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ENERGY HARVESTING-AWARE DESIGN OF WIRELESS
NETWORKS

by
Fabio Iannello

Recent advances in low-power electronics and energy-harvesting (EH) technologies

enable the design of self-sustained devices that collect part, or all, of the needed

energy from the environment. Several systems can take advantage of EH, ranging

from portable devices to wireless sensor networks (WSNs). While conventional design

for battery-powered systems is mainly concerned with the battery lifetime, a key

advantage of EH is that it enables potential perpetual operation of the devices,

without requiring maintenance for battery substitutions. However, the inherent

unpredictability regarding the amount of energy that can be collected from the

environment might cause temporary energy shortages, which might prevent the

devices to operate regularly. This uncertainty calls for the development of energy

management techniques that are tailored to the EH dynamics.

While most previous work on EH-capable systems has focused on energy

management for single devices, the main contributions of this dissertation is the

analysis and design of medium access control (MAC) protocols for WSNs operated

by EH-capable devices. In particular, the dissertation first considers random access

MAC protocols for single-hop EH networks, in which a fusion center collects data from

a set of nodes distributed in its surrounding. MAC protocols commonly used in WSNs,

such as time division multiple access (TDMA), framed-ALOHA (FA) and dynamic-FA

(DFA) are investigated in the presence of EH-capable devices. A new ALOHA-based

MAC protocol tailored to EH-networks, referred to as energy group-DFA (EG-DFA),

is then proposed. In EG-DFA nodes with similar energy availability are grouped

together and access the channel independently from other groups. It is shown that



EG-DFA significantly outperforms the DFA protocol. Centralized scheduling-based

MAC protocols for single-hop EH-networks with communication resource constraints

are considered next. Two main scenarios are addressed, namely: i) nodes exclusively

powered via EH; ii) nodes powered by a hybrid energy storage system, which is

composed by a non-rechargeable battery and a capacitor charged via EH. For the

former case the goal is the maximization of the network throughput, while in the

latter the aim is maximizing the lifetime of the non-rechargeable batteries. For

both scenarios optimal scheduling policies are derived by assuming different levels of

information available at the fusion center about the energy availability at the nodes.

When optimal policies are not derived explicitly, suboptimal policies are proposed

and compared with performance upper bounds.

Energy management policies for single devices have been investigated as well

by focusing on radio frequency identification (RFID) systems, when the latter are

operated by enhanced RFID tags with energy harvesting capabilities.
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CHAPTER 1

INTRODUCTION

In the last decade, the conscience for respecting the environment, reducing pollution

and energy consumptions, has tremendously grown in our society, making green one

of the most used word in everyday vocabulary. A significant step toward going

green is the exploitation of renewable energy sources, which aims on the one hand

at reducing pollution and on the other hand at providing alternatives to the finite

amount of non-renewable energy sources available on the Earth. Collecting energy

from the environment, or energy-harvesting (EH), has a long history that dates back

to windmills and waterwheels, which represent effective examples on how energy,

freely available in the environment, can be efficiently leveraged by human beings.

In the last centuries, several physical effects that convert a form of energy into

another have been discovered. Among these, it is worth mentioning the thermoelectric

effect, discovered by T. J. Seedback in 1821, where an electric current was shown to

deflect a compass needle when inserted into a closed loop between two dissimilar

metals subject to different temperatures at the junction. Another milestone was the

discovery of the piezoelectric effect by the brothers P. Curie and J. Curie, who realized

in 1880 that an electric charge is accumulated in a solid material, such as a crystal,

when the latter is subject to mechanical stress. Another fundamental discovery is

the photoelectric effect, revealed by H. Hertz in 1887, who realized that, when a

surface is exposed to electromagnetic radiation, the radiation can be absorbed and

electrons emitted. Effects as the ones listed above, provide the basis for the modern

EH technologies.

An important driver for the research on EH technologies was given by the

great reduction in the power consumption of electronic circuits. While electronic

1
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devices exclusively powered by EH, such as calculators and watches, have been on

the market since the 70s (see Figure 1.1), EH technologies are today applicable to a

wider variety of electronic devices. Examples range from cell phones and laptop

computers to miniaturized wireless sensors. Furthermore, several energy sources

commonly available in the environment, such as sunlight, mechanical, electromagnetic

and thermoelectric energy, can now be efficiently converted into electrical energy

through energy transducers of suitable sizes and of ever increasing efficiency [1].

One of the main, and perhaps most promising, applications of EH technologies

is the deployment of wireless networks with sensing capabilities, also known as wireless

sensor networks (WSNs). Such networks are used to monitor phenomena of interest

within a prescribed area such the structural monitoring of buildings. The introduction

of wireless nodes that are powered via EH not only eases the requirements for battery

substitution, but also enables new applications of WSNs by allowing the deployment

of battery-less nodes in remote or hazardous areas that are not easily accessible for

maintenance. EH is thus expected to play a key role in the near future of WSNs. In

fact, the ever increasing demand for a smart world [2], i.e., an environment in which

objects interacts with each other as well as with human beings, will require an even

wider deployment of WSNs.

Figure 1.1 Examples of an older generation of electronic devices powered by solar
cells such as calculators and digital watches.
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1.1 Overview of Energy Harvesting Technologies

The environment provides multiple sources of energy that can be leveraged for EH.

Some are natural sources, such as sunlight and wind, while others are generated

by human activities, such as mechanical energy due to machineries movements or

electromagnetic energy transmitted by antennas. Regardless of the energy source, a

typical architecture for EH-devices consists of three main components [1]:

1. Energy transducer (or converter);

2. Energy conditioning circuitry;

3. Energy storage device (ESD).

The energy transducer is a device that physically converts a given source of energy

into electrical energy. Common examples include: photovoltaic cells that convert

the energy of light; piezoelectric materials that convert mechanical energy, such as

vibrations; thermocouples that convert a temperature gradient; and antennas that

convert electromagnetic energy [1]. The energy conditioning circuitry is instead

designed in order to efficiently transfer the power from the energy transducer to the

device (or to the ESD). The most common examples of conditioning circuits are the

maximum power point tracker (MPPT) circuits, which are used (often in photovoltaic

cells-based harvesters) to dynamically adjust the working load of the transducer in

order to obtain the maximum power transfer to the device [3]. Lastly, the ESD

is used to store the surplus of the harvested energy that is not immediately used

by the device. The two most important ESDs that are commercially available are

rechargeable batteries and capacitors, which are briefly discussed in the next section.

It is worth mentioning that, in some applications, EH-devices are not equipped

with ESDs, but they use the harvested power to directly power up their circuitry.

One of the most relevant examples is given by passive RFID tags. These are devices
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Table 1.1 Typical Values of Power that Can be Harvested from Common Sources
[1].

Energy Source Power

Light (Indoor - Outdoor) 10 µW/cm2- 100 mW/cm2

Mechanical (Human – Machines) 4 µW/cm3- 800 µW/cm3

Electromagnetic (far from transmitters) 1 µW/cm2

powered up by an electromagnetic wave generated by a RFID reader that, in their

simplest version, are not intended to store energy for later uses [4].

How much energy can be harvested from the environment? Typical values

registered through experimental setups are reported in Table 1.1 (see e.g., [1]). As it

will be shown in Section 1.2.1, the power that can be harvested from the environment

is generally much smaller than the power required for the continuous operation of

a wireless node, at least for EH devices of practical dimensions. Therefore, nodes

that are powered exclusively by EH can only operate for a small fraction of the time

(duty cycle). However, this is typically not a limitation, since most WSNs have nodes

operating with a very low duty cycle [5].

1.1.1 Batteries and Capacitors

The two most common components that are routinely used as ESDs in electronic

systems are rechargeable batteries and capacitors. A battery is an electrochemical

component that converts chemical energy into electrical energy, while a capacitor

stores energy in the form of an electric field. Due to their distinct nature, the

characteristics of batteries and capacitors are quite different [6]. Two of the most

important ones being energy density and the component lifetime. In fact, batteries

are generally characterized by an energy density higher than that of capacitors, and



5

are thus able to store more energy in a smaller volume. The component lifetime is

often measured as the number of complete charging/discharging cycles before that

the ESD suffers a notable loss of nominal capacity. The lifetime of batteries is

typically in the order of a few hundreds cycles, while for capacitors is in the order of

hundreds of thousands cycles [6]. Other important characteristics include: the rate of

self-discharge of the energy stored in the ESD, which is generally smaller for batteries

than that of capacitors; the sensitivity to the temperature, which is generally in

favor to the capacitors (this is important in outdoor applications where temperature

gradient is large); the rates at which the ESD can be charged and discharged, which

are generally more flexible for capacitors than those for batteries. The latter aspect

is relevant since operating with charging/discharging rates that are not suitable for

the ESD at hand might severely degrade its performance. This effects is even more

accentuated in EH applications, where the optimal charging rates for batteries cannot

be generally guaranteed, and thus the more pronounced flexibility of capacitors might

offer a better solution.

1.2 Overview of Wireless Sensor Networks (WSNs)

Recent advances in low-power electronics and wireless communications technologies

have enabled the development of low-cost, low-power and multifunctional devices

(or nodes) that are able to collect information (by sensing) from the surrounding

environment and communicate with other devices over short distances [5]. A WSN is

composed of several nodes, in order of tens, hundreds or even thousands, which are

deployed within the area in which the phenomena of interest are to be monitored.

Typical applications of WSNs include monitoring of physical quantities, such as

temperature and mechanical vibrations, and object tracking (see e.g., [7]).

An important aspect of WSNs is given by the positioning of the nodes over

the area of interest. In particular, the network topology can be engineered or can
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be the result of a random deployment. The latter is more suitable when the number

of nodes is large and/or the areas to be monitored are hardly accessible [5]. The

network topology strongly affects the choice of the communication protocols. Broadly

speaking, it is possible to identify three main network topologies (see Figure 1.2): i)

point-to-point ; ii) point-to-multipoint (or star topology); iii)mesh. Point-to-point and

star networks are generally single-hop, in the sense that nodes only transmit their own

data, while mesh networks can be multi-hop as nodes can forward packets belonging

to other nodes. It is also possible to add a hierarchical structure to the network such

as in cluster-based networks [5] (see Figure 1.2-d)), in which each cluster operates as

a star network. Nodes in each cluster generally communicate in a single-hop fashion

with the cluster-head, while cluster-heads communicate with each other to guarantee

network connectivity.

The next section considers a typical architecture for a node operating in a

WSN and discusses the main operations that affect the energy consumption of the

nodes.
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Figure 1.2 Typical network topologies. Dashed arrows indicate wireless links.
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Figure 1.3 Typical architecture of a node employed in a wireless sensor network.
An energy harvesting unit might be added.

1.2.1 Architecture of a Sensor and Energy Consumption

A typical architecture of a node employed in a wireless sensor network consists of

four main blocks as shown in Figure 1.2 (see e.g., [5]): i) radio transceiver; ii) micro

controller unit (MCU); iii) sensors; iv) energy storage device. The node can also be

equipped with EH capabilities. Regardless of the application, the energy consumption

of a node can be broadly divided into three contributions: sensing; data processing;

and data communication [5]. While the contribution of the sensors to the energy

budget is strongly application-dependent, some general consideration can be made

for the data processing and communication contributions.

To start with, it is interesting to consider the power consumption of typical

off-the-shelf MCUs and transceivers that are routinely used in WSNs, such as the ones

considered in Table 1.2. In the table, Pact and Psleep indicate the power consumption of

the component when it is in the active mode and in the sleeping mode, respectively.

As shown in Table 1.2, it is not uncommon that, for low-power sensor nodes, the

power consumed by the transceiver is the largest one. As it will described in the

next section, the impact of the medium access control protocol plays a key role in

determining the activity of the transceiver.

As a last remark, it is worth mentioning that, a reduction in the radio frequency

(RF) transmitted power might not imply a corresponding reduction in the overall

consumed power. This is due to the power consumed for the operation of the

transceiver’s circuitry, which is not negligible with respect to the power needed for
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Table 1.2 Typical Power Consumption for the Micro Controller Units (MCUs)
Texas Instruments MSP430 and Microchip PIC24F16, and for the Transceivers
(TX/RX) Texas Instruments (TI) CC2500 and Microchip MRF24J40. Such
Components are Commonly Used in Wireless Sensor Networks.

Component Type Pact(typical) Psleep(typical)

TI MSP430 MCU 1mW 2µW

PIC24F16 MCU 1.5mW 1µW

CC2500 TX/RX 50mW 2µW

MRF24J40 TX/RX 60mW 6µW

Table 1.3 Power Consumption for Different Transmission Powers (TX Power) for
the Transceiver Texas Instruments CC2500.

TX Power Pact

−12 dBm 33.3mW

−6 dBm 45mW

0 dBm 63.6mW

1 dBm 64.5mW

the RF transmission. Such an example is shown in Table 1.3, where the power

consumption of the TI CC2500 transceiver is reported. From Table 1.3 it can be seen

that lowering the transmission power of more than an order of magnitude does not

implies the same reduction of the overall absorbed power.

1.3 Medium Access Control Protocols for WSNs

One of the main issues in the design of WSNs is the efficient utilization of the

radio resources (e.g., frequency bands) when they are shared among multiple nodes.

This problem is tackled by designing medium access control (MAC) protocols, whose

purpose is to regulate the transmissions of the nodes over the shared channel [8].
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MAC protocols can be broadly divided into two categories: random and centralized

scheduling-based schemes, which are briefly introduced in the next sections. For an

extensive review of MAC protocols see e.g., [9, 10] and reference therein.

1.3.1 Random MAC Protocols

In random access protocols, the nodes access the channel in a random fashion

according to a set of rules specified by the MAC. The simplest random access scheme

is the pure ALOHA protocol [11], in which any node in the network simply transmits

a packet whenever it is generated. Due to the absence of time synchronization

and coordination at nodes, the pure ALOHA protocol is severely degraded by the

interference that is generated by simultaneously transmitting nodes. In particular, it

has been shown in [11] that, under the assumption of a collision channel model (i.e.,

any packet involved in a simultaneous transmission becomes garbled), the maximum

throughput of pure ALOHA is 1/2e, that is, on average only 18.4% of the time the

channel is successfully used.

A simple way to improve the channel utilization of the pure ALOHA protocol

is by dividing the time into time-slots, so that nodes can transmit still in random

fashion but only within a single time-slot [12]. Note that slotted -ALOHA requires

synchronization among the nodes. It has been shown in [12] that the slotted-ALOHA

protocol can achieve a throughput of 1/e.

A way to control the transmission of the nodes in the slotted-ALOHA protocol

is to have a central controller that organizes time-slots into frames, where each node

can transmit only once in each frame [13]. This protocol is referred to as framed -

ALOHA (FA). A variation of the basic FA protocol, allows the central controller to

dynamically adjust the frame size based on the outcomes of nodes transmissions in

previous frames, and it is referred to as dynamic framed-ALOHA (DFA). It has been

shown that DFA have several advantages over the simpler slotted-ALOHA, including
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improved data queue stability and reduced acknowledgment overhead [14]. However,

as said, it requires a central controller that dynamically selects the frame size.

A way to reduce the chances of packet collisions in ALOHA-based protocols is

to consider the carrier sensing multiple access (CSMA) protocol [15]. The basic idea

of CSMA is that each node listens to the channel before attempting transmission. If

no other transmissions are detected, then transmission is performed, while otherwise

the node waits and checks the channel later on with the same procedure.

1.3.2 Centralized Scheduling MAC Protocols

In centralized scheduling-based protocols, the nodes are assigned an exclusive channel

resource by a central unit (see e.g., [8]). The central unit either pre-assigns the

resources to the nodes in a static fashion, such as in the time division multiple access

(TDMA) protocol, or it dynamically allocates them based on the system conditions

(e.g., quality of the radio link), such as in opportunistic scheduling schemes (see e.g.,

[16]). Opportunistic scheduling requires the broadcasting of a scheduling command

that specifies when (and for how long) each node is allowed for transmission over the

channel. The advantage of scheduling-based protocols is that they prevent the energy

wastage due to collisions and that they can often guarantee deterministic performance

levels. The disadvantage is that they generally requires tight synchronization and

extensive signaling overhead for resource allocation.

1.3.3 MAC Performance Metrics

There are several relevant criteria that measure the performance of a MAC protocol,

and the choice of the most appropriate ones depends on the network architecture and

on the application requirements. Some of the most important criteria are throughput,

transmission delay and reliability [5, 9]. The throughput measures the fraction of

the allocated channel resources that are successfully utilized for data transmission.
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Instead, the delay measures the average time spent by a packet between the time it is

generated and the time it is successfully received by the destination. The reliability

is an indicator of the ability of a protocol to correctly deliver data messages.

1.3.4 Energy Consumptions Due to the MAC Protocol

A MAC protocol not only affects the performance of the network in terms of, e.g.,

throughput, transmission delays and reliability, but it also has a strong impact on

the energy consumption of the nodes. In fact, as shown in Section 1.2.1, two of the

most power-hungry operations in a wireless node are transmission and reception of

data. Therefore, a MAC protocol that parsimoniously utilizes the node’s transceiver,

and thus the energy resources, is highly favorable.

Depending on the structure of the network, the most common sources of energy

wastage due to a MAC protocol are (see e.g., [17]): i) collisions ; ii) idle listenings ;

iii) overhearing ; iv) protocol overhead. Collisions occur when multiple nodes attempt

transmission simultaneously and one or more of the involved messages cannot be

correctly decoded by the intended destination(s), due to the interference generated

by the other nodes. Depending on the applications, collisions might require that

the messages need to be either retransmitted, thus consuming additional energy and

increasing delays, or discarded. Idle listenings occur when a node turns its receiver

on waiting for other nodes transmissions that do not occur. Overhearing means that

a node receives a message that is not intended for it. Protocol overhead includes

all the sources of energy consumptions that are related to the exchange of signaling

messages required by the MAC.

1.4 Motivation of the Dissertation

The main focus of this dissertation is the study of the impact of EH technologies

in the design of wireless networks. Until the last decade, wireless networks have
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been conventionally designed by considering that the nodes in the network are either

powered by batteries or directly connected to the power grid. Typical examples

include cellular networks, where the nodes are battery-powered cell phones, or wireless

data networks, such as WiFi, in which the nodes can be either powered by batteries

or connected to the grid (e.g., laptop or desktop computers, respectively). The main

design goals in these networks is either the maximization of the batteries lifetimes or

the minimization of the average power consumption while guaranteeing a determined

quality of service [5, 18].

However, when the nodes in a network are powered through EH, the energy

availability at the terminals might not be guaranteed at any given time. This is due to

the fact that the EH-sources are generally unpredictable and highly variable over time

[1]. Therefore, despite the energy availability over a long period of time is generally

unlimited, the energy available over a short period of time might not be sufficient

to guarantee the required operations of the devices. This observation enlightens

the fundamental differences between battery-powered and EH devices. The former

are equipped with a finite amount of energy that is always available when required

within the battery lifetime, while the latter are provided with a theoretically infinite

lifetime, but possibly with no guarantee of continuous operations due to temporary

energy shortages. Therefore, the design of wireless networks must be restructured

to accommodate the novel features introduced by EH. This is the main goal of this

dissertation. More specifically, the focus will be on the analysis and design of MAC

protocols for EH networks.

Section 1.5 provides an overview of previous work related to the dissertation,

while specific contributions of this work are described in detail in Section 1.6.
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1.5 State of the Art

General references that describe EH technologies with a focus on wireless networks

applications are described in the next section. Previous work that is more directly

connected to this dissertation is then discussed by concentrating separately on single-

node systems and multi-node systems.

1.5.1 Energy Harvesting Technologies and Principles

An extensive review of EH technologies is given in [6] and [19], while a description

more specific to wireless network applications is provided in [1]. Fundamentals of

energy neutral operations for EH-capable nodes were established in [20] and reference

therein. Reference [6] also provides a discussion of the characteristics of several energy

storage devices.

1.5.2 Single-node Systems

Works on single-node systems focus on the problem of trading the energy harvested

from the environment with the energy needed by the node to perform the required

operations, such as sensing and data transmission. Here, the goal is generally the

optimization of the energy usage with the aim of maximizing a given performance

criterion such as the data transmission rate.

In [21] a single node equipped with a finite replenishable battery is considered.

At any given time, the problem is whether to perform transmission or not based on

the current available energy and given that a reward is accrued if transmission is

performed. By modeling the evolution of the energy in the battery as a controlled

Markov process, where the control action is the decision of whether to transmit or

not, the authors found the structure of optimal transmission policies by resorting to

theory of Markov decision processes (MDP).
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The problem of optimizing transmission policies for a single EH-capable node

equipped with infinite battery and data queue is considered in [22]. Here the authors

consider random energy and data arrivals and derive throughput-optimal policies as

well as delay-minimizing policies. Data queue stability issues are also discussed.

A problem related to [22] is considered in [23], where the node’s battery is finite

and the times of arrivals of the energy harvested from the environment are assumed

to be known in advance at the beginning of the data transmission. The problem is to

maximize the amount of data transmitted over a finite horizon of time, by assuming

that the node has an unlimited amount of data initially available for transmission.

The authors also found an optimal policy for an equivalent problem in which the

goal is the minimization of the time needed for the transmission of a given amount of

data. A related problem is also considered in [24], where data arrivals are allowed also

after the beginning of the transmission but at times known in advance. Extensions

of [23] and [24] that include transmission over fading channels and non-idealities in

the energy storage devices are considered in [25] and [26].

1.5.3 Multi-node Systems

In multi-node systems several EH-capable nodes interact with each other, and the

goal is generally the optimization of either a common performance criterion, such as

the total network throughput, or a performance requirement to be satisfied at each

single-node, such as data queue stability.

In [27] data queues stability issues are addressed for multiple access problems

in single-hop networks, by considering TDMA, CSMA and opportunistic scheduling

protocols. Scheduling problems for general mesh networks operated by EH-capable

nodes were instead considered in [28], where Lyapunov optimization techniques were

leveraged.
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A simple MAC problem with two nodes and a single receiver is considered in

[29]. Here, the two transmitting nodes receive energy at times that are known in

advance, while the data they need to transmit is already available before beginning

transmission. The goal is to minimize the overall transmission time by optimally

selecting the node transmission powers and data rates. Optimal policies are found

explicitly.

There are other previous works for EH networks not strictly related to the

objectives of this dissertation that include broadcasting channels [30] and [31], as

well as relay networks [32] and routing problems [20, 33].

1.6 Dissertation Outline and Contributions

The main contributions of this dissertation cover the analysis and design of MAC

protocols for EH wireless networks. In particular, both random access and centralized

scheduling-based MAC protocols are investigated for single-hop wireless networks in

Section 1.6.2 and Section 1.6.3, respectively. Energy management techniques for

single-node systems are considered as well and are described in Section 1.6.1.

1.6.1 Single-node Systems

Chapter 2 considers a single-node system with EH capabilities where the goal is

the maximization of a given performance metric via an optimized energy usage. In

particular, a new architecture for enhanced passive radio frequency identification

(RFID) tags, equipped with EH capabilities, is proposed jointly with optimal energy

management techniques. The new architecture is introduced to tackle the problem

of increasing the communication reliability (or the read range) between a passive

RFID tag and a RFID reader in a backscatter modulation-based system (see e.g.,

[34]). It is proposed to introduce a power amplifier (PA) that increases the power

of the signal transmitted by the tag to the reader, where the peculiarity is due to



16

the fact that the PA is exclusively powered via harnessing the electromagnetic energy

transmitted by the reader. The architecture proposed in this dissertation is related to

the one proposed in [35], where however the PA was powered via a non-rechargeable

battery. Whereas, the mathematical modeling developed to establish optimal energy

management policies is related to [21], where the authors considered a different energy

harvesting model and different performance metrics.

The work in this chapter is based on:

• F. Iannello O. Simeone and U. Spagnolini, “Energy management policies for

passive RFID sensors with RF-energy harvesting,” in Proc. IEEE Int. Conf.

Commun. (ICC ), Cape Town, South Africa, May 2010.

1.6.2 Random Access MAC Protocols

In Chapter 3 and Chapter 4 the problem of designing Framed-ALOHA based MAC

protocols for single-hop EH networks is investigated. The considered application is a

batch resolution problem [36], where data packets are periodically generated at the

nodes and need to be collected by a central fusion center in a star-topology network.

The EH arrivals at the nodes are described by an arbitrary probability distribution

and the energy storage devices are assumed to be finite, while the communication

links are subject to random fading.

To assess the novel trade-offs in the design of MAC protocols for EH networks,

Chapter 3 proposes to utilize two performance metrics. The first metric, referred to

as time efficiency, measures the data collection rate at the fusion center, while the

second metric, referred to as delivery probability, accounts for the probability that any

packet generated at the nodes is eventually collected by the fusion center. Due to the

potential perpetual operations of the nodes enabled by EH, the proposed performance

metrics are assessed over a long-term period by developing a mathematical framework

based on Markov models, which describes the evolution of the energy availability
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at the nodes along time. The critical issue in ALOHA-based scheme of estimating

the number of nodes involved in the transmission in each frame is also tackled by

proposing a practical reduced-complexity algorithm. This scheme is an extension of

the one proposed in [13] that is designed to account for the EH nature of the nodes.

From the analysis of the performance metrics described above, it is inferred

that the trade-off between time efficiency and delivery probability is dramatically

affected by a design parameter that is used to select the frame size in the framed-

ALOHA protocol, which in turns depends on the number of transmitting nodes in

each frame. It is shown that the choice of such parameter strongly depends on the

probability distribution of the EH processes and on the desired trade-off between time

efficiency and delivery probability. Based on this insight, a new protocol, referred

to as energy group dynamic framed-ALOHA (EG-DFA), is proposed in Chapter 4.

The proposed EG-DFA protocol creates groups of nodes according to their energy

availability and runs optimized and separated instances of the DFA protocol for each

group. It is shown that by judiciously choosing the frame-size parameter for each

group of nodes the EG-DFA protocol can remarkably outperform the conventional

DFA protocol.

The work in these chapters is based on:

• F. Iannello, O. Simeone, and U. Spagnolini, “Medium access control protocols

for wireless sensor networks with energy harvesting,” IEEE Trans. Commun.,

May 2012 (in press).

• F. Iannello, O. Simeone, P. Popovski and U. Spagnolini, “Energy group-based

dynamic framed ALOHA for wireless networks with energy harvesting,” in Proc.

46th Conf. Inf. Sci. Syst. (CISS ), Princeton, NJ, Mar. 2012.
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• F. Iannello, O. Simeone, and U. Spagnolini, “Dynamic framed-ALOHA for

energy-constrained wireless sensor networks with energy harvesting,” in Proc.

IEEE GLOBECOM, Miami, USA, Dec. 2010.

1.6.3 Centralized Scheduling MAC Protocols

The third important aspect considered in this dissertation is the design of scheduling-

based MAC protocols for EH networks. This issue is addressed in Chapter 5 and

Chapter 6. As anticipated in Section 1.5.3, few previous works considered scheduling

problems in EH networks. In particular [29] consider a two-nodes system with

deterministic energy arrivals, while [28] considers a generally suboptimal Lyapunov

optimization approach for a scheduling problems in arbitrarily interconnected

networks.

In this dissertation the focus is instead on a star-topology network in which a

central fusion center collects data packets that are generated periodically by a set of

M nodes, similar to the model considered in Section 1.6.2. The nodes harvest energy

from the environment, and their energy storage devices are finite and possibly subject

to energy leakage. In each data collection period only a subset of K ≤ M nodes is

given the chance of transmitting over orthogonal transmission resources, which are

allocated by the fusion center.

As mentioned in the previous sections, since the activity of most EH sources is

uncertain and unpredictable, nodes that are exclusively powered via EH are possibly

subject to temporary energy shortages. Based on this observation, it is possible to

distinguish two different scenarios: i) Applications that require continuous operation

of the nodes and that do not tolerate temporary energy shortages; ii) applications

that tolerate energy shortages. When applications do not tolerate energy shortages, it

is not uncommon that EH is used as a secondary energy source that complements the

use of a non-rechargeable battery [37]. In this case the nodes are equipped with a so
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called hybrid energy storage system (HESS), which is composed by a non-rechargeable

battery and, e.g., a capacitor that stores the energy harvested from the environment.

The network design goal here is to maximize the lifetime of the non-rechargeable

batteries. When applications that tolerate temporary energy shortages are instead

considered, EH can be used as the unique energy source, and the scheduling policies

are designed so as to maximize the network throughput. Scheduling problems for

both scenarios are addressed in Chapter 5 and Chapter 6.

In particular, optimal scheduling policies that maximize the battery lifetime of

the HESS-nodes are derived under the assumptions that: the fusion center has perfect

and instantaneous knowledge of the energy availability at the nodes; the nodes are

subject to either energy harvesting only or energy leakage only; the energy harvesting

and energy leakage are described by binary random processes, which are assumed

symmetric and independent at the nodes and over time. The general case when both

energy harvesting and energy leakage processes are non-negligible still remains an

open problem.

The scheduling problems above are then addressed under the assumption that

the fusion center does not have instantaneous information of the energy availability

at the nodes. In this case, the only information available at the fusion center is

given by the knowledge of the statistical properties of the energy harvesting and

leakage processes at the nodes and by the (observable) history of the system state.

The scheduling problem is then formulated as a partially observable Markov decision

process (POMDP), which can be seen a restless multiarmed bandit (RMAB) problem

[38]. In the scenario in which nodes are equipped with HESS, finding optimal policies

explicitly is not straightforward, and thus only heuristic policies are proposed and

compared to the full state information scenario.

For the scenario in which the nodes are powered exclusively via EH and under

partial state information at the fusion center, optimal scheduling policies are derived
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under the assumption that the ESD at the nodes is of capacity one. For this case,

it is shown that a myopic, or greedy, policy that operates on the space of the a

posteriori probabilities (or beliefs) of the nodes energy levels is optimal. Moreover, it

is demonstrated that such policy coincides with the so called Whittle index policy. It is

worth mentioning that the derivation of the optimality of the myopic policy and of the

Whittle index policy is related to complementary findings in RMAB problems arising

in cognitive radio applications [39, 40]. Finally, when the size of the capacitors are

arbitrary, a performance upper bound is derived and compared with the performance

of the generally suboptimal myopic policy.

The work in these chapters is based on:

• F. Iannello, O. Simeone and U. Spagnolini, “Lifetime maximization for wireless

networks with hybrid energy storage systems,” in preparation for submission to

IEEE Trans. Commun.

• F. Iannello, O. Simeone and U. Spagnolini, “On the optimal scheduling of

independent, symmetric, and time-sensitive tasks,” submitted to IEEE Trans.

Autom. Control (under first revision).

• F. Iannello, O. Simeone and U. Spagnolini, “Optimality of myopic scheduling

and whittle indexability for energy harvesting sensors,” in Proc. 46th Conf. Inf.

Sci. Syst. (CISS ), Princeton, NJ, Mar. 2012.
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This part of the dissertation considers a wireless network in which a single

node communicates with a central station, where the latter coordinates the node’s

transmissions. The node is equipped with energy harvesting (EH) and storage

capabilities, so that the use of the harvested energy can be postponed over time.

In general, in single node EH networks the design issue is how to trade the energy

harvested from the environment with the energy needed by the node to perform the

required operations, such as data transmission. Energy management policies are then

designed with the aim of optimizing a given performance criterion.

A specific instance of such single node EH networks is considered in the next

chapter, where a RFID system operated by enhanced RFID tags is investigated.

In particular, in such system, EH is leveraged with the aim of improving the

communication reliability between the tag and the central station (or RFID reader).

This is done by introducing an additional power amplifier at the tag that is exclusively

powered via EH. Energy scheduling policies for the power amplifier are then designed

by parsimoniously trading the energy available in the tag’s energy storage device and

the statistical properties of the EH process.



