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Abstract— Decentralized time synchronization in ad hoc or
sensor networks can be conveniently achieved via pulse-coupled
discrete-time phase locked loops (PLLs). Previous work has
characterized (frequency or phase) synchronous states and con-
vergence conditions for homogeneous networks where all the
nodes have the same power constraints. In this paper, we build
on recent results on algebraic graph theory for generally non-
bidirectional graphs, and address the asymptotic behavior of
pulse-coupled PLLs in heterogeneous networks. We first derive
necessary and sufficient conditions for global synchronization of
the network. Then, we provide closed form expressions for the
asymptotic frequency and phases, as a function of the network
topology.

I. INTRODUCTION

Pulse-coupled distributed synchronization is a scalable and
efficient solution to achieve coordination of local clocks in
wireless networks that lack the presence of a central access
point able to deliver timing information to all the participating
nodes [1] [2]. With pulse coupling, local time information is
communicated by each node to neighbors via the transmission
of pulses aligned to the local clock. Different schemes have
been advocated for the update of the local clock based on the
pulses received from the neighbors: integrate-and-fire oscilla-
tors [1], linear filtering [2] and discrete-time Phase Locked
Loops (PLLs) [3] [4] [5] (see also [6] where a similar model
is studied for packet-coupled distributed synchronization [7]).

An important problem in distributed synchronization is that
of predicting, given the topology of the network and the
initial values of local frequencies and local phases of each
clock, the steady-state of the system of coupled clocks and
the related stability properties. Intuitively, steady-state and
stability depend on the properties of the connectivity graph
describing the inter-connections between different nodes. In
the connectivity graph, a directed path exists between nodes
i and j if the pulse transmitted from node j is received
with sufficient power Pij at node i (see, e.g., fig. 1). In
particular, strong connectivity, i.e., the presence of a directed
path (possibly composed of multiple edges) between any two
nodes, appears to be a particularly favorable condition, since,
with this, every node "sees" the local time of every other node,
possibly through multiple hops1. Strong connectivity has been

1It is important to emphasize that strong connectivity does not require the
presence of an edge between any two nodes, but only the presence of a path.
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Fig. 1. A heterogeneous wireless network with nodes of class A and B.

shown to be a sufficient condition to achieve (asymptotically in
the number of transmitted pulses): (i) phase synchronization in
presence of frequency-synchronous local clocks for integrate-
and-fire oscillators [8] and for discrete-time PLLs [5]; (ii)
frequency synchronization (with generally mismatched phases)
for the case of different local frequencies and discrete-time
PLLs [5]. Moreover, it has been shown that, with a strongly
connected graph, the steady-state value of the common phase
(or frequency) is a convex combination of the initial phases
(or frequencies) of all the nodes, where the combination
coefficients depends on the graph topology [5]. It should be
remarked that these results are analogous to the conditions
derived for the convergence of distributed synchronization with
analog PLLs [9], consensus problems in control (see, e.g.,
[10]) and distributed estimation [11].

While being a sufficient condition for synchronization,
strong connectivity is known to be also necessary for the
achievement of (frequency or phase) synchronization only
in the case of homogeneous networks, where all the nodes
transmit with the same power so that Pij = Pji [5]. From
an algebraic graph standpoint, this condition implies that the
connectivity graph is bidirectional: the presence of an edge
in one direction entails that an edge exists also in the other
direction. However, many envisaged instances of ad hoc or
sensor networks are heterogeneous in that nodes are often
divided in different classes, say A and B, where class-A



nodes have access to a larger power supply, so that in general
Pij 6= Pji. An example of this scenario is a sensor network
where access points (class-A nodes) are deployed in order to
collect data from the active sensors (class-B nodes), see fig.
1. We emphasize that the sensor network is not all within the
transmission range of the access points. In a heterogeneous
networks, the connectivity graph is no longer bidirectional
and strong connectivity is no longer a necessary condition for
synchronization.

