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Abstract

We consider the question of unicity of types on maximal compact subgroups for
irreducible representations of SL2 over a nonarchimedean local field of odd residual
characteristic. We introduce the notion of an archetype as the SL2-conjugacy class
of a typical representation of a maximal compact subgroup, and go on to show
that any archetype in SL2 is restricted from one in GL2. From this it follows that
any archetype must be induced from a Bushnell–Kutzko type. In the case that the
representation π is supercuspidal, we give an additional explicit description of the
number of archetypes admitted by π in terms of its ramification. We also describe a
relationship between archetypes for GL2 and SL2 in terms of L-packets, and deduce
an inertial Langlands correspondence.1

1 Introduction

One of the major issues when studying the representation theory of a connected
reductive p-adic group G is that the group is only locally compact, and thus has
an extremely complex representation theory. The theory of types arose as a means
of surmounting this difficulty – following Bernstein, one may factor the category of
smooth representations of such a group into a natural product of indecomposable
full subcategories, and a type is then a representation of a compact group which
describes the behaviour of these categories of representations. More formally, a type
for such a subcategory R is a smooth irreducible representation λ of some compact
open subgroup J of G, such that an irreducible representation π of G contains λ
upon restriction to J if and only if π lies in R. Thus, the theory of types provides
a means of reducing a problem about locally compact groups into a collection of
problems about compact groups, and has made a number of significant advances in
our understanding of the representation theory of such groups possible.
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As with the representation theory of G, a natural approach to construct types for
each of these subcategories is to first construct types for the supercuspidal rep-
resentations of all Levi subgroups of G, and then attempt to find a construction
compatible with parabolic induction which produces types for all representations
of G from these supercuspidal types. For these subcategories with supercuspidal
representations as their irreducible objects, constructing a type for the category
is essentially equivalent to settling the long-standing folklore conjecture that any
supercuspidal representation of a p-adic group should be isomorphic to a represen-
tation compactly induced from an open, compact-modulo-centre subgroup. While
this problem has gained a reputation for being difficult, progress has been made in a
number of significant cases. In particular, we now know that the result holds for gen-
eral and special linear groups over arbitrary nonarchimedean local fields ([BK93a],
[BK93b] and [BK94]), for arbitrary reductive p-adic groups over fields of charac-
teristic zero for sufficiently large p ([Yu01] and [Kim07]), for special orthogonal,
symplectic and unitary groups over fields of odd residual characteristic ([Ste08]),
and for inner forms of general linear groups ([Séc05] and [SS08]).

In each of the above, the approach has been to construct, for each Bernstein sub-
category of supercuspidal representations, a type (J, λ) of a certain form, by means
of forming successively stronger approximations to a type. These types then satisfy
the additional property that, for any supercuspidal representation π containing λ
upon restriction to J , there exists a unique extension Λ of λ to the G-normalizer J̃
of λ such that π ' c- IndG

J̃
Λ.

Assuming that one has a construction of types for the supercuspidal representa-
tions of all Levi subgroups of G, an approach to the construction of types for all
non-cuspidal representations of G was suggested by Bushnell and Kutzko in [BK98].
The idea is that, for each type (JM, λM) for a supercuspidal representation ζ of
some Levi subgroupM of G, one constructs an extension (J, λ) of (JM, λM) which
satisfies certain technical properties. Such an extension is known as a G-cover of
(J, λ) and, should such a cover exist, it will be a type for the Bernstein subcategory
corresponding to (M, ζ). This program has now been completed for most of the
groups for which a construction of supercuspidal types is known: for general linear
groups in [BK99], for special linear groups in [GR02], for inner forms of general lin-
ear groups in [SS12], and for the special orthogonal, symplectic and unitary groups
in [MS14].

Let us call all types arising through the constructions discussed above “Bushnell–
Kutzko types”. While it is, a priori, unclear that there do not exist other types
of a different form, perhaps with fewer desirable properties, no example has been
found of a type which is not either a Bushnell–Kutzko type, or obtained from a
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Bushnell–Kutzko type by inducing it to a compact open subgroup containing the
group on which the type is defined. This leads naturally to the question of the
unicity of types: are there any types other than these types induced from the
Bushnell–Kutzko types? Equivalently, one could ask whether any type of the form
(K, τ), where K is a maximal compact subgroup of G is of the form τ = c- IndKJ λ,
for some Bushnell–Kutzko type (J, λ). Moreover, it seems likely that one needs
only to consider a single Bushnell–Kutzko type (J, λ) with J ⊂ K for each maximal
compact subgroup K. Precisely, the following is expected to be true:

Conjecture 1.1. Let (J, λ) be a Bushnell–Kutzko type for the Bernstein component
R of the category of smooth representations of a p-adic group G. Then the irreducible
components of c- IndKJ λ form a complete list of the typical representations of K for
R.

This question was first considered by Henniart in the appendix to [BM02], in order
to allow an application to the p-adic Langlands program, where he gives a positive
answer for all irreducible representations of GL2(F ). Paskunas has since, in [Pas05],
generalized Henniart’s methods to supercuspidal representations of GLN(F ) for ar-
bitrary N and, as a consequence, obtained an inertial Langlands correspondence.
The general result for non-cuspidal representations seems to be rather more difficult,
but some recent progress has been made. In work to appear, Nadimpalli has shown
that the result holds for all irreducible representations of GL3(F ), most irreducible
representations of GL4(F ), and for all depth zero representations of GLN(F ), for
arbitrary N .

In this paper, we take the first step towards resolving Conjecture 1.1 for the special
linear group SLN(F ), giving a positive answer in the case of N = 2 and for F of
odd residual characteristic. The main difference between the cases of GL2(F ) and
SL2(F ) is that there are now two conjugacy classes of maximal compact subgroups.
Given an irreducible representation π of SL2(F ), there will clearly always be a type
on at least one of these maximal compact subgroups, obtained by inducing up a
Bushnell–Kutzko type for π, but not necessarily on both. In order to deal with
these complications, we introduce the notion of an archetype, which is an SL2(F )-
conjugacy class of types (K, τ) for some maximal compact subgroup K. With this
in place, we are able to give a natural extension of the unicity of types to SL2(F ).
In section 2, we give a proof of Conjecture 1.1 in this setting.

