
Distributed Digital Locked Loops
for Time/Frequency Locking

in Packet-Based Wireless Communication
Umberto Spagnolini†, Nicola Varanese†‡, Osvaldo Simeone‡, Yeheskel Bar-Ness‡

†Dipartimento di Elettronica e Informazione, Politecnico di Milano,
‡CWCSPR, New Jersey Institute of Technology

Email: {varanese, spagnoli}@elet.polimi.it,
osvaldo.simeone@njit.edu, barness@yegal.njit.edu

Abstract— In infrastructure-less wireless systems network-wise
time and frequency synchronization can be achieved by exchang-
ing mutual synchronization errors among neighboring nodes.
Cooperative synchronization is based on the use of distributed
digital locked loops (D-DLLs), as the extension to distributed
systems of the classical concept of (analog or digital) looked loops.
The convergence to a synchronized state depends ultimately
on the degree of connectivity of the network. D-DLLs can be
specialized for time or frequency synchronization by adopting
an appropriate error detector, but preserving the same control
loop. The focus of this paper is on distributed frequency syn-
chronization for packet-based communication. A novel detector
is proposed, which approximates the local mean frequency error
from the uncoordinated transmission of packets by neighboring
nodes. The performance of distributed frequency locked loops (D-
FLLs) is evaluated for a wireless network employing packet-based
cooperative relaying. Numerical validations are used to compare
different frequency synchronization protocols in terms of speed
of convergence and degradation of end-to-end performances.

I. INTRODUCTION

Cooperative communications schemes are capable to en-
hance capacity and reliability of wireless networks. A typical
underlying assumption is that all transmitted signals are syn-
chronous, so as to enable simple signal modeling and receiver
structures. However, synchronization errors cause performance
degradation when employing virtual MIMO or distributed
Space-Time Coding (STC) [1], thus calling for the design of
effective synchronization techniques. Network synchronization
strategies based on the iterative exchange of waveforms (e.g.,
wideband pulses [2]) over the wireless channel are receiving
an increasing interest since they do not need any sort of cen-
tralized coordination. Timing synchronization at the physical-
layer has been investigated in [3], by extending the concept and
design practices of phase looked loops to distributed systems.

In this paper we propose a general framework of network-
wise timing (symbol) and carrier frequency synchronization
via distributed digital locked loops (D-DLL) as an extension
of [3]. Rather than reconsidering the problem of symbol
synchronization by pulse-coupled oscillators [3], here we focus
on carrier frequency synchronization in packet-based cooper-
ative communication system. A frequency tracking algorithm
for systems with multiple transmitters and one receiver has

been investigated in [4] but it entails a relevant increase in
receiver complexity. Recently Parker et al. [5] narrowed the
problem to a system with two-transmitters and one-receiver
employing distributed STC (namely the Alamouti scheme).
Their frequency synchronization protocol is basically a master-
slave approach that does not easily scale to a larger number of
nodes and relies on the assignment of specific pilot sequences
to each node.

D-DLLs achieve a network-wise frequency-synchronous
state for any (large) number of nodes without the need of an
external master reference. Distributed frequency-locked loops
(D-FLLs) employ the same control loop as generic D-DLLs,
but necessitate a frequency error estimator (or detector in
locked loops terminology) detector capable to measure from
the superposition of transmitted packets the mean frequency
error with respect to neighboring active nodes. The contribu-
tion of each active node to the detector output is proportional
to the corresponding link quality, thus causing the convergence
properties to depend on the overall network connectivity. To
evaluate the performance of the algorithm, we consider a
multi-stage relay network where multiple layers of relays
forward information from a multi-antenna source to a single-
antenna destination node, similarly to [6]. Each relaying stage
encodes the information via a distributed Differential STBC
(DSTBC) [7][8] (differential schemes have the advantage that
their performance under frequency offsets is independent of
the information block length). With the aid of simulation
results, we compare different synchronization protocols appli-
cable to this case study. In particular, it is shown that D-FLL
is able to achieve the end-to-end Bit Error Rate (BER) of a
fully synchronous system after a small number of iterations.