CHAPTER 2

ENERGY MANAGEMENT POLICIES FOR ENHANCED PASSIVE

RFID TAGS WITH ENERGY HARVESTING

2.1 Introduction

Passive radio frequency identification (RFID) technology is finding an ever increasing

number of applications, ranging from conventional identification such as supply

chain management or toll collections, to wireless sensor networks (WSNs), where

identification is provided along with sensed data [41]. A typical far-field passive RFID

sensor network consists of one (or more) RFID reader and a number of RFID sensors

(also tags in the sequel). The tags communicate data to the reader by modulating

(possibly amplifying) and transmitting back a continuous wave (CW) that is emitted

by the reader itself. This process is referred to as backscatter modulation [42].

The RF field emitted by the reader is the only source of energy that allows

passive tags to activate their circuitry, while more sophisticated classes of tags, such

as semi-active and active, rely on energy storage devices (simply batteries in the

sequel) charged at the time of installation [42]. In semi-active tags the onboard

battery is used to activate part or all the tag circuitry, but the communication with

the RFID reader is still performed via backscatter modulation as in passive tags

(i.e., without the use of the on-board battery). Active tags instead do not rely

on backscatter modulation, and they use their batteries to activate their circuitry

including an on-board transceiver for communication with the reader. Active and

semi-active tags enable more sophisticated applications than passive tags, at the price

of increasing cost and typically limited lifetime due to the finite energy available in

the batteries.

23
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Figure 2.1 Block diagram of an RFID ABEH sensor. The dashed box contains the
novel components with respect to classic passive RFID sensors.

One of the most important RFID system performance metric is the read range,

or equivalently the maximum distance at which the reader can reliably read (or write)

the data from (to) the RFID sensors [34]. Two main factors determine the read range:

1) Tag sensitivity (tag-limited regime), which is determined by the minimum power

received by the tag necessary to activate its circuitry; 2) Reader sensitivity (reader-

limited regime), which is determined by the minimum signal to noise ratio (SNR), or

alternatively, the minimum power at the reader that enables correct detection of the

signal backscattered by the tag.

The new conceptual scheme that is proposed in this chapter aims at addressing

the issue of reader-limited regime by introducing two additional components to the

hardware architecture of conventional passive tags as shown in Figure 2.1:

• A power amplifier (PA), which is used to amplify the backscatter signal (i.e.,

the reader’s CW processed and transmitted back by the tag);

• An energy storage device (e.g., battery or capacitor), which is charged via energy

harvesting.

This enhanced tag architecture, referred to as amplified backscattering via energy

harvesting (ABEH), is still passive, in the sense that it does not need any initially

charged battery (or capacitor). In fact, it exploits the RF-energy transmitted by
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the reader, and received by the tag during idle periods, to recharge the onboard

battery. The harvested energy is then used by the tags to opportunistically amplify

the backscatter signal, with the aim of improving the communication reliability.

Notice that RFID tags with ABEH architecture (ABEH tags for short) inherit the

theoretically infinite lifetime of passive tags, since in case of depleted battery they

can operate as conventional passive tags.

An energy scheduler manages the energy used by the PA to amplify the

backscatter signal with the aim of improving the read range of the ABEH tags. This

is done by conveniently balancing the instantaneous state of charge of the battery and

the energy harvesting rate. The analysis demonstrates that the amplification of the

backscatter signal enhances the read range in the reader-limited regime of operation.

It is noted that the approach of this chapter could be extended to include the trade-off

between energy used for backscatter amplification and for powering the tag circuitry

(including the onboard sensor).

2.1.1 Previous Work

A brief overview of previous work related to this chapter is now introduced. In [35]

the problem of reader sensitivity is addressed in a similar fashion as ABEH tags by

allowing amplified backscatter from the RFID tags. However, in [35] the PA is fed

by an external power source (active tags), thus differing from ABEH tags where the

energy for amplification is harvested from the CW transmitted by the reader. The

problem of tag-limited regime is addressed in [43], where an independent CW source is

installed on the tag and acts as an energy pump fed by a battery, while in [44] sleep and

wake cycles together with energy harvesting techniques are proposed. Transmission

policies optimization for replenishable sensors is addressed in [21] where the authors

resort to an analytical model based on Markov decision process (MDP). Battery-free

RFID transponders with sensing capability that harvest all the needed energy from
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the RF signal emitted by the reader are investigated in [4, and references therein]

together with possible applications. Discussion on energy storage architectures, for

enhanced RFID tags, can be found in [45]. Measures and statistical characterization

of the effect of the fading and path loss in a backscatter modulation-based system are

presented in [46].

The chapter is organized as follows. Section 2.2 introduces the signal and

system models used throughout the chapter, while Section 2.3 describes the working

principle of ABEH tags. The energy scheduling problem is formalized as a MDP in

Section 2.4 (see [47] for an overview of MDP), while optimal scheduling policies are

derived in Section 2.5. Numerical results are then presented in Section 2.6 and finally

some conclusions are drawn in Section 2.7 together with possible extensions.

2.2 System Model

The focus is on a far-field RFID system, with a single-reader and multiple-tags [42, 48].

The operation of the considered RFID network in the presence of passive tags can

be generally summarized with the following phases (a commercial example is the

Gen-2 standard [48]). The reader transmits a CW to energize the entire population

of tags [44]. After a time period long enough for the tags to activate their circuitry

(by accumulating energy from the CW), the reader starts transmitting a modulated

signal containing a selection command to choose a subset of tags. After this phase,

the reader transmits a sequence of query commands (Q) of Tq seconds each, to request

information from the selected tags. Data transmission from the tags take place during

a subsequent period of duration Tc, in which the selected tags perform backscatter

modulation. The combination of a query command and CW forms a time-slot of

duration T = Tq + Tc (see Figure 2.2).

A collision protocol is generally necessary to arbitrate the access of the

(possibly multiple) selected tags. In order to simplify the problem and focusing
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on the energy management of ABEH tags, it is assumed here that in every slot one

single tag is selected by the reader’s query to respond via backscatter modulation,

independently from previous and future queries. Notice that, the impact of collisions,

due to the multiple access, could be taken into account by conveniently modifying

the probability of successful transmission that will be defined in (2.9). However,

this collision-free assumption is reasonable in scenarios where RFID tags are selected

according to their unique identifiers (known at the reader) as possibly for RFID-based

sensor networks (see [48]).

Because of both collision-free and independent queries assumptions, one can

focus on a simplified single-reader single-tag scenario, where the downlink (DL)

frame structure transmitted by the reader is composed by successive slots, each one

containing a query command and a CW as shown in Figure 2.2. In each slot, the

unique tag in this scenario (simply the tag in the sequel) after having decoded the

query, can assume two different states (see Figure 2.2):

CW CW CW CWQQQ Q

Active

Tq
time

Idle Idle Active

Tc Tq Tc

QQQ Q

DL frame 
structure

Considered 
tag activity

RF-Energy harvesting (Int. tag)

Figure 2.2 Reader DL frame structure and interrogated tag activity. A single
time-slot is composed by two parts: Query command (Q) and continuous wave
(CW ). During the CW period a tag can be either active (transmitting data) or
idle (harvesting energy).

• Active time-slot for the tag, with probability p it switches its state to active and

performs backscatter modulation to transmit the required data to the reader

(the tag is interrogated).

• Idle time-slots for the tag, with probability 1−p, it switches its state to idle and

harvests the RF-energy transmitted by the reader (the tag is not interrogated).
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Notice that, in a general multiple-tags scenario, the interrogation probability p

depends on the number of tags and on the rate at which the reader needs to collect

information from each tag. Furthermore, the probability p can also take into account

tag collisions at the reader and demodulation errors of the query commands (not

explicitly modeled here).

This chapter consider bistatic RFID readers that use two antennas, one for

transmission (TX antenna) and one for reception (RX antenna) (see [34] and [46]).

The links TX antenna to tag and tag to RX antenna are referred to as downlink (DL)

and uplink (UL), respectively. It is assumed the same distance d from tag to reader

RX and TX antenna, which is also fixed for the entire operations. During slot k, the

DL (UL) channel hdl(k) (hul(k)) is subject to frequency-flat fading, which is assumed

being constant over the entire slot. However, the fading in each slot is modeled as an

independent and identically distributed (i.i.d.) random variable. Assuming that the

duration Tq of the query command is much shorter than the duration Tc of the CW

(i.e., Tq ≪ Tc ≃ T ), the signal impinging on the tag is

y(t; k) =
√
Lhdl(k)x(t) + w(t; k), (2.1)

where kT ≤ t < (k + 1)T runs over the kth slot (of duration T ), and the energy per

slot available for the transmission of the CW is E0. The propagation loss between the

reader and the tag is denoted by L and it is assumed constant since the distance d

between tag and reader is fixed. The CW transmitted by the reader, of energy E0, is

x(t) =
√

2E0/T cos 2πf0t, where f0 is the carrier frequency and w(t; k) is an additive

white Gaussian noise (AWGN) in the band of interest, with w(t; k) ∼ N (0, σ2
t ).

2.3 ABEH Functionality

An ABEH tag is characterized by the following operations: 1) It harvests and stores

energy during idle slots; 2) it opportunistically amplifies the backscatter signal during
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active slots, as controlled by the energy scheduler. In principle, the energy Eb(k)

drawn from the battery by the energy scheduler in slot k may depend on a number of

factors, such as the current state of charge of the battery S(k), the energy evolution

over the past slots, the interrogation probability p, the DL and UL channels quality

(channel state information) and the path loss L. In practice, all this information

cannot be dynamically tracked by simple devices like RFID tags and some simpler

policies must be used. Specifically, scheduling policies (pre-determined and possibly

stored into the tag memory) that do not depend on the entire history of previous

observations, i.e., stationary policies (see, e.g., [47]) are considered. These policies

depend on the following static system parameters, assumed to be time-invariant and

known at the tag (or possibly communicated by the reader queries): interrogation

probability p, path loss L and DL and UL channel statistics. The only quantity that

needs to be measured by the tag is the state of the battery S(k).

Optimal policies need to balance the energy harvesting rate, which is out

of the tag’s control, and the probability of successful transmission, which can be

controlled by the energy scheduler by varying the energy drawn from the battery

for backscatter amplification. The goal of the energy scheduler is to maximize the

performance (read range) of ABEH tags. The next section characterizes the energy

harvesting process (during idle slots) and then introduces the effects of the backscatter

signal amplification on the backscatter SNR at the reader (during active slots).

2.3.1 Idle Time-Slots: RF-Energy Harvesting

The energy received by the tag during slot k, can be easily derived from (2.1) as

E(k) =

(k+1)T
∫

kT

|y(t; k)|2 dt ≃ LE0 |hdl(k)|2 , (2.2)

where the energy of the noise is negligible compared to the signal energy, i.e.,

LE0 |hdl(k)|2 ≫ σ2
t T . In order to make the RF-energy available for storage, the signal
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(2.1) received by the tag passes through a RF-to-DC converter, with a conversion

efficiency ηDC ∈ [0, 1), which is assumed being constant for all the RF input power

levels (see [49] for a more detailed treatment). The energy available for storage during

slot k is

E(k) = ηDCE(k) = ηDCLE0 |hdl(k)|2 . (2.3)

Notice that the randomness of the available energy E(k) is due to DL fading channel

|hdl(k)|2.

2.3.2 Active Time-Slots: Backscatter SNR

During active slots, the interrogated tag replies to the reader queries by transmitting

back information through backscatter modulation. With an ABEH tag, the

backscattered signals can be amplified by feeding the PA with an amount of energy

Eb(k) that is drawn from the tag’s on-board battery (see Section 2.4). The

instantaneous SNR at the RFID reader during active slots can thus be written as

(derivation is omitted here, see [34] and [50])

γ(Eb(k); k) =
L2E0 |hul(k)|2 |hdl(k)|2

σ2
rT

ηmod + (2.4)

L |hul(k)|2Eb(k)

σ2
rT

ηamp, (2.5)

where σ2
r is the power of the AWGN at the reader, while hdl(k) and hul(k) are the

DL and UL fading channels, respectively. Furthermore, ηmod ∈ (0, 1) is the tag

transmission efficiency accounting for the effects of the backscattering process [34],

and ηamp ∈ (0, 1) is the efficiency of the PA. The first term in (2.4) is the SNR that

one would have when using conventional passive tags, which are not equipped with

amplification capabilities for the backscatter signal (see [46] and [50]). The second

term is due to the amplification performed by the ABEH tag, and depends only on

the UL channel.
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2.4 Battery Evolution: A Markov Chain Model

The evolution of the energy stored in the battery is modeled by resorting to a discrete

Markov chain model (e.g., [51]). The battery is of size Emax [J] and is uniformly

divided into N states, representing different energy levels, where the energy-unit is

δE = Emax/(N − 1). The state of the battery is S(k) ∈ {0, ..., N − 1}. It is noted

that the discrete model at hand is an approximation of a continuous quantity (the

harvested energy). Therefore, making δE as small as possible insures that the state of

the battery can be modeled more accurately, at the cost of increasing the complexity

of the model.

A stationary policy λ = [λ0, ..., λN−1]
T can be defined as the set of actions

that the energy scheduler takes for every possible value of the state variable S(k),

regardless of the time slot k, and fixed the system parameters as described in Section

2.3. More specifically, action λn, for n ∈ {0, ..., N − 1}, is a non-negative integer

λn ∈ {0, ..., n} that corresponds to the number of energy-units δE (or equivalently

Eb(k) = δEλn) drawn from the battery for amplification when the tag is in state

S(k) = n. Notice that, at state S(k) = n, the energy scheduler of the ABEH tag

has n + 1 possible choices for λn, so that the total number of available stationary

policies for N levels is 1 · 2 · ... · N = N !. This makes an exhaustive search of the

optimal policies an highly complex task. The simplest policy that can be used as a

reference is the draw-all policy (or greedy), where all the energy currently stored in

the battery is used to amplify the backscatter signal (i.e., λn = n). The numerical

results presented in Section 2.6, also consider strategies that are limited to schedule

energy in steps larger than δE due to possible technological constraints.

2.4.1 Transition Probabilities

The evolution of the energy stored by the ABEH tag, depends on tag interrogation

probability p, and on the statistical properties of the wireless channel. Specifically,
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energy harvesting during idle slots may determine transitions toward higher energy

levels, depending on the channel quality (see Section 2.3.1). Conversely, during active

slots the energy scheduler draws some energy-units from the battery, thus determining

a transition toward a lower energy level (see Section 2.3.2).

For any stationary energy scheduling policies, the state of the battery S(k)

evolves over the slots as an irreducible and aperiodic time-homogeneous Markov chain

(see Figure 2.3) (the Markov chain is thus ergodic). The transitions toward higher

energy levels depend on the probability q = 1 − p of having an idle slot, and on the

probability that the harvested energy E(k) (see (2.3)) allows the ABEH tag to store

some energy-units δE. The conditional probability βnl that, during an idle slot, there

is a transition from state S(k) = n to S(k + 1) = l, can be obtained as follows

βnl = Pr [S(k + 1) = l|S(k) = n, idle] =






















Pr [(l − n)δE ≤ E(k)<(l − n+ 1)δE] l ≤ N − 2

Pr [E(k)≥ (l − n)δE] l = N − 1

0 0 ≤ l < n

,
(2.6)

where the second row of the right-hand side of (2.6) accounts for the highest energy

level, while the third row indicates that there is no energy leakage during idle slots.

Notice that
∑N−1

l=0 βnl = 1, for all n ∈ {0, ..., N − 1}. Once again energy quantization

δE should be small enough to capture small variation of the harvested energy E(k)

when modeling the system. Conversely, during active slots the transition toward a

lower, or at least the same, energy level, is deterministically defined by the policy λ.

To sum up, by resorting to the law of total probability, the nth entry of the lth row

[P]nl of the transition probability matrix P for the Markov chain in Figure 2.3 can

be written as the sum of two contributions, one from idle-time slots with probability
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(1− p)βnl, and one from active slots with probability p if and only if λn = n− l

[P]nl = Pr [S(k + 1) = l|S(k) = n] (2.7)

=











(1− p)βnl l 6= n− λn

(1− p)βnl + p l = n− λn

. (2.8)

As it will be shown below, the problem of finding optimal stationary policies can be

classified as a MDP.

2.5 Optimal Energy Scheduling Policies

The aim of the ABEH tag is to improve the read range in the reader-limited regime

(see Section 2.1). Given the randomness induced by the fading channels and the noise

at the reader, the read range is evaluated in terms of the probability that the reader

correctly decodes the tag signal, referred to as read probability, for a given distance

tag-reader. The read probability is defined as follows

r(λn) = Pr [γ(λnδE; k) ≥ γth] , (2.9)

where γ(λnδE; k) is the instantaneous SNR (see (2.4) with Eb(k) = λnδE) at the reader

given that the ABEH tag battery is in state n and λn energy-units are drawn from the

battery for backscatter amplification, while threshold γth is the minimum SNR that

allows correct decoding. Notice that, the dependence of the read probability (2.9)

on the distance d, and thus the relation with the read range, is implicitly contained

in the definition of the instantaneous SNR (2.4). In order to evaluate the average

performance of the ABEH tag over an increasing number of active slots, it is possible

to define the long-term average read probability as follows

g(λ) = lim
K→∞

1

K

K−1
∑

k=0

vT
0 P

k(λ)r(λ) = πT (λ)r(λ), (2.10)
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where the product vT
0 P

k(λ) indicates the probability distribution of the energy in the

tag battery after k slots, given the transition matrix P(λ) defined in (2.7), while v0

is an arbitrary initial distribution vector. The vector r(λ) = [rλ0 , ..., rλN−1
]T contains

the read probability as a function of the policy λ with entries defined in (2.9). The

right-hand side of (2.10) follows from the fact that the Markov chain at hand is ergodic

(see Section 2.4.1), and thus one can calculate the steady state stationary distribution

vector π(λ) = [π0(λ), ..., πN−1(λ)]
T . Due to the fact that the Markov chain is ergodic,

it also follows that g(λ) does not depend on the initial vector v0, but it is uniquely

defined by the policy λ.

The optimal stationary policy λ∗ = [λ∗0, ..., λ
∗
N−1], is defined as the stationary

policy that maximizes the long-term average read probability (2.10), such that

g(λ∗) ≥ g(λ), for all λ. Notice that, the use of stationary policies is not a restriction

for the considered system setting (described in Section 2.3), since it can be proved

that they are optimal for the MDP at hand (see [52]). Notice that, the dependence

of (2.10) on the channel statistics and on system parameters is embedded in the

definition of P(λ) and r(λ).

Figure 2.3 Markov chain describing the ABEH tag battery state. Dashed lines
indicate policy-dependent transitions.

2.5.1 Howard Policy Improvement Algorithm

The complexity of a brute force approach algorithm, which exhaustively evaluates all

the possible N ! policies to find the optimal stationary policy λ∗, becomes prohibitive

for large N. As alternative approach, it is possible to resort to the Howard Policy
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Improvement Algorithm (HPI-A) [47], which allows the optimal policy to be found in a

finite number of steps (generally much lower than the exhaustive search). The starting

point for HPI-A is the equation relating the long-term average read probability g(λ)

(2.10) and the relative gain vector w(λ) = [0, w1(λ), ..., wN−1(λ)], whose nth entry

is defined as the gain of having the Markov chain starting in state n rather than in

state 0. This vector equation is given by: w(λ) + g(λ)1 = r(λ) + P(λ)w(λ), where

1 = [1, ..., 1]T and P(λ) is the transition probability matrix defined in Section 2.4.1.

Notice that the vector equation above defines a linear system with N equations and

N unknowns that are given by w1(λ), ..., wN−1(λ), since it is possible to arbitrarily

fix w0(λ) = 0 as reference. The HPI-A is an iterative algorithm that converges

to the exact solution in a finite number of steps. It works as follows: 1) Choose an

arbitrary policy λ =[λ0, ..., λN−1]
T ; 2) calculate w(λ) from the linear system above; 3)

if r(λ)+P(λ)w(λ) ≥ r(θ)+P(θ)w(λ) for all possible θ =[θ0, ..., θN−1]
T (N entry-wise

inequalities have to be satisfied), then λ is optimal; 4) otherwise, find θ such that at

least one of the inequalities above is not satisfied; 5) update λ = θ and iterate with

the new policy steps from 2 to 5 until the algorithm converges (that is, all the N

inequalities at step 3 are satisfied). Further details on the HPI-A can be found in [21]

and [47].

2.6 Numerical Results

This section provides some numerical results to show the read range improvement

of ABEH tag with respect to conventional passive tags. It is assumed that the DL

and UL channels are statistically independent Rayleigh channels. The long-term

average read probability (2.10) of ABEH tags is compared to the one attainable with

passive tags, which using the notation above is gstd = Pr [γ(0; k) ≥ γth] (see [46] for a

closed-form expression). The value of δE is chosen by imposing that Pr[E(k) < δE] ≃

5% for the maximum distance tag-reader (d = 16m). This value provides a reasonable
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trade-off between approximation and complexity of the model. Figure 2.4 shows the

long-term average read probability versus the tag-reader distance d. Energy-unit

is δE = 0.22µJ while the size of the battery is varied Emax ∈ {14, 56, 224}µJ by

changing the size of the discrete model N ∈ {64, 256, 1024} (notice that, keeping

δE fixed implies more accuracy of the discrete model for distances smaller than d =

16m, see Section 2.4). The duration of a slot is T = 10ms, the transmitted power

is E0/T = 36dBm, while the product between SNR threshold and noise power is

γthσ
2
r = −67dBm (this is equivalent to define the power sensitivity of the reader,

see (2.4) for details). The interrogation probability is p = 0.1, the CW frequency is

f0 = 915MHz and the efficiencies are ηmod = ηamp = 0.2 and ηDC = 0.4. ABEH tags

provide considerable gains in terms of read range (for the given requirements γthσ
2
r)

with respect to passive tags, especially for sufficiently large batteries.

The effects of the interrogation probability p and the complexity of the energy

scheduler on the system performance are now evaluated. Low complexity schedulers

can discern only NL < N battery levels. The advantage is that they require less

memory to store policies (λ has NL elements compared to N) and simpler circuit to

measure the battery state. Figure 2.5 shows the average read probability of ABEH

tags for different values of NL ∈ {2, 16, 1024} versus p, along with the performance of

the draw-all policy for d = 16m and Emax = 224µJ (other parameters as above). It is

seen that energy schedulers with only NL = 16 states suffers negligible performance

penalty with respect to more complex scheduler with NL = N states. Notice also

that, even with NL = 2 states (i.e., a threshold at the half size of the battery),

ABEH tags still perform much better than passive tags. Clearly for p → 1 there is

no performance gain when using ABEH tags, as no energy can be harvested, while

gains of orders of magnitude are possible for smaller p. Finally, the draw-all policy

becomes highly suboptimal for moderate-to-high values of p since in this regime, the

tag needs to manage accurately the stored energy. The shapes of the policies for a
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moderate-high interrogation probability p = 0.1 versus battery state and for different

distances d, are shown in Figure 2.6. Note that, for increasing distances d, the energy

scheduling preserves energy until the battery has stored enough energy.
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Figure 2.4 Long-term average read probability of ABEH and passive tags versus
tag-reader distance for different battery sizes (γthσ

2
r = −67dBm, δE = 0.22µJ ,

E0/T = 36dBm, T = 10ms, p = 0.1, ηamp = ηmod = 0.2, ηDC = 0.4).

2.7 Concluding Remarks

The problem of increasing the tag read range for passive RFID-based sensor networks

limited by the reader sensitivity has been addressed. An approach that leverages

an onboard battery at the tag, recharged exclusively through RF-energy harvesting

of the reader signal during tag inactivity period, to opportunistically amplify the

backscatter signal (Amplified Backscatter through Energy Harvesting, ABEH) has

been proposed. The analysis presented in this chapter shows remarkable performance

gains in terms of read range achievable with ABEH tags, even in the presence of

moderate-to-large interrogation probabilities, i.e., for a small number of tags and/or

high rate of information collection from the tags to reader. Moreover, it points to the
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importance of a well-designed energy scheduling techniques at the tag, especially in

the regime of moderate-to-high interrogation probabilities. Low-complexity policies

have also been designed and shown to provide small performance loss over optimal

strategies. As a final remark, it is noted that the proposed solution and analysis

framework can be extended to the case of tag sensitivity-limited systems, by allowing

a trade-off between the use of the on-board battery to amplify the backscatter signal

and to reduce the tag sensitivity requirement. Finally, more complex propagation

scenario can also be analyzed based on this framework with minor modifications.



Part II

Medium Access Control Protocols for Energy Harvesting Wireless

Networks

40
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This part of the dissertation considers the issue of medium access control

(MAC) for single-hop wireless networks operated by nodes equipped with energy

harvesting (EH) capabilities. In particular, Chapter 3 considers the design and

investigates the performance of random access protocols such as ALOHA, while

Chapter 4, based on the insights obtained in Chapter 3, proposes a new ALOHA-based

protocol that is specifically tailored to EH networks.

Centralized scheduling MAC schemes are instead addressed in Chapter 5 and

Chapter 6. Specifically, Chapter 5 considers the design of scheduling policies in a

single-hop network where the nodes are powered via a hybrid energy storage system

(HESS), while Chapter 6 considers the same setting but with nodes exclusively

powered via EH.



CHAPTER 3

RANDOM ACCESS PROTOCOLS FOR ENERGY HARVESTING

WIRELESS SENSOR NETWORKS

The design of medium access control (MAC) protocols for wireless sensor networks

(WSNs) has been conventionally tackled by assuming battery-powered devices and

by adopting the battery lifetime as the main performance criterion [5]. While WSNs

operated by energy-harvesting (EH) devices are not limited by network lifetime,

they pose new design challenges due to the uncertain amount of energy that can be

harvested from the environment. Novel design criteria are thus required to capture the

trade-offs between the potentially infinite network lifetime and the uncertain energy

availability.

This chapter considers a single-hop WSN in which a fusion center (FC) collects

data packets from M wireless nodes distributed in its surrounding (see Figure 3.1).

The considered application is a batch resolution problem, in which each node in

the network potentially generates a new packet periodically and simultaneously to

other nodes. The packets generated at any given time compose the batch of packets

that need to be collected by a central station (or fusion center, FC). In particular,

this chapter investigates the novel performance trade-offs arising due to EH when

designing conventional MAC protocols, namely TDMA, framed-ALOHA (FA) and

dynamic-FA (DFA). Furthermore, based on the insights obtained through the analysis

of ALOHA-based schemes, a novel random access MAC protocol, tailored to EH

networks and referred to as Energy Group Dynamic Framed-ALOHA (EG-DFA),

will be proposed in Chapter 4.

42
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3.1 Related Work and Systems

While performance analysis of MAC protocols for battery powered wireless networks

have been investigated in depth (see e.g., [8, 13, 14]), analyses of MAC protocols

with EH devices are hardly available. A notable exceptions are [27], where data

queue stability has been studied for TDMA and carrier sense multiple access (CSMA)

protocols in EH networks, and [28] where a scheduling problem for EH mesh networks

has been considered. Whereas, to the best of this dissertation author’s knowledge the

first work on random access MACs for EH wireless networks has been addressed in

[53] and then in extended in [54]. It is finally remarked that routing for EH networks

has instead received more attention, see e.g., [20, 55].

In recent years, wireless networks with EH-capable nodes have attracted a

lot of attention also at commercial level. To provide some examples, the Enocean

Alliance proposes to use a MAC protocol for EH devices based on pure ALOHA

strategies [56], while an enhanced self-powered RFID tag created by Intel, referred

to as WISP [4], has been conceived to work with the EPC Gen 2 standard [48] that

adopts a FA-like MAC protocol.

3.1.1 Contributions

As introduced above, this chapter considers the design and analysis of TDMA, FA and

DFA MAC protocols in the light of the novel challenges introduced by EH. Section

3.3 proposes to measure the system performance in terms of the trade-off between

the delivery probability, which accounts for the number of sensors’ measurements

successfully reported to the FC, and the time efficiency, which measures the

rate of data collection at the FC (formal definitions are in Section 3.3). An

analytical framework is then introduced in Section 3.5, while Section 3.6 assesses the

performance of the considered MAC protocols in terms of the mentioned trade-off for

TDMA, FA and DFA protocols. Section 3.7 tackles the critical issue in ALOHA-based



44

protocols of estimating the number of EH nodes involved in transmission, referred

to as backlog, by proposing a practical reduced-complexity algorithm. Extensive

numerical simulations are then presented in Section 3.8 to get insights into the MAC

protocol design trade-offs, and to validate the analytical derivations.

3.2 System Model

This chapter considers a single-hop WSN with a fusion center (FC) surrounded by

M wireless nodes labeled as U1, U2, ..., UM (see Figure 3.1). Each node (or sensor)

is equipped with an EH unit (EHU) and an energy storage device (ESD), where

the latter is used to store the energy harvested by the EHU. The FC retrieves

measurements from nodes via periodic inventory rounds (IRs), once every Tint seconds

[s]. Each IR is started by the FC by transmitting an initial query command (Q),

which provides both synchronization and instructions to nodes on how to access the

channel. Time is slotted, with each slot lasting Ts [s]. The effective duration of the

nth IR, during which the communication between the FC and the nodes takes place,

is denoted by TIR(n). It is assumed that TIR(n) ≪ Tint for all IR n, and also that the

query duration is negligible, so that the ratio TIR(n)/Ts indicates the total number

of slots allocated by the FC during the nth IR.

In every IR, each node has a new measurement to transmit with probability

(w.p.) α, independently of other nodes and previous IRs. If a new measurement is

available, the node will mandatory attempt to report it successfully to the FC as long

as enough energy is stored in its ESD (see Section 3.2.2 for details). Each measurement

is the payload of a packet, whose transmission fits within the slot duration Ts. nodes’

transmissions within each IR are organized into frames, each of which is composed of a

number of slots that is selected by the FC. Depending on the adopted MAC protocol,

any node that needs to (and can) transmit in a frame either chooses or is assigned a

single slot within the frame for transmission as it will be detailed below. Moreover,
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Figure 3.1 A WSN where a fusion center (FC) collects data from M nodes. Each
node is equipped with an energy storage device (ESD) and an energy-harvesting unit
(EHU).

after a node has successfully transmitted its packet to the FC, it first receives an

acknowledge (ACK) of negligible duration by the FC and then it becomes inactive

for the remaining of the IR. It is emphasized that the FC knows neither the number

of nodes with a new measurement to transmit, nor the state of nodes’ ESDs.

3.2.1 Interference Model

This chapter considers interference-limited communication systems in which the

downlink packets transmitted by the FC are always correctly received (error-free)

by the nodes, while uplink packets transmitted by the nodes to the FC are subject to

communication errors due to possible interference arising from collisions with other

transmitting nodes. The uplink channel power gain for the mth node during the nth

IR is hm(n). Channel gain hm(n) is assumed to be constant over the entire IR but

subject to random independent and identically distributed (i.i.d.) fading across IRs

and nodes, with probability density function (pdf) fh(·) and normalized such that

E [hm(n)] = 1, for all n,m. In the presence of simultaneous transmissions in the same

slot during the kth frame of the nth IR, a node Um is correctly received by the FC if

and only if its instantaneous signal-to-interference ratio (SIR) γm,k (n) is larger than



46

a given threshold γth, i.e., if

γm,k (n) =
hm (n)

∑

l∈Im,k(n)
hl (n)

≥ γth, (3.1)

where Im,k(n) denotes the set of nodes that transmit in the same slot selected by Um

in frame k and IR n. It is assumed γth > 0dB so that, in case a slot is selected by

more than one node, at most one of the colliding node can be successfully decoded in

the slot.