Section 3 focuses on the supercuspidal representations, where it is possible to say
rather more about the theory of archetypes. In particular, we are able to prove the
following refinement of Conjecture 1.1:

Theorem 1.2. Let π be a supercuspidal representation of SL2(F ), for F a nonar-
chimedean local field of odd residual characteristic. If π is of integral depth, then
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there exists a unique archetype for π, while if π is of half-integral depth then there
exist precisely two archetypes for π, which are GL2(F )-conjugate but not SL2(F )-
conjugate.

We also provide in Proposition 3.3 a description of the relationship between su-
percuspidal archetypes in GL2(F ) and SL2(F ) in terms of the local Langlands
correspondence, which in some sense says that archetypes are functorial with re-
spect to restriction from GL2(F ) to SL2(F ). This allows us to deduce in Corollary
3.4 an extension of Paskunas’ inertial Langlands correspondence to our setting.

Out method is to transfer Henniart’s results on GL2(F ) over to SL2(F ), with the
key step being to show that any archetype for an irreducible representation π̄ of
SL2(F ) must be isomorphic to an irreducible component of the restriction of the
unique archetype for some irreducible representation π of GL2(F ) containing π̄
upon restriction. This is achieved in Lemma 2.2. From this, it is mostly a case
of performing simple calculations to deduce in Theorem 2.4 that Conjecture 1.1 is
satisfied. The results on supercuspidal representations are in the same spirit: the
explicit counting result on the number of archetypes contained in a supercuspidal
representation follows easily from Theorem 2.4, while we are able to prove in Lemma
3.2 a form of converse to Lemma 2.2 for the supercuspidal representations, which
allows us to easily deduce the remaining results.

While we have avoided doing so in this paper, one could have proved the same
results by essentially copying the methods used by Henniart for GL2(F ). One
may show unicity with respect to a fixed choice of maximal compact subgroup by
following Henniart’s approach, making only the necessary changes, with the only
additional complication being the proof that the integral depth supercuspidal repre-
sentations only admit an archetype on a single conjugacy class of maximal compact
subgroups. For the positive depth representations, this is achievable using a mi-
nor variation of Henniart’s arguments, but the depth zero representations require
more work. The author knows of two approaches in this case: to use the branching
rules found in [Nev13], or to argue using covers (in the sense of [BK98]) in order
to construct a type for some non-cuspidal representation which is contained in π,
provided the existence of some other archetype. The problem with this approach is
that there is necessarily a large amount of duplication of effort. While one would
expect that such an approach could be made to work for arbitrary N , this would
require reproving most of the results found in [Pas05] with only minor modifications.

On the other hand, the approach in this paper is largely general, and already gives
partial progress towards a general proof of the unicity of types for SLN(F ). In
particular, the proof of Lemma 2.1 goes through in the general setting without any
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additional difficulties, suggesting the possibility of applying the results of [Pas05] in
a similar manner to our use of Henniart’s arguments in order to prove an analogue
of Lemma 2.2 in the general setting, which the author is hopeful of managing in the
near future. In particular, this would lead easily to a positive answer to Conjecture
1.1. The remaining results should follow without too much difficulty from a more
refined version of the arguments using covers used here, allowing one to generalize
our results. In particular, if, given a supercuspidal representation π̄ of SLN(F ) and
a supercuspidal representation π of GLN(F ) which contains π̄ upon restriction, one
may define the ramification degree of π̄ to be the number of characters χ of F× such
that π ' π ⊗ (χ ◦ det) (or equivalently, using the language of [BK93a], the lattice
period of the hereditary order from which some simple character contained in π is
constructed). Then we expect the following to be true:

Conjecture 1.3. Let π̄ be a supercuspidal representation of SLN(F ). Then there
are precisely eπ̄ archetypes for π̄.

1.1 Acknowledgements

This paper has resulted from my first year of PhD work at the University of East
Anglia. It has benefited hugely from discussions with my advisor, Shaun Stevens,
who is due thanks for his constant encouragement and generosity with ideas. I am
also grateful to the EPSRC for providing my research studentship.

1.2 Notation

Throughout, F will denote a nonarchimedean local field of odd residual character-
istic p. We will denote by O = OF the ring of integers of F , and write p = pF for
its maximal ideal. The residue field will be denoted by k = kF = O/p, and we will
write q for the cardinality of k. We fix once and for all a choice $ of uniformizer of
F , i.e. an element such that $O = p.

When working in generality, we will use G to denote an arbitrary p-adic group de-
fined over F , by which we will mean the group G = G(F ) of F -rational points of
some connected reductive algebraic group G defined over F . We will always denote
by G the general linear group GL2(F ). We fix notation for a number of important
subgroups of G. We will write K = GL2(O) for the standard maximal compact sub-
group, T for the split maximal torus of diagonal matrices, and B for the standard
Borel subgroup of upper triangular matrices. We also write Ḡ for the special linear
group SL2(F ) and, given a close subgroup H of G, we let H̄ denote the subgroup
H ∩ Ḡ of Ḡ. We also denote by T 0 the compact part of the torus, i.e. the group
of diagonal matrices with entries in O×, and by B0 = B ∩ K the group of upper
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triangular matrices with entries in O. We will denote by η the matrix

(
0 1
$ 0

)
, so

that we may take K̄ and ηK̄η−1 as representatives of the two Ḡ-conjugacy classes
of maximal compact subgroups in Ḡ.

We use the notation gx = gxg−1 for conjugation, similarly denoting by gX =
{gx | x ∈ X} the action of conjugation on a set. Given a representation σ of
a closed subgroup H of G, we denote by gσ the representation of gH given by
gσ(ghg−1) = σ(h).

We write Rep(G) for the category of smooth representations of G, and Irr(G) for
the set of isomorphism classes of irreducible representations in Rep(G). Given a
closed subgroup H of G, we write IndGH σ for the smooth induction of σ to G, and
c- IndGH σ for the compact induction. We write ResGH π for the restriction of π
to H, or simply π �H for brevity when it is unnecessary to make clear the functor.
Given subgroupsH,H′ of G and representations λ, λ′ ofH,H′, respectively, we write
IG = {g ∈ G | HomH∩gH′(λ,

gλ) 6= 0} for the intertwining of λ with λ′.

