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My research focuses on problems in the intersection of number theory, representation
theory and algebraic geometry, in the broad area of the Langlands programme. I'm par-
ticularly interested in the representation theory of reductive p-adic groups and in the
structure of Galois groups of p-adic fields, and the relationships between these two topics.

Specifically, I am interested in branching rules for admissible representations of reductive
p-adic groups, with a particular focus on the Bushnell-Kutzko theory of types, and on
applications of this towards the inertial local Langlands correspondence and the study of
mod-¢ congruences between Galois representations.

1. INTRODUCTION

Let F' be a p-adic field, i.e. a finite algebraic extension of either the field Q, of p-adic
numbers, or of the field F,((¢)) of formal Laurent series in one variable over [F,. A central
problem in algebraic number theory is to understand the structure of the absolute Galois
group Gal(F/F) of F relative to some separable algebraic closure F'/F. To date the most
fruitful approach to studying Gal(F/F) has been by studying its representation theory
over a field E, typically taken to be an algebraic extension of O, or of F,, for some prime
¢. The case that £ = p comes with many additional analytic complications; I am largely
interested in the case ¢ # p, in which the representation theory may be approached purely
algebraically. For the most part, we will restrict our attention to the case E = Q.

The local Langlands conjectures, now known in many cases, provide a dictionary between
the study of such Galois representations and the representation theory of reductive p-adic
groups. Very roughly, if G is a connected reductive algebraic group defined over F' and
G = G(F), then one expects that there should be a natural parametrization of the ir-
reducible Qy-representations of G in terms of L-parameters, which are homomorphisms
Wi — LG, where W}, denotes the Weil-Deligne group of F' and “G the Langlands dual

group of G.

While the representation theory of p-adic groups is complicated, it appears to be more
immediately tractable than the theory of Galois representations. One particularly fruitful
approach has been via restriction to compact open subgroups. Given 7 an admissible
representation of a p-adic group G = G(F'), and K C G a compact open subgroup, the
restriction 7|x = €, 7; is a semisimple representation, each of the irreducible components
of which is finite-dimensional. It is most interesting to study this restriction when K is
a maximal compact open subgroup of G; there are three obvious questions about this

restriction which form the focus of my current research.
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(a) Can one explicitly describe each of the components ;7

(b) Given a component 7;, can one describe the set of irreducible representations 7’ of G
such that 7; occurs in 7|7

(¢) Are there any components 7; which may only occur in 7'?

To date, the answer to (a) is largely negative, unless G is a particularly simple example
of a p-adic group such as GLy(F') or SLo(F) [Cas73, Nevl3], or the representation 7
itself admits a particularly simple description [Nev14], with the main obstruction being
that describing the irreducible representations of K is in general extremely difficult. The
answer to (b) is also currently negative, although some partial progress is made: we are
at least often able to construct some 7’ 2 m which contains a given component 7;.

It turns out that the answer to (c) is often positive, at least allowing for a minor correction:
if 7 contains 7;, then certainly so must 7 ® w, for any unramified character w of G*. More
generally, the best that one can hope for is to find a component 7; such that whenever 7;
occurs in 7|, then 7’ must occur in the same block of the category Repy(G) of smooth
E-representations of G; in the most pertinent case where £ = Qy, these blocks have
been explicitly described by Bernstein in terms of the inertial supports of representations
[Ber84]. This leads one to follow Bushnell and Kutzko [BK98] in making the following
definition:

Definition 1. Let 8 be a block of the category Rep(G). A type for B is a pair (J, \)
consisting of a compact open subgroup .J of G and a smooth irreducible representation A
of J such that whenever an irreducible representation 7’ of G is such that 7’|, contains
A, it must be the case that 7’ is contained in B.

Given a type (J, \) for a cuspidal block 8, and a compact open subgroup K O J of G, it
is simple to obtain a type of the form (K, 7) for B. We will therefore often restrict our
attention to types defined on maximal compact open subgroups of G.