According to the interference model (3.1), any slot can be: empty when it is

not selected by any node; collided when it is chosen by more than one nodes but none

of them transmits successfully; successful when a node transmits successfully possibly

in the presence of other (interfering) nodes. Successful transmission in the presence

of interfering nodes within the same slot is often referred to as capture effect [14].

Remark 1: Errors in the decoding of downlink query packets can be accounted

for through the parameter α as well. In fact, let αQ be the probability that a node

correctly decodes the downlink packet sent by the FC at the beginning of an IR.

Moreover, assume that downlink decoding errors are i.i.d. across nodes and IRs, and

let αN be the probability that a node has a new measurement to transmit in any IR.

Then, the probability that any node Um has a new packet and correctly decodes the

FC’s query is given by the product α = αQαN .

3.2.2 ESD and Energy Consumption Models

This chapter considers a discrete ESD with N + 1 energy levels in the set E =

{0, δ, 2δ, ..., Nδ}, where δ is referred to as energy unit. Let Em(n) ∈ E be the energy

stored in the ESD of the mth node at the beginning of the nth IR. Energy Em(n) is a

random variable that is the result of the EH process and the energy consumption of the

node across IRs; its probability mass function (pmf) is pE(n) (·) and the corresponding

complementary cumulative distribution function (ccdf) is GE(n) (x) = Pr[Em(n) ≥ x].
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Note that, the initial energy distribution pE(1) (·) is given, while the evolution of the

pmf pE(n) (·) for n > 1 depends on both the MAC protocol and the EH process.

It is assumed that each time a node transmits a packet it consumes an energy

ε, which accounts for the energy consumed in the: a) reception of the FC’s query

that starts the frame (see Figure 3.2); b) transmission; c) reception of FC’s ACK or

not ACK (NACK) packet, if any. At the beginning of each IR, a node with a new

measurement to transmit can participate to the current IR only if the energy stored

in its ESD is at least ε. Let εδ = ε/δ be the number of energy units δ required for

transmission, where εδ is assumed to be an integer value without loss of generality.

Let Fε = Nδ/ε = N/εδ be the (normalized) capacity of the ESD, which is assumed

to be an integer indicating the maximum number of (re)transmissions allowed by a

fully charged ESD.
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Figure 3.2 Organization of time in slots and frames for TDMA and DFA protocols
(FA is a special case of DFA with only one frame).

3.2.3 Energy Harvesting Model

During the time Tint between the nth and (n+1)th IRs the mth node Um harvests an

energy EH,m(n), which is modeled as a discrete random variable, i.i.d. over IRs and

nodes, with pmf qi = Pr[EH,m(n) = iδ], with i ∈ {0, 1, 2, ...}. For technical reasons

discussed in Section 3.6.2, it is assumed that the probabilities q0 and q1 of harvesting



48

zero and one energy unit, respectively, are both strictly positive, i.e., q0 > 0 and

q1 > 0.

It is assumed that the EH dynamics is much slower than the IR duration

TIR(n), so that the amount of energy harvested within TIR(n) can be considered as

negligible with respect to ε (recall also that TIR(n) ≪ Tint). Hence, the only energy

that a node can actually use throughout an IR is the energy initially available at the

beginning of the IR itself (i.e., Em(n)).

3.3 MAC Performance Metrics

The next sections introduce the MAC performance metrics that are considered

throughout this chapter.

3.3.1 Delivery Probability

The delivery probability pd (n) measures the capability of the MAC protocol to

successfully deliver the packet of any node, say Um, to the FC in IR n

pd(n) = Pr [Um TX successfully in IR n|Um has a new measurement in IR n] .

(3.2)

The statistical equivalence of all nodes makes the probability (3.2) independent of

the specific node. Notice that a node fails to report its measurement during an IR if

either it has an energy shortage before (re)transmitting the packet correctly, or the

MAC protocol does not provide the node with sufficient retransmission opportunities.

Given the potentially perpetual operation enabled by EH, it is relevant to evaluate

the delivery probability when the system is in steady-state. The asymptotic delivery

probability is thus obtained by taking the limit of pd (n) for large IR index n, provided

that it exists, as

pAS
d = lim

n→∞
pd(n). (3.3)
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3.3.2 Time Efficiency

The time efficiency pt(n) measures the probability that any slot allocated by the MAC

within the nth IR is successfully used (see Section 3.2.1)

pt(n) = Pr [The FC correctly retrieves a packet in any slot of the nth IR] . (3.4)

By taking the limit of (3.4) for n→ ∞, one can obtain the asymptotic time efficiency

pAS
t = lim

n→∞
pt (n) . (3.5)

Remark 2: Informally speaking, the time efficiency pt(n) measures the ratio

in IR n between the total number of packets successfully received by the FC and the

total number of slots allocated by the MAC protocol (i.e., TIR(n)/Ts, see Section 3.2).

As it will be shown in Section 3.4, the IR duration TIR(n) is in general a random

variable, and consequently, time efficiency pt(n) differs from more conventional

definitions of throughput that measure the number of packets delivered over the

interval Tint between two successive IRs (see [13]), instead of TIR(n). The rationale

for this definition of time efficiency is that it actually captures more effectively the

rate of data collection at the FC. Whereas, the delivery probability accounts for the

fraction of nodes, with a new measurement to transmit at the beginning of the current

IR, which are able to successfully report their payload to the FC within the IR, where

delivery failures are due to collisions and energy shortages.

In contention based MACs (e.g., ALOHA), there is a trade-off between delivery

probability and time efficiency. In fact, increasing the former generally requires the

FC to allocate a larger number of slots in an IR to reduce packet collisions, which in

turn decreases the time efficiency.

3.4 MAC Protocols

The next sections review the MAC protocols that are considered in this chapter.
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3.4.1 TDMA

With the TDMA protocol, each node is pre-assigned an exclusive slot that it can use

in every IR, irrespective of whether it has a packet to deliver or enough energy to

transmit. Recall that such information is not available at the FC. Any IR is thus

composed by one frame with M slots and has fixed duration T TD
IR =MTs (see Figure

3.2). Since TDMA is free of communication errors in the considered interference-

limited scenario, its delivery probability pd(n) is only limited by energy availability

and it is thus an upper bound for ALOHA-based MACs. However, TDMA might not

be time efficient due to the many empty slots when the probability of having a new

measurement α and/or the EH rate are small.

3.4.2 Framed-ALOHA (FA) and Dynamic-FA (DFA)

Hereafter only the DFA protocol is described, since FA follows as a special case of

DFA with no retransmissions capabilities as discussed below. The nth IR, of duration

TDFA
IR (n), is organized into a set of frames as shown in Figure 3.2. The backlog Bk(n)

for the kth frame is the set composed of all nodes that simultaneously satisfy the

following three conditions: i) have a new measurement to transmit in the nth IR; ii)

have transmitted unsuccessfully (because of collisions) in the previous k − 1 frames

(this condition does not apply for frame k = 1); iii) have enough energy left in the

ESD to transmit in the kth frame. All the nodes in the set Bk(n), whose cardinality

|Bk(n)| = Bk(n) is referred to as backlog size, thus attempt transmission during frame

k. To make this possible, the FC allocates a frame of Lk(n) slots, where Lk(n) is

selected based on the estimate B̂k(n) of the backlog size Bk(n) (estimation of Bk(n)

is discussed in Section 3.7) as

Lk(n) =
⌈

ρB̂k(n)
⌉

, (3.6)
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where ⌈·⌉ is the upper nearest integer operator, and ρ is a design parameter. Note

that, if the backlog size is B, the probability β (j, B, L) that j ≤ B nodes transmit

in the same slot in a frame of length L is binomial [57]

β (j, B, L) =

(

B

j

)(

1

L

)j (

1− 1

L

)B−j

. (3.7)

Finally, FA is a special case of DFA where only one single frame of size L1(n) is

announced as retransmission of collided packets is not allowed.

3.5 Analysis of the MAC Performance Metrics

This section derives the performance metrics defined in Section 3.3 for TDMA, FA

and DFA. The analysis is based on two simplifying assumptions:

• A.1 Known backlog : the FC knows the backlog size Bk(n) = |Bk(n)| before each

kth frame;

• A.2 Large backlog : the backlog size Bk(n), in any IR n and any frame k of size

Lk(n) = ⌈ρBk(n)⌉, is large enough to let the probability (3.7) be approximated

by the Poisson distribution [57]:

β (j, Bk(n), Lk(n)) ≃
e−

1
ρ

ρjj!
. (3.8)

Assumption A.1 simplifies the analysis as in reality the backlog can only be

estimated by the FC (see Section 3.7 and Section 3.8 for the impact of backlog

estimation). Assumption A.2 is standard and analytically convenient, as it makes the

probability β (j, Bk(n), Lk(n)) dependent only on the ratio ρ between the frame length

Lk(n) and the backlog size Bk(n). The assumptions above are validated numerically

in Section 3.8.
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The next sections derive the delivery probability (3.2) and the time efficiency

(3.4) for the MAC protocols considered in this chapter, under the assumptions A.1

and A.2 introduced above. The IR index n is dropped to simplify the notation.

3.5.1 Delivery Probability for TDMA

Since the TDMA protocol is free of collisions, each node Um that has a new

measurement to report in the current IR cannot deliver its payload to the FC only

when it is in energy shortage, namely if Em < ε. Provided that node Um has a new

packet to transmit, the delivery probability (3.2) reduces to

pTD
d = Pr [Em ≥ ε] = GTD

E (ε) , (3.9)

which is independent of the node index m and dependent only on the ccdf GTD
E (·)

of the energy stored in node ESD at the beginning of the considered IR. The ESD

energy distribution for any arbitrary nth IR is derived in Section 3.6.

3.5.2 Delivery Probability for FA

In the FA protocol, each node Um that has a new measurement to report in the

current IR is able to correctly deliver its payload to the FC only if: a) it transmits

successfully in the selected slot, possibly in the presence of interfering nodes provided

that its SIR is γm,1 ≥ γth; and b) it has enough energy to transmit. From (3.1), the

probability that node Um, with Um ∈ B1, transmits successfully in the selected slot,

given that |Im,1| = j nodes select the same slot of Um (thus colliding), is given by

pc(j) = Pr

[

hm ≥ γth

j
∑

l=1

hl

]

, (3.10)

where, without loss of generality, it is assumed that Im,1 = {U1, ..., Uj}, and Um /∈

Im,1, as nodes are stochastically equivalent. Under the large backlog assumption A.2,

the probability that there are j interfering nodes is Poisson-distributed (see (3.8)),
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and thus the unconditional probability pc that Um captures the selected slot can be

approximated as

pc ≃ e−
1
ρ

∞
∑

j=0

1

ρjj!
pc(j). (3.11)

Note that, in (3.11) the number of possible interfering nodes have been extended up

to infinity as pc(j) rapidly vanishes for increasing j. Moreover, depending on the

channel gain pdf fh(·), probabilities (3.10) can be calculated either analytically (e.g.,

when fh(·) is exponential, see [58]) or numerically.

Finally, under assumption A.2, the successful transmission event is

independent of the ESD energy levels (which in principle determine the actual backlog

size in (3.7)), and thus the delivery probability (3.2) for the FA protocol can be

calculated as the product between the probability GFA
E (ε) = Pr [Em ≥ ε] that node

Um has enough energy to transmit and the (approximated) capture probability (3.11)

as

pFA
d ≃ GFA

E (ε) e−
1
ρ

∞
∑

j=0

1

ρjj!
pc(j), (3.12)

where the ESD energy ccdf GFA
E (ε) for any arbitrary nth IR is derived in Section 3.6.

3.5.3 Delivery Probability for DFA

The DFA protocol is composed of several instances of FA, one for each kth frame of

the current IR. As DFA allows retransmissions, one needs to calculate the probability

pc,k(j) that any node active during frame k, say Um ∈ Bk, transmits successfully in

the selected slot given that there are |Im,k| = j nodes that transmit in the same slot,

with Im,k ⊆ Bk. The computation of pc,k(j), for k > 1, is more involved than (3.10).

In fact, packets collisions introduce correlation among the channel gains of collided

nodes, as any node in the backlog Bk, for k > 1, might have collided with some other
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nodes in the set Bk. It is recalled that, even though the channel gains are i.i.d. at

the beginning of the IR, they remain fixed for the entire IR.

While the exact computation of probabilities pc,k(j) is generally cumbersome,

the large backlog assumption A.2 enables some simplifications. Specifically,

correlation among channel gains can be neglected, since for large backlogs it is unlikely

that two nodes collide more than once within the same IR. By assuming independence

among the channel gains at any frame, calculation of pc,k(j) requires only to evaluate

the channel gain pdf f
(k)
h (·) at the kth frame for any node within Bk, which is the same

for all nodes by symmetry. The computation of pdf f
(k)
h (·) can be done recursively,

starting from frame k = 1, so that at frame k one can condition on the event that

the SIR (3.1) was γm,k−1 < γth. Under assumption A.2, this can be done numerically

(see Appendix A and [59] for more details).

Now, let h̃
(k)
m , for m ∈ {1, ...,M} and k ∈ {1, ..., Fε}, be random variables

with pdf f
(k)
h (·) independent over m, where h̃

(1)
m = hm. The conditional capture

probabilities pc,k(j) can then be approximated as (compare to (3.10))

pc,k(j) ≃ Pr

[

h̃(k)m ≥ γth

j
∑

l=1

h̃
(k)
l

]

, (3.13)

for anym /∈ {1, ..., j} as nodes are stochastically equivalent. By exploiting the Poisson

approximation similarly to (3.11), the unconditional probability that any node within

the backlog successfully transmits in the selected slot in the kth frame is

pc,k ≃ e−
1
ρ

∞
∑

j=0

1

ρjj!
pc,k(j). (3.14)

Recalling that a node keeps retransmitting its packet until it is successfully

delivered to the FC, then the successful delivery of a packet in a frame is a

mutually exclusive event with respect to the delivery in previous frames. Therefore,

the probability of transmitting successfully in the kth frame, given that enough

energy is available, is pc,k
∏k−1

i=1 (1− pc,i) . Finally, by accounting for the probability
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GDFA
E (kε) = Pr [Em ≥ kε] of having enough energy in each kth frame, the DFA

delivery probability can be obtained, under assumption A.2, as1

pDFA
d ≃

Fε
∑

k=1

GDFA
E (kε) pc,k

k−1
∏

i=1

(1− pc,i) , (3.15)

where the ESD energy ccdf GDFA
E (kε) for any arbitrary nth IR is derived in Section

3.6.

3.5.4 Time Efficiency for TDMA

Let Mm be the event indicating that node Um has a new measurement to report in

the current IR, with Pr[Mm] = α, then the TDMA time efficiency (3.4) is given by

the probability that the mth node has enough energy to transmit and a packet to

report as

pTD
t = Pr [Em ≥ ε,Mm] = Pr [Em ≥ ε] Pr [Mm]

= αGTD
E (ε) , (3.16)

where the independence between the energy availability Em and the event Mm has

been exploited.

3.5.5 Time Efficiency for FA

Since it has been assumed γth > 0dB, then when more than one node transmits

within the same slot, only one of them can be decoded successfully (i.e., successful

transmissions of different nodes within the same slot are disjoint events). Hence, the

probability that a slot, simultaneously selected by j nodes, is successfully used by any

of them is given by jpc(j − 1), where pc(j − 1) is (3.10) by recalling that any node

have (j − 1) interfering nodes. Furthermore, under assumption A.2, the probability

1Note that in principle the backlogs B1,B2... are correlated, and therefore the exact pDFA
d

should be obtained by averaging over the joint distribution of the backlog sizes. However,

the assumption A.2 removes the dependence on the backlog size.
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that exactly j nodes select the same slot is e−
1
ρ/ (ρjj!), and by summing up over the

number of simultaneously transmitting nodes j one gets

pFA
t ≃ e−

1
ρ

∞
∑

j=1

1

ρjj!
jpc(j − 1) = e−

1
ρ

∞
∑

j=0

1

ρ(j+1)j!
pc (j) . (3.17)

Note that, a consequence of assumption A.2 is to make the FA time efficiency (3.17)

independent of the ESD energy pmf. Moreover it is remarked that, when ρ = 1,

pc(j) = 1 for j = 0 and pc(j) = 0 for j > 0 (i.e., no capture), then one has pFA
t = e−1,

which is the throughput of slotted ALOHA [13].

3.5.6 Time Efficiency for DFA

The DFA time efficiency pDFA
t follows from the FA time efficiency by accounting for

the presence of multiple frames within an IR similarly to Section 3.5.3. Since the

time efficiency is defined over multiple frames, it is possible to first derive the time

efficiency in the kth frame, similarly to (3.17) but considering (3.13) instead of (3.10),

as

pDFA
t,k ≃ e−

1
ρ

∞
∑

j=0

1

ρ(j+1)j!
pc,k (j) . (3.18)

It is then possible to calculate pDFA
t by summing (3.18) up, for all k ∈ {1, ..., Fε},

weighted by the (random) length of the corresponding frame Lk normalized to the

total number of slots in the IR
∑Fε

k=1 Lk. Note that, under assumptionA.2 the random

frame length Lk is well-represented by its (deterministic) average value Lk ≃ E [Lk] =

ρE [Bk] and thus the DFA time efficiency results

pDFA
t ≃

∑Fε

k=1 p
DFA
t,k E [Bk]

∑Fε

k=1E [Bk]
, (3.19)

where the average backlog size E[Bk] in frame k, can be computed, under assumption

A.2, as E[Bk] =MαGDFA
E (kε)

∏k−1
i=1 (1− pc,i). In fact, Mα is the average number of

nodes with a new measure to report in the current IR, G(kε) is the probability that
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kε energy units are stored in the ESD at the beginning of the IR, thus allowing k

consecutive transmissions, and
∏k−1

i=1 (1− pc,i) is the probability that a node collides

in all of the first (k − 1) frames.

3.6 ESD Energy Evolution

Section 3.5 shown that the performance metrics for the nth IR depend on the ESD

energy distribution at the beginning of the IR. The goal of this section is to derive

the ccdf GE(n)(·), in any IR n, to obtain the asymptotic performance metrics (3.3)

and (3.5) described in Section 3.5.

In general, in DFA, the evolution of node ESDs across IRs are correlated

with each other due to the retransmission opportunities after collisions. However,

under the large backlog assumption A.2, similarly to the discussion in Section 3.5.3,

the evolution of node ESDs become decoupled and can thus be studied separately.

Accordingly, this section develops a stochastic model, based on a discrete Markov

chain (DMC) that focuses on a single node ESD as shown in Figure 3.3. In addition,

the focus is on the DFA protocol since the ESD evolutions for TDMA and FA follow as

special cases. Note that, in TDMA (or FA), the evolution of node ESDs are actually

independent with each other as retransmissions are not present.

3.6.1 States of a Node

The state of a node is uniquely characterized by: i) node activity or idleness (see

below); ii) the amount of energy in its ESD; iii) the current frame index if the node

is active. A node is active if it has a new packet still to be delivered to the FC in the

current IR and enough energy in its ESD, while it is idle otherwise. States in which

a node is active (or active states), are denoted by Ak
j and they are characterized by:

a) the current frame index k ∈ {1, ..., Fε}; and b) the number j ∈ {0, ..., N} of energy

units δ stored in the node ESD.
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Figure 3.3 a) Discrete Markov chain used to model the evolution of the energy
stored in the discrete ESD of a node in terms of the energy unit δ. In b.1) and
b.2) there are two outcomes of possible state transition chains for εδ = 3. Grey
shaded states indicate energy shortage condition. Some transitions are not depicted
to simplify representation. (ᾱ = 1− α and p̄c,k = 1− pc,k).
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States in which the node is idle (or idle states) are denoted by Ij and they are

only characterized by the number j ∈ {0, ..., N} of energy units stored in the ESD.

EH is associated to idle states given the assumption that energy harvested in the

current IR can only be used in the next IR (see Section 3.2.3).

3.6.2 Discrete Markov Chain (DMC) Model

Operations of a node across IRs are as follows. When node Um is not involved in

an IR, it is in an idle state, say Ij, waiting for the next IR. When a new IR begins,

the energy harvested in the last interval Tint is added, so that, if the ESD is not in

energy shortage, the state makes a transition Ij → A1
l toward an active state, with

l ≥ εδ ≥ j. Otherwise, if it is in energy shortage, it makes a transition Ij → Il

toward another idle state, with j ≤ l < εδ. If node Um is not in energy shortage,

it remains in state A1
j at the beginning of the IR only if it has a new packet to

transmit, which happens w.p. α. Instead, w.p. ᾱ = 1 − α the state makes a

transition toward an idle state as A1
j → Ij. If there is a new packet, the node keeps

transmitting it in successive frames until either the packet is correctly delivered to

the FC, or its ESD falls in energy shortage, or both. A collision in frame k happens

w.p. p̄c,k = 1 − pc,k (see Section 3.5.3) and leads to a transition either Ak
j → Ak+1

j−εδ
,

for j ≥ 2εδ (no shortage after collision) or Ak
j → Ij−εδ , for j < 2εδ (shortage after

collision). Successful transmission in frame k, which happens w.p. pc,k, instead leads

to a transition Ak
j → Ij−εδ . Transition probabilities are summarized in Figure 3.4,

where it has been defined qj,N = Pr[EH,m ≥ (N−j)δ] = 1−∑N−j−1
i=0 qi. Note that, the

probability α of having a new measurement is only accounted for in active states in

the first frame (i.e., in states A1
j , for j ∈ {0, ..., N}, see Figure 3.4-b)). In fact, being

in any state Ak
j for k > 1 already implies that a new measurement was available at the

beginning of the IR. Note that, state transitions in the DMC at hand are event-driven

and do not happen at fixed time intervals. A sketch of the proposed DMC is shown
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in Figure 3.3-a), while two outcomes of possible state transition chains are shown in

Figure 3.3-b.1) and 3.3-b.2).

From Figure 3.3-a), it can be seen that, when q0 > 0, q1 > 0 and pc,k > 0, for

k ∈ {1, ..., Fε}, the DMC at hand is irreducible and aperiodic and thus, by definition,

ergodic (see [47]). In fact, if q1 > 0, any state of the DMC can be reached from

any other state with non-zero probability, and therefore the DMC is irreducible.

Moreover, the probability of having a self-transition from state I0 to itself is q0 > 0,

and therefore state I0 is aperiodic. The presence of an aperiodic state in a finite state

irreducible DMC is enough to conclude that the chain is aperiodic [47, Ch. 4, Th.

1]. Since the DMC is ergodic it admits a unique steady-state probability distribution

φ = [φI0 , ..., φIN , φA1
εδ
, ..., φAFε

N
], regardless of the initial distribution, which can be

calculated by resorting to conventional techniques [47]. This also guarantees the

existence of limits (3.3) and (3.5). Vector φ represents the steady-state distribution

in any discrete time instant of the interrogation period (i.e., during either a frame of

an IR or an idle period). However, to calculate (3.3) and (3.5) one needs the DMC

steady-state distribution φ+ conditioned on being at the beginning of the IR. This

can be calculated by recalling that between the end of the last issued IR and the

beginning of a new one, node Um can only be in an idle state Ij, with j ∈ {0, ..., N},

and thus its state conditional distribution φ−= [φ−
I0
, ..., φ−

IN
, φ−

A1
εδ

, ..., φ−

AFε
N

], is given by

φ−
Ij
= φIj/

∑N
i=0 φIi , ∀j ∈ {0, ..., N} and φ−

Ak
j

= 0, for all j, k. The desired distribution

φ+ of the state at the beginning of the next IR can be obtained as φ+ = φ−P, where

P is the DMC probability transition matrix of the DMC in Figure 3.3-a) that can

be obtained through Figure 3.4. Note that, according to the transition probabilities

in Figure 3.4, starting from any state Ij, with j ∈ {0, ..., N}, only states Ij, with

j ∈ {0, ..., εδ − 1} and states A1
j , with j ∈ {εδ, ..., N} can be reached. Therefore, the

only possible non-zero entries of distribution φ+ are φ+
Ij

for j ∈ {0, ..., εδ − 1} and

φ+
A1

j

for j ∈ {εδ, ..., N}.



61

Once the DMC steady-state distribution φ+ at the beginning of any (steady-

state) IR is obtained, it is possible to calculate the corresponding ESD steady-state

distribution pE(n→∞)(·) by mapping the DMC states into the energy level set E as

follows

pE(n→∞)(j) =











φ+
Ij

for j ∈ {0, ..., εδ − 1}

φ+
A1

j

for j ∈ {εδ, ..., N}
. (3.20)

The ccdf GE(n→∞)(·) is immediately derived from pE(n→∞)(·). Finally, it is remarked

that analysis of FA and TDMA can be done by limiting the set of active states to

A1
εδ
, ..., A1

N (i.e., no retransmission), since any node after transmission returns idle

regardless the transmission outcome.
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Figure 3.4 State transition probabilities for the DMC model in Section 3.6.2 due
to: a) energy harvesting; and b) the bidirectional communication with the FC. The
transition matrix P can be derived according to the probabilities in a) and b) for all
the values of k ∈ {1, ..., Fε} and j ∈ {0, ..., N}.

3.7 Backlog Estimation

This section proposes a backlog estimation algorithm for the DFA protocol (extension

to FA is straightforward). Unlike previous work on the subject [57, 60], here

backlog estimation is designed by accounting for the interplay of EH, capture effect

and multiple access. Computational complexity of optimal estimators is generally
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intractable for a large number of nodes even for non-EH systems [60]. This

section thus proposes a low-complexity two-steps backlog estimation algorithm that,

neglecting the IR index, operates in every IR as follows: i) the FC estimates the

initial backlog size B1 based on the ccdf GE (ε) of the ESD energy at the beginning

of the current IR; ii) the backlog estimates for the next frames are updated based on

the channel outcomes and the residual ESD energy.

For the first frame, the backlog size estimate and the frame length are B̂1 =

MαGE (ε) and L1 =
⌈

ρB̂1

⌉

, respectively. For subsequent frames, assume that the

FC announced a frame of Lk =
⌈

ρB̂k

⌉

slots. The FC estimates the backlog size for

frame k + 1 by counting the number of slots that are successful (ND,k) and collided

(NC,k) within the kth frame of length Lk slots. Since the FC cannot discern exactly

how many nodes transmitted in each successful slot, the estimate of the total number

CD,k of nodes that collided in ND,k successful slots is ĈD,k = (βD,k − 1)ND,k, with

βD,k being the conditional average number of nodes that transmit in a slot given that

the slot is successful (with no capture βD,k = 1). Similarly, for the collided slots one

can obtain ĈC,k = βC,kNC,k, where βC,k is now conditioned on observing a collided

slot. Derivations of βD,k and βC,k are in Section 3.7.1. Since the estimate of the total

number of nodes that unsuccessfully transmitted is Ĉk = ĈC,k+ĈD,k, the backlog size

estimate B̂k+1 for the (k + 1)th frame is obtained by accounting for the fraction of

nodes within Ĉk that are not in energy shortage: B̂k+1 = ĈkGE((k + 1)ε|kε), where

GE((k + 1)ε|kε) = Pr [Em ≥ (k + 1)ε|Em ≥ kε]. The proposed backlog estimation

scheme thus works as follows:

B̂k =











MαGE (ε) if k = 1

Ĉk−1GE(kε| (k − 1) ε) if k > 1
. (3.21)
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Algorithm (3.21) can be applied to any IR n by deriving the ESD distribution pE(n)(·)

(or GE(n)(·)) from any initial distribution pE(1)(·) by exploiting the DMC model in

Section 3.6.2.

3.7.1 Average Number of Node Transmissions per Slot

The conditional averages βD,k and βC,k are calculated similarly to [13] by accounting

for the capture effect and an arbitrary ρ. Let Y be the number of simultaneous

transmissions in the same slot, and let Uk and Ck be the event of successful and

collided slot in frame k, respectively. The average number of nodes per successful

and collided slot are respectively

βD,k =
∞
∑

j=1

j Pr [Y = j|Uk] ; and βC,k =
∞
∑

j=2

j Pr [Y = j|Ck] . (3.22)

To calculate βD,k consider A.1 and A.2 and allow the number of possible interfering

nodes up to infinity as in Section 3.5.2. By exploiting the Bayes rule, one can get

Pr [Y = j|Uk] = Pr [Uk|Y = j] Pr[Y=j]
Pr[Uk]

, where Pr [Uk|Y = j] = jpc,k(j−1), Pr [Y = j] =

e−
1
ρ/(ρjj!) and Pr [Uk] = pDFA

t,k (see 3.18). Similarly, one can obtain βC,k given that

Pr [Ck] = 1 − Pr [Uk] − β (0, B, L), where β (0, B, L) ≃ e−
1
ρ is the probability of an

empty slot, and Pr [Ck|Y = j] = 1− Pr [Uk|Y = j] for j ≥ 1.

3.8 Numerical Results

This section presents extensive numerical results to get insight into the MAC protocols

design. Moreover, to validate the analysis proposed in Section 3.5 and Section 3.6,

the analytical results derived therein are compared with a simulated system that does

not rely on simplifying assumptions A.1 and A.2. The performances of the backlog

estimation algorithm proposed in Section 3.7 are also assessed through a comparison

with the ideal case of perfectly known backlog at the FC.
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3.8.1 MAC Performance Metrics Trade-offs

The energy EH,m(n) harvested between two successive IRs is assumed as

geometrically-distributed so that qi = Pr[EH,m(n) = iδ] = ξ(1 − ξ)i, with ξ =

δ/(δ+µH), where it has been defined the harvesting rate µH as the average harvested

energy normalized by ε as µH = E[EH,m(n)/ε].

The asymptotic time efficiencies (3.5) for TDMA, FA and DFA protocols, are

shown in Figure 3.5 versus design parameter ρ (recall (3.6)). System performance

is evaluated by considering: µH ∈ {0.15, 0.35}, M = 400, γth = 3dB, α = 0.3; ε is

normalized to one, energy unit is δ = 1/50 so that εδ = 50 and Fε = 10. Figure 3.5

compares the analytical performance metrics derived in Section 3.5 with simulated

scenarios for both known and estimated backlog. TDMA’s performance is clearly

independent of ρ, while in FA and DFA there is a time efficiency-maximizing ρ that

is close to one (in [13] the optimal value was ρ = 1 since the capture effect was not

considered). The effect of decreasing (or increasing) the harvesting rate µH on the

TDMA time efficiency is due to the larger (or smaller) number of nodes that are

in energy shortage and whose slots are not used, while it is negligible for FA and

DFA due to their ability to dynamically adjust the frame size according to backlog

estimates B̂k. The tight match between analytical and simulated results also validates

assumptions A.1 and A.2 and the efficacy of the backlog estimation algorithm.

The asymptotic delivery probability (3.3), for harvesting rate µH ∈

{0.05, 0.15, 0.35}, versus parameter ρ is shown in Figure 3.6 with the same system

parameters as for Figure 3.5. Unlike for the time efficiency, TDMA always

outperforms FA and DFA in terms of delivery probability. In fact, nodes operating

with TDMA and FA have the same energy consumption since they transmit at most

once per IR, while possibly more than once in DFA. However, TDMA does not suffer

collisions and thus it is able to eventually deliver more packets to the FC. The

delivery probability strongly depends on the harvesting rate µH , which influences
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the ESD energy distribution and thus the energy shortage probability. Moreover,

DFA outperforms FA thanks to the retransmission capability when the harvesting

rate is relatively high (e.g., µH= 0.35). Whereas, for low harvesting rate (e.g.,

µH∈ {0.05, 0.15}) DFA and FA perform similarly since most of the nodes are either

in energy shortage or have very low energy in their ESDs, thus being unable to fully

exploit the retransmission opportunities provided by DFA.