Given a parabolic subgroup P of G with Levi decomposition P =MN , we denote
the normalized parabolic induction of an irreducible representation ζ ofM to G by
IndGM,P ζ. By this, we mean IndGM,P ζ = IndGP ζ̃ ⊗ δ−1/2

P , where ζ̃ is the inflation of
ζ to P and δP is the modular character of P .

Finally, we denote by X(F ) the group of complex characters χ : F× → C×. We will
be interested in two subgroups of this: the group Xnr(F ) of unramified characters
in X(F ) (i.e. those which are trivial on O×), and the group XN(F ) of order N
characters in X(F ) (i.e. those χ ∈ X(F ) such that χN = 1).

1.3 The Bernstein decomposition and types

The Bernstein decomposition, which was first introduced in [Ber84], allows us to
give a factorization of the category Rep(G), which suggests a natural approach to its
study. Given an irreducible representation π of G, there exists a unique G-conjugacy
class of smooth irreducible representations σ of Levi subgroups M of G such that
π is isomorphic to an irreducible subquotient of IndGM,P σ, for some parabolic sub-
group P of G with Levi factor M. We call this equivalence class the supercuspidal
support of π, and denote it by scusp(π). We put a further equivalence relation
on the set of possible supercuspidal supports, by saying that (M, σ) is G-inertially
equivalent to (M′, σ′) if there exists an χ ∈ Xnr(F ) such that (M, σ) is G-conjugate
to (M′, σ′ ⊗ χ). The inertial support of π is then the inertial equivalence class of
scusp(π). If scusp(π) = (M, σ), then we write [M, σ]G for the inertial support of π.
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With this in place, let B(G) denote the set of inertial equivalence classes of su-
percuspidal supports, and, for s ∈ B(G), let Reps(G) denote the full subcategory
of Rep(G) consisting of representations such that all irreducible subquotients have
inertial support s, and write Irrs(G) for the set of isomorphism classes of irreducible
representations in Reps(G). Bernstein then shows that

Rep(G) =
∏

s∈B(G)

Reps(G).

More generally, given a subset S of B(G), let RepS(G) =
∏

s∈S Reps(G) and

IrrS(G) =
⋃

s∈S Irrs(G). This allows us to define the notion of a type in gener-
ality:

Definition 1.4. Let S ⊂ B(G). Let (J, λ) be a pair consisting of a compact open
subgroup J of G and a smooth irreducible representation λ of J .

(i) We say that (J, λ) is S-typical if, for any smooth irreducible representation π
of G, we have that HomJ(π �J , λ) 6= 0⇒ π ∈ IrrS(G).

(ii) We say that (J, λ) is an S-type if it is S-typical, and HomJ(π �J , λ) 6= 0 for
each π ∈ IrrS(G).

In the case that S = {s} is a singleton, we will simply speak of s-types rather than
{s}-types.

In the cases of interest to us, inertial equivalence classes of supercuspidal representa-
tions admit a particularly simple description: given any supercuspidal π ∈ Irrs(G),
we have that Irrs(G) = {π ⊗ (χ ◦ det) | χ ∈ Xnr(F )}. The situation for Ḡ is even
simpler: as Ḡ has no unramified characters, Irrs(Ḡ) is always a singleton for s a
supercuspidal inertial equivalence class.

We now introduce the slightly modified notion of an archetype, which is more suited
to studying the unicity of types in groups other than GLN(F ).

Definition 1.5. Let S ⊂ B(G). An S-archetype is a G-conjugacy class of S-
typical representations (K , τ) for K a maximal compact subgroup of G. Given
a representative (K , τ) of an archetype, we write G(K , τ) for the full conjugacy
class.

Remark 1.6. It may seem odd to define an archetype as a conjugacy class of
typical representations rather than as a conjugacy class of types. However, for us,
the difference turns out to be unimportant: the unicity of types will allow us to see
that typical representations of maximal compact subgroups are types in almost all
cases (indeed, for all representations not contained in the restriction of the Steinberg
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representation of G). The reason for working with typical representations rather
than types is that it allows us to include these “Steinberg” representations in the
general picture, despite them admitting no type of the form (K , τ).

There is one obvious way of constructing archetypes:

Lemma 1.7. Let π be an irreducible representation of a p-adic group G of inertial
support s. Let (J, λ) be a s-type, and let K be a maximal compact subgroup of G
containing J . Then the irreducible components of τ := c- IndK

J λ are representatives
of s-archetypes. Moreover, if τ is irreducible then it is an s-type.

Proof. Using Frobenius reciprocity, it is clear that if an irreducible representation
π′ of G contains τ , then it must contain λ, hence the first claim. The second claim
simply follows by the transitivity of induction.

The question of the unicity of types is then whether there are any archetypes other
than those induced from Bushnell–Kutzko types. For G, Henniart answers this in
the appendix to [BM02]:

Theorem 1.8. Let π be an irreducible representation of G of inertial support s. Let
(J, λ) be a Bushnell–Kutzko type for π, and suppose without loss of generality that
J ⊂ K. Then the irreducible components of τ := c- IndKJ λ form a complete list of
the s-typical representations of K. Moreover, unless π is a twist of the Steinberg
representation, the representation τ is irreducible and is therefore an s-type.

1.4 Simple types

We now describe the explicit construction, due to Bushnell and Kutzko, of types for
the irreducible representations of G and Ḡ. In this section, we discuss the types for
supercuspidal representations, which are the simple types constructed in [BK93a],
[BK93b] and [BK94]. The construction of these types is by a series of successively
stronger approximations of a type, and is rather technical in nature. We omit as
many details as possible; the full details for our case of N = 2 may be found in
the appendix of [BM02], or in [BH06]. The starting points for the construction
are the hereditary O-orders. For our purposes, we may simply say that the G-
conjugacy classes of hereditary orders in Mat2(O) are represented by the maximal
order M = Mat2(O), and the Iwahori order I, which consists of those matrices in
M which are upper-triangular modulo p. The parahoric subgroups of G are then
the groups of units of these rings. Letting UM = M× and UI = I×, we may take as
representatives for the Ḡ-conjugacy classes of parahoric subgroups of Ḡ the groups
ŪM = UM ∩ Ḡ, its conjugate ηŪM, and ŪI = UI ∩ Ḡ.
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We also require the Jacobson radicals of these hereditary orders. The radical of
M is PM = Mat2(p), and the radical of I is the ideal PI of matrices which are
strictly upper-triangular modulo p. Given a hereditary order A, we may then define
a filtration of UA by compact open subgroups, by setting Un

A = 1 + Pn
A, for n ≥ 1.