II. SYSTEM MODEL

Let us consider a network of N nodes employing packet-
based communication (Fig. 1). We assume that the nodes
are already frame-synchronous, and that within each frame
a node can either listen or transmit a packet (half-duplex
constraint), or just stay idle, depending on the specific com-
munication and medium access protocols employed. Given a
pre-established frame (or large-grain) timing synchronization,

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

i k
dk,i

A[n] B[n]

LF LT

τi[n]

τj [n]

τk [n]

n−th frame

i−th node

j−th node

k−th node

xF
i (t;n) xT

i (t;n)

xF
j (t;n) xT

j (t;n)

yF
k (t;n) yT

k (t;n)

DATA

DATA

DATA

PREAMBLE

Fig. 1. Transmitted packets (i, j ∈ A[n]) and received signal (k ∈ B[n])
with respect to the ideal frame reference for a wireless network (top).

the transmission of the n-th packet from the i-th node still
retains a residual delay τi[n] with respect to the ideal frame
reference as in in Fig. 1. Each transmitted packet contains a
preamble for training and a data payload. The preamble is
further divided in two sections: the first part for frequency
synchronization xFi (t;n), and the second part for symbol (fine)
timing synchronization xTi (t;n). During the n-th frame, each
node belonging to the set A[n] transmits a packet, and the
superposition of (interfering) packets is processed by the nodes
in the receiving set B[n] in order to extract from the training
signals the correction signals for synchronization. Based on
the frame structure, each receiving node (say the k−th) can
segment the superposition of received preambles into the
signals for frequency yFk (t;n) =

∑
i∈A[n] hk,i[n]xFi (t;n) and

symbol yTk (t;n) =
∑

i∈A[n] hk,i[n]xTi (t;n) synchronization,
hk,i[n] being the channel between the pair of nodes (i, k).
D-DLLs for time and frequency locking differ only for the
specific error detector employed, which has to be designed
depending on the properties of the two received training
signals yFk (t;n) and yTk (t;n).

The base-band model of the preamble signals xmi (t;n) (with
m = F, T to denote frequency or time preambles, respectively)
is a sequences of Lm band-limited pulses modulating a sinu-
soid at the current local carrier frequency f i[n]

xmi (t;n) =
Lm−1∑
l=0

cmi,lg(t− τi[n] − lTs)ej(2πfi [n]t+φi[n]), (1)

where cmi,l ∈ {−1,+1} is the training sequence for frequency
(m = F) or symbol (m = T) synchronization and φ i[n] ∼
U(0, 2π) is an arbitrary phase. The signal g(t) is a root-raised
cosine pulse with bandwidth 1/2Ts. Frame synchronization

guarantees that timings {τk[n]}Nk=1 have moderately small
relative offsets, say |τk[n] − τj [n]| ≤ 3 ÷ 5Ts for k �= j.
The local frequency fk[n] and timing offset τk[n] are varying
frame-by-frame as they are adjusted by each node via the local
locking loops as discussed below.

The wireless channel hk,i[n] is modeled as frequency-flat
Rayleigh fading with power that depends on the geometric
distance dk,i according to the decaying law E[|hk,i[n]|2] =
d−αk,i . Channel is reciprocal hk,i[n] = hi,k[n] (due to time
division duplexing) and can change independently from frame
to frame. To simplify the analysis, all nodes transmit with the
same power and propagation delays are negligible compared
to the timing resolution of g(t), i.e., Ts.

∑
i∈A[n] āk,i[n]pk

i [n]

ēk[n] ψk[n]

z−1

1−z−1

1
1−z−1pk

k[n]

ε

ρ

Detector

Loop Filter

Fig. 2. D-DLL block diagram (āk,i = ak,i[n]/
∑

i∈A[n] ak,i[n]) .

III. DISTRIBUTED DIGITAL LOCKED LOOP (D-DLL)

Distributed frequency synchronization synchronization can
be considered a special case of D-DLL [3]. The conditions
for distributed network-wise synchronization can be decoupled
into the design of D-DLL and the connectivity properties of the
network. Both these aspects will be now revised in sequence.

