, finite-to-one map rec :

Irrtame,reg(G) → Ltame,reg(G) which assigns to each π ∈ Irrtame,reg(G) the unique ϕ ∈

Ltame,reg(G) such that π is contained in Π(ϕ). As an immediate consequence of properties

(i) and (ii) above of the L-packets Π(ϕ), we immediately obtain the following:

Lemma 6.3.6. Let π, π′ ∈ Irrtame,reg(G). Then rec(π) �IF' rec(π′) �IF if and only if π

and π′ contain a common unrefined depth zero type.

6.3.2 The fibres of iner

Having described the local Langlands correspondence for Irrtame,reg(G), we describe a sim-

ilar correspondence on the level of types and inertial types.

Denote by Dtame,reg(G) the set of conjugacy classes of unrefined depth zero types which

are contained in some element of Irrtame,reg(G), and by Atame,reg(G) the set of [G, π]G-

archetypes, as π ranges through Irrtame,reg(G). Since, by Theorem 5.3.1, each such [G, π]G-

archetype (K, τ) restricts to the unique conjugacy class of maximal parahoric subgroups

contained in the conjugacy class of K as a direct sum of pairwise G-conjugate unre-

fined depth zero types, there is a canonical surjective map Atame,reg(G) → Dtame,reg(G).
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Moreover, since π ∈ Irrtame,reg(G) contains a unique element of Dtame,reg(G) and a unique

element of Atame,reg(G), there are also canonical surjective maps T : Irrtame,reg(G) →

Atame,reg(G) and D : Irrtame,reg(G)→ Dtame,reg(G); it is clear that D factors through T via

canonical map Atame,reg(G)→ Dtame,reg(G).

Theorem 6.3.7 (The tame inertial Langlands correspondence). Let G be a pure inner

form of an unramified p-adic group.

(i) There exists a unique surjective, finite-to-one map inerD : Dtame,reg(G)→ Itame,reg(G)

such that the following diagram commutes:

Irrtame,reg(G) rec //

D
��

Ltame,reg(G)

Res
WF
IF

��

Dtame,reg(G)
inerD

// Itame,reg(G)

Given ϕ ∈ Ltame,reg(G), one has #iner−1
D (ϕ �IF ) = #rec−1(ϕ).

(ii) There exists a unique surjective, finite-to-one map iner : Atame,reg(G)→ Itame,reg(G)

such that the following diagram commutes;

Irrtame,reg(G) rec //

T
��

Ltame,reg(G)

Res
WF
IF

��

Atame,reg(G)
iner

// Itame,reg(G)

The map iner factors uniquely through inerD via the canonical map Atame,reg(G) →

Dtame,reg(G) and, given ϕ ∈ Ltame,reg(G), one has

#iner−1(ϕ �IF ) =
∑

(Gx,σ)∈iner−1
D (ϕ�IF )

#Sσ.

Proof. Let R : Atame,reg(G) → Irrtame,reg(G) be any map which, to an archetype (K, τ),

assigns an irreducible subquotient of c- IndGK τ ; we then define iner = ResWF
IF
◦rec ◦ R.

This is well-defined: since (K, τ) is a [G, π]G-archetype for some π ∈ Irrtame,reg(G), any

two subquotients of c- IndGK τ are unramified twists of one another; however, given an

unramified character ω of G, restricting to IF induces an isomorphism between rec(π) �IF
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and rec(π ⊗ ω) �IF . It follows immediately that iner is the unique map Atame,reg(G) →

Itame,reg(G) such that the diagram in (ii) commutes. Since rec and ResWF
IF

are surjective,

it follows that iner is also surjective.

We now establish (i). Fix a map A : Dtame,reg(G)→ Atame,reg(G) which, to each unrefined

depth zero type (Gx, σ), assigns an irreducible subrepresentation of IndKGx σ, where K

denotes the maximal compact subgroup of NG(Gx). Then we define inerD : Dtame,reg(G)→

Itame,reg(G) by setting inerD = iner ◦ A. We must first check that inerD is well-defined.