There is an integer eA called the O-lattice period associated to each hereditary order;
it is the positive integer eA such that PeA

A = $A. The construction of the simple
types (J, λ) is then by simple strata. Roughly speaking, any type (J, λ) for a su-
percuspidal representation π of G is constructed via a triple [A, n, β] consisting of a
hereditary O-order A, the integer n such that n/eA is the depth of π, and an element
β of P−nA such that E := F [β] is a field. For our purposes, it suffices to know that

J = O×EU
bn+1

2
c

A . We will also briefly make use of certain filtration subgroups of J :
for an integer k ≥ 1, let Jk = J ∩ Uk

A.

These constructions lead to, for each supercuspidal representation π of G, an irre-
ducible representation λ of a compact open subgroup J of G, such that (J, λ) is a
[G, π]G-type and there exists a unique extension Λ of λ to the G-normalizer J̃ of J
such that π ' c- IndG

J̃
Λ. Any s-type arising from these constructions is a (maxi-

mal) G-simple type. The other main fact that we will require is the “intertwining
implies conjugacy” property ([BK93a], Theorem 5.7.1), which says that, if we have
two simple types (J, λ) and (J ′, λ′) such that IG(λ, λ′) 6= ∅, then (J, λ) and (J ′, λ′)
must actually be G-conjugate.

In our case, the simple types in Ḡ are easily obtained from those in G. Let π
be a supercuspidal representation of G, so that π �Ḡ splits into a finite sum of
supercuspidal representations of Ḡ. Choose a simple type (J, λ) extending to (J̃ ,Λ)
such that π ' c- IndG

J̃
Λ, so that we may perform a Mackey decomposition to obtain

π �Ḡ'
⊕
J̃Ḡ\G

c- IndḠg J̄
gλ̄,

where λ̄ = λ �J̄ . This is a finite length sum, and the summands will generally be
reducible of finite length. However, in our case all ramification is tame and this is
actually a decomposition into irreducibles, with one family of exceptions: for the
unramified twists of the “exceptional depth zero” supercuspidal representation of G,
which under local Langlands corresponds to the triple imprimitive representation of
the Weil group, each of the above summands is reducible of length 2. We then define
the (maximal) Ḡ-simple types to be the irreducible components of the representa-
tions gλ̄, for (J, λ) running over the G-simple types. Given such a Ḡ-simple type
(J̄ , µ), we have that IḠ(µ)J̄ ; thus they induce up to a supercuspidal representation
of Ḡ, and it is clear that this gives a construction of all of the supercuspidals of Ḡ.
Just as in the case of G, we have an intertwining implies conjugacy property: if two
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Ḡ-simple types (J̄ , µ) and (J̄ ′, µ′) are such that IḠ(µ, µ′) 6= ∅, then there exists a
g ∈ Ḡ such that (J̄ ′, µ′) ' (gJ̄ , gµ) ([?], Theorem 5.3 and Corollary 5.4).

We note that, while the representations restricted from twists of the Steinberg rep-
resentation StG of G admit (non-maximal) simple types, in our case the simple type
for StG will coincide with its semisimple type – both will be equal to the trivial
representation of the Iwahori subgroup UI of G. Thus, for us all simple types will
be taken to be maximal and we will treat the Steinberg representations by their
semisimple types.

1.5 Semisimple types

Thus we need only discuss the types for the non-cuspidal representations of G
and Ḡ. These are the semisimple types, which are constructed by the method of
covers in [BK98], [BK99] and [GR02]. The approach here is to take an irreducible
representation π of G of inertial support [M, ζ]G, with M a proper Levi subgroup
of G, and a simple type (JM, λM) for the supercuspidal representation ζ ofM, and
then construct from this, in a natural way which is compatible with the parabolic
induction and Jacquet restriction functors, a [M, ζ]G-type. This is achieved by
constructing a cover of (JM, λM). Given a parabolic subgroup P = MN , let
Pop =MN op be the opposite parabolic. Then we say that a pair (J, λ) consisting
of an irreducible representation λ of a compact open subgroup J of G is decomposed
with respect to (M,P) if J = (J ∩ N op)(J ∩M)(J ∩ N ) and the groups J ∩ N op

and J ∩ N are both contained in kerλ. Then, in the case where G = G or Ḡ, we
may define covers as follows:

Definition 1.9. Let M be a proper Levi subgroup of G, and let (JM, λM) be
a [M, ζ]M-type. A G-cover of (JM, λM) is a pair (J, λ) consisting of a smooth
irreducible representation of a compact open subgroup J of G such that:

(i) For every parabolic subgroup P of G with Levi factor M, the pair (J, λ) is
decomposed with respect to (M,P).

(ii) J ∩M = JM and λ �J∩M= λM.

(iii) There are positive integers n1, n2 and invertible elements f1, f2 of the spherical
Hecke algebra H(G, λ) such that f1 and f2 are supported on the double cosets

Jwn1J and Jw−n2J , respectively, where w =

(
$ 0
0 $−1

)
if G = Ḡ or w =(

$ 0
0 1

)
if G = G.

In general, the third condition in this definition requires a more technical formula-
tion; this can be found in Definition 8.1 of [BK98]. The significance of this is that
one has:
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Theorem 1.10. Let π be an irreducible non-cuspidal representation of G = G or Ḡ
of inertial support s = [M, ζ]G, and let (JM, λM) be a simple [M, ζ]M-type. Then
there exists a G-cover (J, λ) of (JM, λM), which is an s-type.

With this, we have in place a construction of a s-type for each s ∈ B(G), when
G = G or Ḡ. Any type arising in this way will be called a Bushnell–Kutzko type.