Let pki [n] be the difference between the locking variable at
the i-th node and the local reference at the k-th node (i.e.,
pki [n] = τi[n] − τ0,k for symbol timing synchronization and
pki [n] = fi[n]−f0,k for frequency entrainment, where τ0,k and
f0,k are the local timing and carrier frequency references), the
loop control of the D-DLL for each node k ∈ B[n] is based on
the combination of errors of pki [n] (for i ∈ A[n]) with respect
to local reference pkk[n]:

ēk[n] =

∑
i∈A[n] ak,i[n]

(
pki [n] − pkk[n]

)
∑

i∈A[n] ak,i[n]
=

ek[n]∑
i∈A[n] ak,i[n]

.

(2)
Even if weights ak,i[n] can be arbitrarily chosen (and are
in practice varying on a frame-by-frame basis), a reasonable
choice for the weights would be ak,i[n] = |hk,i[n]|2, or
E[ak,i[n]] = d−αk,i , thus giving more credit to offsets measured
over more reliable channels (see also [3]). Based on the error
ēk[n], the k-th node can update the local parameter according
to the control loop of Fig. 2, namely

pkk[n] = pkk[n− 1] + ψk[n− 1] (3a)

ψk[n] = ψk[n− 1] + ε(1 + ρ)ēk[n] − εēk[n− 1], (3b)

where ε and ρ are tunable fixed parameters. The update rule
(3a)-(3b) describes a second-order discrete-time locked loop

where the locking variable is pkk[n]. Notice that for ρ = 0 the
update rule (3a) is an instance of linear consensus algorithms,
see, e.g., [9]-[10]. The choice ρ �= 0 adds an integration path
within the loop filter thus giving the possibility to track linear
drifts in the local references or reduce convergence times. In
D-DLL the error detectors approximate the metric (2) based
on the noisy received training signals yFk (t;n) and yTk (t;n)
for the frequency and time synchronization, respectively (see
below).

For D-DLL with (2) the steady-state and dynamic analysis
of the system with distributed control loops can be reduced to a
linear second-order vector dynamic system. For fixed networks
(i.e., A[n] = A, B[n] = B, and ak,i[n] = d−αk,i) with ρ = 0 the
convergence properties depend only on network connectivity
properties [3] [9] [10]. Faster convergence occurs when the
network has a high degree of connectivity without presenting
isolated (or almost isolated) clusters of nodes. In this respect,
the performance driver is the inter-node distances dk,i that
determines the geometric properties of the network (see [11]).

Recall that sets A[n] and B[n] are time-varying, since each
node switches between transmission to reception modes ac-
cording to some local rule. However, if the switching sequence
{A[n],B[n]} is periodic, the convergence analysis can be
reduced to an equivalent network, with connectivity properties
that depend on the network’s geometry and the switching
sequence adopted. In any case, convergence properties depend
on the degree of connectivity within each switching period
(the multi-hop protocol introduced in Sec. V shows that
connectivity changes on a frame-by-frame basis).

A. A general framework for network synchronization

D-DLLs have a wide applicability to carry out network-wise
synchronization procedures, being adaptable to a specific task
simply by changing the detector design.

1) Frame synchronization is a coarse timing synchronization
that ideally reduce the timing skewness down to the order of
one (or few) symbol interval(s) Ts. To this end, one can use
any of the methods to evaluate packet-wise timing errors (not
covered here).

2) Timing synchronization is based on yTk (t;n). Different
users transmit the same training sequence cTi,l = cTl so that
synchronization state is achieved when all the sequenced
transmitted by all the users are temporally aligned. It can be
shown that, with a proper design of cTl (employing, e.g., a PN
sequence), a conventional data-aided timing error detector can
be employed within the D-DLL.

3) Carrier frequency synchronization is based on yFk (t;n).
Choosing the training sequence as cFi,l = 1, for |τk[n] −
τj [n]| � Ts, or equivalently for LF large enough, the
transmitted signal for frequency training is equivalent to a
single-tone

xFi (t;n) = ej(2πfi[n]t+φi[n]), (4)

where we assume |fi[n] − fk[n]| � 1/Ts. The received
signal yFk (t;n) =

∑
i∈A[n] hk,i[n]ej(2πfi[n]t+φi[n]) is a com-

bination of sinusoids and error detector (2) measures the

mean frequency error. Whereas several data-aided frequency
difference detectors have been proposed in the past [12], it is
not immediate to recognize their applicability to D-DLLs.