The trade-off between asymptotic delivery probability (3.3) and asymptotic

time efficiency (3.5) is shown in Figure 3.7 for different values of the harvesting rate

µH ∈ {0.05, 0.15, 0.35}. System parameters are the same as for Figure 3.5. For

TDMA, the trade-off consists of a single point on the plane, whereas FA and DFA

allow for more flexibility via the selection of parameter ρ. When increasing ρ more

nodes might eventually report their measurements to the FC, thus increasing the

delivery probability to the cost of lowering time efficiency (see Figure 3.5 and 3.6).

For FA and DFA, the trade-off curves are obtained as maxρ
{

pAS
d

}

, s.t. pAS
t = λ for

each achievable λ.

The impact of the capture effect on the performance metrics trade-offs is shown

in Figure 3.8, where the SIR threshold γth ∈ {0.01, 3, 10}dB is varied while the

harvesting rate µH = 0.15 is kept fixed (other parameters are as in Figure 3.5). As

expected, the lower the SIR threshold γth the higher the probability that the SIR of

any of the colliding nodes is above γth, and thus the higher the performance obtained

with ALOHA-based protocols. TDMA is insensitive to γth.

3.9 Conclusions

The design of medium access control (MAC) protocols for single-hop wireless

node networks (WSNs) with energy-harvesting (EH) devices offers new challenges

as compared to the standard scenario with battery-powered (BP) nodes. New

performance criteria are called for, along with new design solutions. This chapter
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Figure 3.5 Asymptotic time efficiency (3.5) versus ρ, for different harvesting rates
µH ∈ {0.15, 0.35}. Comparisons are between analytical and simulated results with
both known (Bk) and estimated backlog (B̂k, see (3.21)), (M = 400, γth = 3dB,
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addressed these issues by investigating the novel trade-off between the delivery

probability, which measures the capability of a MAC protocol to deliver the measure

of any node in the network to the intended destination (i.e., fusion center, FC) and

the time efficiency, which measures the data collection rate at the FC. The analysis

is focused on standard MAC protocols, such as TDMA, Framed-ALOHA (FA) and

Dynamic-FA (DFA). Novel design issues are also discussed, such as backlog estimation

and frame length selection. Extensive numerical results and discussions validate the

proposed analytical framework and provide insight into the design of EH-WSNs.



CHAPTER 4

ENERGY GROUP DYNAMIC FRAMED-ALOHA PROTOCOL

This chapter proposes a novel random access protocol for data collection from a

set of energy harvesting (EH) capable wireless nodes. The scheme is a variant of

the dynamic framed-ALOHA (DFA) protocol and it is tailored to EH networks.

The proposed scheme, referred to as energy group-DFA (EG-DFA), is based on the

observation that, when DFA is operated with EH-capable nodes, the optimal number

of slots in a frame (i.e., the frame size) must balance two conflicting performance

requirements as shown in Section 3.8. First, in a perfect collision channel (i.e., no

capture effect at the FC) it is well-known that the time efficiency (i.e., the data

collection rate see Section 3.5.5) is maximized when the frame size is equal to the

backlog, namely the number of transmitting nodes. Second, since each node can

store and harvest a finite energy, the number of (re)transmissions attempts that

each node can perform during the channel contention process is limited. Thus,

to reduce the probability of packets collisions and thus the energy wastage due to

retransmissions, the frame size should be selected as large as possible, so that the

delivery probability is increased. Therefore, the choice of the frame size is crucial

in determining the trade-off between time efficiency and delivery probability, where

their trade-off strongly depends on the energy harvesting rate and thus the energy

availability at nodes as shown in Section 3.8.

Based on the insights above, the key idea of EG-DFA is to divide nodes in

groups according to their energy availability, and let each group access the channel

via a separate instance of DFA, whereby different values of ρ can be selected for

each group. A grouping technique for ALOHA-based MACs was proposed in [61],

via a protocol that here it is referred to as Group-DFA (G-DFA). G-DFA divides

69
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nodes in groups, and each groups’ data packets are collected by the FC through

separated instances of DFA all with the same parameter ρ. G-DFA improves DFA’s

time efficiency, as decreasing the number of nodes competing for the same frame

increases the chance of a successful transmission. However, the G-DFA protocol was

developed for nodes with no energy constraints, thus without considering the crucial

trade-off between time efficiency and delivery probability. This trade-off is instead

tackled in EG-DFA, which combines the grouping gain of G-DFA with the ability to

tune the design parameter ρ to the group’s energy availability. In fact, as discussed

above, obtaining an high delivery probability in groups with small energies requires

large ρ values to decrease energy-wastage due to collisions, whereas ρ close to one is

expected to be optimal for groups with large energies.

To analyze the performance of the EG-DFA protocol, here it is considered

a simplified system model with respect to the one considered in Section 3.2.2.

Furthermore, to denote time, this section will generally use a double index (n,i),

which denotes the beginning of the ith frame, i = 1, 2, ..., in the nth IR, n = 1, 2, ...

(slots are not indexed).

4.1 Energy Model for EG-DFA

To simplify the presentation of the EG-DFA protocol, here it is considered that the

energy unit δ, used to describe the granularity of the discrete ESD (see Section 3.2.2),

is equal to the energy per frame ε, so that εδ = 1. Therefore, let Em(n, i) ∈

{0, 1, ..., C} be the energy stored in the ESD of the mth node at the beginning

of the ith frame during the nth IR, where C is the ESD capacity. The energy

Em(1, 1) initially stored in the mth node’s ESD is a random variable independent

and identically distributed (i.i.d.) among nodes.

The EHU of the mth node harvests energy em(n) during the time Tint between

the beginning of the nth and (n+1)th IRs. The harvested energy em(n) is a random
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Figure 4.1 Organization of slots into frames in the dynamic framed aloha (DFA)
protocol, and into group-frames and frames in the energy group-DFA (EG-DFA)
protocol. The same structure is repeated every Tint [s] for each IR. Frames in DFA
and group-frames in EG-DFA are designed according to Section 4.2.1 and Section
4.2.2, respectively. Group-DFA (G-DFA) uses a structure similar to EG-DFA (see
Section 4.2.1).
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variable, i.i.d. across nodes and IRs, independent on the IR duration TIR(n), and

with probability mass function (pmf) pe (k) = Pr [em(n) = k]. Note that, as the ESD

is finite the energy harvested when the ESD is fully charged is wasted. This section

assumes that each node operates in each nth IR using only the energy stored in

its ESD at time (n, 1), while the energy harvested during the current IR can only

be used in the next IRs. The energy in the mth node’s ESD is a random variable

that evolves across IRs as Em(n + 1, 1) = min {C, Em(n, 1)−
∑

i Tm(n, i) + em(n)},

where the indicator Tm(n, i) equals one if node m transmits in the ith frame of

the nth IR, and zero otherwise. It follows
∑

i Tm(n, i) ≤ Em(n, 1). Moreover, the

energy in the mth node’s ESD evolves across successive frames of any nth IR as

Em(n, i) = Em(n, 1)−
∑i−1

k=1 Tm(n, k).

At the beginning of the nth IR at time (n, 1), the mth node is assumed to

have a new data packet to transmit with probability α, and no packet with probability

(1− α), independently from the other nodes and on previously generated packets and

IRs (i.e., there is no data buffer). The mth node with a new packet is active at time

(n, 1), if it has enough energy to transmit, i.e., if Em(n, 1) ≥ 1. At the ith frame at

time (n, i), with i > 1, the mth node is active if: i) it was active at time (n, 1); ii)

its energy is Em(n, i) ≥ 1; iii) its packet still has to be received correctly by the FC

(i.e., all previous attempts, if any, were unsuccessful).

4.2 Energy-Group Based DFA

This section first reviews the DFA and G-DFA protocol with the notation adapted to

this chapter and then introduces the EG-DFA protocol. Let Mk(n, i) be the number

of nodes with energy Em(n, i) = k at time (n, i), and Bk(n, i) ≤ Mk(n, i) be the

number of active nodes, within the Mk(n, i) with energy k. Let

B(n, i) =
C
∑

k=1

Bk(n, i) ≤
C
∑

k=0

Mk(n, i) =M, (4.1)
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be the overall backlog, i.e., the total number of active nodes, at time (n, i). To

simplify protocols’ description, hereafter it is assumed that the FC exactly knows the

backlogs Bk(n, i) at any time. Backlog estimation algorithms for DFA and G-DFA

protocols have been investigated in previous works (see e.g., [53, 60]). For the sake

of completeness, a simple backlog estimation algorithm specifically designed for the

EG-DFA protocol is proposed in Section 4.3.

4.2.1 DFA and G-DFA

In DFA, the number of slots in each frame at time (n, i) is selected as

L(n, i) = ⌈ρB(n, i)⌉ , (4.2)

where ⌈⌉ is the nearest upper integer operator, and the design parameter ρ is selected

such that ρ ∈ [1, ρmax]. Parameter ρ is chosen greater than one since for ρ < 1 both

time efficiency and delivery probability are simultaneously penalized, while choosing

ρ ≤ ρmax is to consider frame sizes of practical values. Each of the B(n, i) active

nodes randomly and uniformly selects one slot for transmissions in the current frame.

After the end of the ith frame, the FC updates the backlog size for the next (i+1)th

frame as B(n, i+1) = B(n, i)−D(n, i)−S(n, i), where D(n, i) denotes the number of

packets successfully decoded and S(n, i) indicates the number of nodes that collided

in frame i and that have no energy left in the ESD for transmitting in frame (i+ 1).

The FC keeps announcing frames until no more nodes are available for transmission

so that the ith is the last frame if B(n, i + 1) = 0. Clearly, since the ESD is finite

there cannot be more than C frames in an IR.

G-DFA is characterized by grouping, namely at the beginning of the nth IR,

each active node randomly and uniformly selects one out of G groups to belong to.

Each group of nodes then accesses the channel by resorting to G separate instances of

DFA (through time-division over the same channel), one for each group. Specifically,



74

in each frame of the IR, G subframes, referred to as group-frames, are allocated (see

Figure 4.1). Each group-frame contains slots intended only for nodes belonging to

the specific group. Note that, only one group-frame per group is allowed within a

frame and that all the G instances of DFA are operated with the same ρ.

4.2.2 Energy-Group DFA

Similarly to G-DFA, the EG-DFA protocol divides the nodes into groups as shown in

Figure 4.1. However, in EG-DFA each active node selects its own group in each frame

(say at time (n, i)) based on the energy currently available in its ESD. Specifically,

the kth group at time (n, i) contains all the active nodes with energy k at time (n, i).

Accordingly, those active nodes that are initially in the kth group at time (n, 1) and

that collide for j consecutive times (j < k) will belong to group k−j in frame j. Note

that, even if (colliding) active nodes change group index across frames, they always

compete with the same set of nodes that were in the same group at time (n, 1). The

EG-DFA thus has C parallel instances of the DFA protocol (one for each energy level

in the ESD), similarly to G-DFA (where C = G), but here the kth instance of DFA

resolves only nodes with equal initial energy level k. Furthermore, the instance of

DFA for each energy level k is operated with a different parameter ρk, so that the

trade-off between time efficiency and DER can be addressed according to the energy

availability at nodes.

To elaborate, in the ith frame the FC announces (C − i+ 1) group-frames

since no active nodes can have energy greater than (C − i+ 1) at time (n, i). Recall

in fact that the energy harvested during an IR will be available only in the next IR.

Let Bk(n, i) be the backlog for group k at time (n, i), then the number of slots in the

kth group-frame, for (1 ≤ k ≤ C − i+ 1), is

Lk (n, i) = ⌈ρkBk(n, i)⌋ , (4.3)
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with ρk chosen as ρ1 ≥ ... ≥ ρC , since a larger ρk is generally preferable for low-energy

group as it decreases energy wastage due to collisions. Consequently, active nodes

that collided in the current frame will transmit in the next frame with a generally

larger ρk.

The backlogs Bk(n, i) are updated at the end of each ith frame as

Bk(n, i+ 1) =











Bk+1(n, i)−Dk+1(n, i) for 1 ≤ k ≤ C − i

0 for C − i < k ≤ C
, (4.4)

where Dk(n, i) ≤ Bk(n, i) is the number of nodes in group k at time (n, i) that

successfully transmitted in frame i. Eq. (4.4) holds as active nodes with energy

(k + 1) at time (n, i) (i.e., Bk+1(n, i)), which collide in frame i, will be the only

Bk(n, i + 1) active nodes in the (i + 1)th frame with energy k (for k ≥ 1). The

procedure repeats until the overall backlog (4.1) becomes empty, i.e., B(n, i+1) = 0.

4.2.3 Performance Metrics

This section focuses on the performance of the data collection process in a high

delivery probability regime, so that it is more convenient to consider the fraction of

the backlog that is not correctly retrieved by the FC, which is referred to as delivery

error rate (DER). The DER can be seen as the complement of the delivery probability,

and it is defined as

ν = 1−
lim
n→∞

1
n

∑n
l=1E[DIR(l)]

αM
, (4.5)

where αM is the average number of nodes with a new packet to transmit at the

beginning of an IR if there were no energy limitations (recall that α is the probability

that a node has a new measure to transmit in an IR). The DER counts as lost

both the packets of active nodes that end up in energy shortage during the IR, and

the potential packets of nodes that have no energy since the IR’s beginning. This is
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relevant for EH systems as protocols are expected to be able to collect a large number

of packets in the given IR while saving energy for next IRs.

Clearly, there is a critical trade-off between the (asymptotic) time efficiency

and the DER. The time efficiency (defined as in (3.5)) accounts for the speed of

the collection process, while the DER indicates how many packets of the (average)

potential overall batch of αM transmitting nodes are not retrieved due to energy

shortages. A reasonable design criterion is thus to maximize the time efficiency while

constraining the DER ν to be smaller than a threshold value ν̄ (i.e., ν ≤ ν̄) as

p∗t = max
ρ1,...,ρC

pt s.t. ν ≤ ν̄, (4.6)

with the goal of optimizing parameters ρ1, ..., ρC . In this regard, [54] shows that

by judiciously selecting parameter ρ in DFA, small DER values (or high delivery

probability) can be achieved with limited losses on time efficiency.

4.3 Backlog Estimation Algorithm for EG-DFA

Since optimal backlog estimation algorithms are computational expensive even for

DFA [60], this section proposes a low-complexity two-phases scheme [54] tailored to

the EG-DFA protocol. The first phase is operated by the FC within each nth IR, and

it is based on the observations of the channel outcomes (e.g., collided slots) [13]. In

the second phase the FC accounts for the EH process.

Phase 1. Let M̂k(n, 1) be the estimated number of nodes in the kth group at

time (n, 1). The estimate at time (1, 1) is M̂k(1, 1) = M Pr [Em(1, 1) = k] (i.e., the

expected number of nodes with energy k). The kth group’s backlog estimation at

time (n, 1) is B̂k(n, 1) = αM̂k(n, 1). When the first frame ends, the FC counts the

number of successfully received packetsDk(n, 1) and collided slots Zk(n, 1) in each kth

group-frame. According to (4.4), the nodes that transmitted in the Zk(n, 1) collided

slots will form the backlog Bk−1(n, 2) for the (k − 1)th group in the next frame.
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However, the FC cannot discern how many nodes were involved in the collision, and

thus an estimation of Bk−1(n, 2) can be obtained as B̂k−1(n, 2) = Zk(n, 1)β(ρk), where

β(ρk) is the average number of nodes per observed-collided slot when the frame is

dimensioned as L = ⌈ρB⌋. This estimator, first proposed in [13] for ρ = 1 with

β(1) ≃ 2.39, was then extended in [54], where β(ρ) was computed, under a large

backlog approximation for any ρ, as β(ρ) ≃ (1 − e−1/ρ)/(ρ − ρe−1/ρ − e−1/ρ). By

iterating this procedure, the backlog estimate at time (n, i) for the kth group (with

k ≥ 1) is B̂k(n, i) = αM̂k(n, i), for i = 1 and B̂k(n, i) = Zk+1(n, i − 1)β(ρk+1) for

i > 1.

Phase 2. Let M ′
k(n) be the number of nodes in the kth group after the

nth IR ends and before accounting for the EH process. M ′
k(n) is given by the

sum of the number of: i) nodes
∑C−k

i=1 Dk+1(n, i) that transmitted successfully

within the (k + 1)th group in the ith frame (known by the FC); ii) idle nodes

Mk(n, 1) − Bk(n, 1) that were initially in the kth group at time (n, 1) and that

did not have a new measure to transmit, this is estimated (packet generation is

random) as M̂k(n, 1)− B̂k(n, 1) = M̂k(n, 1) (1− α). Accordingly, M ′
k(n) is estimated

as M̂ ′
k(n) =

∑C−k
i=1 Dk+1(n, i)+M̂k(n, 1) (1− α), which might need to be conveniently

normalized so that
∑C

k=1 M̂
′
k(n) = M . The number of nodes Mk(n + 1, 1) at the

(n + 1)th IR’s beginning can be obtained from M̂ ′
k(n) by using the expectation over

the EH pmf pe(·) as M̂k(n + 1, 1) =
∑k

j=0 M̂
′
j(n)pe(k − j) if 0 ≤ k < C, while

M̂k(n+ 1, 1) =M −∑C−1
k=0 M̂k(n+ 1, 1) if k = C.

4.4 Numerical Results and Discussion

This section presents extensive numerical results to get insights into EG-DFA’s design

and performance by numerically solving the constrained optimization problem (4.6)

through a grid search.
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Figure 4.2 illustrates the (asymptotic) time efficiency p∗t versus the DER

constraint ν̄ for the DFA, G-DFA and EG-DFA protocols. For reference, DFA

and G-DFA’s performances are shown by assuming that the FC perfectly knows

the backlog at all times, while EG-DFA’s performance are shown with both known

and estimated backlog (see algorithm in Section 4.3). Figure 4.2 also shows the

performance of the EG-DFA protocol when the solution of (4.6) is restricted by setting

ρk = ρ for each group k ∈ [1, C], thus only exploiting nodes’ grouping gain. System

parameters are: M = 100 nodes; ESD’s capacity C = 8; number of G-DFA’s groups

G = C = 8; α = 0.5; EH’s pmf pe(·) exponential with mean E [em(n)] = 2.

From Figure 4.2, it can be seen that EG-DFA with known backlog outperforms

DFA, in terms of time efficiency, for any DER constraints ν̄, and also G-DFA for

moderate-to-low DER values (here ν̄ ≤ 4 · 10−1). For higher DER constraints

(ν̄ > 4 · 10−1) G-DFA outperforms EG-DFA. This is because, one can decrease the

design parameters ρk towards one, as collisions and thus energy wastage are less

penalized when increasing the DER threshold ν̄. This implies that, when the EH

rate is limited, most of the nodes have a small stored energy and only few groups

in EG-DFA will have non-zero backlogs, thus drastically reducing grouping gain.

Conversely, in G-DFA, groups are occupied uniformly (and randomly) regardless of

the nodes’ energy, and hence grouping gain is still fully exploited. Notice that, even if

backlog estimation reduces EG-DFA’s performance, it still allows to outperform both

DFA and G-DFA with known backlog for a wide range of DER constraint ν̄. The

results in this section also suggest (not shown) that the optimal ρ∗k values increases

as DER decreases and they increase more as the energy availability (i.e., group index

k) gets smaller, consistently with the intuition in Section 4.2.2, while they approach

unity for each k for large DER values, as in this regime the time efficiency is the

relevant metric.
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The effects of the ESD capacity C are shown in Figure 4.3 for DER constraints

ν̄ ≤ {2 · 10−1, 5 · 10−3}. System parameters are: M = 100; G = C; α = 0.5;

E [em(n)] = 3. For small ESD’s capacity C, the energy harvested when the ESD is

full cannot be stored, and thus nodes can easily get in energy shortage even when the

harvesting rate is large (i.e., E [em(n)] ≫ 1). This causes a significant performance

loss and it imposes constraints on the achievable values of DER. For instance, if C < 6

a DER smaller than ν̄ ≤ 5 · 10−3 is not achievable by any technique. Moreover, small

C values reduce the capability of grouping nodes and thus enabling small grouping

gains only.

Figure 4.4 shows the effects of varying the average harvesting rate E [em(n)]

on the time efficiency for DER constraints ν̄ ≤ {5 · 10−2, 5 · 10−3}. Parameters are

as above with C = G = 8. When the harvesting rate is small (e.g., E [em(n)] ≤ 3),

EG-DFA outperforms both G-DFA and DFA for both DER constraints. However, the

gap between EG-DFA and G-DFA gets smaller as the harvesting rate increases. In

fact, most nodes have full ESDs, and this causes only high-energy availability groups

to have non-zero backlog, thus reducing EG-DFA’s grouping gain. G-DFA’s grouping

gain is instead preserved as groups are uniformly occupied as described above.

As a final remark, note that for large C values EG-DFA can be operated by

bundling close energy groups together without increasing the protocol complexity

(i.e., number of groups).

4.5 Conclusions

The design of protocols for wireless networks with Energy-Harvesting (EH) calls for

novel approaches that address the unique requirements imposed by the variability of

the energy available at the nodes. This chapter proposed a variant of dynamic framed

ALOHA (DFA) that is tailored to the problem of periodic data collection from a set

of EH nodes. The proposed scheme, termed energy group-DFA (EG-DFA), improves
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the performance of DFA by leveraging the observation that the optimal size of the

frame in DFA, when implemented over EH nodes, depends critically on the energy

levels at the nodes and on the harvesting rate. Performance is evaluated in terms of
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Figure 4.4 Asymptotic time efficiency p∗t versus average harvested (normalized)
energy per IR E[em(n)/ε] for the EG-DFA, G-DFA and DFA protocols, assuming
perfect knowledge of the backlog. The DER is constrained to be ν ≤ {5·10−3, 5·10−2}
(M = 100, α = 0.5, G = C = 8).

the trade-off between the time efficiency and the delivery error rate (DER), where

the latter measures the capability of collecting data from the nodes before they run

out of energy. EG-DFA is shown via simulations to outperform known strategies in

terms of time efficiency in the low DER regime. Impacts of the size of the energy

storage device and of the harvesting rate are investigated as well. Extensions to this

work can include the development of analytical tools for the design of the EG-DFA’s

optimal frame sizes and to derive performance in closed form.



CHAPTER 5

LIFETIME MAXIMIZATION FOR WIRELESS NETWORKS WITH

HYBRID ENERGY STORAGE SYSTEMS

5.1 Introduction

As discussed in the previous chapters, energy harvesting (EH) technologies potentially

enable perpetual operations of electronic devices without requiring maintenance for

battery substitution. However, the inherent unpredictability regarding the presence

(or the dynamics) of ambient energy sources might lead devices that are exclusively

powered via EH to operate discontinuously due to temporary energy shortages.

Therefore, for those applications that do not tolerate temporary energy shortages,

the use of EH as the unique source of energy is generally not sufficient to guarantee

the required level of activity. To overcome this problem, a promising solution is to

equip the devices with a hybrid energy storage system (HESS). A HESS typically

includes a battery, either rechargeable or not, which operates as the primary energy

source, and a capacitor, which is recharged via EH and is intended to provide support

to the battery, thus extending its lifetime [62].

As a specific instance of a system operated by devices equipped with a HESS,

this chapter considers a single-hop wireless network, in which a central controller,

referred to as fusion center (FC), periodically collects information from M nodes

distributed in its surrounding as shown in Figure 5.1. Time is slotted, and, in each

slot, the FC schedules K ≤M nodes for transmission over K orthogonal transmission

resources (e.g., frequencies), as shown in Figure 5.2. Each node is equipped with a

HESS composed by a non-rechargeable battery and a capacitor charged via EH. In

particular, this chapter considers the design of scheduling policies such that K nodes

in each slot are selected, with the aim of maximizing the network lifetime (to be

82
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rigorously defined below). It is emphasized that the number K of nodes scheduled in

each slot is specified by the considered application and is thus assumed to be fixed

and given.

The scheduling problem in this chapter is tackled in two different scenarios:

i) full state information, in which the FC knows the state of the HESSs, i.e., the

states of the capacitors and of the batteries, of all the nodes at any decision epoch

(i.e., the beginning of each slot); ii) partial state information, in which the FC does

not have direct access to the instantaneous state of the HESSs, but it only knows the

statistical properties of the EH and leakage processes and the outcomes of previous

scheduling commands. Note that, unlike the setting with partial state information,

the set-up with full state information requires overhead uplink transmissions in order

for each node to transmit the state of its HESS to the FC before each decision epoch.

FC
U1HESS UM HESS

bM(t)cM(t)

BMCM hM(t)

dM(t)
UM

Figure 5.1 Wireless network with a single fusion center (FC) that collects packets
from a set of M nodes equipped with a hybrid energy storage system (HESS). Any
ith node Ui is equipped with a battery Bi and a capacitor Ci that contain energy
bi(t) and ci(t) at the beginning of slot t, respectively. The energy harvesting (EH)
and leakage processes of node Ui at slot t are denoted by hi(t) and di(t), respectively.

U(1) U(2)

Transmissions of 
the K nodes

~ ~

T

U(t)

FC’s scheduling 
command

Tc

Figure 5.2 Overview of the periodic data collection. Time is organized into slots
of duration T each, while the transmission time in each slot (including the scheduling
command and transmissions of the nodes) lasts Tc, with Tc ≪ T . The transmission
resources are allocated in each slot by the FC that broadcasts a scheduling command
U(·).
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5.1.1 Related Work and Contribution

As introduced above, this chapter considers a centralized scheduling problem for a

wireless network with nodes equipped with HESSs, as illustrated in Figure 5.1. To

simplify the discussion, it is assumed that the batteries are non-rechargeable and

that they do not suffer from energy leakage in the time scale of interest. Instead,

the capacitors are rechargeable and can potentially leak energy. This a reasonable

approximation of practical scenarios, since non-rechargeable batteries typically suffer

from self-discharge over a time-scale much larger than that of capacitors (see, e.g.,

[63]). It is also assumed that the EH and leakage processes are independent and

identically distributed (i.i.d.) across nodes and time-slots, and that they are modeled

as binary random processes. That is, in each slot a node either harvests a unit of

energy (to be defined below) or not, and similarly for the leakage process.

Main contributions of this chapter. For the full state information

scenario, considered in Section 5.3, the scheduling problem is formulated as the

maximization of the network lifetime, and it is shown to reduce to a stochastic shortest

path (SSP) problem [64], which is a special instance of a Markov decision process

(MDP). Under the assumption that the system is symmetric, so that the statistics of

the EH and leakage processes at the nodes are equivalent, optimal scheduling policies

are obtained in two limiting cases: a) harvesting-only model, in which the amount of

energy leaked is negligible; and b) leakage-only model, in which the amount of energy

harvested is negligible. As it will be discussed, these two limiting scenarios are useful

approximations of situations in which the capacitors tend to be close to full or close

to empty most of the time, respectively.

An optimal policy in the harvesting-only scenario is shown to select in each

slot the K nodes with the largest energy stored in their capacitors (when available).

Instead, for the leakage-only model, the optimal policy selects in each slot the K

nodes with the smallest non-zero energy in their capacitors. An easily computable
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performance upper bound on the network lifetime is also proposed for the general

scenario, which can be used as a performance reference when the size of the network

makes the numerical computation of the optimal policy intractable. It is then shown

that, when the FC schedules only one node in each slot (i.e., K = 1), the computation

of the network lifetime can be decomposed into separate contributions due to batteries

and due to capacitors, and, based on this result, an algorithm that enables the

computation of the network lifetime with reduced complexity is proposed.

In the partial state information case, considered in Section 5.4, finding the

optimal scheduling policies explicitly is more challenging than in the full state

information case, and the numerical computation of optimal policies is generally

intractable. Therefore, based on the insights obtained from the analysis of the full

state information scenario, two heuristic policies that can be easily implemented in

practical systems are proposed. Moreover, to improve on these policies, opportunistic

feedback schemes are considered, in which each node with a sufficiently large energy

in its capacitor opportunistically provides additional information to the FC over a

dedicated transmission resource. It is then shown in the numerical results in Section

5.5 that this limited-feedback approach has the potential to greatly improve the

lifetime performance.

Related work: The lifetime of battery-powered wireless networks was studied

in [65], where the problem of scheduling a subset of battery-powered nodes in a

wireless network, subject to fading channels, was tackled by resorting to a SSP

formulation. In [65] the nodes are equipped with non-rechargeable batteries (i.e.,

they have no EH capabilities), while the transmission power of each node is adapted

to the channel quality in each slot. A similar system setting is considered in [66],

where the emphasis is instead on the development of distributed access protocols

based on the channel state information and the residual energy information at each

node. The work in this chapter differs from [65, 66] in that the energy availability at
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the nodes keeps changing even when nodes are not scheduled due to EH and energy

leakage. However, the impact of fading is not considered here. A relevant reference

for HESS systems is [62] (see also references therein), where the problem of routing

in wireless networks operated by nodes equipped by a HESS is considered. Reference

[62] also provides a review of the properties of batteries and capacitors and their

trade-offs.

5.2 System Model

This chapter considers a wireless network in which a FC is tasked with collecting data

packets from a set of M nodes, labeled as U1, U2, ..., UM , under the constraint that K

packets must be collected in each time-slot (see Figure 5.1 and Figure 5.2). To this

end, in each slot t, of duration T , a subset U(t) ⊆ {U1, ..., UM} of |U(t)| = K nodes

is selected for transmission. Each node has a new packet to transmit at each slot.

It is assumed that nodes’ transmissions take place over orthogonal communication

resources (e.g., frequencies) so that they do not interfere with each other. It is also

assumed that the total duration of the communication between the nodes and the FC

in each slot is fixed and equal to Tc (see Figure 5.2), where Tc is generally assumed to

be much smaller than the slot duration T , i.e., Tc ≪ T for reasons that will be clarified

below (see Figure 5.2). Moreover, the FC’s scheduling commands and the nodes’

packets are considered to be received without error by the intended destinations.

5.2.1 HESS Model

Each node is powered by a HESS, which is composed by a non-rechargeable battery

and a capacitor that is charged via EH. It is assumed that each transmission consumes

a given energy amount, referred to as energy unit, which is normalized to one for

simplicity. This energy can be drawn by a node either from the capacitor or from the

battery. No energy is consumed by non-scheduled nodes, except for possible energy



87

leakages. Batteries and capacitors are assumed to be finite and have capacities 1 ≤

Eb <∞ and 1 ≤ Ec <∞ energy units, respectively. The capacitor and the battery of

node Ui are denoted by Ci and Bi, respectively, while their energies at the beginning

of any slot t are denoted by ci(t) ∈ {0, ..., Ec} and bi(t) ∈ {0, ..., Eb}, respectively. Let

(ci(t), bi(t)) ∈ S be the state of node Ui at slot t, where S = {0, ..., Ec}×{0, ..., Eb} is

the single-node state space. Finally, let (c(t),b(t)) ∈ SM be the system state at slot

t, where c(t) = [c1(t), ..., cM (t)] and b(t) = [b1(t), ..., bM (t)] are two (1×M) vectors.

5.2.2 Energy Harvesting and Leakage Models

The energy harvested at node Ui during any slot t is modeled as a binary random

variable, which is denoted by hi(t) ∈ {0, 1}. This random variable has probability

mass function (pmf) Pr[hi(t) = 1] = ph and Pr[hi(t) = 0] = 1 − ph. In other words,

the node harvests one energy unit in each slot with probability ph. This harvested

energy unit can be stored by node Ui only when its capacitor Ci is not full (i.e.,

if ci(t) < Ec), while otherwise an energy overflow occurs and the harvested energy

unit is lost. Similarly, the energy lost by a non-empty capacitor Ci due to leakage is

modeled as a binary random variable di(t) ∈ {0, 1} with pmf Pr[di(t) = 1] = pd and

Pr[di(t) = 0] = 1− pd. Clearly, only non-empty capacitor can leak energy. Both the

EH and leakage processes are independent across nodes and also i.i.d. across slots.