1.6 The local Langlands correspondence for supercuspidals

Some of our results on supercuspidals will require a basic understanding of the rel-
evant local Langlands correspondences, which we quickly recall here. Fix once and
for all a choice F̄ /F of separable algebraic closure. We have a natural projection
Gal(F̄ /F ) � Gal(k̄/k), constructed by viewing Gal(F̄ /F ) as an inverse limit over
finite Galois extensions. The kernel of this map map is the inertia group of F , which
we denote by IF . Let WF denote the Weil group, which as an abstract group is given
by the subgroup of Gal(F̄ /F ) generated by IF and the Frobenius elements, and is
then topologized so that IF is an open subgroup of WF , on which the subspace
topology coincides with its topology inherited from Gal(F̄ /F ). While in general
one requires the full Weil–Deligne group, we will only consider the Langlands cor-
respondence for supercuspidal representations; thus we may simply work with the
Weil group.

For a p-adic group G, let Irrscusp(G) denote the set of equivalence classes of super-
cuspidal representations of G. Let L0(G) denote the set of irreducible L-parameters
for G, which is the same as the set of irreducible Frobenius-semisimple representa-
tions WF → GL2(C), i.e. those irreducible representations under which some fixed
Frobenius element of WF acts semisimply. Then the local Langlands correspondence
for G provides a unique natural bijection rec : Irrscusp(G)↔ L0(G), which preserves
L- and ε-factors, as well as mapping supercuspidal representations to irreducible
L-parameters, among a list of other properties.

From this, as shown in [LL79] and [GK82], one may deduce a Langlands correspon-
dence for the supercuspidal representations of Ḡ, which suffices for our purposes.
Let L0(Ḡ) be the image of L0(G) under the natural map Hom(WF ,GL2(C)) →
Hom(WF ,PGL2(C)). Then we define the local Langlands correspondence rec on
Irrscusp(Ḡ) by requiring that, for any map R which sends a supercuspidal represen-
tation π of G to one of the irreducible components of ResGḠ π, the diagram

Irrscusp(G) oo rec //

R
��

L0(G)

����

Irrscusp(Ḡ)
rec //___ L0(Ḡ)
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commutes. The (supercuspidal) L-packets are then simply the finite fibres of the
map rec, which are precisely the sets of irreducible components of the restrictions
to Ḡ of supercuspidal representations of G.

One may use the local Langlands correspondence to give an alternative description of
G-inertial equivalence classes of supercuspidal representations: two supercuspidal
representations π and π′ of G are inertially equivalent if and only if rec(π) �IF'
rec(π′) �I′F .

2 The main unicity result

We now begin working towards the main results, beginning with a description of
the relationship between archetypes in G and those in Ḡ.

Lemma 2.1. Let π be an irreducible representation of G of inertial support [M, ζ]G,
let π̄ be an irreducible component of π �Ḡ, and suppose that π̄ admits an archetype
Ḡ(K̄, τ̄). Let Ψ be an irreducible subquotient of IndKK̄ τ̄ which is contained in π �K,
and let S = {[M, ζ ⊗ (χ ◦ det)]G | χ ∈ X2(F )}. Then Ψ is S-typical.

Proof. We first note that such a Ψ clearly exists: let ωπ denote the central character
of π, and write ω0

π for its restriction to O×. Let τ̃ be the extension to O×K̄ of τ̄ by
ω0
π. Then, by Frobenius reciprocity, some irreducible quotient of c- IndKO×K̄ τ̃ must

be contained in π upon restriction to K. From now on, Ψ will always denote this
representation.

Let π′ be an irreducible representation of G, and suppose that HomK(π′ �K ,Ψ) 6= 0.
Then

0 6= HomK(IndKK̄ τ̄ ,ResGK π′)

= HomK̄(τ̄ ,ResḠK̄ ResGḠ π′).

Hence π′ must contain π̄ upon restriction to Ḡ, and it follows that π′ must be of
inertial support [M, ζ⊗(χ◦det)]G, for some χ ∈ X(F ). But then, comparing central
characters, we see that χ must be an unramified twist of a quadratic character, as
required.

Lemma 2.2. Let π be an irreducible representation of G of inertial support [M, ζ]G,
let π̄ be an irreducible component of π �Ḡ, and suppose that π̄ admits an archetype
Ḡ(K̄, τ̄). Let Ψ be an irreducible subquotient of IndKK̄ τ̄ which is contained in π �K.
Then Ψ is a [M, ζ]G-type.

12



Proof. By Lemma 2.1, it remains only to rule out the possibility that Ψ is con-
tained in a representation of inertial support [M, ζ⊗(χ◦det)]G, for some non-trivial
χ ∈ X2(F ). Indeed, this would show that Ψ is [M, ζ]G-typical, and the unicity of
types for G would immediately imply that Ψ represents a [M, ζ]G-archetype. We
now argue by cases.

First, we consider the case that π is non-cuspidal, so that we may take M = T
and ζ = ζ1 ⊗ ζ2 to be a character of T . As G = BK, we may simply write
π �K= IndKT 0,B0 ζ0, where ζ0 = ζ �T 0 . If Ψ is not a type then it must be the case

that Ψ is contained in both IndKT 0 ζ0 and IndKT 0 ζ0⊗χ, where χ2 = 1 is non-trivial.

Let w =

(
0 1
1 0

)
. Then we may take {1, w} as a set of representatives for the double

coset space B0\K/B0, and hence we obtain

0 6= HomK(IndKT 0,B0 ζ0, IndKT 0,B0 ζ0 ⊗ χ)

= HomB0(ResKB0 IndKT 0,B0 ζ0, ζ0 ⊗ χ)

= HomB0(ζ0 ⊕ wζ0, ζ0 ⊗ χ).

Thus we must have wζ0 = ζ0 ⊗ χ. But then [T, wζ0]G = [T, ζ0]G and χ must be
unramified, completing the proof.

Now suppose that π is a supercuspidal representation (so M = G and ζ = π), say
π ' c- IndG

J̃
Λ, with (J̃ ,Λ) extending a maximal simple type (J, λ) contained in

π. Suppose for contradiction that Ψ is not a type. As noted by Henniart in the
appendix to [BM02], paragraphs A.2.4 – A.2.7, A.3.6 – A.3.7 and A.3.9 – A.3.11,
every irreducible component of π �K other than τ appears in the restriction to K
of either a parabolically induced representation, or some other supercuspidal πµ,
in a different inertial equivalence class to that of π, which we may now describe
explicitly. There are three further subcases which we treat separately.