IV. DESIGN OF THE FREQUENCY ERROR DETECTOR

In this section we address the problem of designing an ap-
propriate frequency difference detector that approximates (2)
to realize D-FLLs under the assumptions on network and node
operation as described above. The received RF signal is down-
converted to baseband through the local frequency reference
f0,k, filtered by matched filter and sampled at frequency 1/T s.
As a consequence, the sampled received signal at each node
k ∈ B[n] is (to simplify, the frame index n is omitted from
signals)

ỹFk (lTs) =
∑
i∈A[n]

hk,i[n]ej(2πf
k
i [n]lTs+φ̃k,i[n])+ w̃k(lTs), (5)

where fki [n] = fi[n] − f0,k, the phase φ̃k,i[n] ∼ U(0, 2π)
includes some timing errors, and noise w̃k(lTs) is white
Gaussian with power N0. The received signals for frequency
training after demodulation of (5) with the local offset f kk [n] =
fk[n] − f0,k are

yFk (lTs) =
∑
i∈A[n]

|hk,i[n]|ej(2π(fk
i [n]−fk

k [n])lTs+φk,i[n])+wk(lTs),

(6)
where φk,i[n] ∼ U(0, 2π) accounts for the overall phase offset,
and wk(lTs) is the Gaussian noise, still white with power N0.

+
−

z−1

1−z−1

ε̄

Loop Filter

fk
k [n]

c
o
s

si
n

1−z−2

1−z−2

∑ M−1
l=0LUT

M

ek[n]

2

2

2

2

NCO

Detector

ỹF
k (lTs;n)

Fig. 3. Block diagram for a D-FLL employing a Digital Balanced Quadri-
correlator (DBQC) as detector (ρ = 0). ε̄ is the loop gain ε normalized by
the denominator in (8) (LUT, Look-Up-Table).

The frequency error detector has to extract the error signal
(2) from yFk (lTs) in (6) (recall Fig. 2). If we let the training
for frequency synchronization to have LF → ∞, the error
(2) is the first moment of the energy spectrum of yFk (lTs). In
particular, the frequency error ek[n] in (2) can be approximated

(for LF = 2M + 1 odd, with M ≥ 1) as

ek[n]
 1
2π

Im

{
M−1∑
m=0

yFk ((2m+ 2)Ts)yF∗
k ((2m+ 1)Ts)+

−yFk (2mTs)yF∗
k ((2m+ 1)Ts)

}
, (7)

the normalized error (2) becomes

ēk[n]
 ek[n]

2Ts
∑M−1
m=0 |yFk ((2m+ 1)Ts)|2

. (8)

The expression in (7) can be shown to implement a Digital
Balanced Quadricorrelator (DBQC) detector as depicted in
Fig. 3. Analog BQC has been known for a long time to recover
large frequency offsets (on the order of the symbol interval T s)
[12]. DBQC in Fig. 3 is the natural extension of the Analog
BQC.

To summarize, Fig. 3 shows the D-DLL specialized for
distributed frequency synchronization in infrastructure-less
wireless network. It is worth to remark that for |f i[n] −
fk[n]| � 1/Ts and LF sufficiently large, the detector (8) is
equivalent to the linear detector in (2).

.

1 2

1

2

3

4

5
d

i
2i

2i+1

K
2K

2K+1

2(K+1)

D

Fig. 4. K stages multi-hop multi-relay network.

V. MULTI-HOP MULTI-RELAY NETWORKS

The problem of frequency synchronization in a multi-hop
multi-relay network (see Fig. 4) is helpful to illustrate the
capabilities of D-FLLs. A two-antenna source node wishes
to communicate to a single-antenna destination node. Since
the destination is out of the transmission range for reliable
reception from the source, K stages of two relay nodes aid
the communication [6] with a total number of N = 2(K + 1)
nodes. Hop-by-hop packet-based communication is performed
where each transmitted packet contains a preamble signal to be
employed for synchronization purposes. To isolate the impact
of frequency synchronization, hereafter we assume perfect
symbol and frame synchronization. To elaborate, during the
first frame the source node transmits a packet (preamble and
data) to the first stage of relays, which process it and forward
it to the next stage during the second frame. In the i-th frame,
the i-th relay stage process the signal received from the (i−1)-
th stage, until the message finally gets to the destination, at
the end of the (K + 1)-th frame.