It is assumed that the energy in the capacitor that can be used for transmission

by node Ui during the tth slot is given by c(t), which is the energy initially available at

the beginning of the tth slot, while the energies hi(t) and di(t) (potentially) harvested

and lost during the tth slot do not affect the energy availability during slot t. This

is typically a good approximation of reality, especially if the slot duration T is much

longer than the transmission duration Tc, as assumed here. The energy ci(t) in the

capacitor Ci thus evolves as

ci(t+ 1) = min
{

(

(ci(t)− 1[Ui ∈ U(t)])+ − di(t)
)+

+ hi(t), Ec

}

, (5.1)
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where 1 [x] is an indicator function such that 1 [x] = 1 if event x is true and zero

otherwise, while (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0. Note that in (5.1), it

is assumed that the leakage process di(t) affects the energy in the capacitor before

the newly harvested energy hi(t) is added. This assumption does not affect the main

results in this chapter and can be easily modified. Moreover, equation (5.1) implicitly

assumes that, when any node Ui is scheduled for transmission (i.e., if 1[Ui ∈ U(t)] =

1), it draws energy from its capacitor first, and thus uses the battery only when its

capacitor is empty. As it is intuitive, and it will be further argued below, this choice

maximizes the lifetime of the network, since the battery cannot be replenished and

thus any energy unit drawn from the battery is irreparably lost.

Finally, by recalling that the batteries are non-rechargeable and that do not

suffer from energy leakage, the state of the battery Bi is updated across each slot t

as

bi(t+ 1) = (bi(t)− 1[Ui ∈ U(t) and ci(t) = 0])+ . (5.2)

5.3 Full State Information Scenario

This section considers the full state information scenario, in which the FC has perfect

knowledge of the state of the HESS of each node at the each slot. The section

starts by introducing some useful definitions and the problem formulation, and it

continues by proposing two scheduling policies that are proved to be optimal for the

harvesting-only and leakage-only scenarios (to be defined exactly below), respectively.

5.3.1 Preliminary Definitions

Definition 1. A state (c,b) is terminal if at least one node has an empty battery.

The set T of terminal states is thus defined as

T =

{

(c,b) ∈ SM :
M
∑

i=1

1 [bi = 0] ≥ 1

}

. (5.3)
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As formalized below, the network is assumed to be active for as long as the

state (c,b) does not enter the set T 1.

Definition 2. I) Scheduling policy: A scheduling policy π = {π1, π2, ...} is a sequence

of functions πt, for t ∈ {1, 2, ...}, that map the history H(t) of the system states up to

slot t, with H(t) = {(c(1),b(1)) , ..., (c(t− 1),b(t− 1))}, into a scheduling decision

Uπ(t) ∈ {U1, ..., UM}. Uπ(t) is the set of nodes that are scheduled for transmission

in slot t under policy π, with the constraint |Uπ(t)| = K, where the notation |A|

indicates the cardinality of the set A .

II) Stationary policy: A policy π is said to be stationary if the mapping πt is

independent of t and instead depends only on the current system state (c(t),b(t)).

A stationary policy can be thus characterized by a function Uπ(c,b) ∈ {U1, ..., UM}.

III) Proper policy: A stationary policy is said to be proper if the system

reaches a terminal state (c(t),b(t)) ∈ T with probability one, regardless of the initial

state (c(1),b(1)), that is, if limt→∞Pr [(c(t),b(t)) ∈ T |c(1),b(1)] = 1 for all initial

states (c(1),b(1)) [64].

The network lifetime is defined as follows.

Definition 3. Let (c(1),b(1)) ∈ SM be the initial state at slot t = 1. The network

lifetime Lπ (c(1),b(1)) under a scheduling policy π is the average number of slots in

which the network is active before the terminal set T is entered:

Lπ (c(1),b(1)) = lim
T→∞

Eπ

[

T
∑

t=1

1 [(c(t),b(t)) /∈ T ]

∣

∣

∣

∣

c(1),b(1)

]

. (5.4)

It will be shown in Lemma 4 that the limit (5.4) always exists and it is also

finite when the harvesting probability is strictly smaller than one, i.e., ph < 1.

1Other definitions of the set T of terminal states can be considered as well. For instance, a

relevant setting is one in which the terminal set T includes only the states in which all of

the batteries are empty. This can be assumed without requiring substantial modifications

to the derivations in this chapter.
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The optimization goal is the maximization of the lifetime Lπ (c(1),b(1)) over

the set of all (not necessarily stationary) policies π, where the optimal network lifetime

and the corresponding optimal policy are given, respectively, by

L∗(c(1),b(1)) = max
π
Lπ (c(1),b(1)) (5.5)

andπ∗(c(1),b(1)) = argmax
π

Lπ(c(1),b(1)). (5.6)

5.3.2 Controlled Markov Process Formulation

According to the model described in Section 5.2, the state (ci(t), bi(t)) of any

node Ui evolves as a controlled Markov chain. Specifically, the transition

probabilities for the state (ci(t), bi(t)) of node Ui are obtained as follows (see

Figure 5.3). Let p
(0)
kj = Pr

[

ci(t+ 1) = j
∣

∣

∣ci(t) = k, Ui /∈ U(t)
]

and p
(1)
kj =

Pr
[

ci(t+ 1) = j
∣

∣

∣ci(t) = k, Ui ∈ U(t)
]

be the probability that energy stored in the

capacitor Ci at slot t + 1 is ci(t + 1) = j, given that the energy at slot t is ci(t) = k

and that node Ui is either not scheduled (i.e., Ui /∈ U(t)) or scheduled (i.e., Ui ∈ U(t)),

respectively. To simplify the notation, let

λ = ph (1− pd) and µ = pd (1− ph) . (5.7)

The transition probabilities for the energy in the capacitor can be easily calculated

as follows. For the case Ui /∈ U(t), it results p
(0)
00 = 1 − ph and p

(0)
01 = ph (recall

that empty capacitors do not lose energy, see Section 5.2.2); for 1 ≤ k < Ec, it is

possible to write p
(0)
kk+1 = λ, p

(0)
kk = 1−λ−µ and p

(0)
kk−1 = µ; and finally, it follows that

p
(0)
EcEc

= 1− µ and p
(0)
EcEc−1 = µ. Instead, for the case Ui ∈ U(t) one has p

(1)
00 = 1− ph

and p
(1)
01 = ph, and p

(1)
10 = 1 − ph and p

(1)
11 = ph; and for 2 ≤ k ≤ Ec, one can write

p
(1)
kk−2 = µ, p

(1)
kk−1 = 1−µ−λ, p(1)kk = λ. For the battery, the energy bi(t) of a scheduled

node Ui ∈ U(t), is decremented by one energy unit only when the capacitor is empty,

so that bi(t+ 1) = bi(t)− 1 [Ui ∈ U(t) and ci(t) = 0].
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Based on the above and on the independence of the harvesting and leakage

processes at different nodes, the probability that the next overall system state is

(c(t+ 1),b(t+ 1)) = (c′,b′), given the current state (c(t),b(t)) = (c,b) and the

scheduling decision U(t) = U , is

Pr[(c(t+ 1),b(t+ 1)) = (c′,b′) |(c(t),b(t)) = (c,b),U(t) = U ] =














∏

Ui∈U
p
(1)

cic′i

∏

Ui /∈U
p
(0)

cic′i
if b′i = bi − 1 [Ui ∈ U and ci = 0] , for all i ∈ {1, ...,M}

0 otherwise

.

(5.8)

The following lemma is instrumental in deriving the properties of the optimal policies

a)

b)
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Figure 5.3 Markov chains that describe the evolution of the energy in the capacitor
Ci of node Ui when Ui is: b) not scheduled (Ui /∈ U(t)) b) scheduled (Ui ∈ U(t)).

for problem (5.5)-(5.6).

Lemma 4. I) Finite lifetime: If the probability of harvesting ph is strictly smaller

than one, i.e., ph < 1, then all the policies π are proper and the maximum network

lifetime is finite.

II) Optimality of stationary policies: There exists an optimal stationary policy

π∗ (5.6).

Proof. Part I) As seen above, for any fixed policy π, the system state (c(t),b(t))

evolves as a finite-state Markov chain over the state space SM, which contains some
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absorbing states. It is not hard to see that, regardless of the action taken in any

non-terminal state si = (c(t),b(t)) /∈ T , there always exists a path over the space

SM that connects (with non-zero probability) the state si to a terminal state sj ∈ T .

For a finite-state Markov chain this is sufficient to conclude that the average time

before absorption is finite and so is the network lifetime [47]. Therefore, all the

policies are proper according to Definition 2. Part II) The existence of an optimal

stationary policy when all the policies are proper is a well known result (see e.g.,

[64]).

5.3.3 Dynamic Programming Equations

To simplify the analysis below, this section introduces a dynamic programming

formulation of problem (5.5)-(5.6). Specifically, the lifetime of any stationary policy

π, when the initial (non-terminal) state is (c,b), can be calculated by solving the

following Bellman equation

Lπ(c,b) = 1 +
∑

(c′,b′)

Lπ(c′,b′)Pr [c′,b′| (c,b) ,Uπ (c,b)] , (5.9)

where the distribution Pr [c′,b′|c,b,Uπ (c,b)] is given by (5.8) (the time-dependence

here is dropped since only stationary policies are considered). Note that, when the

initial state is terminal, i.e., (c,b) ∈ T , it follows Lπ(c,b) = 0 for any π. Moreover,

any optimal stationary policy π∗, with optimal actions U∗(c,b), satisfies the following

optimality equations

L∗(c,b) = max
U∈{U1,...,UM}

L(c,b|U), (5.10)

where U∗(c,b) = argmax
U∈{U1,...,UM}

L(c,b|U), (5.11)

where

L(c,b|U) = 1 +
∑

(c′,b′)

L∗(c′,b′)Pr [c′,b′| (c,b) ,U ] (5.12)
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is defined as the lifetime of a policy that selects action U ∈ {U1, ..., UM} at the current

slot and then proceeds optimally from the next slot onward.

The following lemma introduces some useful properties of the optimal lifetime

L∗(·).

Lemma 5. I) Monotonicity: L∗(c,b) ≥ L∗(c′,b′) if ci ≥ c′i and bi ≥ b′i for all

i ∈ {1, ...,M}.

II) Dependence on total battery energy: L∗(c,b) = L∗(c,b′) for all b and b′

such that
∑M

i=1 bi =
∑M

i=1 b
′
i, when the states (c,b) and (c,b′) are not terminal.

III) Symmetry: L∗(c,b) = L∗(P(c),b) for any permutations P of the node

indices.

IV) Schedule capacitor first: Any optimal stationary policy always schedules

nodes with a non-empty capacitor first, while batteries are used only when there are

less than K nodes with a non-empty capacitor.

Proof. The proofs of parts I) II) and III) are omitted since they are trivial

consequences of the symmetry of the nodes. The formal proof of part IV) is omitted

for brevity and follows by the same techniques used below in Section 5.6.

5.3.4 Optimal Scheduling Policies

This section proposes two stationary scheduling policies for the full state information

scenario, which are referred to as Most Charged capacitor First (MCF) and Least

Charged capacitor First (LCF). It is then shown that these policies are optimal for

problem (5.5)-(5.6) in the harvesting-only (i.e., pd = 0) and leakage-only (i.e., pd =

0) scenarios, respectively. The optimal policy for the general scenario is instead

addressed numerically in Section 5.5 by using standard dynamic programming tools.

Definition 6. The MCF policy πMCF , with lifetime LMCF (·), schedules K nodes in

each slot according to the following priority rules: 1) nodes with the largest energy in
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the capacitors; 2) nodes with empty capacitors and at least two energy units in their

batteries; 3) nodes with empty capacitors and one energy unit in their batteries.

The LCF policy is instead defined as follows.

Definition 7. The LCF policy πLCF , with lifetime LLCF (·), schedulesK nodes in each

slot according to the following priority rules: 1) nodes with the smallest (non-zero)

energy in the capacitors; 2) and 3) as for the MCF policy above.

The optimality of the LCF and MCF policies above is summarized in the

following proposition.

Proposition 8. a) The MCF policy πMCF is optimal for problem (5.5)-(5.6) when

pd = 0; b) The LCF policy πLCF is optimal for problem (5.5)-(5.6) when ph = 0.

Namely

LMCF (c,b) = L∗(c,b), for pd = 0 (5.13)

LLCF (c,b) = L∗(c,b), for ph = 0. (5.14)

Proof. See Section 5.6.

The intuition behind the optimality of the MCF policy in the harvesting-only

scenario is that, when the energy in the capacitor is subject to harvesting only, then

it is better to schedule nodes that are fully charged in order to reduce the chance

of energy overflows. Instead, the optimality of the LCF policy is due to the fact

that, when the energy in the capacitor is subject to leakage only, then it is better to

concentrate all the energy in a small number of capacitors, so that there are fewer

chances that the capacitors lose energy. The full proof of the Proposition 8 is given

in Section 5.6.

It is remarked that the two limiting scenarios addressed above represent

approximation of the following two practical situations. The harvesting-only case
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(pd = 0) approximates a situations in which the capacitors tend to be full, and

thus the main contribution to energy loss is given by energy overflows. Instead, the

leakage-only case (ph = 0) provides an approximation for a system in which the

capacitors tend to be non-full most of the time, so that the most prominent source

of energy loss is energy leakage rather than energy overflow. These intuitions are

confirmed by the numerical results shown in Section 5.5.

The lifetime of both MCF and LCF when only one node is scheduled in each

slot (i.e., K = 1) can be calculated efficiently as described in Appendix B.

5.4 Partial State Information

This section tackles the scheduling problem of Section 5.2 by assuming that the FC

does not have full state information about the instantaneous states of the HESS

at the nodes. Specifically, beside the statistical properties of the EH and leakage

processes, it is assumed that the FC learns the state of the capacitors only for the

scheduled nodes upon reception of their packets. Packets are thus assumed to contain

information about the state of the capacitor of the transmitting node. It follows that

the observations available at the (t+ 1)th decision epoch at the FC are given by the

state ci(t) of the capacitor of nodeUi of all the nodes that were scheduled at slot

t, i.e., for all Ui ∈ U(t). Note that the state ci(t + 1) at slot t + 1 is affected also

by the energies harvested hi(t) and lost di(t) by node Ui during slot t, whose values

are not available at the FC. Lastly, it is assumed that the state of the batteries is

perfectly known by the FC, since the latter can be easily tracked by the FC without

any additional communication overhead as the batteries are ideal and do not leak

energy.
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5.4.1 Problem Formulation

When the FC has only partial information about the system state (c(t),b(t)), the

scheduling problem can be formalized as a Partially Observable Markov Decision

Process (POMDP) [67]. For such problems, it is well-known that the a posteriori

probability distribution of the system state, typically referred to as the belief, is a

sufficient statistics [67]. Specifically, let ωi,k(t) be the a posteriori probability that

the energy ci(t) stored in the capacitor Ci at slot t is ci(t) = k, where conditioning is

done over the observations accrued by the FC up to time t. The combinations of the

vectors of the a posteriori probabilities ωi(t) = [ωi,1(t), ..., ωi,Ec
(t)] and of the known

batteries’ values b(t) for all nodes {U1, ..., UM}, can be then used as the system state

for the POMDP at hand [67], and the problem can be formalized similarly to Section

5.3. In particular, the network lifetime is still defined as the right hand side of (5.4),

where the average is taken over the a posteriori probabilities of the state for any given

policy. Note that this definition of lifetime is meaningful since, even though the FC

has no direct access to the actual system state (c(t),b(t)), the first slot t in which

at least one node gets its battery depleted can be easily recognized by the FC as

discussed above.

Solving a POMDP is notoriously complex [67]. Therefore, the next Section

derives two simple heuristic policies that are inspired by the results described above

for the full state information case. A simple opportunistic feedback scheme, in which a

limited amount of overhead is transmitted by the nodes to the FC, is then considered

in Section 5.4.3.

5.4.2 Index-based Heuristic Policies

The first heuristic policy that is proposed in this section is inspired by the fact that,

with full state information, it is always optimal that a scheduled node transmit by

drawing energy from its capacitor if not empty (see Lemma 5-4)). The proposed
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policy, referred to as Capacitor-Greedy (CG) is defined as the policy that schedules

the K nodes in each slot that have the largest probability of having a non-empty

capacitor, i.e.,

UCG(t) = argmin
U : |U|=K

∑

Ui∈U

ωi,0(t), (5.15)

where ωi,0(t) = 1−∑Ec

k=1 ωi,k(t). It is assumed that when two or more nodes have the

same probability ωi,0(t) of having an empty capacitor then the node with the largest

energy in the battery is scheduled.

The drawback of the CG policy is that a node with a relatively small

probability ωi,0(t) can be scheduled regardless of the state of its battery. This could

produce a lifetime termination even when there are potentially other nodes with a

larger energy in the batteries. Therefore, the second proposed policy, which is referred

to as Largest Average total Energy (LAE) policy schedules in each slot the K nodes

with the largest average sum energy stored in their battery and capacitor, i.e.,

ULAE(t) = argmax
U , |U|=K

∑

Ui∈U

(

bi(t) +
Ec
∑

j=1

jωi,j(t)

)

. (5.16)

The lifetimes for these two heuristic policies are compared in Section 5.5 with the

performance for the full state information scenario.

5.4.3 Partial State Information with Opportunistic Feedback

This section briefly investigates a set-up in which additional feedback from the nodes

to the FC is allowed. Specifically, it is assumed that, immediately before the beginning

of each slot, any node with an energy in the capacitor greater than or equal to a

threshold λFB ∈ {1, ..., Ec} sends one bit of information to the FC. This bit is used

to inform the FC about the fact that the transmitting node has an energy in the

capacitor larger than the threshold λFB. The FC collects the received feedback and

updates the belief state accordingly (not detailed here).
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More specifically, the one-bit feedback policy proposed in this section works as

follows. If there are at least K nodes with an energy in the capacitor larger than

the threshold λFB (and thus that transmit the feedback to the FC), then the FC

selects the K nodes among them with the largest average energy in the capacitor,

where the average is calculated based on the current belief. If instead there are only

K1 < K nodes that have energy in the capacitor larger than λFB, then the FC selects

such K1 nodes, and the remaining K − K1 ones are selected according to the LAE

policy defined above. The performance of the one-bit feedback policy is investigated

numerically in Section 5.5.

5.5 Numerical Results

This section presents extensive numerical results to get insight into the system design

and to validate the analytical derivations of the previous sections. The performance

criterion that is considered hereafter is the network lifetime (5.4) normalized by the

optimal lifetime of a battery-only system. The latter is simply given by
∑M

i=1 1[bi ≥

1] (bi − 1) + 1 for an initial battery state [b1, b2, ..., bM ]. This normalization enables

the performance advantages of adopting HESS to be more clearly highlighted.

Numerical results for the full state information scenario. Figure 5.4

shows the normalized lifetime versus the size of the capacitor for the optimal policy,

which is evaluated numerically using standard dynamic programming tools, and for

the MCF and LCF policies. As a reference, a policy is considered that randomly

selects K nodes for transmission among the ones with non-empty capacitors, if

available, and otherwise follows the steps 2) and 3) of the MCF policy in Definition

6. The system parameters are M = 5, K = 1, Mph/K = 0.9, pd = 0.1 and Eb = 5.

Note that the quantity Mph/K captures the ratio between the average cumulative

energies harvested and consumed at the M nodes.
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In Figure 5.4 it can be seen that, when the capacitors are of capacity one,

i.e., Ec = 1, the optimal performance can be achieved by any policy that schedules

a capacitor first, and thus, as special cases, MCF, LCF and the random policies

are all optimal. Instead, when the capacitors get larger, the LCF policy approaches

the optimal performance, while the MCF policy does not perform well. This follows

from the discussion in Section 5.3.4: when the leakage probability is non-zero (here

pd = 0.01) and the ratio Mp/K is smaller than one (here Mph/K = 0.9), then the

capacitors are non-full most of the time, and thus the LCF policy, which reduces the

chances of energy loss due to leakage, is almost optimal.

The effects of the energy leakage probability on the network lifetime is instead

shown in Figure 5.5 for system parameters M = 5, K = 1, Mph/K = 0.9, Eb = 5

and Ec = 6. It can be seen that for small leakage probability, e.g., pd ≤ 10−3, the

MCF policy approaches the optimal performance, while the LCF policy does not

perform satisfactorily. Instead, as the leakage probability pd gets larger, the LCF

policy approaches the optimal performance.

Numerical results for the partial state information scenario. Figure

5.6 shows the performance of the heuristic policies CG in (5.15) and LAE in (5.16)

that are proposed in Section 5.4.2. These heuristic policies are compared with the

optimal network lifetime for the full state information case. Note that the numerical

computation of the optimal network lifetime for the partial state information scenario

is prohibitively complex. Figure 5.6 also shows the performance of the opportunistic

feedback scheme described in Section 5.4.3, where the threshold λFB is optimized

for each capacitor size in order to maximize the network lifetime. It turns out that,

for the considered systems parameters, the optimal threshold is λFB = 1 for all the

capacitor values. The other system parameters are M = 5, K = 1, Mph/K = 0.9,

pd = 0.01 and Eb = 5.
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As it can be seen in Figure 5.6, when no feedback in considered, the lifetimes of

the LAE and CG policies are considerably far from the optimal performance of the full

state information scenario. Moreover, as expected, the CG policy performs poorly

since it does not account for the batteries. Instead, the presence of opportunistic

feedback enables the performance to be significantly improved.

5.6 Proof of Proposition 8

This section provides the main steps of the proof of Proposition 8 regarding the

optimality of the MCF policy in the harvesting-only scenario. The remaining details

and the optimality of the LCF policy in the leakage-only setting are addressed in

Appendix D.

Optimality of the MCF policy in the harvesting-only scenario. The

proof leverages sample path arguments of the EH processes and the stochastic

symmetry of the nodes. To elaborate, recall from Lemma 4 that, in order to prove

the optimality of the MCF policy, it is sufficient to show that the action UMCF (c,b)

of the MCF policy satisfies (5.11). This amounts to showing that the inequality

L(c,b|UMCF (c,b)) ≥ L(c,b|U), (5.17)

holds for all (c,b) ∈ SM and all actions U ⊆ {U1, ..., UM}.

Regarding inequality (5.17), it is first noted that, by the definition (5.12), the

quantity L(c,b|U) is the lifetime of a policy π that selects action U at slot t = 1 (so

that Uπ(1) = U) and then operates optimally from slot t = 2 onward (the time index

t is started from one only for reference and it is dropped below when unnecessary).

The lifetime of policy π can thus be written as L(c,b|U) = Lπ(c,b). The inequality

(5.17) can be proved by showing that it is possible to construct an auxiliary policy

γ, which acts as the MCF policy at slot t = 1, so that: a) Uγ(1) = UMCF (c,b); b)
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the lifetime is no smaller than that of π, i.e.,

Lγ(c,b) ≥ Lπ(c,b), (5.18)

for all (c,b) ∈ SM and all Uπ(1) = U ⊆{U1, ..., UM}. If such a policy γ exists, then the

inequality (5.17) is automatically implied since the inequality L(c,b|UMCF (c,b)) ≥

Lγ(c,b) holds by the fact that policy γ is not required to operate optimally from slot

t = 2 onward. The remaining of this section is devoted to prove inequality (5.18).

Let ci
γ(t) be the energy stored in the capacitor of node Ui at the beginning

of slot t when policy γ is implemented, and similarly, define cπi (t) when policy π

is followed. Moreover, define the vectors cγ(t) = [c1
γ(t), ..., cM

γ(t)] and cπ(t) =

[c1
π(t), ..., cM

π(t)], where cγ(1) = cπ(1) = c(1). The following definition is

instrumental for the proof.

Definition 9. Let Ωγ(t), Ωγ(t) and Ωc(t), for t = {1, 2, ...}, be three sequences of

sets defined as follows. For t = 1 let

Ωγ(1) = Uγ(1) \ Uπ(1) \ {Ui ∈ Uγ(1) and Uj ∈ Uπ(1) : ci(1) = cj(1)} (5.19)

Ωπ(1) = Uπ(1) \ Uγ(1) \ {Ui ∈ Uγ(1) and Uj ∈ Uπ(1) : ci(1) = cj(1)} (5.20)

Ωc(1) = {U1, ..., UM} \ Ωγ(1) \ Ωπ(1); (5.21)

while, for any t ≥ 2, the set Ωc(t) is updated as

Ωc(t) = Ωc(t− 1) ∪ {Uk} ∪ {Ui, Uj}, (5.22)

for all Uk ∈ Ωγ(t− 1) or Uk ∈ Ωπ(t− 1) such that cγk(t) = cπk(t); and

for all Ui ∈ Ωγ(t− 1) and Uj ∈ Ωπ(t− 1) such that cγi (t) = cπj (t) and c
γ
j (t) = cπi (t),

while sets Ωγ(t), Ωγ(t), for any t ≥ 2, are updated as

Ωγ(t) = Ωγ(1) \ Ωc(t) (5.23)

Ωπ(t) = Ωπ(1) \ Ωc(t). (5.24)
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The set Ωγ(1) contains all the nodes that are scheduled by policy γ but not

by policy π at slot t = 1, excluding the nodes Ui ∈ Uγ(1) for which there exists a

node Uj ∈ Uπ(1) with ci(1) = cj(1). The set Ωπ(1) is similarly defined for policy

π. The common set Ωc(1) contains all the nodes that are neither in Ωγ(1) nor in

Ωπ(1). This set can be interpreted as consisting of the nodes that, as seen below

from the definition of policy γ, evolve in the same fashion under the two policies π

and γ, possibly upon an index permutation (see (5.22)). More specifically, for any

node Ui ∈ U c(t), either the energy stored in its capacitor is the same under the two

policies (i.e., cγi (t) = cπi (t)) or it is possible to find another node Uj ∈ U c(t) such that,

upon an index permutation between i and j, their capacitors have the same stored

energies (i.e., cγi (t) = cπj (t) and c
γ
j (t) = cπi (t)). The sets evolve as per (5.22) so that

nodes from sets Ωγ(t) and Ωπ(t) are removed to be added to the common set Ωc(t)

when appropriate conditions apply. In other word, the set Ωc(1) contains the nodes

that are equivalent under the two policies.

Using the definitions above, it is possible to define the operations of policy

γ from slot t = 2 onward. In particular, policy γ selects the same nodes that are

scheduled by policy π in all the slots t ≥ 2 with the following exception, which is

referred to as switch: When policy π schedules some nodes that are in the set Ωγ(t),

then policy γ schedules the same number of nodes (arbitrarily selected) from the set

Ωπ(t). Moreover, at the first slot t in which the set Ωγ(t) becomes empty, policy γ

keeps selecting the same nodes as for policy π with no more exceptions.

Having defined policy γ, the proof is turned to show that inequality (5.18)

holds. The key idea of the proof is the following. At the first slot t in which at

least one of the two sets Ωγ(·) and Ωπ(·) becomes empty three scenarios can occur:

i) |Ωγ(t)| = |Ωπ(t)| = 0; ii) |Ωπ(t)| > |Ωγ(t)| = 0; and iii) |Ωγ(t)| > |Ωπ(t)| = 0.

If case i) occurs, then the two policies γ and π have the same lifetime, since all the
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capacitors in the system are equivalent. If case ii) occurs, policy γ starts selecting the

same nodes of policy π with no switch exceptions. However, as proved in Appendix D,

it holds that cγi (t) > cπi (t) for all Ui ∈ Ωπ(t), while all the other nodes are equivalent

under the two policies, and thus policy γ has a lifetime no smaller than policy π.

Finally, based on sample path arguments of the EH process, it is shown in Appendix

D that case iii) can never occur. This is sufficient to conclude that policy γ has a

lifetime no smaller than policy π, which implies that inequality (5.18) holds, thus

completing the proof.
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Figure 5.4 Normalized lifetime (5.4) versus the capacitor size Ec for the full state
information scenario. The system parameters are M = 5, K = 1, Mph/K = 0.9,
pd = 0.01 and Eb = 5.

5.7 Conclusions

This chapters considered the design of centralized scheduling policies for a single-hop

wireless network, in which a fusion center (FC) collects data packet periodically from

a set of nodes powered via hybrid energy storage systems (HESSs). Each HESS is

composed by a non-rechargeable battery and a capacitor that is recharged via energy

harvesting (EH) and that is subject to energy leakage. The capacitors are aimed to
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Figure 5.6 Normalized lifetime (5.4) versus the capacitor size for the partial state
information scenario. The system parameters are M = 5, K = 1, Mph/K = 0.9,
pd = 0.01, Eb = 5 and Ec = 6.

support the batteries and thus to extend their lifetime. The FC’s scheduling policies

are thus designed with the aim of maximizing the network lifetime.
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In particular, the scheduling policies are designed with different level of

information available at the FC. When the FC knows the instantaneous energy

availability at the HESS of each node (or full state information) then two optimal

policies for two limiting case are derived explicitly. Specifically, when the energy

leakage is negligible (or harvesting-only case), a policy that selects in each slot the

nodes with the largest energy in the capacitors, referred to as most charged capacitor

first (MCF), is shown to be optimal. When the energy harvesting is negligible instead

(or leakage-only case), it is shown that a policy that selects the nodes with the smallest

non-zero energy in the capacitors, referred to as least charged capacitor first (LCF),

is optimal.

For the scenario in which the FC does not know the instantaneous state of

the HESSs of the nodes (or partial state information case), then heuristic scheduling

policies that take decision based only on the statistical properties of the EH and energy

leakage processes are proposed. Furthermore, opportunistic feedback schemes, where

the nodes with a sufficiently large amount of energy in the capacitor transmit a bit of

information to the FC, are considered as well and shown to approach the performance

of the full state information scenario.

Overall, it has been shown that a careful design of the scheduling policies can

improve the network lifetime remarkably.



CHAPTER 6

OPTIMALITY OF MYOPIC SCHEDULING AND WHITTLE

INDEXABILITY FOR ENERGY HARVESTING NODES

6.1 Introduction and System Model

This chapter considers a single-hop WSN, where a central node, referred to as fusion

center (FC), collects data from a set of M energy harvesting (EH) nodes, labeled

as U1, ..., UM , deployed in its surrounding as shown in Figure 6.1. Each node, is

equipped with an energy harvesting unit (EHU) that converts a given source of energy

available in the environment into electrical energy. The harvested energy is stored in

a rechargeable battery (or a capacitor). The battery is also subject to energy leakage

(or self-discharge). Nodes perform continuous monitoring of a given phenomenon

of interest and the task of the FC is to collect as many measurements (packets) as

possible. To this end, in each time-slot t, the FC schedules transmission of a subset

U(t) ⊆ {U1, ..., UM} of K nodes, where each of the K scheduled nodes is allocated

an orthogonal transmission resource, e.g., frequency. The problem is thus similar to

the one considered in Chapter 5 with the difference that in this chapter the nodes are

equipped with a single replenishable energy storage device.

One of the main challenge to be addressed when designing a scheduling

algorithm for EH-nodes is that the energy availability at the nodes keeps changing

due to EH and energy leakage. Therefore, in general, the FC cannot be aware of the

exact energy level in the battery of each node anytime, unless dedicated transmission

resources (overhead) are arranged with the aim of collecting information regarding

the energy availability at the nodes (see also the discussion in Chapter 5). It is

worth mentioning that nodes exclusively powered via EH are potentially subject

to temporary energy shortages. Hence, when a node is scheduled while in energy

106
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shortage, then the allocated transmission resource remains unused for the entire slot

(i.e., it is wasted).