Types are of particular interest for the blocks B whose irreducible objects are cuspidal:
an irreducible representation 7w of G is said to be cuspidal if whenever p is a non-zero
quotient of 7, every simple root subgroup of G acts non-trivially through p. Given such a
block B, the existence of a type for B is closely related (and, in practice, often essentially
equivalent) to establishing the long-standing folklore conjecture that every irreducible ob-

ject of 2B should be compactly induced from an open, compact-modulo-centre subgroup
of G.

The construction of types goes back to Howe [How77], who constructed types for what
are now called essentially tame? cuspidal representations of GLy(F). This was later gen-
eralized to all cuspidal representations of GLy(F') and SLy(F') by Bushnell and Kutzko

LA character w : G — E* is unramified if it has trivial restriction to any compact open subgroup of G.
ZA cuspidal representation of GLy (F) is said to be essentially tame if its ramification degree is coprime
to p; the ramification degree of 7 is equal to N/t where the torsion number t is the number of unramified
characters w of G such that 7 ~ m ® w. More generally, we say that a cuspidal representation of an
arbitrary group G is essentially tame if it contains one of the types constructed by Yu, as described
below.
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[BK93a, BK93b, BK94]. More recently, Stevens used the Bushnell-Kutzko construction
to find types for all cuspidal representations of classical groups when p is odd [Ste08]. In
another direction, there is an extremely general construction of essentially tame repre-
sentations of arbitrary groups due to Yu [YuOl], and the theory for depth-zero represen-
tations® is completely understood due to Moy—Prasad and Morris [MP94, Mor99]. Most
importantly, in each case where types are known to exist, one is able to give a completely
explicit description of the types. Moreover, any two such types for a given block are seen
to be obtained from one another through a simple process of representation theoretic
renormalizations.

For the sake of consistency in language between the various constructions of types, let
us say that each proceeds in the following way: one constructs a class of data X, and to
each datum X one associates a type (Jx, Ax) for a cuspidal block By, whose irreducible
objects are precisely the unramified twists of a given cuspidal representation .

2. CLASSIFYING TYPES FOR CUSPIDAL BERNSTEIN BLOCKS

One is therefore led to, in a case where types are known to exist for a cuspidal block B,
ask for a complete list of the possible types (K, 1), as K ranges over the (finitely many
conjugacy classes of) maximal compact open subgroups of G. The natural conjecture is
the following, which is generally referred to as the unicity of types:

Conjecture 2. Let B be a cuspidal block of Rep(G), and let K be a mazimal compact
subgroup of G. There exists a type for B of the form (K, ) if and only if there exists a
datum ¥ such that Jy, C K and my € B. Conversely, whenever there is a type for B of
the form (K, T), the restriction to Js of T must contain .

It seems reasonable to expect that similar results might also hold for the non-cuspidal
blocks of Rep(G). However, there is much less evidence in this direction than for the
cuspidal case (and none beyond the case of split groups of type A), and our focus in
the remainder of this discussion will be entirely on the cuspidal case. The first results
towards the unicity of types were obtained by Henniart in the appendix of [BM02], where
a positive answer was given for G = GLo(F'). Henniart’s result was then generalized to
GLy(F) by Paskunas in [Pas05]. Further generalizations to groups other than GLy (F)
were the focus of my PhD thesis.

My first main result was an extension of Paskunas’ result to SLy(F), using the natural
approach of going via Clifford theory. The main additional complication is that, unlike for
GLy (F), there are multiple conjugacy classes of maximal compact subgroups in SLy (F').

Theorem 3 ([Lat15,Lat18]). The unicity of types holds for the essentially tame cuspidal
blocks of G = SLy(F). Moreover, given a mazimal compact subgroup K of G and an
essentially tame cuspidal block B, the number of conjugacy classes of types for B which

3An irreducible cuspidal representation 7 of G is said to be of depth-zero if there exists a maximal compact
subgroup K of G such that the space of vectors in 7 invariant under the pro-p radical K+ of K is equal
to the pullback to K of a cuspidal representation of the group K+ /K, whose connected component is a
finite group of Lie type over the residue field of F'.
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are defined on K 1is at most 1, and the number of conjugacy classes of mazximal compact
subgroups K admitting a type for B is equal to the ramification degree of the cuspidal
representations in ‘B.