Let A′ : Dtame,reg(G)→ Atame,reg(G) be another such map, and let iner′D = iner ◦A′. Then

we have a diagram

Irrtame,reg(G) rec //

T
��

D

��

Ltame,reg(G)

Res
WF
IF

��

Atame,reg(G)
iner

// Itame,reg(G)

Dtame,reg(G)

A 55

A′

::

iner′D

66

inerD

;;

We have seen that the top square and commutes and that D factors through T , while in

the bottom triangle A commutes with inerD and A′ commutes with iner′D by definition.

Suppose that inerD 6= iner′D, and pick (Gx, σ) ∈ Dtame,reg(G) such that inerD(Gx, σ) 6=

iner′D(Gx, σ). Hence A(Gx, σ) and A′(Gx, σ) must lie in different fibres of iner, which

is to say that they must lie in different fibres of ResWF
IF
◦rec ◦ R. This means that

c- IndGK A(Gx, σ) and c- IndGK A′(Gx, σ) admit irreducible subquotients lying in different

fibres of ResWF
IF
◦rec. Hence there exist irreducible subquotients ρ, ρ′, say, of c- IndGGx σ

which lie in different fibres of ResWF
IF
◦rec. By Lemma 6.3.6 this is not the case, and so

inerD is well-defined.

Since inerD is well-defined, iner factors uniquely through inerD via the canonical map

Atame,reg(G)→ Dtame,reg(G). Let ϕ ∈ Ltame,reg(G). We claim that the fibres iner−1
D (ϕ �IF )

and rec−1(ϕ) are in canonical bijection. There is a canonical injective map between

these two sets. Indeed, given (Gx, σ) ∈ iner−1
D (ϕ �IF ), there exists a unique element
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of rec−1(ϕ) containing (Gx, σ). This gives a map iner−1
D (ϕ �IF )→ rec−1(ϕ), which is injec-

tive since a depth zero irreducible representation of G contains a unique unrefined depth

zero type. Moreover, this map is clearly seen to be surjective by the DeBacker–Reeder

construction: the fibre corresponds to a choice of f in the pair (ϕ �IF , f). It follows that

iner−1
D (ϕ �IF ) = iner−1(ϕ).

Finally, since iner factors uniquely through inerD, it follows that the elements of the

fibre iner−1(ϕ �IF ) are precisely the irreducible subrepresentations of the representations

IndKxGx σ (modulo G-conjugacy), where (Gx, σ) ranges through the elements of iner−1
D (ϕ �IF

) and Kx denotes the maximal compact subgroup of NG(Gx). Each subrepresentation τ of

some IndKxGx σ is an s-type, for some s ∈ Sσ. We have already seen that there is a unique

s-type (up to conjugacy) for each s; it follows that

#iner−1(ϕ �IF ) =
∑

(Gx,σ)∈iner−1
D (ϕ�IF )

#Sσ,

as desired.

Remarks 6.3.8. (i) In [Mac80], Macdonald constructs a “Langlands correspondence”

for certain finite reductive groups, via p-adic methods. In particular, this provides –

for certain groups – a correspondence between cuspidal irreducible representations of

finite reductive groups and certain homomorphisms from the inertia group to com-

plex tori. One interpretation of the above result is that it shows that the DeBacker–

Reeder construction subsumes Macdonald’s result, providing via the map inerD a

similar correspondence (this correspondence also allows one to consider families of

representations of possibly distinct finite reductive groups which are simultaneously

associated to the same inertial type; this gives a very simple instance of “functorial-

ity” for cuspidal representations of finite reductive groups).

(ii) In the case that the maximal parahoric subgroups of G are all maximal as compact

subgroups of G (which is equivalent to requiring that each of the group schemes

G̃x, for x ∈ B(G) a vertex, is connected) – as happens, for example, when G is

semisimple and simply connected – the sets Atame,reg(G) and Dtame,reg(G) and the
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maps iner and inerD coincide; in particular, in this case the description of the inertial

correspondence consists simply of the statement (i) above.

(iii) The reader should note that the definitions of iner and inerD do not rely on our

unicity results: one can see that these are the unique well-defined surjective maps

making the appropriate diagrams commute without knowing anything about unicity.

However, the real strength of the above result is in the description of the fibres of

these maps, for which our unicity results are crucial.

(iv) An undesirable aspect of our result is that we only obtain a description for Irrtame,reg(G).

