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Abstract— The establishment of a common frequency refer-
ence in a distributed wireless network is a critical factor in
enabling cooperative communication strategies. In this paper
we employ distributed locked loops to entrain the frequencies
of autonomous nodes with wireless communication capabilities.
Leveraging recent results from the literature on distributed
locked loops, the main problem becomes that of designing
local frequency difference detectors. After proposing a novel
detector, some insight on the dynamical properties of the overall
synchronization system are provided and substantiated through
the aid of simulation results.

I. INTRODUCTION

The development of decentralized procedures capable of
establishing a network-wise time and frequency reference in
a wireless network is particularly appealing. As an exam-
ple, time and frequency synchronization enable cooperative
transmissions from multiple nodes without requiring complex
receiver structures (see, e.g., [1])1. Toward this goal, physical
layer synchronization protocols are especially attractive due to
their features of energy-efficiency, robustness and scalability
as compared to packet-level techniques [3].

Until recently, the research activity on distributed synchro-
nization has concentrated on timing synchronization [3][4].
Inspired by the pulse-coupling mechanism [3], an efficient
protocol for distributed timing synchronization is devised in
[4] based on classical work on network synchronization via
coupled phase-locked loops [5] and generalizing discrete-time
consensus models for networks of agents [6].

In this paper, we focus on the problem of carrier frequency
synchronization among distributed wireless nodes. It should be
noted that, while carrier phase offsets can be easily compen-
sated by the use of non-coherent communication techniques
(or other transmission schemes that are insensitive to phase
offsets, e.g., Space-Time Coding), frequency offsets - due
to local oscillator instabilities or Doppler shifts - are much
more deleterious, causing relevant signal distortion. Also, in
a wireless environment, where the links between any two
nodes introduce different phase shifts, it seems impractical to
establish a network-wise phase coherent state, while frequency
synchronization appears technologically feasible. Recently, [7]
has investigated the problem of estimating and adjusting the

1However, see [2] for an asynchronous approach to simple wireless net-
works.

local oscillator frequencies in a two-transmitters-one-receiver
system employing Distributed Alamouti STC. The algorithm
cannot easily scale to a higher number of nodes and relies on
the assignment of specific pilot sequences to each node.

Building mainly on [4] and [6], we propose an algorithm
based on distributed frequency-locked loops (DFLL) that is
capable to achieve a network-wise frequency synchronous
regime for any number of nodes and without any external
master reference. We consider a training phase where each
node broadcasts a truncated sinusoidal signal with the local
carrier frequency. At each node, the local FLL is fed by the
output of a frequency difference detector, that extracts from the
received signal the weighted sum of the frequency offsets with
respect to the other nodes. An approximated analysis of the
resulting dynamic system is carried out using tools from the
literature on consensus algorithms on random graphs [8][9].
Moreover, numerical results validate our findings.

II. SYSTEM MODEL AND MAIN ASSUMPTIONS

The network we consider is composed of K nodes, where
the k-th node’s local carrier frequency is fk. The objective of
the network is to reach network-wise frequency synchroniza-
tion through the exchange of specific waveforms. We assume
that the nodes already share a common notion of time, having
reached an agreement on a large-scale timing clock (frame
synchronization) using one among several feasible algorithms,
e.g., [3] [4]. This enables the time axis to be divided into time-
slots, or observation intervals, each of duration T0 seconds.
Focusing on a training phase, we assume that, in any n-th slot,
each k-th node broadcasts a sequence of band-limited pulses
modulating a sinusoid at the current local carrier frequency
fk[n]. Namely, the base-band model of the transmitted signal
in the n-th period, for t within the observation window T0 is

xk(t;n) =
L−1∑
l=0

g(t− τk[n] − lTs)ej(2πfk[n]t+φk[n]), (1)

where τk[n] is a residual timing offset with respect to the ideal
reference, φk[n] is the initial carrier phase and Ts = T0/L is
the pulse period. The signal g(t) is assumed to be a Nyquist
pulse with bandwidth 1/2Ts, so that the system RF bandwidth
is 1/Ts. The delay τk[n] and the carrier phase φk[n] are due
to residual frame asynchronism and switching delays. In the



following, we assume τk[n] � Ts and fk[n] � 1/Ts. Notice
that the current local frequency fk[n] is adjusted via the local
FLL as discussed below, while the phase φk[n] can be assumed
uniformly distributed in [−π, π].

