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Abstract— Time synchronization is a critical feature of wireless
ad hoc/ sensor networks in a variety of application. Distributed
time synchronization via pulse-coupled oscillators is currently
being investigated as a valid alternative to traditional packet-
based techniques. This paper addresses the issue of resilience
of such schemes in an adversarial or emergency situation with
malicious or malfunctioning nodes, by focusing on a system
of distributed discrete-time phase locked loops (PLLs). After
showing the sensitivity of the basic system to attacks or faults,
a resilient algorithm is proposed that is shown by numerical
simulations to be robust to the activity of malicious nodes.

I. INTRODUCTION

An increasing number of applications in wireless ad hoc and
sensor networks require the participating nodes to share a com-
mon time scale. Different synchronization conditions can be of
interest, ranging from the availability of a common notion of
absolute time (e.g., for distributed tracking applications) to the
establishment of period oscillations with the same frequency
and, possibly, phase (e.g., for medium access control) [4]. Here
we focus on the latter case by recognizing that, if clocks with
same frequency and phase can be attained, a common absolute
time can be achieved as well, by appropriately initializing the
system through, e.g., the transmission of a beacon signal.

Two main distributed approaches to synchronization have
been considered. Traditional packet-based methods prescribe
the exchange of packets between different nodes using either
point-to-point [2] or broadcast [3] connections. The main
source of errors for packet-based techniques is the non-
determinism of network dynamics due to the random delays
associated with: (i) construction of a packet, (ii) queuing at
the MAC layer, (iii) propagation and (iv) processing of the
packet at the receiver side. Different techniques are designed
to mitigate the effects of these random factors according to
diverse principles (see [4] for an overview). The state of the art
reports synchronization accuracies of the order of milliseconds
to microseconds [2] [3]. However, common to all packet-based
methods is the need for the exchange of a large number of
packets, which in turns entails large computational complexity,
energy expenditure and poor scalability.

In order to obviate to the drawbacks of packet-based
solutions, more recently, there has been some interest in
physical layer-based schemes, where synchronization takes

place through the exchange of pulses either in an overlay
system such as UWB or in a dedicated bandwidth [5] [6] [1].
The methods are scalable, since the operations performed at
each node are independent on the number of nodes available
in the network, and they have limited complexity, requiring
only simple processing at the baseband level.

As discussed in [7], distributed synchronization schemes
assume a benign environment and cannot survive the presence
of malfunctioning nodes in an emergency situation or mali-
cious attacks in hostile scenarios (see [8] for an overview of
security issues in wireless networks). The recent work [7] (see
also references therein) addresses the problem of security and
resilience for packet-based synchronization schemes. The goal
of this paper is to tackle the same problem for physical layer-
based synchronization schemes. In particular, we focus on the
system of distributed discrete-time phase locked loops (PLLs)
presented in [1], that extends the synchronization algorithms
of [11] [12] (which in turn can be seen as special cases of
general consensus algorithms, see, e.g., [13]). An important
reference is also [14], where stability of a system of distributed
analog (and continuously coupled) PLLs is studied. A novel
approach is herein proposed that modifies the basic system
considered in [1] towards the goal of achieving resilience to the
activity of malfunctioning or malicious nodes. Effectiveness of
the proposed technique is validated by numerical simulations.

II. DISTRIBUTED DISCRETE-TIME PLLS WITH MALICIOUS
NODES

Let us consider a set K of K = |K| wireless nodes located
in a given area on the plane. A subset Kc ⊆ K of Kc

nodes collaborate with each other through the exchange of
pulses towards the goal of achieving synchronization [5] [1],
whereas the remaining set Km of K−Kc nodes is malicious or
malfunctioning (see fig. 1-a). Each node has its own local free-
oscillation frequency 1/Tk for k = 1, ...,K. The local clocks
are defined by a discrete-time function tk(n), that evolve as1

tk(n) = nTk + θk(n), (1)

1Clock inaccuracies other than frequency offset are not considered here.
We refer to [14] for the analysis of distributed analog PLLs in presence of a
more realistic clock model.
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Fig. 1. (a) Network of pulse-coupled clocks:Km is the set of malicious nodes
and Kc the set of node collaborating towards the goal of synchronization; (b)
Illustration of the clock of node k.

where index n = 0, 1, 2, ... runs over the periods of the clock
(tk(0) or equivalently θk(0) represents the initial condition)
and 0 ≤ θk(n) < Tk is the instantaneous phase with
respect to the local frequency 1/Tk (see fig. 1-b). In case the
collaborating nodes are isolated θk(n) = θk(0) and the nodes
are not synchronized unless Tk = T and θk(0) = θ for every
k ∈ Kc. Notice that model (1) assumes that all the nodes are
active at time n = 0. However, in case a given number of
nodes is added at a later stage to the network, it is enough to
redefine accordingly the initial time instant in order to study
the convergence properties of the new network configuration.