There should exist a more general correspondence, but there are a number of obsta-

cles preventing the proof of such a result. Firstly, and most significantly, we do not

yet have a construction of the local Langlands correspondence for arbitrary depth

zero irreducible representations of G; in particular, this prevents the observation that

any map analogous to inerD is well-defined from being made. On top of this, there

are two further serious complications. Firstly, the relationship between depth zero

types and archetypes becomes far more complicated, meaning that describing the

fibres of iner via such a simple formula is unlikely to be possible. For example, in

GL2(F ), one already sees that while the Steinberg representation contains a unique

unrefined depth zero type (the trivial representation of the Iwahori subgroup), it

contains two archetypes: the trivial representation of GL2(O), and the inflation to

GL2(O) of the Steinberg representation of GL2(k). Finally, there are additional

complications in the proof of unicity which would require methods distinct to those

employed in this paper – it is likely that our methods would suffice only to show that

any typical representation of a maximal parahoric subgroup of G is contained in a

certain infinite length representation (corresponding to the trivial Mackey summand

here; once one considers representations with supercuspidal support defined on a

proper parabolic subgroup, this summand is no longer irreducible).
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6.4 An inertial Langlands conjecture

We end by stating a conjecture on how we expect the fibres of the inertial Langlands

correspondence to look in general. We have, beyond the case of GLN(F ), understood

two additional instances of the correspondence: that of SLN(F ), where we allow repre-

sentations to be arbitrarily complicated but specify that the group is rather simple to

understand; and that of depth zero supercuspidals, where we allow the group to be ar-

bitrarily complicated, but specify that the representations are as simple as possible. In

each of these cases, we see that one obtains a multiplicity in the fibres of iner with respect

to those of rec, although these multiplicities arise for completely different reasons – one

arises from the representation admitting a type on a sufficiently small parahoric subgroup,

while the other arises from the group admitting parahoric subgroups which aren’t their

own compact normalizer.

Recall that we have, under no assumptions on G, the diagram

Irrreg(G) rec //

T
��

Lreg(G)

Res
WF
IF

��

Areg(G)
iner

// Ireg(G)

and that, moreover, the map iner is always surjective. We assume Conjecture 2.9.7. Since

there are finitely many conjugacy classes of parahoric subgroups of G, this implies that

the map iner is finite-to-one.

Now let ϕ ∈ Lreg(G), and let π ∈ rec−1(ϕ). Denote by Type(π) the set of [G, π]G-types

(J, λ). We associate two constants to π:

• For each (J, λ) ∈ Type(π), let eπ(J, λ) denote the number of conjugacy classes of

maximal compact subgroups of G into which J admits a containment. We then

define eπ to be the maximum of the eπ(J, λ), for (J, λ) ∈ Type(π). Note that eπ is

the natural analogue of the ramification degree which appears in the correspondence

for SLN(F ).
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• For each (J, λ) ∈ Type(π), pick a maximal compact subgroup K with J ⊂ K, and

let Gx be the unique maximal parahoric subgroup contained in K. Since Gx ∩ J is

open, it will be of finite index in J , so that the restriction to Gx ∩ J of λ will be

Sλ-typical for some finite subset Sλ of B(G). We expect that the set Sλ should

consist only of supercuspidal inertia classes. We then let fπ denote the maximum

of the cardinalities #Sλ, for (J, λ) ∈ Type(π). This constant is the the natural

analogue of the multiplicity appearing in the tame inertial correspondence.

Conjecture 6.4.1. There exists a unique surjective, finite-to-one map iner : Areg(G) →

Ireg(G) such that following diagram commutes:

Irrreg(G) rec //

T
��

Lreg(G)

Res
WF
IF

��

Areg(G)
iner

// Ireg(G)

Given ϕ ∈ Lreg(G), one should have

#iner−1(ϕ �IF ) =
∑

π∈rec−1(ϕ)

eπfπ.

We suggest that this statement is the form that the strongest possible result on the unicity

of types for regular supercuspidal representations should take in complete generality. Of

course, a proof of this result is completely out of reach given the current state of knowl-

edge – it would rely on a completely general construction of types satisfying additional

properties such as intertwining implies conjugacy, as well as a proof of the local Langlands

conjectures for arbitrary groups.
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