The wireless channel between any pair of nodes (i, k)
is modeled as a time-invariant complex scalar gain hk,i =
|hk,i|ejψk,i , where the energy of the channel is inversely
proportional to the geometric distance between the two nodes
according to a power law |hk,i|2 ∝ d−αk,i . To simplify, we
assume that all the nodes transmit with equal power, the
channel is reciprocal hk,i = hi,k (due to time division
duplexing), and propagation delays are negligible compared
to the pulse period Ts.

A. Distributed Frequency Locked Loops (DFLLs)

In this subsection we review the basic principle underlying
the DFLLs. In order to focus on the basics, we make the ideal
assumption (to be removed in the next sections) that each node
is able to calculate the frequency offsets between its local
oscillator and the other oscillators in the network. Namely,
let fki [n] be the difference between the carrier frequency at
the i-th node and the local reference at the k-th node (i.e.,
fki [n] = fi[n]− f0,k, where f0,k is the local carrier frequency
reference), each node k is assumed to be able to compute a
weighted sum of frequency offsets

ēk[n] =

∑
i�=k ak,i

(
fki [n] − fkk [n]

)
∑
i�=k ak,i

=
ek[n]∑
i�=k ak,i

, (2)

where ak,i are real positive weights depending on the physical
characteristics of the directed link connecting the i-th node
with the k-th node. Based on the error ēk[n], each k-th node
can update the local frequency as

fkk [n+ 1] = fkk [n] + εēk[n], (3)

where fkk [n] is the k-th node local frequency offset in the n-th
time-slot and ε is the step size.

It was shown in [4] that the update rule in (3) can be
regarded as a first-order discrete-time locked loop, where, in
our case, the locking variable is the frequency fi[n] (Frequency
Locked Loop - FLL), and the input to the loop is a weighted
sum of the frequencies employed by the other nodes. The
update rule (3) is also an instance of consensus algorithms,
see, e.g., [8][6].

It is useful for convergence analysis to interpret (3) with
the aid of graph-theoretic tools. Following the lines of [6][4],
the network can be modeled as a weighted directed graph
G = (V, E ,A) of order K, where V = 1, ..,K is the set
of nodes, E ⊆ V × V is the set of edges weighted by
the off-diagonal elements of the K × K adjacency matrix
[A]k,i = ak,i ([A]i,i = 0). The graph Laplacian L is defined
as L = D − A where [D]k,k = dk is the diagonal matrix
of the in-degrees dk =

∑
i�=k ak,i. A directed graph is said

to be strongly connected if there exist a directed path (i.e., a
collection of edges in E) connecting any pair of nodes in the
graph. Operating a change of variable fi[n] = fki [n] + f0,k,
and defining the vector containing the frequencies of all nodes

as f [n] = [f1[n], ..., fK [n]]T , we can express (3) compactly as
the vector difference equation

f [n+ 1] = f [n] − εD−1Lf [n] = P̄εf [n]. (4)

where P̄ε = I−εD−1L is the normalized Perron matrix of the
graph G with parameter ε. By construction, the matrix P̄ε is
nonnegative and row stochastic since P̄ε · 1 = 1. By reaching
a synchronized state, we mean that all the K nodes converge
to the same value f∗1 = f∗2 = ... = f∗K = f∗. As shown in
[6], a synchronization (consensus) point f∗ = f∗1 is globally
asymptotically stable for all initial states f [0] if the directed
graph G is strongly connected and ε ∈ (0, 1).

In the following, we intend to employ (4) to achieve
frequency synchronization in a network of sensors with radio
communication capabilities. Differently from the idealized
model presented above, the frequency is a parameter embed-
ded in the waveform (1) transmitted by each node. Therefore,
a suitable frequency difference detector has to be devised in
order to extract the desired error signal ēk[n] (2) from the
received signal samples.

III. DESIGN OF THE FREQUENCY DIFFERENCE DETECTOR

In this section we address the problem of designing an ap-
propriate frequency difference detector that approximates (2)
to realize DFLLs under the assumptions on network and node
operation as described above. We further assume that every
node can operate with full duplex capabilities. This means
that during a time-slot each node is both transmitting its own
signal while receiving signals from the other nodes2 . During
any time-slot, due to the broadcast nature of the wireless
medium, a superposition of all the signals (1) transmitted in the
network appears at the input k-th node receiving interface. The
received RF signal is down-converted to baseband through the
local frequency reference f0,k, filtered by matched filter and
sampled at frequency 1/Ts. As a consequence, the sampled
received signal at each node k is