In this chapter the the focus is on the design of scheduling policies that do not

require any communication overhead from the nodes. In particular, it is assumed that

the FC can only take scheduling decisions based on the outcomes of previous node

transmissions and on the knowledge of the stochastic properties of the EH and leakage

processes. The scheduling policies will thus be designed with the aim of maximizing

the average throughput, i.e., the number of packets collected in each slot within a

given amount of slots (horizon), as it will be formally defined below.

U1
B1(t)

EHU

UM

BM(t)

FC

•  •  •

Ui
Bi(t)

Energy
Harvesting
Unit (EHU)

Rechargeable 
Battery

Bi(t)

Ui
EHU

EHU

Figure 6.1 A WSN where a fusion center (FC) collects data from M energy-
harvesting (EH) nodes. Each node Ui is equipped with a rechargeable battery with
energy Bi(t) at time-slot t.

6.1.1 Markov Formulation

To elaborate on the contribution of this chapter and on related works, this section

introduces the model that is considered throughout this chapter for the evolution of

the energy in the battery. The energy in the battery is considered discrete, where the

granularity of the discrete model is referred to as energy unit. Let Bi(t) ∈ {0, ..., C} be

the number of energy units stored in the battery of node Ui at slot t, for i ∈ {1, ...,M},
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where C is the capacity of the battery and where the energy unit is normalized to

one for simplicity. An energy unit is consumed for the transmission of a data packet.

As explained above, the scheduling decisions consist in the assignment at each slot t

of the K communication resources to a subset U(t) ⊆ {U1, ..., UM} of K nodes, with

|U(t)| = K, where the operator |A| indicates the cardinality of set A.

a)

b)

0 1

)0(
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)0(
10p

)0(
11p)0(
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)1(
10p

)1(
11p)1(
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Figure 6.2 Markov model for the evolution of the state of the battery Bi(t) ∈ {0, 1},
of capacity C = 1, when the node Ui: a) is not scheduled in slot t (i.e., Ui /∈ U(t));
b) is scheduled in slot t (i.e., Ui ∈ U(t)).

The evolution of the battery Bi(t) given the scheduling decision U(t) is

illustrated in Figure 6.2 for the case of capacity C = 1. At each slot, node Ui

can be either scheduled (Ui ∈ U(t)) or not (Ui /∈ U(t)). If Ui is not scheduled

(i.e., Ui /∈ U(t), see Figure 6.2-a)) and an energy unit is stored in its battery

(i.e., Bi(t) = 1), then the battery will be empty in the next slot with probability

(w.p.) p
(0)
10 = Pr[Bi(t + 1) = 0|Bi(t) = 1, Ui /∈ U(t)], while it will remain full w.p.

p
(0)
11 = 1 − p

(0)
10 (this accounts for possible self-discharge of the battery). Instead, if

node Ui is scheduled (i.e., Ui ∈ U(t), see Figure 6.2-b)) and Bi(t) = 1, the node

transmits successfully and its battery in the next slot will be either empty or full

w.p. p
(1)
10 = Pr[Bi(t + 1) = 0|Bi(t) = 1, Ui ∈ U(t)] and p

(1)
11 = 1 − p

(1)
10 , respectively.

Probability p
(1)
11 accounts for the possible arrival of a new energy unit due to EH.

If Bi(t) = 0 the probabilities of receiving an energy unit due to EH when Ui is
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not scheduled and scheduled are p
(0)
01 = Pr[Bi(t + 1) = 1|Bi(t) = 0, Ui /∈ U(t)] and

p
(1)
01 = Pr[Bi(t + 1) = 1|Bi(t) = 0, Ui ∈ U(t)], respectively, while the probabilities of

not receiving any energy unit are p
(0)
00 = 1− p

(0)
01 and p

(1)
00 = 1− p

(1)
01 , respectively.

Given the model in Figure 6.2, the FC aims at scheduling a subset U(t) of

nodes so as to maximize the throughput. The scheduling problem can thus be

formalized as a partially observable Markov decision process (POMDP) [68]. In

fact, the current state of the system, which amounts to the number of energy units

B1(t), ..., BM (t) in the batteries, is not directly accessible by the FC, which in turns

is only aware of the transitions probabilities p
(u)
xy , with x, y, u ∈ {0, 1} (the same for

all the nodes), and of the outcomes of previously scheduled transmissions. This is

unlike standard Markov decision processes (MDP) where the FC has full access to the

system state [69]. By following standard steps to be discussed below, the scheduling

problem discussed above can be cast into the framework of restless multi-armed bandit

(RMAB) problems [70]. In a RMAB problem, there are M independent controlled

Markov chains referred to as arms (i.e., nodes in the formulation in this chapter). Any

arm that is selected by the FC provides a reward that depends only on its current

state. The goal of the FC is to select, at each slot, K out of the M arms, so as to

maximize an average reward criterion. Note that the formulation of the problem as

a RMAB does not solve by itself the complexity issue of POMDPs [71], as finding

solutions of general RMABs is known to be prohibitively complex as well [72].

6.1.2 Related Work and Contributions

In this work, the scheduling problem above is tackled by assuming that the transition

probabilities of the Markov chains in Figure 6.2, the number of nodes M and

communication resources K are such that

M = Km, for m integer, and (6.1a)

p
(1)
11 ≤ p

(1)
01 ≤ p

(0)
01 ≤ p

(0)
11 , (6.1b)
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Condition (6.1a) states that the number of nodes is proportional to the number of

communication resources, generalizing the single-resource (K = 1) case. Conditions

(6.1b) are motivated as follows. Inequality p
(1)
11 ≤ p

(1)
01 imposes that the probability

that a new energy unit is harvested when the battery is full and the node is scheduled

(p
(1)
11 ) is no larger than when the battery is empty (p

(1)
01 ). This is the case, for instance,

in the relevant setting in which the probability of the arrival of an energy unit is

independent on the battery state and the scheduling decisions taken by the FC, so

that one has p
(1)
11 = p

(1)
01 , or in the setting in which energy units arriving when the

battery is full are discarded, so that p
(1)
11 = 0. The second inequality p

(1)
01 ≤ p

(0)
01 imposes

that the probability p
(1)
01 that a new energy unit is harvested when the battery is empty

and the node is scheduled is no larger than when it is not scheduled (p
(0)
01 ). Similarly

to the discussion above, this is true, for instance, if the EH probability does not

dependent on the battery state and on the scheduling decisions, so that p
(1)
01 = p

(0)
01 .

Finally, the last inequality p
(0)
01 ≤ p

(0)
11 or equivalently p

(0)
00 ≥ p

(0)
10 indicates that, when

a node is not scheduled, the probability p
(0)
10 that an energy unit is lost due to leakage

is no larger than the probability of not harvesting any energy unit (p
(0)
00 ). This is the

case, for instance, if the probability of energy leakage is sufficiently small.

Main Contributions: The contribution of this chapter are as follows. It

is first shown that a myopic policy (MP) under assumptions (6.1) is a round robin

(RR) strategy that: i) re-numbers the nodes in a decreasing order according to the

initial probability that their respective battery is full; and then ii) schedules the nodes

periodically in group of K by exploiting the initial ordering. The MP is proved to be

throughput-optimal. It is then shown that, for the special case in which p
(0)
01 = p

(1)
01

and p
(0)
10 = p

(1)
11 = 0, the MP coincides with the Whittle index policy, which is a

generally suboptimal index strategy for RMAB problems [38]. Finally, the model of

Section 6.1.1 is extended to batteries with an arbitrary capacity C. Characterizing

optimal policies for C > 1 is significantly more complicated than the case of C = 1.
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Hence, inspired by the optimality of the MP for C = 1, the performance of the MP

for C > 1 are compared with a upper bound based on a relaxation of the scheduling

constraints of the original RMAB problem [38].

Related Work: The derivations in this chapter are inspired by the works

[39, 73, 40], in which a RMAB problem is studied by assuming that the evolution

of the battery is not affected by the scheduling decision. This is equivalent to the

setting p
(0)
01 = p

(1)
01 and p

(0)
11 = p

(1)
11 in the Markov chains of Figure 6.2. In [39] it is

shown that the MP is optimal for p
(0)
11 = p

(1)
11 ≤ p

(0)
11 = p

(1)
11 with K = 1, while [73]

extends this result to an arbitrary K. The work [39] also demonstrates that the MP

in not generally optimal in the case p
(0)
01 = p

(1)
01 ≥ p

(0)
11 = p

(1)
11 . Finally, paper [40]

proves the optimality of the Whittle index policy for p
(0)
11 = p

(1)
11 ≤ p

(0)
11 = p

(1)
11 . It is

emphasized that neither the model considered in this chapter nor the one considered

in [39, 40, 73] subsumes the other, and the results here and in the mentioned previous

works should be considered as complementary.

Notation: Vectors are denoted in bold, while the corresponding unbolded

letters denote the vectors components. Given a vector x = [x1, ..., xM ] and a set

S = {i1, ..., iK} ⊆ {1, ...,M} of cardinality K ≤ M, it is defined vector xS =

[xi1 , ..., xiK ], where i1 ≤ ... ≤ iK . A function f(x) of vector x is also denoted as

f(x1, ..., xM ) or as f(x1, ..., xl,x{l+1,...,M}) for some 1 ≤ l ≤ M , or similar notations

depending on the context. Notation 1K indicates a vector of K components, all equal

to one. Given a set A and a subset B ⊆ A, Bc represents the complement of B in A.

6.2 Problem Formulation

This section formalizes the scheduling problem of Section 6.1 (see Figure 6.1), in

which the EH and energy leakage processes are modeled, independently at each node,

by the Markov models of Section 6.1.1 with battery capacity C = 1 (see Figure 6.2).

Extension to batteries of arbitrary capacity is addressed in Section 6.6.



112

6.2.1 Problem Definition

The scheduling problem at the FC is addressed in a finite-horizon scenario in slots

t ∈ {1, ..., T}. Let B(t) = [B1(t), ..., BM (t)] be the vector collecting the states of

the batteries at slot t. At slot t = 1, the FC is only aware of the initial probability

distribution ω(1) = [ω1(1), ..., ωM (1)] of B(1), whose ith entry is ωi(1) = Pr[Bi(1) =

1]. The subset U(1) of |U(1)| = K nodes scheduled at slot t = 1 is chosen as a

function of the initial distribution ω(1) only. For any node Ui ∈ U(t) scheduled

at slot t, an observation is made available to the FC at the end of the slot (or

equivalently before the scheduling decision is taken at slot t+1), while no observations

are available for non-scheduled nodes Ui /∈ U(t). Specifically, if Bi(t) = 1 and Ui ∈

U(t), the packet of Ui is collected successfully within slot t, and the FC observes

that Bi(t) = 1. Conversely, if Bi(t) = 0 and Ui ∈ U(t), no packets are collected

and the FC observes that Bi(t) = 0. The set O(t) contains the (new) observations

available at the FC before the scheduling decision is taken at slot (t + 1), which

include the states of the batteries of the nodes scheduled at slot t, i.e., O(t) =

{Bi(t) : Ui ∈ U(t)}. At time t, the FC thus knows the history of all decision (or

actions) and previous observations along with the initial distribution ω(1), namely

H(t) = {U(1), ...,U(t− 1),O(1), ...,O(t− 1),ω(1)}, with H(1) = {ω(1)}. In general,

the scheduling decision U(t) is a function of the history H(t).

A policy π= [Uπ(1), ...,Uπ(T )] is a collection of functions Uπ(t) that map the

history H(t) to a subset U(t) of |U(t)| = K nodes, Uπ(t): H(t) → U(t). Note that,

strictly speaking Uπ(t) is a mapping function, however it is also referred as the subset

of scheduled nodes throughout this chapter. In designing the policy π, the FC aims at

maximizing the throughput in terms of the average number of packets collected over

the finite horizon t ∈ {1, ..., T}. For generality, the throughput includes a discount

factor β [39], while the infinite horizon scenario (i.e., T → ∞) will be discussed in

Section 6.4.
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To measure the throughput it is first introduced the immediate reward R(B,U),

accrued by the FC, as the number of packets collected by the FC in a slot where the

state of the batteries is B and the scheduled set is U :

R(Q,U) =
M
∑

i=1

1[Bi = 1]1[Ui ∈ U ], (6.2)

where 1 [A] is the indicator function of event A, with 1 [A] = 1 if event A is true

and zero otherwise. Notice that R(B,U) ≤ K since there are only K transmission

resources available. The performance of a policy π is measured by the throughput

V π
1 (ω(1)) over the horizon t ∈ {1, ..., T}, where

V π
1 (ω(1)) =

T
∑

t=1

βt−1Eπ [R(B(t),Uπ (t))|ω(1)] , (6.3)

where 0 ≤ β ≤ 1, and the expected value Eπ [·|ω(1)] is with respect to the probability

distribution of the random process B(t), determined by the Markov chains in Figure

6.2 for fixed policy π and initial distribution ω(1). Note that V π
1 (ω(1)) ≤ K 1−βT

1−β
for

any π. The optimization goal is to find a policy π∗, with optimal actions U∗(t), for

t ∈ {1, ..., T}, which maximizes the throughput1 (6.3) so that

π∗ = argmax
π

V π
1 (ω(1)) , and (6.4)

V ∗
1 (ω(1)) = V π∗

1 (ω(1)) = max
π
V π
1 (ω(1)) . (6.5)

6.2.2 Formulation as Belief MDP and RMAB

Problem (6.4)-(6.5) is a POMDP, since the FC has only partial information about the

instantaneous state B(t) of the system through the observations O(t). The problem

can be reformulated (6.4)-(6.5) as an equivalent MDP with full state knowledge,

referred to as belief MDP [67]. To this end, it is worth noticing that, while decision

Uπ(t) at time t depends in general on the entire past history H(t), it is well-known

1An optimal policy exists given the discrete nature of the set of all possible policies.
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that a sufficient statistics for the optimization problem (6.4)-(6.5) is given by the

probability distribution of B(t) conditioned on the history H(t) [67]. This conditional

probability is referred to as belief and it is given by vector ω(t) = [ω1(t), ..., ωM (t)],

with ith entry being

ωi(t) = Pr [Bi(t) = 1|H(t)] . (6.6)

The belief ω(t) fully summarizes, without loss of optimality for problem (6.4)-(6.5),

the entire history H(t) of past actions and observations. An optimal decision U∗(t) in

each tth slot can thus be found as a function of the belief ω(t) only, which is known by

the FC. Therefore, a policy π can be equivalently defined by a collection of functions

Uπ(t) that map the current state ω(t) (instead of the whole history H(t)) into the

set of the K scheduled nodes.

To define the belief MDP it is necessary to: i) verify that the belief ω(t) evolves

as a controlled Markov process, with control given by the scheduling decisions, and

obtain the corresponding transition probabilities; ii) write the throughput (6.3) in

terms of an immediate reward function that depends only on the belief ω(t) and on

the scheduling decision.

Transition probabilities: Since the batteries evolve independently at each

node for a given scheduling decision, the same holds for the beliefs ωi(·). The

transition probabilities over the beliefs, given decision U(t) = U and belief ω(t) =

ω = [ω1, ..., ωM ], are thus obtained as

p
(U)

ωω
′ = Pr [ω(t+ 1) = ω

′|ω(t) = ω,U(t) = U ]

=
M
∏

i=1

Pr[ωi(t+ 1) = ω′
i|ωi(t) = ωi,U(t) = U ], (6.7)

where ω(t + 1) = ω
′ = [ω′

1, ..., ω
′
M ] is the next slot’s state, while the transition

probabilities of the belief ωi(t) of node Ui, namely Pr[ωi(t+1) = ω′
i|ωi(t) = ωi,U(t) =
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U ] are given by

ωi(t+ 1) =























p
(1)
11 w.p. ωi(t) if Ui ∈ U(t)

p
(1)
01 w.p. (1− ωi(t)) if Ui ∈ U(t)

τ
(1)
0 (ωi(t)) w.p. 1 if Ui /∈ U(t)

. (6.8)

In (6.8), the first two lines reflect the fact that, when node Ui is scheduled (Ui ∈ U(t))

it has an energy unit in its battery w.p. ωi(t), and thus, from Figure 6.2-b), the

probability that it will have an energy unit in the next slot, i.e., the belief ωi(t+ 1),

is p
(1)
11 . Similarly, w.p. (1− ωi(t)) the scheduled node Ui does not have energy in its

battery and hence, from Figure 6.2-a), the new belief is p
(1)
01 . Finally, the last line in

(6.8) states that, if node Ui is not scheduled (i.e., Ui /∈ U(t)), then its belief in the

next slot can be calculated through the function

τ
(1)
0 (ω) = Pr[Bi(t+ 1) = 1|ωi(t) = ω, Ui /∈ U(t)]

= ωp
(0)
11 + (1− ω)p

(0)
01 = ωδ0 + p

(0)
01 , (6.9)

where δ0 = p
(0)
11 − p

(0)
01 ≥ 0 due to inequalities (6.1b). Eq. (6.9) follows from Figure

6.2-a), since the next slot’s belief is either p
(0)
11 if Bi(t) = 1 (w.p. ω) or p

(0)
01 if Bi(t) = 0

(w.p. (1− ω)). For convenience of notation, it is also useful to define the vector

τ
(1)
0 (ω1, ..., ωK) = [τ

(1)
0 (ω1), ..., τ

(1)
0 (ωK)]. (6.10)

A generalization of function τ
(1)
0 (ω) that computes the belief ωi(t+k) of node Ui when

it is not scheduled for k successive slots, e.g., slots {t, ..., t + k − 1}, and ωi(t) = ω,

can be obtained as

τ
(k)
0 (ω) = Pr[Bi(t+ k) = 1|ωi(t) = ω, Ui /∈ U(t), ..., Ui /∈ U(t+ k − 1)].

= ωδk0 + p
(0)
01

1− δk0
1− δ0

. (6.11)
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Eq. (6.11) can be obtained recursively from (6.9) as τ
(k)
0 (ω) = τ

(1)
0 (τ

(k−1)
0 (ω)), for

all k ≥ 1, with τ
(0)
0 (ω) = ω. Some fundamental properties of function (6.11) are

summarized in the lemma below.

Lemma 10. If conditions (6.1b) hold, function (6.11) satisfies the inequalities

p
(1)
11 ≤ p

(1)
01 ≤ τ

(1)
0 (ω), for all ω ∈ [0, 1], and (6.12)

τ
(k)
0 (ω) ≤ τ

(k)
0 (ω′), for all ω ≤ ω′ with ω, ω′ ∈ [0, 1]. (6.13)

Proof. From (6.9), it results that τ
(1)
0 (ω) = ωδ0 + p

(0)
01 ≥ p

(0)
01 ≥ p

(1)
01 ≥ p

(1)
11 , since

δ0 = p
(0)
11 − p

(0)
01 ≥ 0 given the conditions (6.1b), and thus (6.12) is proved. Inequality

(6.13) instead follows since it results τ
(k)
0 (ω)−τ (k)0 (ω′) = (ω′ − ω) δk0 ≥ 0 for all ω ≤ ω′

as δ0 ≥ 0.

Inequalities (6.12) guarantee that the belief of a non-scheduled node is always

larger than that of a scheduled one. Inequality (6.13), instead, says that the belief

ordering of two non-scheduled nodes is maintained across a slot. Inequalities (6.12)-

(6.13) play a crucial role in the analysis below.

Throughput: Similarly to (6.2) it is possible to define an average immediate

reward R(ω,U), which depends only on the belief ω and the scheduling decision U ,

as

R(ω,U) =
M
∑

i=1

ωi1 [Ui ∈ U ] . (6.14)

In (6.14) the average reward accrued by the FC from a scheduled node Ui ∈ U

corresponds to the probability ωi that Ui has energy in its battery. Exploiting (6.14),

the throughput (6.3) becomes

V π
1 (ω(1)) =

T
∑

t=1

βt−1Eπ [R (ω(t),Uπ(t)) |ω(1)] . (6.15)
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In (6.15), the expectation Eπ[·|ω(1)] is intended with respect to the distribution of

the Markov process ω(t), as obtained from the transition probabilities (6.8), for fixed

policy π and initial belief ω(1). The optimal policy and the optimal throughput are

defined as in (6.4)-(6.5).

Overall, the problem (6.4)-(6.5) has been converted from a POMDP with

immediate reward (6.2) and partially observable state B(t) to an equivalent belief

MDP, with immediate reward (6.14) and fully observable state given by the

conditional probability of B(t) (i.e., the belief vector ω(t)). Such a belief MDP

constitutes a RMAB with M arms given by the M nodes [70].

6.2.3 Optimality Equations

This section introduces the standard dynamic programming (DP) optimality

conditions that characterize an optimal policy π∗ in (6.4). To start with, it is possible

to define the throughput V π
t (ω) over the horizon {t, ..., T} for policy π and initial

belief ω(t) = ω as

V π
t (ω) =

T
∑

j=t

βj−tEπ [R (ω(j),Uπ(j)) |ω(t) = ω] , (6.16)

consistently with (6.15). The DP optimality conditions are expressed in terms of value

functions V ∗
t (ω) = maxπ V

π
t (ω) that represent the optimal throughput in the interval

{t, ..., T}. The probability that theK scheduled nodes have energies b1, ..., bK ∈ {0, 1}

for a given belief ω can be calculated as

b(b1, ..., bK , ω1, .., ωK) =
K
∏

i=1

ωbi
i (1− ωi)

1−bi . (6.17)

Lemma 11. DP optimality conditions: The throughput V π
t (ω) in (6.16), given belief

ω = [ωUπ(t),ω(Uπ(t))c ], with (Uπ(t))c = {U1, ..., UM} \ Uπ(t), satisfies the recursive
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conditions

V π
T (ω) = R(ω,Uπ(T )) =

∑

Ui∈Uπ(T )

ωi (6.18)

V π
t (ω) = R(ω,Uπ(t)) + β

∑

ω
′

V π
t+1 (ω

′) p
(Uπ(t))

ωω
′

=
∑

Ui∈Uπ(T )

ωi + β
∑

b1,...,bK∈{0,1}

b(b1, ..., bK ,ωUπ(t)) · (6.19)

V π
t+1

(

γ(b1), ..., γ(bK), τ
(1)
0 (ω(Uπ(t))c)

)

, for t ∈ {1, ..., T − 1},

where γ(b) = p
(1)
01 (1− b) + p

(1)
11 b.

Moreover, the value function V ∗
t (ω) = maxπ V

π
t (ω) satisfies the DP optimality

conditions

V ∗
T (ω) = max

U(T )⊆{U1,...,UM}

∑

Ui∈U(T )

ωi (6.20)

V ∗
t (ω) = max

U(t)⊆{U1,...,UM}







∑

Ui∈U(t)

ωi + β
∑

b1,...,bK∈{0,1}

b(b1, ..., bK ,ωU(t))· (6.21)

V ∗
t+1

(

τ
(1)
0 (ω(U(t))c), p

(1)
01 1K−

∑K
i=1 bi

, p
(1)
11 1∑K

i=1 bi

)}

, for t ∈ {1, ..., T − 1}.

Finally, an optimal policy π∗ (6.4) is such that U∗(t) attains the maximum in the

conditions (6.20)-(6.21) for t = 1, 2, ..., T.

Proof. The equalities (6.18)-(6.19) follow from DP backward induction from definition

(6.16) (see [69]), and are a consequence of (6.7), (6.8), (6.10) and (6.14). The DP

optimality conditions (6.20)-(6.21) follow from standard DP theory [69], where it has

been exploited the fact that the nodes are stochastically equivalent, and thus V ∗
t (ω)

only depends on the numerical values of the entries of the belief vector ω regardless

of the way it is ordered.

Some comments on (6.19) and (6.21) are now in order. In the second term

of the right hand side (RHS) of (6.19) and (6.21), one averages over the distribution
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p
(U)
ωω

′ (6.7) of the next-slot belief given the current belief and scheduling decision U .

From (6.8), the beliefs of all the unscheduled nodes in U c evolve deterministically as

τ
(1)
0 (ωUc). Instead, the beliefs of each scheduled node Ui ∈ U can be either equal to

p
(1)
11 or p

(1)
01 w.p. ωi and (1− ωi), respectively. This is accounted for by the sum in the

last equality in (6.19) and (6.21).

6.3 Optimality of the Myopic Policy

This section first defines the myopic policy (MP) and then shows that, under

conditions (6.1), the MP is a round-robin (RR) strategy that schedules nodes

periodically. It is then proved that the MP is optimal for problem (6.4), and its

throughput (6.5) is computed in closed form.

6.3.1 The Myopic Policy is Round-Robin

The MP πMP = {UMP (1), ...,UMP (T )} is a greedy policy that in each tth slot

schedules the K nodes with the largest beliefs so as to maximize the immediate

reward (6.14) as

UMP (t) = argmax
U

R(ω(t),U) = argmax
U

∑

Ui∈U

ωi(t). (6.22)

Note that the MP is a stationary policy in the sense that the scheduling decision

UMP (t) depends only on the value of the belief ω(t) regardless the slot t.

Proposition 12. If conditions (6.1) hold, the MP πMP (6.22), given an initial belief

ω
′(1), is a RR policy that operates as follows: 1) Sort vector ω

′(1) in a decreasing

order to obtain ω(1) = [ω1(1), ..., ωM (1)] such that ω1(1) ≥ ... ≥ ωM(1). Renumber

the nodes so that Ui has belief ωi(1); 2) Divide the nodes into m groups of K nodes

each, so that the gth group Gg, g ∈ {1, ...,m}, contains all nodes Ui such that g =
⌊

i−1
K

⌋

+1, namely: G1 = {U1, ..., UK}, G2 = {UK+1, ..., U2K}, and so on; 3) Schedule the
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groups in a RR (periodic) fashion with period m slots, so that groups G1, ...,Gm,G1, ...

are sequentially scheduled at slot t = 1, ...,m,m+ 1, ... and so on.

Proof. According to (6.22), the first scheduled set is UMP (1) = G1 = {U1, U2, ..., UK}.

The beliefs are then updated through (6.8). Recalling (6.12), the scheduled nodes, in

G1, have their belief updated to either p
(1)
11 or p

(1)
01 , which are both smaller than the

belief of any non-scheduled node in {U1, ..., UM} \ G1. Moreover, the ordering of the

non-scheduled nodes’ beliefs is preserved due to (6.13). Hence, the second scheduled

group is UMP (2) = G2, the third is UMP (3) = G3, and so on. This proves that the

MP, upon an initial ordering of the beliefs, is a RR policy.

It now possible to make an useful observation for proving the optimality results

of this section. Consider a RR policy πRR that operates according to steps 2) and 3)

of Proposition 12 (i.e., without re-ordering the initial belief). The throughput (6.16)

of πRR can be expressed recursively through functions Ṽt(ω) as

ṼT (ω) =
K
∑

i=1

ωi (6.23)

Ṽt(ω) =
K
∑

i=1

ωi + β
∑

b1,...,bK∈{0,1}

b(b1, ..., bK , ω1, ..., ωK) · (6.24)

Ṽt+1

(

τ
(1)
0 (ωK+1, ..., ωM ) , p

(1)
01 1K−

∑K
i=1 bi

, p
(1)
11 1K−

∑K
i=1 bi

)

,

for t = 1, ..., T − 1. (6.25)

The policy πRR in each slot: i) schedules the K nodes whose beliefs are in the

first K positions of the argument ω of ṼT (ω); ii) the argument ω
′ for the next

slot is updated (through (6.8)) so that the beliefs of the scheduled nodes are

decreasingly ordered and put at the K rightmost positions of ω
′ so that ω

′ =

[τ
(1)
0 (ωK+1, ..., ωM ) , p

(1)
01 1K−

∑K
i=1 bi

, p
(1)
11 1K−

∑K
i=1 bi

]. Note that, when the initial belief

ω is ordered so that ω1 ≥ ... ≥ ωM , then Ṽt(ω) = V MP
t (ω).
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6.3.2 Optimality of the Myopic Policy

This section proves the optimality of the MP described above by showing that it

satisfies the DP optimality conditions of Lemma 11. The proof is based on backward

induction arguments similarly to [39, 73]. The following lemma establishes a sufficient

condition for the optimality of the MP.

Lemma 13. Assume that the MP is optimal at slot t + 1, ..., T , in the sense that

UMP (t + 1), ...,UMP (T ) attain the maximum in the corresponding DP optimality

conditions (6.20)-(6.21). To show that the MP is optimal also at slot t it is sufficient

to show that

Ṽt(ωS ,ωSc) ≤ V MP
t (ωS ,ωSc) = Ṽt(ω1, ω2, ..., ωM ), for all ω1 ≥ ω2 ≥ ... ≥ ωM ,

(6.26)

and all sets S ⊆ {1, ...,M} of K elements, with the elements in ωSc decreasingly

ordered.

Proof. Since by assumption the MP is optimal from t + 1 onward, it is sufficient to

show that scheduling K nodes with arbitrary beliefs at slot t and then following the

MP from slot t+1 on, is no better than following the MP immediately at slot t. The

performance of the former policy is given by the left-hand side (LHS) of (6.26). In

fact Ṽt(ωS ,ωSc), for any set S, represents the throughput of a policy that schedules

the K nodes with beliefs ωS at slot t, and then operates as the MP from t+1 onward,

since beliefs ωSc are in decreasing order (see (6.23)-(6.24)). The MP’s performance

is instead given by the RHS of (6.26). This concludes the proof.

The following lemma demonstrates that inequality (6.26) holds.

Lemma 14. If conditions (6.1) hold, then: a) inequality (6.27) holds for all x ≥ y

and 0 ≤ j ≤M − 2

Ṽt(ω1, ..., ωj , y, x, ..., ωM ) ≤ Ṽt(ω1, ..., ωj , x, y, ..., ωM ), (6.27)
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where for j = 0 inequality (6.27) is intended as Ṽt(y, x, ..., ωM ) ≤ Ṽt(x, y, ..., ωM ); and

b) inequality (6.26) is satisfied for all ω1 ≥ ... ≥ ωM and all subsets S ⊆ {1, ...,M}

of K elements.

Proof. Part a) see Appendix F. Part b). By part a) condition (6.27) holds. This

implies that, for ω1 ≥ ... ≥ ωM , switching positions of neighboring elements ωi in the

RHS of (6.27) does not increase function Ṽt(·). But, through a sequence of switching

operations between neighboring elements of ω, it is possible to obtain an arbitrary

vector (ωS ,ωSc), which proves that (6.26) holds.

It is now possible to establish the optimality of the MP.

Theorem 15. If conditions (6.1) hold then the MP is optimal for problem (6.4)-(6.5)

so that πMP = π∗ and its throughput V MP
1 (ω(1)) = V ∗

1 (ω(1)) is calculated in closed

form in Appendix E.

Proof. Using Lemma 14, the proof is concluded immediately by Lemma 13.

6.4 Extension to the Infinite-Horizon Case

This section briefly describes the extension of the problem (6.15) (and thus (6.4)-(6.5))

to the infinite-horizon case. Beside its independent interest, this will be useful in the

next section where the optimality of the Whittle index policy will be discussed. The

throughput in the infinite-horizon case under policy π and discount factor 0 ≤ β < 1,

and its optimal value, are given by [39]

V π (ω(1)) =
∞
∑

t=1

βt−1Eπ [R (ω(t),Uπ(t)) |ω(1)] , and (6.28)

V ∗ (ω(1)) = max
π

V π (ω(1)) , (6.29)

where the optimal policy is π∗ = argmaxπ V
π (ω(1)). From standard DP theory, the

optimal policy π∗ is stationary, so that π∗ is such that the optimal scheduling decision
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U∗(t) is a function of the current state ω(t) only independently of slot t [69]. Following

the same reasoning as in [39, Theorem 3], it is easy to show that the optimality of the

MP for the finite-horizon setting implies the optimality also for the infinite-horizon

scenario.