The appearance of the hypothesis that the block ‘B be essentially tame is due to the
much more complicated nature of the relationship between types for non-essentially tame
blocks of Rep(GLy(F)) and types for the corresponding blocks of Rep(SLy(F)).*

The other main result of my thesis was to complete the classification of types for depth-
zero cuspidal representations of arbitrary p-adic groups:

Theorem 4 ([Lat17]). Let B be a depth-zero cuspidal block of Rep(G), for G an arbitrary
reductive p-adic group. Then the unicity of types holds for 8. Moreover, there exists a
unique conjugacy class of mazximal compact subgroups K of G on which a type for B may
occur.

The approach to obtaining this also provides a particularly satisfying partial answer to
our question (b). Given a depth-zero cuspidal representation 7w of GG, and a maximal
compact subgroup K of GG, one obtains a dichotomy: either a component 7 of 7|k is a
type, or it is contained in some non-cuspidal irreducible representation of G (which is
given a completely explicit description).

3. THE INERTIAL LANGLANDS CORRESPONDENCE

The unicity of types has a close relationship to the existence of a well-behaved inertial
Langlands correspondence. Suppose that we are in a situation where one has a construc-
tion of both the local Langlands correspondence for G, and of types for each of the cuspidal
blocks of Rep(G). The local Langlands correspondence gives a natural finite-to-one sur-
jection rec from Cusp(G), the set of isomorphism classes of cuspidal representations of
G, to L(G), the set of relevant” cuspidal L-parameters for G. Let A(G) = [[5 A®(G),
where for each cuspidal block B, A% (G) denotes the set of conjugacy classes of types for
B which are defined on maximal compact subgroups of G. On the other hand, let Z(G)
denote the set of inertial types: these are the restrictions to the inertia subgroup I of
the relevant L-parameters in £(G). It is then a formal matter to show the existence of
a unique surjective map iner : A(G) — Z(G) such that, for any map 7" which assigns to
each representation 7 in Cusp(G) a type contained in 7, the following diagram commutes:

Cusp(G) —= L(G)

!
TJ/ lResZﬁF

A(G) ———I(G)

This map iner is the (cuspidal) inertial Langlands correspondence for G. An alternative
point of view on the unicity of types is that it guarantees that iner behaves in the best

4In particular, if ¥ is a datum defining a type (Js, Ax) for a cuspidal block B of Rep(SLy (F)) then if
B is not essentially tame then it no longer needs to be the case that Jy is equal to its own projective
normalizer.

5This is a technical condition, which is vacuous if G is F-quasi split.
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way possible, by providing a uniform relationship between the fibres of iner and the fibres
of rec. The simplest case of this is for GLy(F'), where Paskunas’ results show that, for
any o € L(G), there is a canonical bijection iner™*(pl;,.) — rec™! ().

Theorem 5 ([Latl8]). For G = SLy(F), assuming that one restricts attention to the
essentially tame cuspidal representations of G and their corresponding L-parameters, the
inertial Langlands correspondence has finite fibres. Given an essentially tame L-parameter
¢ € L(Q), there is a canonical surjective map iner™'(p|;,) — rec™1(p), each of the fibres
of which is of cardinality equal to the ramification degree of .

Theorem 6 ([Latl7]). Let G be an arbitrary reductive p-adic group, and restrict atten-
tion to the reqular (in the sense of [DR09]) depth-zero cuspidal representations of G and
their corresponding L-parameters, which are precisely the parameters in L(G) with trivial
restriction to any pro-p subgroup of Wg. Then the inertial Langlands correspondence has

finite fibres.

If one denotes by A'(G) the set of conjugacy classes of minimal K-types (as defined in
[MP9}]) of depth-zero, then there are canonical surjective maps R : A(G) — A'(G) and
iner’ : A'(G) — Z(G) such that iner = iner’ o R. For any ¢ € Z(G), one has a canonical
bijection iner’'(p|;,) — rec™ (). Thus the order of the fibre iner™'(|;,) is equal to
D (Gu) S(Ga,0), where (G, 0) ranges over the minimal K -types in the fibre iner'" ' (¢r,.)
and S(G,, o) denotes the number of isomorphism classes of irreducible representations in
Indgm o, where K denotes the mazximal compact subgroup of the G-normalizer of G,.