ỹFk (lTs;n) =
∑
i∈A[n]

hk,i[n]ej(2πf
k
i [n]lTs+φ̃k,i[n]), (5)

where fki [n] = fi[n]− f0,k and the phase φ̃k,i[n] includes the
timing offset τk,i[n] (overall due to timing errors and propa-
gation delays). For simplicity, we are neglecting the Additive
Gaussian Noise (AGN) at the receiving interface as its impact
will be reported elsewhere. For the time being, we refer the
reader to the literature for viable general countermeasures to
convergence impairments due to AGN [8]. The received signal
after demodulation of (5) with fkk [n] = fk[n] − f0,k is

yFk (lTs;n) =
∑
i∈A[n]

|hk,i[n]|ej(2π(fk
i [n]−fk

k [n])lTs+φk,i[n]),

(6)

2Introducing half-duplex constraints, namely transmit/receive cycles, would
lead to a time-varying network topology. While this scenario is outside the
scope of this work, we refer the reader to [10] for an analysis of convergence
conditions for general coupled dynamical systems.



where φk,i[n] = −2πfi[n]τk,i[n] + ψk,i + (φi[n] − φk[n])
is the overall phase offset between the i-th and the k-th
node. It is important to remark here that, due to the different
contributions, the phase φk,i[n] is neither reciprocal (φk,i[n] �=
φi,k[n]), nor symmetric (φk,i[n] �= −φi,k[n]). Overall due to
the uniform distribution of φi[n], φk,i[n] is also uniform on
[−π, π], and independent of fi[n].

The signal in (6) is the input of the frequency difference
detector, which has to extract the desired error signal (2). To
allow useful approximations, let T0 → ∞ so that setting ak,i =
|hk,i|2, and recalling (6), it can be shown that

ek[n] =
∑
i�=k

ak,i (fi[n] − fk[n]) =
∫ ∞

−∞
f · |Yk(f ;n)|2df,

(7)
and

ēk[n] =
ek[n]∑
i�=k ak,i

=

∫ ∞
−∞ f · |Yk(f ;n)|2df∫ ∞
−∞ |Yk(f ;n)|2df , (8)

where |Yk(f ;n)|2 is the energy spectrum of the received signal
yk(lTs;n) (6). As shown in the Appendix, for a sampling
interval Ts and L odd (L ≥ 3), the error (7)-(8) becomes

ek[n] 
 1
2π

Im

{ L−3
2∑

m=0

yk((2m+2)Ts;n)y∗k((2m+1)Ts;n)+

−yk(2mTs;n)y∗k((2m+ 1)Ts;n)

}
, (9)

ēk[n] 
 ek[n]

2Ts
∑L−3

2
m=0 |yk((2m+ 1)Ts;n)|2

. (10)

Both (7) and (8) could be also evaluated using DFT-based
spectral methods. In Sec. V, the performance of (10) is
compared to a detector based on the FFT of the L samples of
the received signal yk(lTs, n).

IV. DISCUSSION ON THE CONVERGENCE OF THE

PROPOSED ALGORITHM

Given the signal model in (6) and the frequency difference
detectors in (9) and (10), in this section we study the properties
of the resulting dynamical system of DFLLs that approximates
(4). By plugging (6) in (9), after tedious algebraic computa-
tions, it can be shown that the error signal (9) reads

ek 
 L

π

∑
i�=k

wk,i sin(2π(fki − fkk )Ts), (11)

where the real valued weights

wk,i = |hk,i|2 + vk,i, (12)

are random variables with a random coupling term

vk,i =
|hk,i|
L

×

∑
l �=k,i

|hk,l|
L−3

2∑
m=0

cos(2π(fki − fkl )(2m+ 1)Ts + φk,i− φk,l).

(13)

Notice that we have neglected the dependency on the iteration
index n in order to simplify the notation. In order to derive
the output of the normalized detector (10), we divide (11) by∑
i�=k ak,i approximated in (22). It can be shown that

∑
i�=k

ak,i 
 2Ts

L−3
2∑

m=0

|yk((2m+ 1)Ts;n)|2 =

2LTs
∑
i�=k

(|hk,i|2 + vk,i) = 2LTs
∑
i�=k

wk,i, (14)

thus yielding the normalized output

ēk 
 1
2πTs

∑
i�=k wk,i sin(2π(fki − fkk )Ts)∑

i�=k wk,i
. (15)

Each normalized weight wk,i/
∑
i�=k wk,i is a non-linear com-

bination of the wk,i and is in general non-zero mean. From
(11), we can see that the devised detector (9) (and (10))
has a nonlinear sinusoidal characteristic, as a consequence
of the discretization of the differential operator that led to
the approximation (9)-(10) (see the Appendix for details).
Increasing the sample rate 1/Ts (or equivalently the sys-
tem bandwidth) would linearize the characteristic. Further, it
should be noted that if we let the number of available samples
within the observation interval L → ∞, the coupling term
vk,i in (12) tends to zero and we have perfect decoupling of
the contributions from different nodes, each weighted by the
modulus of their respective channel, as in the ideal detector (2).
In the following, we further study the above mentioned cases
of large bandwidth and large observation window T0. For a
finite L, the coupling vk,i depends on the random phases φk,i.
In particular, the coefficients vk,i are in general zero-mean
correlated random variables.