Suppose first that Ψ is contained in some parabolically induced representation. We
may therefore find a character ζ of T such that Ψ is isomorphic to some irreducible
component of ResGK IndGT,B ζ. As IndKK̄ τ̄ projects onto Ψ, we therefore have

0 6= HomK(c- IndKK̄ τ̄ ,ResGK IndGT,B ζ)

= HomG(c- IndḠK̄ τ̄ ,ResGḠ IndGT,B ζ)

=
n⊕
i=1

HomG(π̄, IndḠT̄ ,B̄ ResTT̄ ζ).

Here, n is the integer such that c- IndḠK̄ τ̄ ' π̄⊕n, which exists by Proposition
5.2 of [BK98], and the final equality follows from a Mackey decomposition with
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the summation involved being trivial as BḠ = G. Hence π̄ is contained in some
parabolically induced representation, which provides a contradiction by Lemma 2.1.

Now suppose Ψ does not appear as an irreducible component of the restriction to K
of any parabolically induced representation, and suppose furthermore that π is of
integral depth n. In this case, we may construct a new supercuspidal representation
containing every irreducible component of π �K other than the archetype τ . Let
E/F be the unique unramified quadratic extension of F , and choose an embedding
O×E ⊂ K. Let µ be any level 1 character of E× trivial on F×, and let (J, λ) be a
simple type for π. Then the pair (J, λ⊗µ) is again a maximal simple type contained
in some supercuspidal representation πµ lying in a different inertial equivalence class
to that of π, and any irreducible component of π �K other than τ must be contained
in πµ upon restriction; in particular, we must have σ ↪→ πµ �K . But then πµ must be
isomorphic to an unramified twist of π⊗ (χ ◦det), for some (non-trivial by assump-
tion) χ ∈ X2(F ), which is to say that their archetypes must coincide. The archetype
for πµ is c- IndKJ λ⊗µ, and the archetype for π⊗ (χ◦det) is (c- IndKJ λ)⊗ (χ◦det).
If these two representations are isomorphic, then we must have λ⊗µ ' λ⊗(χ◦det),
as IK(λ⊗ µ, λ⊗ (χ ◦ det)) 6= ∅, and if g intertwines λ⊗ µ with λ⊗ (χ ◦ det), then
g intertwines λ �J1 with itself, and so g ∈ J . As λ ⊗ µ ' λ ⊗ (χ ◦ det), we may
use Schur’s lemma to obtain 0 6= HomJ(λ ⊗ µ, λ ⊗ (χ ◦ det)) ⊂ EndJ1(λ �J1) = C,
and hence HomJ(λ ⊗ µ, λ ⊗ (χ ◦ det)) contains the identity map, so that we must
have µ = χ ◦ det on O×E. However, there are only two quadratic characters χ of F×

while there are q = 1 ≥ 4 such characters µ. Choosing µ non-quadratic, we obtain
a contradiction.

Finally, consider the case where π is of half-integral depth and Ψ is not contained in
any parabolically induced representation, we argue essentially as before. We assume
further that π is of depth at least 3

2
; for π of depth 1

2
this case never arises. Let

E/F be the ramified quadratic extension associated to the simple type for π, and
choose an embedding O×E ⊂ UI ⊂ K. For µ, we take a level 2 character of E× trivial
on O×F , and construct πµ as before. Letting (J, λ) be a simple type for π, so that
λ is one-dimensional, the pair (J, λ ⊗ µ) is a simple type for some supercuspidal
πµ in a different inertial equivalence class to that of π, and Ψ must appear in the
restriction to K of πµ. Then, up to an unramified twist, πµ ' π ⊗ (χ ◦ det) for
χ a nontrivial quadratic character of F×, and so the archetypes c- IndKJ λ ⊗ µ
and (c- IndKJ λ) ⊗ (χ ◦ det) coincide. Then IK(λ ⊗ µ, λ ⊗ (χ ◦ det)) 6= ∅, and if
g ∈ IK(λ⊗ µ, λ⊗ (χ ◦ det)), then g ∈ IK(λ �J2 , λ �J2) = J , as π is of depth at least
3
2
, and λ is one-dimensional so that λ �J2 is a simple character. It follows that we

must have λ⊗ µ ' λ⊗ (χ ◦ det), and so µ ' χ ◦ det. But then µ is of level 2 while
χ ◦ det is tame and hence of level at most 1, giving a contradiction and completing
the proof.
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Lemma 2.3. Let π be an irreducible representation of G of inertial support s, and
let G(K, τ) be an archetype for π. Then every irreducible component of τ �K̄ is
induced from a Bushnell–Kutzko type for Ḡ.

Proof. By Theorem 1.8, the representation τ is of the form τ = c- IndKJ λ, where
(J, λ) is a Bushnell–Kutzko type for π. Then we may perform a Mackey decompo-
sition to obtain

ResKK̄ c- IndKJ λ =
⊕
JK̄\K

c- IndK̄g J̄
gλ̄,

where λ̄ = λ �J̄ . In the case that π is supercuspidal, the irreducible components of
this representation are all of the required form. If π is not supercuspidal, say π is
of inertial support [T, ζ]G, then the type (J, λ) will be semisimple. By unicity for
G, we may as well assume that (J, λ) is a G-cover of the [T, ζ]T -type (T 0, ζ �T 0). As

the group J must always contain T 0, we have JK̄ = K, and so τ �K̄= c- IndK̄J̄ λ̄.
Thus, we need only show that λ̄ is a Ḡ-cover of the [T̄ , ζ �T̄ ]T̄ -type (T̄ 0, ζ �T̄ 0). This
is done in Theorem 4.4 of [GR02].

Theorem 2.4. Let π̄ be an irreducible representation of Ḡ.

(i) If Ḡ(K , τ̄) is an archetype for π̄, then there exists a Bushnell–Kutzko type
(J̄ , µ), with J̄ ⊂ K , such that τ̄ ↪→ c- IndK

J̄ µ.