Two synchronization conditions are of interest. We say the
Kc cooperating clocks are frequency synchronized if

tk(n+ 1)− tk(n) = T (2)

for each k ∈ Kc and for sufficiently large n, where 1/T is
the common frequency. A more strict condition requires full
frequency and phase synchronization, i.e.,

ti(n) = tj(n) (3)

for i, j ∈ Kc and for n sufficiently large.
In order to couple the clocks towards the aim of achieving

synchronization, each node transmits pulses at times tk(n)
in (1). The topology of the network determines the power
received by any kth node from the ith as

Pki =
Cki

dγki
, (4)

where Cki is an appropriate constant (accounting for possible
fading and shadowing), dki = dik is the distance between the
nodes and γ is the path loss exponent (γ = 2 ÷ 4). Notice
that distances dki and channels Cki are assumed to be con-
stant throughout the synchronization process. While malicious
nodes in set Km select their instantaneous phases θk(n) in
(1) either randomly or according to some jamming rule, the
collaborating nodes in set Kc update their instantaneous phases
θk(n) according to the discrete-time PLL in fig. 2.

In the rest of this section, we first give a brief review of the
synchronization technique based on distributed discrete-time
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Fig. 2. Discrete-time PLL run by each node.

PLLs first studied in [1], along with a discussion on the effect
of propagation delays that was not included in [1] (Sec. II-A
and II-B). We then recall a convergence result proved in [1]
for the case where all the nodes collaborate (K = Kc), that
shows to be a natural extension of well-known results in the
context of point-to-point PLLs [9] (Sec. II-C).

A. Basic discrete-time PLLs

As shown in fig. 2, at the kth collaborating node (k ∈ Kc)
and for each nth period, a timing error detector calculates the
time differences between the local clock and the timing of the
received pulses from the other nodes (see below on how to
handle propagation delays):

δtki(n) = ti(n)− tk(n) for i 6= k, (5)

and then computes a convex weighted sum of the time differ-
ences {δtki(n)}i6=k:

∆tk(n) =
KX

i=1,i6=k
αki · δtki(n), (6)

with αki ≥ 0 and
PK

i=1,i6=k αki = 1. Notice that the timing
error detector defined by (5)-(6) does not require each node
to be able to detect the pulses received from all the other
nodes (i.e., does not require a fully connected network). On
the contrary, by appropriately choosing the parameters αki,
one can give non-zero weight only to the detected pulses. A
specific choice that mimic this constraint is the one proposed
by [11] [12], whereby we have:

αki =
PkiPK

j=1,j 6=k Pkj
, (7)

so that each time difference δtki(n) is weighted proportionally
to the received power of the corresponding pulse. In practice,
it is shown in [1] that a simple instantaneous estimators of the
powers Pki based on the square of the discrete-time received
samples is enough to achieve satisfactory performance over a
bandlimited Gaussian channel. In the following we will use
the model (7), referring to [1] for implementation details.



The output of the timing error detector ∆tk(n) is fed to
a first-order loop filter ε(z) = ε0/(1 − μz−1), whose output
drives the local Voltage Control Clock (VCC)

tk(n+1) = tk(n)+ε0·∆tk(n)+μ(tk(n)−tk(n−1))+(1−μ)Tk.
(8)

Assuming first-order loop filters ε(z) amounts to considering
second-order discrete-time PLLs, according to the conven-
tional denomination. It should be also noticed that the update
rule (8) with Tk = 0 and μ = 0 was studied in the literature
on consensus of network of agents [13] [15].

B. Synchronization in presence of propagation delays
Let qij be the propagation delay between the ith and the jth

node (by symmetry, we have qij = qji). The time at which
the nth pulse emitted by node i (at time ti(n)) is recorded by
the kth is ti(n)+qki. It follows that the timing detection error
of the kth PLL in fig. 2 measures

KX
i=1,i6=k

αki · (ti(n) + qki − tk(n)) = ∆tk(n) +
KX

i=1,i6=k
αkiqki,

(9)
which differs with the basic scheme discussed above by the
constant term

PK
i=1,i6=k αkiqki. Therefore, defining

T̃k = Tk +
ε0
1− μ

KX
i=1,i6=k

αkiqki, (10)

it is easy to see that the update rule (8) holds even in the
case of propagation delays by substituting Tk with T̃k in
(10). Therefore, the presence of propagation delays has the
equivalent effect of an additional term in the period of the
local clocks.