Large bandwidth and L = 3: Assume L = 3 and fi[n] �
1/Ts, so as to linearize the error signal (15) and thus obtain
that the linear dynamical system of DFLLs (3) reduces to

fkk [n+ 1] = fkk [n] + ε

∑
i�=k wk,i[n](fki [n] − fkk [n])∑

i�=k wk,i[n]
, (16)

where the distribution of wk,i[n] depends only on the random
phases φk,i[n]. Equation (16) can be cast into vector form
analogously to (4) as

f [n+ 1] = f [n] − εD−1[n]L[n]f [n] = P̄ε[n]f [n], (17)

where we emphasized the dependency of P̄ from the loop
gain ε. From (12), it is easy to see that L[n] = L + Lv[n],
D[n] = D + Dv[n], where Lv[n] and Dv[n] depend linearly
on the vk,i, and are therefore random matrices with zero-mean



entries. The nonlinear dependence of the system matrix P̄ε[n]
on the weights wk,i does not allow us to make any assumption
on its distribution. We can only say that P̄ε[n] and P̄ε[m] are
independent and identically distributed for n �= m. The system
in (17) is a stochastic Linear Time Variant dynamical system
(or linear system with multiplicative noise), which is quite
well-studied in the literature on stochastic control theory.

Let the (K − 1) × K matrix Q be such that QT1 =
0 and QTQ = IK−1. It was shown in [11] [9] that a
sufficient condition for almost sure (i.e., with probability 1)
synchronization is that the eigenvalues of the matrix

Πε = E[P̃T
ε [n] ⊗ P̃T

ε [n]] (18)

be inside the unit circle, where P̃ε[n] = QT P̄ε[n]Q and
⊗ denotes the Kronecker product. Therefore, the maximum
admissible value of the loop gain for which the system reaches
consensus w.p.1 is the smallest ε that forces the eigenvalues of
Πε to leave the open unit circle. It is interesting to note how, in
the case of a deterministic system matrix P̄ε, this requirement
corresponds to the well known constraint on the subdominant
eigenvalue of the system matrix λ2(P̄ε) < 1 [6].

Large observation window: Assume L → ∞ (T0 → ∞),
we are left with a deterministic nonlinear dynamical system
of the form

fkk [n+ 1] = fkk [n]+

ε
1

2πTs

∑
i�=k |hk,i|2 sin(2π(fki [n] − fkk [n])Ts)∑

i�=k |hk,i|2
. (19)

The periodicity of the detector response could cause dangerous
aliasing effects, possibly letting a node lock on a frequency
that is outside the system bandwidth (false lock event). A
convergence analysis of a system analogous to (19) was
carried out in [12], where it was noticed that, for an all-to-
all connection topology, a sufficient condition to avoid false
locks is fi[0] ∈ (γ−1/4Ts, γ+1/4Ts) where γ is an arbitrary
constant. This leads us to conclude that, in a general topology
with finite L, the proposed detector could be employed for
fine frequency tuning only when fki [0] � 1/Ts.

V. NUMERICAL SIMULATIONS

In this section we validate the discussion in Sec. IV for a
system where K = 4 nodes are grouped in two clusters as in
Fig. 1. The channels are fixed complex scalars with amplitude

1

2

3

4
d

D

Fig. 1. The simple topology considered in Sec. V.

|hk,i| = d
−3/2
k,i . The starting point is always assumed to

be f [0] = f0 + [0.15, 0.05,−0.05,−0.15]T /Ts, where f0 is

the nominal carrier frequency of the communication system..
In this setting, for the deterministic system (19) (that is for
L → ∞) there is no possible occurrence of false locks. Due
to the random nature of the connections, for finite L false
locks do occur but with a rapidly decreasing probability as L
grows. For the sake of clarity, the following simulation results
do not include the cases where a false lock occurs. We will
compare the proposed algorithm with a FFT-based algorithm,
which estimates the first moment of the power spectrum of the
received signal through the FFT of the L samples available.