Targeting a scenario with frequency (and phase) offsets,
here we consider the use of Differential STBC (DSTBC)
at each relay stage (see Appendix A). DSTBC does not
require channel estimation at the receiver side (at the price

of about 3 dB loss as compared to coherent STBC) [8]. In
addition, the probability of symbol error in the presence of
carrier frequency offsets can be shown to be independent of
the block (packet) length. According to the communication
protocol, the (i − 1)-th relay stage employs a DSTBC to
forward the message to the i-th stage, where each relay node
independently decodes (Decode and Forward relaying, DF)
and re-encodes for transmission in the following slot. Different
synchronization strategies can be devised for this scenario.

a - Open-loop technique. In this quite conventional strategy,
the local offset f kk [n] at the nodes of the receiving stage is
computed upon reception of the preamble signal from the
transmitting stage employing (8). Namely, each node adjusts
its frequency in a memoryless (one-shot, or open-loop) fashion
according to the instantaneous measurement only when it
decodes the data payload of the transmitted packet. This
scheme essentially assumes that the previous stages have
already achieved a good level of synchronization. However,
for small L, the one-shot frequency estimate is affected by
a relevant error already at stage 1 that propagates to the
following stages in the subsequent steps.

b - Closed-loop technique A. Similarly to the open-loop
technique above, only the nodes in the receiving stage update
their local offsets. However, a running frequency estimate is
performed according to (3a)-(3b), (8) (or equivalently Fig. 2-
3). Again, here each node updates its offset only when it is ef-
fectively receiving data, that is the set B[n] of Sec. II contains
only the receiving stage of relays (or the final destination), i.e.,
|B[n]| = 2 or 1. The local frequency is updated by combining
the new estimate provided by the detector (8) with previous
estimates, thus allowing for a progressive refinement of the
local parameter value.

c - Closed-loop technique B. In a large collaborative strategy
all the nodes that are currently not transmitting (except the
source) update their running frequency according to Fig. 2-
3. This scheme extends the previous technique by taking into
account that the distributed algorithm (3a)-(3b) shows faster
convergence times in well-connected networks. The simplest
way to improve the network connectivity in each frame (for
synchronization purposes) is to let all the nodes listen to each
synchronization signal transmitted in the network, whether or
not they are the final destination of the data payload.

VI. NUMERICAL RESULTS

In this section we compare the impact of the synchronization
schemes introduced in Sec. V on the performance of the
network in Fig. 4.

Each transmitted symbol has unitary power and each link
is affected by additive white Gaussian noise with variance
N0. The network SNR is defined as SNR = 1/N0. The
path loss is α = 3. The preamble signal is always assumed
to be transmitted with a 5 dB power boost with respect to
the information-bearing part of the packet. The employed
modulation is BPSK. The local carrier frequency reference at
the k-th node f0,k is random and it is assumed to be uniformly
distributed in the interval [−f0,max, f0,max]/Ts+ f0, f0 being

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

f0,max = 0.04

f0,max = 0.065

f0,max = 0 f0,max = 0.025

f0,max = 0.1

Fig. 5. End-to-end BER after K = 5 stages for the network in Fig. 4 without
frequency offset compensation (ε = 0, D/d = 1.2).

the nominal carrier frequency of the communication system.
As a measure of network-wise frequency synchronization, we
use the mean deviation ξ[n] of the frequencies fk[n], where
ξ2[n] = 1/N

∑N
k=1 E[(fk[n] − 1/N

∑N
k=1 fk[n])2], and the

expectation is taken over different realizations of the initial
frequencies, channels and noise. The ratio between the inter-
stage distance and the intra-stage distance is D/d = 1.2. As
we assume that local carrier references are not drifting in time,
we set ρ = 0 for closed-loop techniques (first order D-DLL).
Also, trading off lock accuracy versus convergence speed, we
set the loop gain ε = 0.35. Finally, the training length is
LF = 11 samples for both open and closed-loop techniques.