C. Convergence of distributed discrete-time PLLs in absence
of malicious nodes [1]

Reference [1] studies the convergence of the system of
discrete-time PLLs (8) in case there are no malicious nodes
(K = Kc). In the following, we briefly review this result
for reference. Let us denote a possible common value for
the frequency of all nodes as 1/T (to be determined), i.e.,
tk(n) − tk(n − 1) = T for sufficiently large n, so that the
clock of the kth sensor can be written (for large n) as

tk(n) = nT + τk(n), (11)

where τk(n) denotes the relative phase with respect to the
common frequency 1/T . Moreover, let us define the vector
τ (n) = [τ1(n) · · · τK(n)]T .

As discussed in, e.g., [6] [13], the convergence of various
synchronization algorithms can be related to the properties of
the graph that describe the interconnections among different
clocks. In our scenario, a weighted directed graph G(V,E,A)
can be constructed with vertices V given by the K nodes and
set of weights A of the edges in E given by the parameters
αij . In particular, the weight of the edge between node j and
node i is given by αij . Related algebraic quantities are the
K×K Laplacian matrix of the network L, defined as [L]ii =

P
j 6=i αij and [L]ij = −αij , i 6= j and the system matrix

A = I−ε0L.
It is shown in [1] that, if the gain ε0 and the pole μ are

small enough, and the graph G is strongly connected2, then
the system (8) synchronizes the clocks of the K nodes to the
common period

T = vTT, (12)

where v is the normalized left eigenvector of matrix A corre-
sponding to eigenvalue 1 (ATv = v with 1Tv =1). However,
under the same assumptions, the timing phases τ (n) remain
generally mismatched and given for n→∞ by

τ (n)→ τ ∗ = 1·η+(1− μ)
L†

ε0
∆T, (13)

with (·)† denoting the pseudoinverse, η being a given constant
(see [1]) and vector [∆T]k = Tk−T. Notice that [1] (see also
[13] for the case μ = 0) showed that, in absence of frequency
mismatch among the clocks (∆T = 0), the network achieves
full frequency and phase synchronization to the value

τ (n)→ τ
∗
= 1 · vTτ (0). (14)

The results of [1] draw a correspondence between dis-
tributed discrete-time PLLs and the corresponding theory of
point-to-point PLLs [9]. In fact, it is stated that, in absence of
a frequency mismatch (∆T = 0), first and second-order PLLs
are able to attain perfect phase recovery (and in particular the
asymptotic common phase is (14)). However, with a frequency
mismatch ∆T 6= 0, only perfect frequency recovery is feasi-
ble (to the common value (12)), but with an asymptotic phase
error (see (13)). Moreover, second-order PLLs (μ 6= 0) help
reducing the asymptotic error according to (13), but increasing
μ → 1 leads to an instable system. We notice that similar
results in the context of continuously-coupled distributed PLLs
have been derived in [14]. Further discussion is provided by
some examples in the following.

III. RESILIENCE OF DISTRIBUTED DISCRETE-TIME PLLS

Here we evaluate the impact of malicious or faulty nodes on
the basic system of distributed discrete-time PLLs discussed
in the previous section via numerical simulation. Consider
a network of K = 20 randomly distributed nodes in a
square region of unit area. Among the K nodes, Km = 4
are malicious or malfunctioning and select at each step n
an independent random phase θk(n) (recall (1)), uniformly
distributed in the set (0, 1). The other Kc = 16 collaborating
nodes run the discrete-time PLL illustrated in fig. 2 and
discussed in the previous section. Constants Cki are selected as
Cki = 1, thus neglecting channel randomness due to fading or
shadowing. Fig. 3 shows the standard deviation of the clocks
of collaborating nodes νt(n), with

ν2t (n) =
1

Kc
·
X
k∈Kc

(tk(n)−
1

Kc

X
k∈Kc

tk(n))
2, (15)

2A graph is strongly connected if there exists at least one path linking
every pair of nodes. This condition is equivalent to requiring that matrix A
is irreducible [16].



versus time n for the basic scheme described in the previous
sections. Parameters are set as ε0 = 0.6 and μ = 0. Moreover,
the initial phases τk(0) = tk(0) are randomly and uniformly
selected in the set (0, 1), while for simplicity the local frequen-
cies are set to 1/Tk = 1/T = 1, k = 1, ...,K. The dashed line
correspond to the performance of the system with no malicious
nodes (K = Kc = 20), which as expected from the previous
section leads to an asymptotically vanishing error νt(n). On
the contrary, in a scenario with malicious nodes the timing
error increases linearly, thus showing that the network is not
able to reach full synchronization. This example demonstrates
the sensitivity of the basic synchronization scheme (8) to
attacks or faulty behavior.