(ii) Moreover, if (J̄ , µ) is a Bushnell–Kutzko type contained in π̄ and K is a max-
imal compact subgroup of Ḡ which contains J̄ , then the irreducible components
of c- IndK

J̄ µ form a complete list of representatives of the isomorphism classes
of the s-typical representations of K .

Proof. For (i) we may, without loss of generality, reduce to the case K = K̄. By
Lemma 2.2, τ̄ is an irreducible component of the restriction to K̄ of the unique
archetype (K, τ) for some irreducible representation π of G containing π̄ upon
restriction to Ḡ. As there exists a Bushnell–Kutzko type (J, λ) such that τ ↪→
c- IndKJ λ, the result follows immediately from Lemma 2.3.

To see (ii), it remains to check that, given two distinct Bushnell–Kutzko types
(J̄ , µ) and (J̄ ′, µ′) contained in π̄ which are, moreover, contained in the same conju-
gacy class of maximal compact subgroups, these Bushnell–Kutzko types provide the
same archetypes through induction. Thus, we may as well assume that J̄ , J̄ ′ ⊂ K̄.
As (J̄ , µ) and (J̄ ′, µ′) are s-types, π will appear as a subquotient of the induced
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representations c- IndḠJ̄ µ and c- IndḠJ̄ ′ µ
′; hence we will have

0 6= HomḠ(c- IndḠJ̄ µ, c- IndḠJ̄ ′ µ
′)

= HomJ̄(µ,ResḠJ̄ c- IndḠJ̄ ′ µ
′)

=
⊕
J̄ ′\Ḡ/J̄

HomJ̄(µ, c- IndJ̄g J̄∩J̄ ′ Res
g J̄
g J̄∩J̄ ′

gµ′)

=
⊕
J̄ ′\Ḡ/J̄

Homg J̄ ′∩J̄(ResJ̄g J̄ ′∩J̄ µ,Res
g J̄ ′
g J̄ ′∩J̄

gµ′),

and so IḠ(µ, µ′) 6= ∅. If π is supercuspidal then (J̄ , µ) and (J̄ ′, µ′) will be simple
types, and so by the intertwining implies conjugacy property there will exist a g ∈ Ḡ
such that g(c- IndK̄J̄ µ) ' c- Ind

gK̄
J̄ ′ µ′. As J̄ ′ is contained in at most one maximal

compact subgroup in each Ḡ-conjugacy class, we must actually have gK̄ ′ = K̄, and
so (J̄ , µ) and (J̄ ′, µ′) induce to the same archetype.

If π is not supercuspidal, so that π is of inertial support [T̄ , ζ]T̄ , say, then (J̄ , µ)
and (J̄ ′, µ′) will be Ḡ-covers of some simple [T̄ , ζ]T̄ -types (J̄T̄ , λT̄ ) and (J̄ ′

T̄
, λ′

T̄
),

respectively. Then J̄T̄ ⊂ J̄ and J̄ ′
T̄
⊂ J̄ ′, and it is clearly the case that if g intertwines

µ with µ′ then g intertwines µ �J̄T̄= λT̄ with µ′ �J̄ ′
T̄
= λ′

T̄
. As Ḡ-inertial support is

invariant under Ḡ-conjugacy, we may conjugate our original choice of representative
of the inertial support of π and assume that the intertwiner g is in T̄ ; hence we may
apply the intertwining implies conjugacy property to find that the simple types
(J̄T̄ , λT̄ ) and (J̄ ′

T̄
, λ′

T̄
) are T̄ -conjugate. But then their covers will be T̄ -conjugate

and hence induce up to the same archetype, as required.

3 An explicit description for supercuspidals

Having complete the proof of Theorem 2.4, we now focus our attention on the su-
percuspidal representations of Ḡ, where we are able to give a number of additional
results leading to a more explicit description of the theory of archetypes in this case.

Given a supercuspidal representation π̄ of Ḡ, we define the ramification degree eπ̄
of π̄ to be 1 if π̄ is of integral depth, or 2 if π̄ is of half-integral depth. Then we
obtain the following corollary to Theorem 2.4:

Corollary 3.1. Let π̄ be a supercuspidal representation of Ḡ. Then there are pre-
cisely eπ̄ [Ḡ, π̄]Ḡ-archetypes.

Proof. It remains only for us to count the number of archetypes obtained by induc-
ing a maximal simple type contained in π̄ up to maximal compact subgroups. If π̄
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is ramified then, up to conjugacy, any simple type for π̄ is defined on a group con-
tained in the Iwahori subgroup ŪI of Ḡ, which is itself contained in both K̄ and ηK̄;
hence ramified supercuspidals admit two archetypes. If π̄ is unramified, it suffices
to show that the subgroup J̄ on which any simple type µ for π̄ is defined embeds
into precisely one Ḡ-conjugacy class of maximal compact subgroups. Without loss
of generality, we may as well assume that J̄ ⊂ ŪM. We have ker NE/F ⊂ J̄ ⊂ ŪM,
where NE/F is the norm map on the quadratic extension E/F associated to π̄.
Suppose for contradiction that we also have J̄ ⊂ ηŪM. As the group ker NE/F

contains the group µq+1 of (q + 1)-th roots of unity, we would therefore also have
µq+1 ⊂ ŪM ∩ ηŪM = ŪI. However, the Iwahori subgroup contains no order q + 1
elements, giving the desired contradiction.

Thus, the only way in which one might obtain two archetypes when eπ̄ = 1 is if
π̄ contains simple types which are G-conjugate but not Ḡ-conjugate; this clearly
cannot be the case by the intertwining implies conjugacy property.

This completely describes the number of archetypes contained in any supercuspidal
representation of Ḡ. We now prove a complementary result, which allows us to
describe the relationship between the theories of archetypes for Ḡ and G. We first
require a converse result to Lemma 2.2.

Lemma 3.2. Let π be a supercuspidal representation of G, let s = [G, π]G, and let
G(K, τ) be the unique s-archetype. Let π̄ be an irreducible component of π �Ḡ. Then
there exists a g ∈ G and an irreducible component τ̄ of gτ �gK̄ such that Ḡ(gK̄, τ̄) is
an archetype for π̄.