Fig. 5 shows the degradation in the end-to-end BER due to
increasing frequency offsets among the nodes in the network,
in the case where no frequency offset correction takes place
(ε = 0). In this case K = 5 stages. In ideal conditions
(f0,max = 0), the communication scheme provides a diversity
gain of 2, while a maximum spread f0,max = 0.04 (corre-
sponding to ξ[0] = 2.2 · 10−2) is sufficient to nullify the
diversity gain of the multi-relay scheme, raising the slope of
the curve from 2 to approximately 1 (for this range of SNR
values).

In the following simulation results, we consider the end-to-
end transmission of p packets, corresponding to n = (K +
1)p frames, and evaluate the corresponding mean frequency
deviation ξ[p] and the end-to-end BER associated with each
packet. In Fig. 6, the BER obtained with the closed-loop
scheme B is shown varying the number of transmitted packets
p (K = 5 stages, maximum spread f0,max = 0.15). It is seen
that p = 4 packets are sufficient to yield a sufficient degree
of synchronization that entails a negligible loss as compared
to perfect synchronization (at least for this range of SNR
values).

Fig. 7 compares the speed of convergence of the three

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

f0,max = 0

p = 5 − 10

p = 4

p = 3

p = 2

p = 1

Fig. 6. End-to-end BER improvement for the closed-loop algorithm B
(f0,max = 0.15, K = 5, D/d = 1.2, ε = 0.35, LF = 11).

algorithms discussed in the previous section, in terms of the
mean frequency deviation ξ[p], (K = 3 stages, f0,max = 0.15
and SNR = 15dB). The open loop approach is limited by

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

p [packets]

ξ[
p]

open−loop

closed−loop B

closed−loop A

Fig. 7. Mean deviation of the frequencies fk[n] for different algorithms
(f0,max = 0.15, K = 3, D/d = 1.2, ε = 0.35, LF = 11, SNR = 15dB).

the very few samples employed (LF = 11), whereas both
the closed-loop algorithms have an error floor which is due
to additive noise at the output of the detector. The algorithm
B converges faster, but at the price of a higher noise floor.
However, this impairment is immaterial to BER performance
(see below). Algorithm B achieves faster convergence times
essentially because the equivalent graph has better connectivity
properties. Also, scheme B is limited by a higher noise floor
as it causes more noise to be exchanged among the nodes.

Finally, in Fig. 8 we verify the impact of the performance

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

p [packets]

B
E

R

closed−loop A
open−loop
closed−loop B
no offsets

SNR = 20dB

SNR = 15dB

SNR = 15dB

SNR = 20dB

(f0,max = 0)

Fig. 8. End-to-end BER for different algorithms (f0,max = 0.15, K = 3,
D/d = 1.2, ε = 0.35, LF = 11, SNR = 15, 20dB).

in Fig. 7 on the end-to-end BER as a function of the packet
index p (K = 3 stages and f0,max = 0.15). Despite of a higher
error floor, the algorithm B needs only p = 4 packets to get
close to the synchronous system performance for both SNR
values, while the scheme A requires at least p = 7 packets. The
open loop technique would need a longer preamble sequence
to improve the performance.

VII. CONCLUSIONS

In packet-based wireless communication, distributed digital
locked loops (D-DLLs) are an effective solution to attain
network-wise synchronization, without any master reference.
In this paper we introduced an application of D-DLLs,
whereby a state of (symbol) timing and frequency synchro-
nization can be achieved by the uncoordinated exchange of
training signals among nodes. In particular, we proposed a
novel frequency detector for distributed frequency synchro-
nization employing D-DLLs. Further, a viable integration of
the proposed algorithm has been studied within a multi-
stage multi-relay network employing DSTBC and packet-
based communication. The distributed synchronization pro-
cedure has been shown to be able to mitigate the effect of
frequency offsets more efficiently than other open and closed
loop techniques.