6.5 Optimality of the Whittle Index Policy

This section briefly reviews the Whittle index policy for RMAB problems [70], and

then focuses on the infinite-horizon scenario of Section 6.4, when conditions (6.1b)

are specialized to

0 = p
(1)
11 ≤ p

(1)
01 = p

(0)
01 = p01 ≤ p

(0)
11 = 1. (6.30)

It will be shown that under the assumption (6.30) (see Section 6.1.2 for a discussion

on these conditions), the RMAB at hand is indexable and it is possible to calculate

its Whittle index in closed-form. It will be then shown that the Whittle index policy

is equivalent to the MP, and thus optimal for the problem (6.29).

It is emphasized that, the results in this section provide a rare example [70]

in which, as in [40], not only indexability is established, but also the Whittle index

is obtained in closed form and the Whittle policy proved to be optimal. It is finally

remarked that the proof technique of this section is inspired by [40], but the different

system model poses new challenges that require significant work.

6.5.1 Whittle Index

The Whittle index policy assigns a numerical value W (ωi) to each state ωi of node

Ui, referred to as index, to measure how rewarding it is to schedule node Ui in the

current slot. The K nodes with the largest index are then scheduled in each slot. As

detailed below, the Whittle index is calculated independently for each node, and thus

the Whittle index policy is not generally optimal for RMAB problems. Moreover,
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even the existence of a well-defined Whittle index is not guaranteed [70]. To study

the indexability and the Whittle index for the RMAB at hand, it is possible to focus

on a restless single-armed bandit (RSAB) model, as defined below [70].

6.5.2 RSAB with Subsidy for Passivity

The Whittle index is based on the concept of subsidy for passivity, whereby the FC

is given a subsidy m ∈ R when the arm is not scheduled. At each slot t, the CC,

based on the state ω(t) of the arm, can decide to activate (or schedule) it, i.e., to

set u(t) = 1, obtaining an immediate reward Rm(ω(t), 1) = ω(t). If, instead, the

arm is kept passive, i.e., u(t) = 0, a reward Rm(ω(t), 0) = m equal to the subsidy

is accrued. The state ω(t) evolves through (6.8), which under (6.30) and adapted to

the simplified notation used here becomes

ω(t+ 1) =























0 w.p. ω(t) if u(t) = 1

p01 w.p. (1− ω(t)) if u(t) = 1

τ
(1)
0 (ω(t)) w.p. 1 if u(t) = 0

. (6.31)

The throughput, given policy π = {uπ(1), uπ(2), ...} and initial belief ω(1), is

V π
m (ω(1)) =

∞
∑

t=1

βt−1Eπ [Rm(ω(t), u
π(t))|ω(1)] . (6.32)

The optimal throughput is V ∗
m (ω(1)) = maxπ V

π
m (ω(1)), while the optimal policy

π∗ = argmaxπ V
π
m (ω(1)) is stationary in the sense that the optimal decisions u∗m(ω) ∈

{0, 1} are functions of the belief ω only, independently of slot t [40]. Removing the

slot index from the initial belief, the optimal throughput V ∗
m (ω) and the optimal

decision u∗m(ω) satisfy the following DP optimality equations for the infinite-horizon

scenario (see [40])

V ∗
m(ω) = max

u∈{0,1}
{Vm(ω|u)} , (6.33)

and u∗m(ω) = arg max
u∈{0,1}

{Vm(ω|u)} . (6.34)
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In (6.33)-(6.34) it has been defined Vm(ω|u), u ∈ {0, 1}, as the throughput (6.32) of a

policy that takes action u at the current slot and then uses the optimal policy u∗m (ω)

onward, it results

Vm(ω|0) = m+ βV ∗
m(τ

(1)
0 (ω)), and (6.35)

Vm(ω|1) = ω + β [ωV ∗
m(0) + (1− ω)V ∗

m(p01)] . (6.36)

6.5.3 Indexability and Whittle Index

This section adopts the notation of [40] to define indexability and Whittle index for

the RSAB at hand. The first definition is the so called passive set

P(m) = {ω: 0 ≤ ω ≤ 1 and u∗m(ω) = 0} (6.37)

that contains all the beliefs ω for which the passive action is optimal (i.e., all 0 ≤ ω ≤ 1

such that Vm(ω|0) ≥ Vm(ω|1), see (6.35)-(6.36)) under the given subsidy for passivity

m ∈ R. The RMAB at hand is said to be indexable if the passive set P(m), for

the associated RSAB problem2, is monotonically increasing as m increases within the

interval (−∞,+∞), in the sense that P(m′) ⊆ P(m) if m′ ≤ m and P(−∞) = ∅ and

P(+∞) = [0, 1].

If the RMAB is indexable, the Whittle indexW (ω) for each arm with state ω is

the infimum subsidy m such that it is optimal to make the arm passive. Equivalently,

the Whittle index W (ω) is the infimum subsidy m that makes passive and active

actions equally rewarding, i.e.,

W (ω) = inf {m: u∗m(ω) = 0} = inf {m: Vm (ω|0) = Vm (ω|1)} . (6.38)

2Note that in a RMAB with arms characterized by different statistics this condition must

be checked for all arms.
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6.5.4 Optimality of the Threshold Policy

In this section it is shown that the optimal policy u∗m(ω) for the RSAB of Section

6.5.2 is a threshold policy over the belief ω. This is crucial in the proof of indexability

of the RMAB at hand given in Section 6.5.6. To this end, it is possible to observe

that: i) function Vm(ω|1) in (6.36) is linear over the belief ω; ii) function Vm(ω|0) =

m+βV ∗
m(τ

(1)
0 (ω)) in (6.35) is convex over ω, since the convexity of V ∗

m(ω) is a general

property of POMDPs (see [40, 67]). The the following lemma establishes useful

results.

Lemma 16. The following inequalities hold:

a) For 0 ≤ m < 1 : a.1) Vm(0|1) ≤ Vm(0|0) ≤ Vm(1|1); a.2) Vm(1|0) ≤ Vm(1|1);

(6.39a)

b) For m < 0 : b.1) Vm(0|0) ≤ Vm(0|1) ≤ Vm(1|1); b.2) Vm(1|0) ≤ Vm(1|1);

(6.39b)

c) For m ≥ 1 : c.1) Vm(0|0) ≤ Vm(1|1) ≤ Vm(0|1); c.2) Vm(1|1) ≤ Vm(1|0).

(6.39c)

Proof. See Appendix G.

Leveraging Lemma 16, it is now possible to establish the optimality of a

threshold policy u∗m(ω).

Proposition 17. The optimal policy u∗m(ω) in (6.34) for subsidy m ∈ R is given by

u∗m(ω) =











1, if ω > ω∗(m)

0, if ω ≤ ω∗(m)
, (6.40)

where ω∗(m) ∈ R is the optimal threshold for a given subsidy m. The optimal

threshold ω∗(m) is 0 ≤ ω∗(m) ≤ 1 if 0 ≤ m < 1, while it is arbitrary negative for
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m < 0 and arbitrary greater than unity form ≥ 1. In other words it results u∗m(ω) = 1

if m < 0 and u∗m(ω) = 0 if m ≥ 1.

Proof. The proof starts by showing that (6.40), for 0 ≤ m < 1, satisfies (6.34) and is

thus an optimal policy. To see this, it is possible to refer to Figure 6.3, where a sketch

of the functions Vm(ω|1) and Vm(ω|0) for different values of the subsidym is provided.

From (6.34), it results that u∗m(ω) = 1 for all ω such that Vm(ω|1) > Vm(ω|0) and

u∗m(ω) = 0 otherwise. For 0 ≤ m < 1, from the inequalities of Lemma 16-a), the

linearity of Vm(ω|1) and the convexity of Vm(ω|0), it follows that there is only one

intersection ω∗(m) between Vm(ω|1) and Vm(ω|0) with 0 ≤ ω∗(m) ≤ 1, as shown

in Figure 6.3-a). Instead, when m < 0, by Lemma 16-b), arm activation is always

optimal, that is, u∗m(ω) = 1, since Vm(ω|1) > Vm(ω|0) for any 0 ≤ ω ≤ 1 as shown in

Figure 6.3-b). Conversely, when m ≥ 1, by Lemma 16-c), it follows that passivity is

always optimal, that is, u∗m(ω) = 0, since Vm(ω|0) ≥ Vm(ω|1) for any 0 ≤ ω ≤ 1 as

shown in Figure 6.3-c).

0 1  ω

)0|(ωmV

)1|(ωmV

)(* mωω ≤ )(* mωω >

0 1

)0|(ωmV

)1|(ωmV

0 1

)0|(ωmV

)1|(ωmV

a) b) c)

10 <≤ m 1≥m0<m

 ω  ω)(* mω

Figure 6.3 Illustration of the optimality of a threshold policy for different values
of the subsidy for passivity m: a) 0 ≤ m < 1; b) m < 0; c) m ≥ 1.

6.5.5 Closed-Form Expression of the Value Function

By leveraging the optimality of the threshold policy (6.40) this section derives a

closed-form expression of V ∗
m(ω) in (6.33), being a key step in establishing the RMAB’s

indexability in Section 6.5.6.
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Notice that function τ
(k)
0 (ω) in (6.11), when specialized to conditions (6.30),

becomes

τ
(k)
0 (ω) = 1− (1− p01)

k(1− ω), (6.41)

which is a monotonically increasing function of k, so that τ
(k)
0 (ω) ≥ τ

(i)
0 (ω) for any

k ≥ i. Based on such monotonicity, it is possible to define the average number

L(ω, ω′) of slots it takes for the belief to become larger than ω′ when starting from ω

while the arm is kept passive, as

L(ω, ω′) = min
{

k: τ
(k)
0 (ω) > ω′

}

=



























0 ω > ω′

⌊

ln
(

1−ω′

1−ω

)

ln(1−p01)

⌋

+ 1 ω ≤ ω′

∞ ω ≤ 1 ≤ ω′

. (6.42)

From (6.42) it results that L(ω, ω′) = 1 for ω = ω′ since, without loss of optimality,

it is possible to assume that the passive action is optimal (i.e., u∗m(ω) = 0) when

Vm(ω|0) = Vm(ω|1). For ω′ ≥ 1 instead (according to Proposition 17), the arm is

always kept passive and thus L(ω, ω′) = ∞.

Lemma 18. The optimal throughput V ∗
m(ω) in (6.33) can be written as

V ∗
m(ω) =

1− βL(ω,ω∗(m))

1− β
m+ βL(ω,ω∗(m))Vm(τ

(L(ω,ω∗(m)))
0 (ω)|1), (6.43)

where ω∗(m) is the optimal threshold obtained from Proposition 17.

Proof. According to Proposition 17, the optimal policy u∗m(ω) keeps the arm passive

as long as the current belief is ω ≤ ω∗(m). Therefore, the arm is kept passive for

L(ω, ω∗(m)) slots, during which a reward Rm(ω, 0) = m is accrued in each slot. This

leads to a total reward within the passivity time given by the following geometric

series
∑L(ω,ω∗(m))−1

k=0 βkm = 1−βL(ω,ω∗(m))

1−β
m, which corresponds to the first term in the

RHS of (6.43). After L(ω, ω∗(m)) slots of passivity, the belief becomes larger than
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the threshold ω∗(m) and the arm is activated. The contribution to the value function

V (ω) thus becomes βL(ω,ω∗(m))Vm(τ
(L(ω,ω∗(m)))
0 (ω)|1), which is the second term in the

RHS of (6.43). Note that, when ω > ω∗(m), activation is optimal, and V ∗(ω) =

V (ω|1).

To evaluate V ∗
m(ω) from (6.43), it is only necessary to calculate Vm(ω|1) since

the other terms, thanks to (6.42) are explicitly given once ω∗(m) is obtained from

Proposition 17. However, from (6.36), evaluating Vm(ω|1) only requires V ∗
m(0) and

V ∗
m(p01), which are calculated in the lemma below.

Lemma 19. It follows

V ∗
m(0) =

(

m− 2mβL∗
m + βL∗

mυ∗m − βL∗
m+1υ∗m +mβL∗

m+1 +mβL∗
mυ∗m −mβL∗

m+1υ∗m
)

(β − 1) (βL∗
m − βL∗

mυ∗m + βL∗
m+1υ∗m − 1)

(6.44a)

V ∗
m(p01) =

(

mβ −mβL∗
m + βL∗

mυ∗m − βL∗
m+1υ∗m +mβL∗

m+1υ∗m −mβL∗
m+2υ∗m

)

β (β − 1) (βL∗
m − βL∗

mυ∗m + βL∗
m+1υ∗m − 1)

.

(6.44b)

where L∗
m = L(0, ω∗(m)) and υ∗m = τ

(L(0,ω∗(m)))
0 (0).

Proof. By plugging (6.36) into (6.43), and evaluating (6.43) for ω = 0 and ω = p01,

a linear system in the two unknowns V ∗
m(0) and V ∗

m(p01) is obtained, and it can be

solved leading to (6.44).

6.5.6 Indexability and Whittle Index

This section proves that the RMAB at hand is indexable, and derives the Whittle

index in closed form and shows that it is equivalent to the MP and thus optimal for

the RMAB problem (6.29).



130

Theorem 20. a) The RMAB at hand is indexable and b) its Whittle index is

W (ω) =

(

1− βL(0,ω)
(

1− βτ
L(0,ω)
0 (0)β̄ (1− h)

))

ω + βL(0,ω)τ
L(0,ω)
0 (0)β̄ (hβ + 1)

−β̄
(

βL(0,ω) (1− β(1− h))ω −
(

1 + βL(0,ω)
(

τ
L(0,ω)
0 (0)β̄ + hβ

))) ,

(6.45)

where β̄ = 1− β.

Proof. Part a). See Appendix H. Part b). By (6.38), the Whittle index W (ω)

of state ω is the value of the subsidy m for which activating or not the arm

is equally rewarding so that Vm (ω|0) = Vm (ω|1). By using (6.35)-(6.36) this

becomes ω + β [ωV ∗
m(0) + (1− ω)V ∗

m(p01)] = m + βV ∗
m(τ

(1)
0 (ω)). Moreover, since the

threshold policy is optimal and τ
(1)
0 (ω) > ω, it follows that, when the belief becomes

τ
(1)
0 (ω), it is optimal to activate the arm and thus V ∗

m(τ
(1)
0 (ω)) = Vm(τ

(1)
0 (ω) |1) =

βτ
(1)
0 (ω)V ∗

m(0)+β(1− τ
(1)
0 (ω))V ∗

m(p01). Plugging this result into Vm (ω|0) = Vm (ω|1),

along with (6.44a) and (6.44b), leads to (6.45), which concludes the proof.

It can be show that the Whittle indexW (ω) in (6.45) is an increasing function

of ω. Therefore, since the Whittle policy selects the K arms with the largest index at

each slot, it follows that

Corollary 21. The Whittle index policy is equivalent to the MP and is thus optimal.

6.6 Extension to Batteries of Arbitrary Capacity C > 1

The problem of characterizing the optimal policies when C > 1 is significantly more

complicated than for C = 1 and is left open by this work. Moreover, since the

dimension of the state space of the belief MDP grows with C, even the numerical

computation of the optimal policies is quite cumbersome. Due to these difficulties,

this section compares the performance of the MP, inspired by its optimality for C = 1,

with a performance upper bound obtained following the relaxation approach of [38].
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Figure 6.4 Markov model for the evolution of the batteries Bi(t), of arbitrary
capacity C, when the node Ui: a) is not scheduled in slot t (i.e., Ui /∈ U(t)); b) is
scheduled in slot t (i.e., Ui ∈ U(t)).

6.6.1 System Model and Myopic Policy

Each node Ui has a battery Bi(t) ∈ {0, 1, ..., C} of capacity C. In this section the

EH and leakage processes are modeled as the controlled Markov processes drawn in

Figure 6.4 (cf. Section 6.1.1). The transition probabilities between battery states

when node Ui is not scheduled are p
(0)
xy = Pr[Bi(t + 1) = y|Bi(t) = x, Ui /∈ U(t)],

whereas when Ui is scheduled one has p
(1)
xy = Pr[Bi(t + 1) = y|Bi(t) = x, Ui ∈ U(t)],

for x, y ∈ {0, 1, ..., C}. When node Ui is scheduled at slot t, and Bi(t) ≥ 1, an energy

unit is drawn from its battery, and the node also informs the FC about the remaining

energy in the battery (observation). It is assumed that at most one energy unit can

be harvested (or lost) in a slot, so that p
(u)
xy = 0 for y < x − 1 and y > x + 1, with

u ∈ {0, 1} as shown in Figure 6.4.

The belief of each ith node is represented by a (C × 1) vector ωi =

[ωi,0, ..., ωi,C−1] whose kth entry ωi,k, for k ∈ {0, 1, ..., C − 1}, is given by (cf. (6.6))

ωi,k = Pr [Bi(t) = k|H(t)] . The immediate reward (6.14), given the initial belief

vectors ω1(t), ...,ωM(t) and action U , becomes

R(ω1(t), ...,ωM(t),U) =
M
∑

i=1

Pr [Bi(t) > 0|H(t)] 1(Ui ∈ U)

= K −
∑

i∈U

ωi,0(t). (6.46)
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The performance of interest is the infinite-horizon throughput (6.28).

The MP (6.22), specialized to the immediate reward (6.46), becomes

UMP (t) = argmax
U
R(ω1(t), ...,ωM(t),U) = argmin

U

∑

i∈U

ωi,0(t). (6.47)

Note that, unlike Section 6.3.1, when C > 1 the MP does not generally have a RR

structure.

6.6.2 Upper Bound

This section presents an upper bound to the throughput (6.28) by following the

approach for general RMAB problems proposed in [38]. The upper bound relaxes the

constraint that exactly K nodes must be scheduled in each slot. Specifically, it allows

a variable number Kπ(t) of scheduled nodes in each tth slot under policy π, with the

only constraint that its discounted average satisfies

Eπ

[

∞
∑

t=1

βt−1Kπ(t)

]

=
K

1− β
. (6.48)

The advantage of this relaxed version of the scheduling problem is that it can be

tackled by focusing on each single arm independently from the others [38, 74]. This is

because, by the symmetry of the nodes, the constraint (6.48) can be equivalently

handled by imposing that each node is active on average for a discounted time

Eπ[
∑∞

t=1 β
t−11(Ui ∈ Uπ(t))] = K

M(1−β)
. It is thus possible to calculate the optimal

solution of the relaxed problem by solving a single RSAB problem.

The RSAB model is now elaborated by dropping the node index. Here, the

immediate reward when the arm is in state ω (a vector since C > 1, see Section

6.6.1), and action u ∈ {0, 1} is chosen, is R(ω, u) = 1−ω0 if u = 1 and R(ω, u) = 0 if

u = 0, while the Markov evolution of the belief follows from Figure 6.4 and similarly to

Section 6.2.2. The problem consists in optimizing the throughput under the constraint

Eπ[
∑∞

t=1 β
t−11(Ui ∈ Uπ(t))] =

∑∞
t=1 β

t−1Eπ[uπ(t)] = K/(M(1 − β)), as introduced
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above. Under the assumption that the state ω belongs to a finite state space W (to be

discussed below), this optimization can be done by resorting to a linear programming

(LP) formulation [74]. Specifically, let z
(u)
ω be the probability of being in state ω and

selecting action u ∈ {0, 1} under a given policy. The optimization at hand leads to

the following LP

maximize
∑

ω,u R(ω, u)z(u)
ω
, (6.49a)

subject to :
∑

ω,u

z(u)
ω

= 1, (6.49b)

∑

ω

z(1)
ω

=
K

M(1− β)
, (6.49c)

z(0)
ω

+ z(1)
ω

= δ (ω − ω(1)) + β
∑

ω
′,u

z
(u)

ω
′ p

(u)
ωω

′ , (6.49d)

for all ω ∈ W ,

where (6.49c) is the constraint on the average time in which the node is scheduled,

while (6.49d) guarantees that z
(u)
ω is the stationary distribution [74], in which

δ (ω − ω(1)) = 1 if ω = ω(1) and δ (ω − ω(1)) = 0 if ω 6= ω(1) . Note that, as

discussed in Section 6.2.2, the term p
(u)
ωω

′ is the probability that the next state is ω′

given that action u is taken in state ω.

It is now left to discuss the cardinality of the set W . While the belief ω can

generally assume any value in the C-dimensional probability simplex, the number

of states actually assumed by ω during any limited horizon of time is finite due to

the finiteness of the action space [67]. In the problem of this section, since the time

horizon is unlimited, this fact alone is not sufficient to conclude that the set W is

finite. However, after each tth slot in which the arm is activated, the belief at the

(t+1)th slot can only takes C values given that the battery state is learned by the FC.

Therefore, the evolution of the belief is reset after each activation, and in practice,

the time between two activations is finite since the node must be kept active for

a discounted fraction of time K/ (M(1− β). Hence, by constraining the maximum
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time interval between two activations to a sufficiently large value, the state space W

remains finite and the optimal performance is not affected. The latter approach has

been used for the numerical evaluation of the upper bound in Section 6.6.3.

6.6.3 Numerical Results

This section presents some numerical results to compare the performance of the MP

with the upper bound of Section 6.6.2. The performance is the throughput (6.28)

normalized by its ideal value K/ (1− β) that is obtained if the nodes always have

energy in their batteries when scheduled.

In Figure 6.5 it is shown the normalized throughput versus the battery capacity

C for different ratio M/K between the number M of nodes and the number K of

nodes scheduled in each slot. The value K = 3 is kept fixed while M varies. It is

assumed a uniform distribution for the initial energy in the batteries Bi(1) for all

the nodes, so that ωi,k(1) = 1/ (C + 1) for all i, k. The probabilities that an energy

unit is harvested when the arm is kept passive are p
(0)
01 = 0.15 and p

(0)
kk+1 = 0.1, for

k ∈ {1, C − 1}, while under activation they are p
(1)
01 = 0.05 and p

(1)
kk+1 = 0. The

probability that an energy unit is lost when the arm is kept passive and activated are

p
(0)
kk−1 = 0.05 and p

(1)
kk−1 = 0.95, respectively. The remaining transitions probabilities

are p
(0)
CC = 0.9, p

(1)
CC = 0.05, while β = 0.95.

From Figure 6.5 it can be seen that when C and/or M/K are small the MP’s

performance is close to the upper bound. In fact, for small M/K, most of the nodes

are scheduled in each slot and the relaxed system in Section 6.6.2 approaches the

original one, while for small C the scenario gets closer to the optimality of the MP for

C = 1. For moderate to large values of M/K and/or C instead, the more flexibility

in the relaxed system enables larger gains over the MP.
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Figure 6.5 Normalized optimal throughput of the MP in (6.47) as compared to
the upper bound versus the battery capacity C for different ratios M/K ∈ {1, 3, 10}
(system parameters are K = 3, β = 0.95, ωi,k(1) = 1/(C + 1) for all i, k, p

(0)
01 = 0.15,

p
(1)
01 = 0.05, p

(0)
CC = 0.9, p

(1)
CC = 0.05, p

(0)
kk−1 = 0.05, p

(1)
kk−1 = 0.95, p

(0)
kk+1 = 0.1, p

(1)
kk+1 = 0,

for k ∈ {1, C − 1}).

6.7 Conclusions

This chapter considered a scheduling problem with applications to energy harvesting

(EH) networks, where a fusion center (FC) schedules a set of nodes uncertainties

on the energy available at each node. EH and battery leakage are accounted for

via simple Markov models. The problem is formulated as a partially observable

Markov decision process (POMDP), and converted into a restless multi-armed bandit

(RMAB) problem. Under the assumption that the battery capacity is unitary,

a stationary myopic policy (MP) that operates in the space of the a posteriori

probabilities (beliefs) of the battery levels is proved to be optimal for both finite

horizon and (discounted) infinite-horizon throughput criteria. The MP selects at

each time-slot the nodes with the largest probability of having enough energy to

transmit. It is shown that such policy is round-robin in the sense that it schedules

nodes periodically. Closed-form expressions for the optimal throughput performance

metrics are also derived. Finally, it has been established that the considered RMAB
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problem is indexable and the Whittle index has been derived in closed form. From

the expression of the Whittle index, it is concluded that the Whittle index policy

is equivalent to the MP and thus is optimal. Arbitrary battery capacities have

been investigated as well by comparing the performance of a generally suboptimal

myopic policy with an upper bound based on a relaxation approach of the scheduling

constraint.



CHAPTER 7

CONCLUSIONS

Energy harvesting (EH) technologies represent nowadays a promising solution to

mitigate the energy footprint of wireless communications. This is especially true

for mobile applications, where the nodes rely on batteries for their operations, such

as cell phones or wireless sensors. EH technologies thus provides not only a support

for batteries to reduce their maintenance requirements, but they also enable the

deployment of electronic devices that are exclusively powered via EH, for which

the maintenance is virtually unnecessary. However, unlike battery-powered nodes,

the main drawback of EH-devices is due to the fact that they generally depend on

unpredictable energy sources, and hence they call for the development of energy

management strategies that need to be designed so as to be robust to uncertainties

in energy availability.

While most previous work on EH-capable systems has focused on energy

management for single device, the main contributions of this dissertation has been the

analysis and design of medium access control (MAC) protocols for EH networks. In

particular, two main categories of MAC protocols have been considered: Random

access and centralized scheduling-based schemes. Within this framework, the

new trade-offs enabled by EH have been investigated for random MAC protocols

conventionally used in wireless networks, such as framed-ALOHA and dynamic

framed-ALOHA. Furthermore, a novel random MAC protocol, tailored to EH

networks, has been proposed and shown to outperform conventional solutions.

Moreover, centralized scheduling-based MAC protocols have been investigated under

several system settings, including scenarios in which the networks is operated either

by nodes exclusively powered via EH or by nodes powered by a hybrid energy storage
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system, composed by a non-rechargeable battery and a capacitor recharged via EH.

Optimal scheduling policies have been derived under several scenarios and for different

level of information available at the central scheduler.

This dissertation also considered the design of energy management techniques

for single-device networks within the framework of EH-enhanced RFID systems.

Here, it has been shown that a careful utilization of the energy harvested from the

environment can lead to remarkable performance gain with respect to conventional

systems.

Overall, this dissertation shown that wireless networks can greatly benefit from

the adoption of EH technologies. However, to fully exploit their potentialities, the

novel challenges that they introduce should be tackled by designing smart energy

management algorithms that are tailored to the EH dynamics.



APPENDIX A

CHANNEL PROBABILITY DISTRIBUTION

This section calculates the probability pc,k that a node transmits successfully within

the kth frame after it has collided in all the previous (k − 1) frames. Since all the

M nodes are stochastically symmetric, it is possible to focus on the mth node Um

without loss of generality. In the remaining of this section the IR index is dropped

as the derivations below are valid for any nth IR.

Let hm be the channel gain of node Um during the current IR. According to the

assumptions in Section 3.2, channel gains are independent and identically distributed

(i.i.d.) across nodes, and they are constant within the whole IR (i.e., they are “fixed”

at the beginning of the IR and they remain constant across all the frames in which a

node transmits).

The (unconditional) probability density function (pdf) of the channel gain hm

is fh(·). Let Bk ⊆ {1, ...,M} be the set of nodes that are active at frame k (i.e.,

the backlog for frame k). Bk contains all the nodes that: i) have a new measure to

transmit within the current IR; ii) collided in all the first (k − 1) frames; iii) have

enough residual energy to transmit in frame k. Let Ck be the set of node Ui that

collided in all the first (k − 1) frames and let N be the set of all nodes that have a

measure to report to the FC within the considered IR. Then sets Bk, for k = 1, ..., Fε,

are defined as

B1 = {Um : Um ∈ N , Em ≥ ε} ,
...

Bk = {Um : Um ∈ N ∩ Ck−1, Em ≥ kε} ,
...

BFε
= {Um : Um ∈ N ∩ CFε−1, Em ≥ Fεε} ,
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withm ∈ {1, ...,M}. Note that Bk ⊆ Bl for any l ≤ k ≤ Fε, where Fε is the maximum

number of frames to which a node can participate (i.e., the normalized capacity of

the ESD as defined in Section 3.2.2).

Now assume that Um ∈ Bk, then let Im,k ⊆ Bk\{Um} be the set of other active

nodes that select the same slot of node Um within the kth frame. The probability

that Um transmits successfully within the kth frame in the selected slot, when there

are |Im,k| = j interfering nodes, is given by

pc,k(j) = Pr[γm ≥ γth|(Im,k,Bk) such that Um ∈ Bk, |Im,k| = j, Im,k ⊆ Bk\{Um}],

(A.1)

where the signal-to-interference ration (SIR) γm is

γm =
hm

∑

i∈Im,k
hi
, (A.2)

and

pc,k =
∑

j

pc,k(j) Pr [(Im,k,Bk) such that Um ∈ Bk, |Im,k| = j, Im,k ⊆ Bk\{Um}] .

(A.3)

Note that the conditioning on the fact that Im,k ⊆ Bk in (A.1) indicates that

all the interfering nodes for Um, in frame k ≥ 2, have also collided in all the previous

(k − 1) frames, and still have residual energy for transmission. This implies that any

node within Bk might have already collided with some of the other nodes within Bk,

and hence the channel gains hi, for any Ui ∈ Bk, become generally correlated with

each other for any k ≥ 2. Instead, this is not the case for k = 1, since there has not

been any interaction among nodes.

Due to the reasons explained above, computing probabilities (A.3) for any

k ≥ 2 is quite cumbersome, while it is possible to obtain closed form solutions for

k = 1 (see, e.g., [58] when fh(·) is exponential). However, under the large backlog

assumption A.2 considered in Chapter 3, evaluating (A.1) simplifies to a manageable
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level. In fact, when the number of nodes in the system is large, the channel gains

remain independent for any k ≥ 1 as it is unlikely that any two nodes collide with each

other in more than one frame within the same IR. Nevertheless, while the channel

gains remain independent, the pdf of each channel gain changes, with respect to the

initial one fh(·), when conditioned as in (A.1).

To summarize, under assumption A.2 the conditional probabilities (A.1) only

depend on: i) the number of interfering nodes; ii) the approximated pdf f
(k)
h (·) of the

channel gain of any node Um conditioned on having collided in all the first (k − 1)

frames (i.e., for any Um ∈ Bk). Note that, pdf f
(k)
h (·) is calculated for any k under

assumption A.2 as it will be clarified below, while f
(1)
h (·) = fh(·) as no approximations

are required for the first frame as described above.

It is now possible to define random variables h̃
(k)
1 , ..., h̃

(k)
M that are i.i.d. with pdf

f
(k)
h (·) for any k ∈ {1, ..., Fε}. Roughly speaking, under the approximation described

above, random variable h̃
(k)
i is used to represent the channel gain of node Ui at frame

k when Ui collided in all of the first (k − 1) frames. It is possible to approximate

(A.1) as

pc,k(j) ≃ Pr[h̃(k)m ≥ γth

j
∑

i=1
m/∈{1,...,j}

h̃
(k)
i ], (A.4)

Note that, (A.4) is exact for k = 1 as f
(1)
h (·) = fh(·).

Moreover, under assumption A.2, (A.3) becomes

pc,k ≃ e−
1
ρ

∞
∑

j=0

1

ρjj!
pc,k(j) (A.5)

which is due to the Poisson approximation of the binomial distribution (as described

in Section 3.5), which implies that

Pr [(Im,k,Bk) such that Um ∈ Bk, |Im,k| = j, Im,k ⊆ Bk\{Um}] ≃
e−

1
ρ

ρjj!
. (A.6)
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In fact, under assumption A.2, set Bk\{Um} contains a large number of elements,

and thus the probability that j nodes within Bk\{Um} select the same slot of Um in

a frame of size L = ⌈ρ |Bk|⌉ can be approximate as e
−

1
ρ

ρjj!
, which is independent of the

actual backlog size |Bk|.