4. CURRENT AND FUTURE WORK

4.1. Further branching rules and cases of the unicity of types

Currently, my main project is joint work with Monica Nevins, aiming to generalize the
results of my thesis to obtain branching rules for, and establish the unicity of types for,
essentially tame cuspidal representations of arbitrary p-adic groups. We currently have
substantial results in this direction, and are able to prove the following two results:

Theorem 7. Suppose that G = G(F) is an arbitrary reductive p-adic group and B is an
essentially tame cuspidal block whose irreducible objects are toral representations’. Then
the unicity of types holds for B

Theorem 8. Suppose that G is a semusimple and simply connected group of rank at most
2 and B is an essentially tame cuspidal block of Rep(G). Then, for any mazimal compact

subgroup K of G, there exist at most finitely many isomorphism classes of types defined
on K.

Note that in the latter result we are not able to completely establish unicity; this is due
to the problem that there are a small number of components of mg|x which may only
feasibly be studied in terms of the representation theory of the reductive quotient of K

6An essentially tame cuspidal representation 7 = 7y, arises from a datum ¥ which, amongst other things,
defines an increasing sequence of twisted Levi subgroups G’ of G which splits over a tamely ramified
extension of F; we say that 7 is toral if the smallest subgroup GP° of these is a torus.
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by its pro-p radical. For arbitrary G, this quotient can be an arbitrary finite group of
Lie type, and our results reduce the problem of unicity to some explicit questions on the
representation theory of finite groups of Lie type which we are currently unable to solve.

We expect the condition that the rank of G is at most 2 to be far less serious. Our
approach is to parametrize the components of 7s|x in terms of the vertices of the Bruhat—
Tits building of G. We then construct two regions of the building in which we may apply
different arguments to rule out the possibility that the corresponding components are
types; one region gives rise to components which must be contained in non-cuspidal
representations, while the other gives rise to components which must be contained in
some cuspidal representation 7’ % 7. While we are currently only able to show that these
regions overlap to cover all but a compact subset of the building (which contains finitely
many vertices) when the rank of G is at most 2, we expect that with slight generalizations
of our constructions we should be able to show this for arbitrary G. It is also likely that
the condition that G be semisimple and simply connected is not required: in a way
completely analogous to the one used in [Lat17] one should be able to use relationships
between the affine and enlarged buildings of GG to remove this assumption.

4.2. Failures of multiplicity 1 in the unicity of types

In the previous results on the unicity of types by Henniart, Paskunas, and myself, it
was always the case that, for a given maximal compact open subgroup K C G, and a
cuspidal block B of Rep(G), there is at most one conjugacy class of types defined on K.
My work with Monica Nevins has shown that this need not be the case: for example, if
K denotes the non-hyperspecial maximal compact subgroup of G = Sp,(F’) then there
exist toral essentially tame cuspidal representations m = 7wy, of G whose restriction to K
contains two non-conjugate types, one of which is the obvious type IndIfE Ay, while the

other is Ind}', 9As, where g € G\Ng(Jx) preserves the containment of Js in K. While
this does not contradict the unicity of types (since still every known type arises from a
renormalization of one of the known constructions of types), it is somewhat surprising.
It appears that the existence of such failures of multiplicity 1 is closely related to a
representation being contained in the image of the Langlands transfer from an endoscopic
group for G. It would be very interesting to understand precisely how the theory of types
interacts with endoscopy; and in particular to understand sufficient conditions on the
datum X for the resulting representation 7y to lie in the image of an endoscopic transfer.

4.3. Breuil-Mézard conjectures

The other project on which I have been working is an attempt to generalize Shotton’s proof
of the mod-¢ Breuil-Mézard conjecture for GLy (F') [Shol6] to depth-zero representations
of arbitrary unramified p-adic groups’. That is, one should be able to make use of my
results on the inertial Langlands correspondence for tame L-parameters to set up an
analogous conjecture relating congruences between tamely ramified Galois representations

"Or, more precisely, to TRSELPs for such groups, as defined by DeBacker and Reeder [DRO9].
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with congruences between representations of parahoric subgroups of GG, and to perform
the local calculations required for the proof of such a conjecture.
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