APPENDIX A: DSTBC WITH FREQUENCY OFFSETS

Without loss of generality, here we consider the the l-th
Space-Time codeword transmitted during the n-th frame from
the i-th stage to the (i+ 1)-th stage (nodes 2i and 2i+ 1 are
transmitting, see Fig. 4). Also, we focus on the processing at
node 2i+ 2 within the (i + 1)-th stage, as the two receiving
nodes decode independently of each other.

Let the input alphabet X = {Xl} be a finite set of
2 × 2 unitary matrices. The differentially encoded Space-
Time codeword actually transmitted over the channel is W l =

Wl−1Xl, with W0 = I. As suggested in [8], Xl is chosen
as a normalized Alamouti code matrix, such that XH

l Xl = I.
Assuming a synchronous system, the 1 × 2 received vector
signal over two consecutive symbol periods is

yl = hWl + nl = yl−1Xl − nl−1Xl + nl, (9)

where h = [h2i+2,2i[n], h2i+2,2i+1[n]] is the channel between
the transmitting nodes (2i, 2i+1) and the receiving node 2i+2
(constant over the whole frame period), and the additive noise
nl ∼ CN (0, N0I). From (9), as in differential modulation for
point-to-point channels, the signal vector received at time l−1
is the effective channel at time l, and the information-bearing
signal is corrupted by two noise terms.

In case of different frequency offsets at the two transmitting
nodes, the received vector signal (9) can be written as

yl = h
[
w1,le

jω12lTs −w∗
2,le

jω1(2l+1)Ts

w2,le
jω22lTs w∗

1,le
jω2(2l+1)Ts

]
+ nl, (10)

where ω1 = 2π(f2i[n] − f2i+2[n]) and ω2 = 2π(f2i+1[n] −
f2i+2[n]) are the offsets between the two transmitting nodes
and the receiving node. Due to the different carrier frequencies,
the effective Space-Time codeword is no more orthogonal,
generating Inter-Symbol-Interference at the output of the de-
tector.

REFERENCES

[1] J. Mietzner, J. Eick, and P. A. Hoener, “On distributed Space-Time
Coding techniques for cooperative wireless networks and their sensitivity
to frequency offsets,” in Proc. of 2004 ITG Workshop on Smart Antennas.

[2] Y. W. Hong and A. Scaglione, “A scalable synchronization protocol for
large scale sensor networks and its applications,” IEEE J. Select. Areas
Commun., vol. 23, p. 10851099, May 2005.

[3] O. Simeone and U. Spagnolini, “Distributed synchronization for wire-
less sensor networks with couple discrete-time oscillators,” in Eurasip
Journal on Wireless Commun. and Networking, vol. 2007, July 2007,
pp. 3153–3167.

[4] D. Veronesi and D. L. Goekel, “Multiple frequency offset compensation
in cooperative wireless systems,” in Proc. of IEEE GLOBECOM 2006.

[5] P. Parker, P. Mitran, D. W. Bliss, and V. Tarokh, “On bounds
and algorithms for frequency synchronization for collaborative
communication systems.” [Online]. Available: http://arxiv.org/PS cache/
arxiv/pdf/0704/0704.3054v1.pdf

[6] S. Borade, L. Zheng, and R. Gallager, “Amplify-and-forward in wireless
relay networks: rate, diversity, and network size,” IEEE Trans. Inform.
Theory, vol. 53, pp. 3302–3318, Oct. 2007.

[7] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block
coding,” IEEE Trans. Commun., vol. 54, pp. 1195–1206, July 2006.

[8] E. G. Larsson and P. Stoica, Space-time block coding for wireless
communications. Cambridge Univeristy Press, 2003.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Automat.
Contr., vol. 49, pp. 1520–1533, Sept. 2004.

[10] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, pp.
215–233, Jan. 2007.

[11] O. Simeone, U. Spagnolini, G. Scutari, and Y. Bar-Ness, “Physical-
layer distributed synchronization in wireless networks and applications,”
Physical Communication, pp. 67–83, Mar. 2008.

[12] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital
Receivers. Springer, 1997.