In Fig. 2 we show the mean deviation
√
E[ξ2[n]] of

the frequency vector f [n] versus n for different values of
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Fig. 2. Mean deviation of the frequency vector f [n] for different algorithms
(D/d = 1.2, ε = 0.15, L = 3, 5, 21).

L = 3, 5, 21, where E[ξ2[n]] = 1/4E[
∑4

k=1(fk[n] −
1/4

∑4
k=1 fk[n])2], and the expectation is taken over different

runs of the algorithm. In this case D/d = 1.2, ε = 0.15, and
for L = 3 the eigenvalues of the matrix Πε can be shown
by numerical results to be all inside the unit circle. Indeed,
the nonlinear system is able to achieve consensus w.p.1 for
all the values of L, greater L simply improving convergence
speed. As far as the occurrence of false lock events, with
L = 3 the probability of a false lock is 0.0148, and is
already zero for L = 5. The FFT-based algorithm is inevitably
limited by the few frequency samples available. Despite an
intrinsic resilience to false locks, the convergence speed of
this algorithm dramatically reduces after few iterations, and
it can achieve synchronization only to a finite precision for a
practical number of iterations.

Finally, in Fig. 3 we show how the use of L > 3 is
beneficial in order to control the behavior of the proposed
synchronization algorithm. In particular we consider the case
D/d = 2 and ε = 0.35, where for L = 3 the eigenvalues
of Πε do not lie all inside the unit circle. From Fig. 3 it is
seen that for L = 3 the algorithm is not able to approach
a sufficient degree of synchronization, and the probability of
false locks is also intolerably high in this case. Indeed, for
any value L > 3 the proposed algorithm achieves a lower
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Fig. 3. Mean deviation of the frequency vector f [n] for different algorithms
(D/d = 2, ε = 0.35, L = 3, 5, 21).

mean deviation as compared to the FFT-based method3 with
practically no occurrences of false locks.

VI. CONCLUSIONS

In this work, coupled discrete-time locked loops have been
investigated as means to attain frequency synchronization
within an ensemble of nodes with wireless communication ca-
pabilities. Specifically, a novel frequency detector has been de-
signed for this purpose, with a lower complexity as compared
to FFT-based solutions. The convergence properties of the
resulting dynamical system have been studied with the aid of
known results from control theory and computer simulations.
Numerical results show that, when the nodes in the network
are close to each other, the proposed algorithm is capable
of achieving synchronization already with three samples per
observation interval. On the other hand, a larger number of
time samples allows robust frequency synchronization under
general network conditions.

APPENDIX

The normalized error (8) can be approximated via an
estimate of the first-order moment of the power spectral
density |Yk(f ;n)|2. Based on this idea, here we derive the
approximations (10) and (9), by adapting the treatment in
[13]. Let us start considering the error signal in (7). By
recalling that |Yk(f ;n)|2 is the Fourier transform of the
deterministic autocorrelation of the received signal ryk

(t;n) =∫ +∞
−∞ yk(t + τ ;n)y∗k(τ ;n)dτ , it is possible to write (7) in

the time domain as ek[n] = 1
2πj

∫ +∞
−∞ j2πf |Yk(f ;n)|2df =

1
2πj

dryk
(t;n)

dt

∣∣∣
t=0

. Since we are looking for a sampled de-
tector, we approximate the continuous-time autocorrelation
with the autocorrelation of the sampled input r̃yk

(mTs;n) =
Tsyk(mTs;n)∗y∗k(−mTs;n). By employing a first-order finite

3It should be noted how the proposed algorithm has a computational
complexity only linear in L, while the FFT algorithm requires O(L log L)
multiplications.

difference in lieu of the derivative, (7) can be approximated
by

ek[n] 
 1
2πj

r̃yk
(Ts;n) − r̃yk

(−Ts;n)
2Ts

, (20)

By expliciting the autocorrelation in (20), for L odd it can be
shown that the detector (7) is approximated by

ek[n] 
 1
2π

Im

{
+∞∑

m=−∞
yk((2m+2)Ts;n)y∗k((2m+1)Ts;n)

−yk(2mTs;n)y∗k((2m+ 1)Ts;n)

}
. (21)

Since we intend to use the normalized error signal ēk[n] =
ek[n]/

∑
i�=k ak,i, it is also easy to see that

∑
i�=k

ak,i 
 2Ts
+∞∑

m=−∞
|yk((2m+ 1)Ts;n)|2, (22)

following the footsteps of the previous treatment. Here a
sampling period 2Ts was used in order to simplify the detector.

Finally, in both cases, we have to account for a finite ob-
servation interval T0 = LTs, thus limiting all the summations
on a finite range of values, yielding the desired result in (9)
and (10).
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