IV. A RESILIENT ALGORITHM FOR DISTRIBUTED
DISCRETE-TIME PLLS

In this section, we propose a solution to the issue of attack
resilience of the synchronization scheme (8) illustrated in
the previous section. The basic scheme (8) prescribes the
evaluation by each collaborating node in Kc, say the kth, of the
weighted average ∆tk(n) of the clock errors {δtki(n)}Ki=1,i6=k
in (6). Using only this measure, it is not possible for the
nodes to recognize possible suspicious outliers that attempt
to disrupt the synchronization process. Toward this goal, a
possible solution is to evaluate the dispersion of the clock
errors {δtki(n)}Ki=1,i6=k around the mean ∆tk(n), by, e.g.,
computing the variance

σ2k(n) =
KX

i=1,i6=k
αki · (δtki(n)−∆tk(n))2, (16)

and then consider as outliers all the clock differences δtki(n)
that satisfy

|δtki(n)−∆tk(n)| > βσk(n), (17)

where β is some constant. The update (8) is performed by
considering only the set of clock differences {δtki(n)}Ki=1,i6=k
such that index i belongs to the set Ik(n) = {i 6= k:
|δtki(n)−∆tk(n)| ≤ βσk(n)}. In other words, the algorithm
(8) is modified by substituting ∆tk(n) withf∆tk(n) =

X
i∈Ik(n+1)

α̃ki · δtki(n) (18a)

α̃ki =
αkiP

j∈Ik(n+1) αkj
. (18b)

Notice that normalization of the coefficients α̃ki in (18b) is
needed to guarantee that (18a) is a convex combination, i.e.,P

i∈Ik(n+1) α̃ki = 1.

A. Numerical results
Here we follow on the example presented in Sec. III in order

to demonstrate the benefits of the secure algorithm proposed
above. Fig. 3 shows the standard deviation νt(n) of the secure
scheme for different values of the system parameter β in (17).
For β small enough, the error νt(n) remains constant over n,
thus showing that the secure scheme is able to achieve full
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synchronization within a limited (here 5%) timing error, as
opposed to the basic scheme of Sec. II-A. More insights are
provided by fig. 4, which shows the error νt(n) after n = 100
iterations versus parameter β for different fraction of malicious
nodes Km/K over the total K = 20. It can be seen that
a sufficiently small β leads to a timing error that increases
with Km/K in a significantly less severe way with respect to
the basic scheme. Notice that results similar to fig. 4 can be
obtained for different total number of nodes K.

In the previous example, we considered a frequency-
synchronous network. Here we discuss a scenario where the
local free-oscillation frequencies of the K nodes 1/Tk are
selected independently and uniformly in the set 1± 1% (k =
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1, ...,K). Notice that in case of a frequency-asynchronous
network, only perfect frequency synchronization is achievable
with an asymptotic phase error given by (13). The simulation
parameters are selected as in the previous example except the
pole, set to μ = 0.6 in order to reduce the phase error (13).
Fig. 5 shows the instantaneous frequency error

ν2f (n) =
1

Kc
·
X
k∈Kc

(Tk(n)−
1

Kc

X
k∈Kc

Tk(n))
2, (19)

where the instantaneous period Tk(n) reads Tk(n) = tk(n)−
tk(n− 1) for n = 100, versus the fraction of malicious nodes
Km/K (K = 20). Similarly to fig. 4, the secure scheme is
able to guarantee a smaller (here frequency) error for any value
of Km/K.

V. CONCLUDING REMARKS

In this paper, we addressed the problem of designing a
secure distributed synchronization algorithm that is resilient
to attacks by malicious nodes or to malfunctioning nodes in
emergency situations. We focused on distributed discrete-time
PLLs and proposed a modification of the basic scheme that
has been shown by simulations to provide satisfactory perfor-
mance. The method is based on the detection of ”suspicious”
clocks as outliers with respect to the received signal statistics.
A drawback of the technique is that it does not discriminate
between malicious or faulty nodes and benign nodes that
joined the network at a later stage where synchronization state
had already been achieved. To mitigate such a problem, the
system should be periodically re-initialized in order to allow
the newcomers to synchronize with the rest of the network.
Notice that this drawback is not shared by the basic scheme
where new nodes eventually modify the synchronized state of
the entire network. Therefore, it can be concluded that, for the
proposed scheme, resilience to attacks comes at the expense of

a loss in capability of adaptively synchronizing nodes added
at a later stage to the network.
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