In order to evaluate (A.4)-(A.5) one thus needs to calculate

Pr
[

h̃(k)m ≥ γthx
(k)(j)

]

= Pr[h̃(k)m ≥ γth

j
∑

i=1
m/∈{1,...,j}

h̃
(k)
i ], (A.7)

where

x(k)(j) =

j
∑

i=1
m/∈{1,...,j}

h̃
(k)
i . (A.8)

Recalling that gains h̃
(k)
i are independent under A.2, the pdf fx(k)(j)(·) of the

cumulative interference x(k)(j) can be calculated as the convolution of f
(k)
h (·) with

itself for j times. Note also that x(k)(j) and h̃
(k)
i are independent each other.

A.1 Computation of the pdf f
(k)
h (·) of Random Variables h̃

(k)
i

It is now left to calculate the pdf f
(k)
h (·) of the channel gains, or more precisely of

random variables h̃
(k)
i , for each kth frame. It is possible to proceed as follows. Let p

be a random variable with Poisson distribution of parameter 1/ρ so that

Pr [p = j] =
e−

1
ρ

ρjj!
. (A.9)

Random variable p can be thought of representing the number of nodes interfering

node Um, which has already been shown as being Poisson-distributed under

assumption A.2 (see (A.6)). Now, the cumulative density function (cdf) F
(k)
h (z)



143

of gain h̃
(k)
m can be calculated as

F
(k)
h (z) = Pr

[

h̃(k)m < z
]

=
∞
∑

j=0

Pr
[

h̃(k−1)
m < z|h̃(k−1)

m < γthx
(k−1)(j)

]

Pr [p = j|p ≥ 1] (A.10a)

=
1

e
1
ρ − 1

∞
∑

j=1

1

ρjj!
Pr
[

h̃(k−1)
m < z|h̃(k−1)

m < γthx
(k−1)(j)

]

, (A.10b)

where in (A.10a) one has conditioned on having at least one interfering node,

otherwise there would not be collision. This is accounted for through the term

Pr [p = j|p ≥ 1], which can be calculated through the Bayes rule as

Pr [p = j|p ≥ 1] = Pr [p ≥ 1|p = j]
Pr[p = j]

Pr [p ≥ 1]
=











Pr[p=j]
Pr[p≥1]

= e
−

1
ρ /ρjj!

1−e
−

1
ρ

j ≥ 1

0 j = 0
,

(A.11)

since Pr [p ≥ 1] = 1 − Pr[p = 0] = 1 − e−
1
ρ . Eq. (A.10b) then follows immediately

from (A.10a) and (A.11) by considering that e−
1
ρ/
(

1− e−
1
ρ

)

= 1/
(

e
1
ρ − 1

)

.

To calculate the conditional probability Pr
[

h̃
(k−1)
m < z|h̃(k−1)

m < γthx
(k−1)(j)

]

it is possible to proceed as follows

Pr
[

h̃(k−1)
m < z|h̃(k−1)

m < γthx
(k−1)(j)

]

=
Pr
[

h̃
(k−1)
m < z, h̃

(k−1)
m < γthx

(k−1)(j)
]

Pr
[

h̃
(k−1)
m < γthx(k−1)(j)

] ,

(A.12)

which can be obtained by integrating the joint pdf of h̃
(k−1)
m and x(k−1)(j) over a

convenient 2-D region with standard techniques. Note that the joint pdf between

h̃
(k−1)
m and x(k−1)(j) is simply the product between f

(k)
h (·) and fx(k)(j)(·) as h̃(k−1)

m and

x(k−1)(j) are independent each other.

Finally, once F
(k)
h (·) is obtained, one can easily calculate f

(k)
h (·) and then

probabilities (A.5) still by integration over convenient regions.



APPENDIX B

NETWORK LIFETIME CALCULATION FOR K = 1

This section proposes a procedure to calculate the network lifetime with reduced

complexity for the full state information scenario when the following two conditions

apply: i) the number of scheduled node in each slot is K = 1; ii) the adopted policy

π is stationary and always schedules in each slot a node with a non-empty capacitor

if at least one is available, otherwise it operates according to steps 2) and 3) of the

MCF policy in Definition 6. In other words, under the conditions i) and ii) above,

the FC keeps scheduling in each slot a node that draws energy from its capacitor for

transmission, until all the nodes have their capacitors simultaneously empty. When

this occurs a node that draws energy from its battery is scheduled. Accordingly, the

network lifetime for such policies can be calculated by accounting for the contribution

due to capacitors (and thus due to EH) and due to batteries separately. Specifically,

for any initial state of the energy stored in the capacitors, it is possible to calculate the

average time before that all the capacitors become empty, i.e., c(·) = 0 = [0, ..., 0],

by resorting to an absorbing Markov chain model, in which the absorbing state is

c(·) = 0. When the absorbing state is reached, then a node that draws energy from

its battery is scheduled, while in the meantime the capacitors are possibly recharged

via EH.

To elaborate on this point, it is possible to define the first hitting time τπ(c(1))

for the absorbing state 0, when the starting state is c(1) and policy πis followed, as

τπ(c(1)) = inf {t ≥ 1 : c(t) = 0|c(1)} , (B.1)

while its average value can be calculated as

T0(c(1)) = Eπ [τπ(c)] . (B.2)
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Note that, the average value in (B.2) is calculated with respect to the distribution

(5.8), where only the marginal distribution with respect to the energy in the capacitors

is considered. Moreover, the average time (B.2) can be calculated by resorting to

standard techniques utilized for absorbing Markov chain [47].

When all the capacitors become simultaneously empty and the system state

is not terminal (i.e., (c = 0,b) /∈ T ), the node that is scheduled by the FC transmits

by using its battery. Therefore, the energy in the battery of the scheduled node is

decremented by one, while the capacitors of all the nodes possibly harvest energy.

Now, recalling that the probability distribution of the next slot’s state is

Pr [c′,b′| (0,b) ,Uπ (·)] (B.3)

(see eq. (5.8)), then the next slot in which all the capacitors become simultaneously

empty again, given initial state (0,b), occurs on average after

∑

c
′

T0(c
′

)Pr [c′,b′| (0,b) ,Uπ (·)] (B.4)

slots, where T0(c
′

) is (B.2) with c(1) = c
′

. In other words, after the slot in which the

scheduled node uses its battery, the capacitors harvest energy and their overall state at

the next slot is c
′

with probability Pr [c′,b′| (0,b) ,Uπ (·)]. Therefore, by averaging

over the possible next states c
′

it is possible to calculate the average time after

which the capacitors will be simultaneously empty again. Note that, the marginal

distribution of c
′

obtained through Pr [c′,b′| (0,b) ,Uπ (·)] is always the same for any

non terminal state (0,b) /∈ T , and thus the same distribution is repeated after each

slot in which a battery is used. Now, let b(1) be the initial state of the energy in

the batteries, and let L̃ (b(1)) =
∑M

i=1 1[bi ≥ 1] (bi − 1) + 1 be the (optimal) network

lifetime if there were no capacitors in the system, and thus no harvesting and no

leakage. The term 1[bi ≥ 1] (bi − 1) is a consequence of the definition of terminal

set in eq. (5.3), since a node with battery bi = 0 implies that the network is in the
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terminal set. Finally, the network lifetime under any policy π (defined as in point ii)

above) can be calculated as

Lπ(c(1),b(1)) = L̃ (b(1)) + (B.5)

T0(c(1)) +
(

L̃ (b(1))− 1
)

∑

c
′

T0(c
′

)Pr [c′,b′| (0,b) ,Uπ (·)] .



APPENDIX C

UPPER BOUND OF THE NETWORK LIFETIME

This section proposes an upper bound for the network lifetime in eq. (5.5) that can

be useful when the system size is large and the evaluation of the optimal lifetime via

dynamic programming tools becomes prohibitive (see Section 5.2.1). The proposed

upper bound is obtained by considering a system with a super-node UUB (i.e.,M = 1)

that is equipped with one capacitor CUB and one battery BUB. The size EUB
c of

CUB and the size EUB
b of BUB are equal to the sum of the size of the capacitors

and of the batteries of the M original nodes in the system, i.e., EUB
c = MEc and

EUB
b = MEb, respectively. The energy stored in the capacitor and in the battery

at slot t are denoted as cUB(t) and bUB(t), while the state of super-node UUB is

(cUB(t), bUB(t)) ∈ SUB, with SUB = {0, ...,MEc} × {0, ...,MEb}. The super-node

UUB consumes in each slot K energy units for transmission by drawing energy from

its capacitor first (see Lemma 5-IV). Note that the size of the space SUB is quadratic

in the number of nodes, namely,
∣

∣SUB
∣

∣ ∝M2EcEb, which is thus numerically tractable

even for moderately large systems, differently from the original system that it can be

easily shown to be exponentially large in the number of nodes (see Section 5.2.1).

The transition probabilities Pr [(c′, b′) |(c, b) ] for the state of the super-node can

be identified in such a way that the lifetime of the induced single-node system provides

an upper bound on the lifetime of the original system. The main idea is to guarantee

that, for any realization of the harvesting and leakage processes, the energy gained

by the super-node via harvesting is at least as large as the total energy harvested

in the original system, and that the energy lost due to leakage at the super-node is

no larger than that in the original system. In other words, the super-node system is

stochastically dominant with respect to the original system.
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To derive the transition probabilities for the super-node system, let cUB(t) = c

for any c ∈ {0, ..., EUB
c } and consider the evolution of the system to slot t + 1.

Recall that cUB(t) represents the total energy available in the capacitors of the M

nodes. In the original system, after that K nodes transmit, there must at least

Nne(c) =
⌈

(c−K)+ /Ec

⌉

nodes with a non-empty capacitor and at least Nf (c) =

(c−K −M(Ec − 1))+ nodes with a full capacitor, where ⌈·⌉ is the upper nearest

integer operator. Therefore, the overall increment in the energy available in the

original system is upper bounded by

e(t|c) =
M−Nf (c)
∑

j=1

hj(t)−
Nne(c)−Nf (c)
∑

j=1

dj(t)−
Nf (c)
∑

i=1

d̃i(t), (C.1)

where hj(t) and dj(t) are defined as in Section 5.2.2 and d̃i(t) for i ∈ {1, ..., Nf (c)}

are independent binary random variables with pmf Pr[d̃i(t) = −1] = µ and Pr[d̃i(t) =

0] = 1−µ, where µ is given in eq. (5.7). The first and the third terms in (C.1) account

for the fact that nodes with full capacitors cannot harvest energy but can lose energy

with probability µ, while the second reflects the fact that nodes with non-empty but

non-full capacitors lose an energy unit with probability pd. The upper bound (C.1)

will be used as the increment of energy in the super-node. Note that the energy (C.1)

can be negative as well.

The transition probabilities for state (cUB(t), bUB(t)) can then be calculated

as follows. Let (cUB(t+ 1), bUB(t+ 1)) = (c′, b′) be state at slot t + 1 and let

(cUB(t), bUB(t)) = (c, b) be the state at slot t, then the probability Pr [(c′, b′) |(c, b) ] is

given by

Pr [(c′, b′) |(c, b) ] =















Pr [e(t|c) = c′ − (c−K)+] if b′ = b− (K − c)+

0 otherwise

(C.2)

where the pmf Pr [e(t|c) = k] can be easily calculated as the pmf of the sum of the

independent random variables that are involved in (C.1). The set of terminal states
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for the Markov chain (cUB(t), bUB(t)) is defined as the set of all the states (cUB, bUB)

for which the energy bUB in the battery BUB is strictly smaller than M , namely,

TUB = {(cUB, bUB) : bUB(t) < M}. Note that the condition bUB(t) < M simply

states that the total energy in the M original batteries is smaller than M , which is

a weaker condition than the one considered in Definition 1, where an energy unit is

required to be stored in each battery. This condition guarantees that the average

time to absorption LUB(c,b) of the Markov chain (cUB(t), bUB(t)) with respect to the

terminal set TUB provides an upper bound for the network lifetime of the original

system, where LUB(c,b) is given by

LUB (c,b) = lim
T→∞

E

[

T
∑

t=1

1 [(cUB(t), bUB(t)) /∈ TUB]

∣

∣

∣

∣

(cUB(1), bUB(1))

]

, (C.3)

where cUB(1) =
∑M

i=1 ci and bUB(1) =
∑M

i=1 bi. The limit in (C.3) always exists and

it is finite for any ph < 1 for the same reason explained in the proof of Lemma 4. The

upper bound LUB(c,b) can be calculated by resorting to the standard techniques for

absorbing Markov chains [47]. It is also emphasized that the upper bound is actually

exact when the capacitors are of size one, i.e., Ec = 1. In fact, in such a case the

number of non-empty and full capacitors coincide Nne(c) = Nf (c) = (c−K)+ for any

total energy c, and thus the upper bound is achievable.



APPENDIX D

PROOF OF PROPOSITION 8

This section provides the remaining details for the proof of Proposition 8, whose main

ideas were sketched in Section 5.6. To start with, note that the MCF policy selects

the nodes with the largest energy in the capacitors, and thus it follows that

ci(1) > cj(1) for all Ui ∈ Ωγ(1) and Uj ∈ Ωπ(1). (D.1)

Moreover, for a given sample path hi(t), for i ∈ {1, ...,M}, of the EH processes the

energies in the capacitors under γ and π at any slot t ≥ 2 are given by

cγi (t) = min (ci(t− 1) + hi(t− 1)− 1 [Ui ∈ Uγ(t− 1)] , Ec) (D.2)

cπi (t) = min (ci(t− 1) + hi(t− 1)− 1 [Ui ∈ Uπ(t− 1)] , Ec) . (D.3)

Moreover, the relations between the energies in the capacitors under the two policies

at slot t = 2 are given, from (D.2) and (D.3), as

cγi (2) =































cπi (2) + 1 for all Ui ∈ Ωπ(1)

cπi (2) for all Ui ∈ Ωγ(1), such that ci(1) + hi(1) > Ec

cπi (2)− 1 for all Ui ∈ Ωγ(1), such that ci(1) + hi(1) ≤ Ec

(D.4)

cπi (2) ≥ cγj (2) for all Ui ∈ Ωγ(1) and Uj ∈ Ωπ(1). (D.5)

The first line of (D.4) accounts for the fact that there cannot be energy overflows

under policy γ at the end of slot t = 1 for nodes Ui ∈ Ωπ(1) since ci(1) < Ec due to

(D.1); while the second and third lines of (D.4) account for possible energy overflows

under policy π for nodes Ui ∈ Ωγ(1). Note that, in case an energy overflow occurs

under policy π at any node Ui ∈ Ωπ(1) between slots t and t+ 1, then this node will
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have the same stored energy under the two policies at slot t = 2, i.e., cγi (2) = cπi (2),

and it will be put into the common set Ωc(2). Finally, inequality (D.5) is an updated

version of (D.1).

Since equivalent nodes, due to either energy overflows or index permutation,

are put into the common set, and since the sample path of the EH processes is fixed

and common under the two policies, then it is possible to rewrite the relations (D.4),

for any arbitrary slot t, as a function of the sets Ωγ(t) and Ωπ(t) only. It results

cγi (t) =















cπi (t) + 1 for all Ui ∈ Ωπ(t)

cπi (t)− 1 for all Ui ∈ Ωγ(t)

. (D.6)

It is now evident from (D.6) that an energy overflow at some node Ui ∈ Ωγ(t) or

Ui ∈ Ωπ(t), between slots t and t + 1, implies that cγi (t + 1) = cπi (t + 1) (due to

(D.2)-(D.3)), and thus that node Ui becomes equivalent under the two policies γ and

π starting from slot t + 1. Furthermore, when a switch event between policy γ and

π occurs, then the nodes involved in the switch become equivalent under the two

policies (for nodes in both sets Ωγ(t) and Ωπ(t), see (D.6)). Equivalent nodes are

then put into the common set.

All the elements are now available to show that the case iii) of Section 5.6

(i.e., that |Ωγ(t)| > |Ωπ(t)| = 0) can never occur, and thus that policy γ has a

lifetime never smaller than policy π for any sample path of the EH processes. The

key to prove this result is to observe that no energy overflow can occur at any node

Ui ∈ Ωπ(t) under γ before that such node becomes equivalent (possibly upon an index

permutation) to another node Uj ∈ Ωγ(t). This can be recognized by looking at the

inequality (D.5) and the capacitor updating rules (D.2)-(D.3). To do so, assume for

simplicity that policy γ always schedules the same nodes of policy π with no switches

(i.e., policy π does not schedule any node in set Ωγ(t)) and assume that no energy

overflows occur at any node in the set Ωγ(t) under policy π. This is done without
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loss of generality since both switches and energy overflows under policy π generate

an equivalence between nodes as described above. Now, due to inequality (D.5) at

slot t = 2, for any realization of the EH at the nodes, to have an overflow at any

node Ui ∈ Ωπ(t) under policy γ, there must be a slot u ≤ t in which cγi (u) = cπj (u),

for Ui ∈ Ωπ(u) and some Uj ∈ Ωγ(u), which implies that cπi (u) = cγi (u) − 1 and

cγj (u) = cπj (u) − 1 = cγi (u) − 1 (due to (D.6)). But if this occurs, then nodes Ui and

Uj are equivalent under the two policies γ and π upon an index permutation, so that

they are put into the common set Ωc(u). Therefore, since there cannot be any energy

overflow under policy γ at any node Ui ∈ Ωπ(t) for all t, before that Ui ∈ Ωπ(t)

becomes equivalent to another node, then it must hold that |Ωπ(t)| ≥ |Ωγ(t)| for any

t, and consequently, the event iii) above can never occur, and thus policy γ has a

lifetime never smaller than policy π for any realization of the EH processes. This

proves the inequalities (5.17) and (5.18) and thus that the MCF is optimal.

Optimality of the LCF policy in the leakage-only scenario. The proof

leverages the same technique used above for Part a). Hence, this section only sketches

the main difference between the two proofs. Specifically, in the proof of the optimality

of the MCF policy above, the key was to show that there cannot be energy overflows

under policy γ, for any node in the set Ui ∈ Ωπ(t), before that Ui becomes equivalent

to another node in the set Ωγ(t). The complementary event of the energy overflows in

the leakage-only scenario is the case in which cγi (t) = 1 and cπi (t) = 0 for Ui ∈ Ωπ(t),

and the common leakage is di(t) = 1. In such a case, node Ui would lose an energy

unit under policy γ but not under π. However, by following steps similar to the

ones taken in Part a) it can be easily shown that this can never occur before that

an equivalence between two nodes occur, and thus it can be concluded that the LCF

policy is optimal in the leakage-only scenario.



APPENDIX E

THROUGHPUT OF THE MYOPIC POLICY

By exploiting the RR structure of the MP (Proposition 12), it is possible to derive

the throughput V MP
1 (ω(1)) of the MP as the sum of the contributions of each node

separately. To elaborate, focus on node Ui, with initial belief ωi(1), and assume that

Ui ∈ G1. Nodes in group G1 are scheduled at slots t = 1+ (j − 1)m, for j ∈ {1, 2, ...}.

Let ri(j) = EMP[ωi(1+(j−1)m)|ωi(1)] be the average reward accrued by the FC from

node Ui only, when scheduling it for the jth time at slot t = 1+(j−1)m (see the RHS

of eq. (6.14)). At slot t = 1 it results ri(1) = ωi(1). To calculate ri(2) it is possible to

first derive the average value of the belief (see (6.8)) after the slot of activity in t = 1

as EMP[ωi(2)|ωi(1)] = τ
(1)
1 (ωi(1)), where τ

(1)
1 = ωδ1 + p

(1)
01 with δu =

(

p
(u)
11 − p

(u)
01

)

(cf. eq. (6.9)), then it is possible to account for the (m − 1) slots of passivity by

exploiting eq. (6.11), so that ri(2) = EMP[ωi(1 + m)|ωi(1)] = φ(1)(ωi(t)), where

the following quantities have been defined φ(1)(ω) = τ
(m−1)
0 (τ

(1)
1 (ω)) = ωαm + ψm

with αm = δ1δ
m−1
0 and ψm = p

(1)
01 δ

m−1
0 + p

(0)
01

1−δm−1
0

1−δ0
. In general, it is possible to

obtain ri(j)= EMP[ωi(1 + (j − 1)m)|ωi(1)], for j ≥ 2, by iterating the procedure

above by applying φ(1)(ω) to itself (j − 1) times. After a little algebra it follows

φ(j−1)(ω) = φ(1)(φ(j−2)(ω)) = ωαj−1
m + ψm

1−αj−1
m

1−αm
, so that ri(j) = φ(j−1)(ωi(1)), where

φ(0)(ω) = ω. By recalling that a node Ui ∈ Gg, for g ≥ 1, is scheduled the first time

at slot t = g while its belief is ωi(t = g) = τ
(g−1)
0 (ωi(1)) (see eq. (6.8)), and following

the same reasoning as above it follows ri(j) = φ(j−1)
(

τ
(g−1)
0 (ωi(1))

)

, for any Ui ∈ Gg.

Let Hg =
⌊

T−g
m

⌋

+ 1 be the number of times any node Ui ∈ Gg is scheduled

in the horizon t ∈ {1, ..., T}. The contribution to V MP
1 (ω(1)) from Ui ∈ Gg is

βg−1
∑Hg

j=1 ri(j). By summing up the contribution from all the groups, after a little
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algebra and by substituting terms it follows

V MP
1 (ω(1)) =

m
∑

g=1

βg−1θ(Hg ,K)





gK
∑

i=1+(g−1)K

τ
(g−1)
0 (ωi(1))



 , (E.1)

where θ(H,K) (x) is the contribution to the whole throughput fromK nodes that belong

to the same group and whose initial beliefs sum up to σ, with

θ(H,K) (σ) = K
ψm

1− αm

(

1− βmH

1− βm
− 1− (βmαm)

H

1− βmαm

)

+
1− (βmαm)

H

1− βmαm

σ. (E.2)
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PROOF OF LEMMA 14

The proof is by backward induction on t. At t = T , inequality (6.27) is easily seen

to hold from eq. (6.23). Suppose now that (6.27) holds at slots t + 1, ..., T . It is

then necessary to show that it also holds at t. To do so, denote as L and R the RR

policies whose throughputs are given by the LHS and RHS of (6.27), respectively.

The differences between L and R are the positions of the nodes with belief x and y

in the initial belief vectors, being [ω1, ..., ωj , y, x, ..., ωM ] and [ω1, ..., ωj , x, y, ..., ωM ],

respectively. Beliefs y and x occupy the positions (j + 1) and (j + 2) under policy

L and viceversa for policy R. Therefore, some of the m groups created by the two

policies might have different nodes (see the RR operations in Proposition 12). Let GL
g

and GR
g , for g ∈ {1, ...,m}, be the gth group of nodes created by policies L and R,

respectively. To simplify, the node with belief x (y) is referred to as node x (y). It is

possible to distinguish three cases. Case a) If j ≤ K−2, the groups GL
g and GR

g under

policies L and R coincide for any 1 ≤ g ≤ m, and thus (6.27) holds with equality.

Case b) If j ≥ K, neither node x nor node y belong to the first group in both policies

L and R, i.e., x, y /∈ GL
1 and x, y /∈ GR

1 . Here, by using eq. (6.24) one can expand

(6.27) and promptly verify that the inequality holds due to the induction hypothesis

since τ
(1)
0 (x) ≥ τ

(1)
0 (y) due to inequality (6.13). Case c) If j = K − 1, nodes x and

y belong to different groups under policies L and R, specifically y ∈ GL
1 , x ∈ GL

2

and y ∈ GR
2 , x ∈ GR

1 , while the other groups GL
g and GR

g coincide for g ∈ {3, ...,m}.

Hence, the only difference between policies L and R is the scheduling order of nodes x

and y. To verify that inequality (6.27) holds, it is necessary to prove that scheduling

node y in the first group and node x in second one is not better than doing the

opposite for any x ≥ y. To start with, let HR
x (t) = HL

y (t) and HR
y (t) = HL

x (t)
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be the number of times that node x (or y) is scheduled under policy R (or L) and

node y (or x) is scheduled under policy L (or R), respectively. Now, recall that

the contribution to the whole throughput from a single node that is scheduled H

times with initial belief ω can be accounted for separately through (E.2) by setting

K = 1 and σ = ω. Then, the contribution generated by node x and y under policy R

is θ(H
R
x (t),1)(x) and βθ(H

R
y (t),1)(τ

(1)
0 (y)), respectively, and similarly under policy L it

results βθ(H
L
x (t),1)(τ

(1)
0 (x)) and θ(H

L
y (t),1)(y). Inequality (6.27) can thus be rewritten as

θ(H
R
x (t),1)(x)+βθ(H

R
y (t),1)(τ

(1)
0 (y))−βθ(HL

x (t),1)(τ
(1)
0 (x))−θ(HL

y (t),1)(y) ≥ 0, which must

hold for all admissible HR
x (t) = HL

y (t) and H
R
y (t) = HL

x (t). There are two subcases:

c.1) HR
x (t) = HL

y (t) = HR
y (t) = HL

x (t) = H ≥ 1; c.2) HR
x (t) = HL

y (t) = H, and

HR
y (t) = HL

x (t) = H − 1, for H ≥ 1. By exploiting the RHS of (E.2), after a little

algebra one can promptly verify that the inequality above holds in both subcases,

which concludes the proof.
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PROOF OF LEMMA 16

Proof of case a). From equations (6.35)-(6.36), and recalling that τ
(1)
0 (0) = p01 from

eq. (6.41), the leftmost inequality in (6.39a.1) follows immediately as it becomes

Vm(0|1) = βV ∗
m(p01) ≤ m + βV ∗

m(p01) = Vm(0|0). For the rightmost inequality in

(6.39a.1), it follows that Vm(1|1) = 1+βV ∗
m(0), while from eq. (6.33) and the fact that

Vm(0|1) ≤ Vm(0|0) it follows V ∗
m(0) = max {Vm(0|0), Vm(0|1)} = Vm(0|0). Therefore,

it results Vm(1|1) = 1 + βV ∗
m(0)1 + βVm(0|0) ≥ Vm(0|0), which holds since 1 +

βVm(0|0) ≥ Vm(0|0) implies Vm(0|0) ≤ 1
1−β

. The latter bound always holds, since for

m < 1 the infinite horizon throughput is upper bounded as V ∗
m(ω) ≤

∑∞
t=0 β = 1

1−β

given that the FC can get at most a reward of Rm(ω, u) ≤ 1 in each slot. Hence,

inequalities (6.39a.1) are proved. Inequality (6.39a.2) can be proved by contradiction.

Specifically, assume that: hp.1 ) Vm(1|0) ≥ Vm(1|1). From (6.33) one would have

V ∗
m(1) = max {Vm(1|0), Vm(1|1)} = Vm(1|0), i.e., the passive action would be optimal

when ω = 1. Moreover, from (6.35) one would have Vm(1|0) = m + βV ∗
m(1) = m +

βVm(1|0), which can be solved with respect to Vm(1|0) to get Vm(1|0) = m
1−β

= V ∗
m(1).

Therefore, if hypothesis hp.1 ) holds, one also has that Vm(1|1) = 1 + βV ∗
m(0) ≤

Vm(1|0) = V ∗
m(1) = m

1−β
. However, the value function V ∗

m(ω) is bounded m
1−β

≤

V ∗
m(ω) ≤ 1

1−β
, where the lower bound is obtained considering a policy that always

chooses the passive action for any belief ω. The boundedness of the value function,

thus implies that if hp.1 ) holds then 1 + β m
1−β

≤ 1 + βVm(0) = Vm(1|1) ≤ Vm(1|0) =
m

1−β
, which yields 1 + β m

1−β
≤ m

1−β
and thus (1− β) (1−m) ≤ 0. But this is clearly

impossible as m,β < 1. Consequently, it has been proved that Vm(1|1) ≥ Vm(1|0).

Proof of case b) Inequality Vm(0|0) ≤ Vm(0|1) follows immediately since

m+ βV ∗
m(p01) ≤ βV ∗

m(p01) holds for m < 0. The second inequality Vm(0|1) ≤ Vm(1|1)
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becomes Vm(0|1) ≤= 1 + βV ∗
m(0)1 + βVm(0|1), which leads to Vm(0|1) ≤ 1

1−β
, which

always holds as discussed above. Inequality Vm(1|0) ≤ Vm(1|1) holds since an active

action is always optimal when m < 0.

Proof of case c) The inequality holds since a passive action is always optimal

for any m ≥ 1.
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PROOF OF THEOREM 20

Following the discussion in Section 6.5.3, to prove indexability it is sufficient to show

that the threshold ω∗(m) is monotonically increasing with the subsidy m, for 0 ≤

m < 1. In fact, from Proposition 17 the passive set (6.37) for m < 0 is P(m) = ∅,

while for m ≥ 1, it results P(m) = [0, 1]. It is thus only necessary to prove the

monotonicity of ω∗(m) for 0 ≤ m < 1, which has been shown to hold in [40, Lemma

9] if

dVm(ω|1)
dm

∣

∣

∣

∣

ω=ω∗(m)

<
dVm(ω|0)

dm

∣

∣

∣

∣

ω=ω∗(m)

. (H.1)

To check if (H.1) holds, it is possible to differentiate (6.35)-(6.36) at the optimal

threshold ω = ω∗(m) as

Vm(ω
∗(m)|1) = ω∗(m) + βω∗(m)V ∗

m(0) + β(1− ω∗(m))V ∗
m(p01), and (H.2)

Vm(ω
∗(m)|0) = m+ βτ

(1)
0 (ω∗(m)) (1 + βV ∗

m(0)) +

β2(1− τ
(1)
0 (ω∗(m)))V ∗

m(p01), (H.3)

where (H.3) follows from (6.36) and from the fact that τ
(1)
0 (ω) ≥ ω, for any ω (see

eq. (6.41)), and hence V ∗
m(τ

(1)
0 (ω∗(m))) = Vm(τ

(1)
0 (ω∗(m))|1), since arm activation is

optimal for any ω > ω∗(m).

By letting Dm(ω) =
dV ∗

m(ω)
dm

, then from (H.2) it follows

dVm(ω|1)
dm

∣

∣

∣

∣

ω=ω∗(m)

= βω∗(m)Dm(0) + β(1− ω∗(m))Dm(p01), (H.4)

while from (H.3) it results

dVm(ω|0)
dm

∣

∣

∣

∣

ω=ω∗(m)

= 1 + β2τ
(1)
0 (ω∗)Dm(0) + β2(1− τ

(1)
0 (ω∗))Dm(p01) (H.5)
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Finally, after some algebraic manipulations, and recalling that Dm(0) = dV ∗
m(0)
dm

=

d(m+βV ∗(p01))
dm

= 1 + βDm(p01), one can rewrite (H.1) as

Dm(p01)β (1− β) [1− ω (1− β(1− p01))] + β [ω (1− β(1− p01))− βp01] < 1. (H.6)

To show that the inequality (H.6) holds when 0 ≤ m < 1, it is first introduced an

upper bound to the derivative of the value function asDm(ω)≤ 1
1−β

, since d
dm
Rm(ω) ≤

1. Finally, by using this upper bound as Dm(p01) ≤ 1
1−β

and after a little algebra then

(H.1) reduces to β(1−βp01) < 1, which clearly holds for any β ∈ [0, 1) as 0 ≤ p01 ≤ 1.

This concludes the proof of Theorem 20.
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