Proof. We may assume without loss of generality, by conjugating by η if necessary,
that π̄ = c- IndḠK̄ ρ, where ρ = c- IndK̄J̄ µ is the induction to K̄ of a Ḡ-simple type.
Let {τ̄j} be the (finite) set of irreducible components of τ �K̄ . We first show that any
π′ ∈ Irr(Ḡ) containing one of the τ̄j upon restriction must appear in the restriction
to Ḡ of π. We have

0 6=
⊕
j

HomK̄(τ̄j, π
′)

= HomK̄(ResKK̄ τ,ResḠK̄ π′)

= HomḠ(c- IndḠK̄ ResKK̄ τ, π′),

and so we obtain π′ � c- IndḠK̄ ResKK̄ τ ↪→ ResGḠ c- IndGK τ . Every irreducible sub-
quotient of the representation c- IndGK τ is a twist of π, and hence coincides with π
upon restriction to Ḡ, so that any such representation π′ must be a subrepresenta-
tion of the restriction to Ḡ of π. Hence the possible representations π′ all lie in a
single G-conjugacy class of representations of Ḡ. Let g ∈ Ḡ be such that gπ′ ' π̄, so
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that π′ ' c- IndḠgK̄
gρ, and choose j so that π′ contains τ̄j. We claim that (gK̄, g τ̄j)

is the required type.

It suffices to show that any G-conjugate of π̄ containing (gK̄, g τ̄j) is isomorphic to π̄.
Suppose that, for some h ∈ G, we have HomgK̄(hπ̄, g τ̄j) 6= 0. The representation hπ̄

is of the form hπ̄ = c- IndḠhJ̄
hµ and, using Lemma 2.3, we see that the representation

g τ̄j must be induced from some Ḡ-simple type (J̄ ′, µ′), say. Then

0 6= HomgK̄(ResḠgK̄ π̄, g τ̄j)

= HomJ̄ ′(ResḠJ̄ ′ c- IndḠhJ̄
hµ, µ′)

=
⊕

hJ̄\Ḡ/J̄ ′
HomJ̄ ′(c- IndJ̄

′
xhJ̄∩J̄ ′ Res

xhJ̄
xhJ̄∩J̄ ′

xhµ, µ′)

=
⊕

hJ̄\Ḡ/J̄ ′
HomxhJ̄∩J̄ ′(Res

xhJ̄
xhJ̄∩J̄ ′

xhµ,ResJ̄
′

xhJ̄∩J̄ ′ µ
′).

Then hµ and µ′ must intertwine in Ḡ, and the intertwining implies conjugacy prop-
erty shows that the types hµ and µ′ must actually be Ḡ-conjugate, and hence π′ is
Ḡ-conjugate to π̄. Therefore π′ ' π̄, and the result follows.

We are then able to give a description of the relationship between the archetypes in
the two groups G and Ḡ in terms of L-packets.

Proposition 3.3. Let π be a supercuspidal representation of G, let s = [G, π]G,
and let G(K, τ) be the unique s-archetype. Let Π be the L-packet of irreducible
components of π �Ḡ. Then the set of archetypes for the representations in Π is
precisely the set of the Ḡ(K , τ̄), for (K , τ̄) an irreducible component of either τ �K̄
or ητ �ηK̄.

Proof. We show that the set of typical representations of K̄ for some π̄ ∈ Π is
equal to the set of irreducible components of τ �K̄ ; the general result then follows
immediately. Let (K̄, τ̄) be an archetype for some π̄ ∈ Π. Applying Lemma 2.2,
τ̄ is of the required form. Conversely, the irreducible components of τ �K̄ are all
K-conjugate by Clifford theory, and so if one of them is a type for some element
of Π then they all must be. Applying Lemma 3.2, at least one of these irreducible
components must be a type for some π̄ ∈ Π.

Corollary 3.4. Let ϕ : IF → PGL2(C) be a representation extending to an irre-
ducible L-parameter ϕ̃ : WF → PGL2(C). Then there exists a finite set {(Ki, τi)} of
smooth irreducible representations τi of maximal compact subgroups Ki of Ḡ such
that, for all smooth, irreducible, infinite-dimensional representations π of Ḡ, we
have that π contains some τi upon restriction to Ki if and only if rec(π) �IF' ϕ.
Furthermore, this set is unique up to Ḡ-conjugacy.
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Proof. Let Π = rec−1(ϕ̃) be the L-packet corresponding to ϕ̃, so that Π is the set of
irreducible components upon restriction to Ḡ of some supercuspidal representation
σ of G. Let ψ = rec(σ), so that, by Corollary 8.2 of [Pas05], there exists a unique
smooth irreducible representation τ of K such that, for all smooth, irreducible,
infinite-dimensional representations ρ of G, we have that ρ contains τ upon restric-
tion to K if and only if rec(ρ) �I′F' ψ �I′F . Then G(K, τ) is the unique archetype

for σ, and the set {Ḡ(Ki, τi)} of archetypes for Π is precisely that represented by
the finite set of irreducible components of τ �K̄ and ητ �ηK̄ . Let S be the set of
Ḡ-inertial equivalence classes of representations in Π. Then, as each of the (Ki, τi)
is an archetype, it follows that, for all smooth, irreducible, infinite-dimensional rep-
resentations π of Ḡ, we have that π contains one of the τi upon restriction to Ki

if and only if [Ḡ, π]Ḡ ∈ S, if and only if π ∈ Π, if and only if rec(π) �IF' ϕ, as
required.
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[SS12] Vincent Sécherre and Shaun Stevens, Smooth representations of GLm(D)
VI: semisimple types, Int. Math. Res. Not. IMRN (2012), no. 13, 2994–
3039. MR 2946230

[Ste08] Shaun Stevens, The supercuspidal representations of p-adic classi-
cal groups, Invent. Math. 172 (2008), no. 2, 289–352. MR 2390287
(2010e:22008)

[Yu01] Jiu-Kang Yu, Construction of tame supercuspidal representations, J.
Amer. Math. Soc. 14 (2001), no. 3, 579–622 (electronic). MR 1824988
(2002f:22033)

20


	Introduction
	The main unicity result
	An explicit description for supercuspidals
	References