This paper focuses on pulse-coupled distributed synchro-
nization based on discrete-time PLLs and attempts to fill the
knowledge gap identified above by:

1) defining necessary and sufficient conditions for the
achievement of (frequency or phase) synchronization in
a heterogeneous wireless network;

2) characterizing the steady-state condition, i.e., the final
value of the common frequency or phase, as a function
of the topology of the given heterogenous wireless
network.

Our analysis builds on recent results of [11] [12], which deal
with distributed consensus over a directed graph. Our findings
are finally validated via illustrative numerical results.

II. PULSE-COUPLED SYNCHRONIZATION

In this section, we present the model of pulse-coupled
synchronization via discrete-time PLLs in a heterogeneous
network. For a more thorough presentation of the basic model
of distributed discrete-time PLLs we refer the reader to [5].
We consider a network of N nodes, each endowed with a
clock characterized by different free-oscillation frequencies
1/Ti. Different nodes might belong to different classes and
accordingly might have different available powers. This is
accounted for by the power Pij received by node i from node
j̇, which can be written as

Pij =
Cij

dγij
Gj , (1)

where dij = dji is the distance between the nodes, γ is the
path loss exponent (γ = 2 ÷ 4), Cij = Cji is a channel-
dependent coefficient that accounts for possible fading and
shadowing and Gj accounts for the power transmitted by node
j.

The ith clock is defined by a discrete-time function ti(n),
that, in case of isolated (or uncoupled) nodes, evolves as
ti(n) = nTi + θi(0), where index n = 1, 2, ... runs over
the periods of the clock and 0 ≤ θi(0) < Ti is an arbitrary
initial phase. Notice that, in order to simplify the analysis,
we are neglecting phase noise and frequency drifts [9]. Two
synchronization conditions are of interest. We say the N
clocks are frequency synchronized to a common frequency
1/T ∗ if ti(n+1)− ti(n) = T ∗ for each i and for sufficiently
large n. A stricter condition requires full frequency and phase
synchronization, i.e., t1(n) = · · · = tN (n) = t∗(n) for n
sufficiently large.

Towards the goal of achieving synchronization, clocks are
coupled through the transmission by each node, say the jth,

of a pulse at each tick of the local clock tj(n), either in a
given dedicated bandwidth or spread spectrum code or in an
overlay system such as UWB. Each node, say the ith, detects
correctly only the pulses which are received with sufficient
power, i.e., the pulse from node j is recorded at node i if
Pij > β where β is a given threshold. Moreover, pulses are
received after a propagation delays qij = qji. In this paper,
for the sake of analysis, any node i is assumed to be able to
evaluate the time of arrivals tij(n) + qij for all the pulses j
which are received with sufficient power Pij > β. In [4] [5],
practical solutions are proposed that remove this assumption.

Based on the time-difference measurements, the ith clock
updates its instantaneous phase θi(n) in ti(n) = nTi + θi(n)
according to a discrete-time PLL. In particular, a timing error
detector estimates a convex combination of the "delayed" time
differences tj(n) + qij − ti(n) for j 6= i, at the nth period.
Defining as αij ≥ 0 and

PK
j=1,j 6=k αij = 1 the convex

combination weights, we easily get that the output of the time
error detector reads ∆t(Q)i (n+ 1) = ∆ti(n+ 1) +Qi, where
the convex combination of (non-delayed) time differences is
defined as

∆ti(n+ 1) =
NX

j=1,j 6=i
αij(tj(n)− ti(n)) (2)

and Qi =
PN

j=1,j 6=i αijqij . The measurement ∆t(Q)i (n+1) is
fed to a loop filter ε(z) = ε0/(1− μz−1), where 0 < ε0 < 1
denotes the loop gain and 0 ≤ μ < 1 the loop pole. As it
customary in the literature on PLLs (see, e.g., [14] [9]), we
limit the scope to first (μ = 0) and second (μ 6= 0) - order
PLLs. The output of filter ε(z) drives the local Voltage Control
Clock (VCC) as

ti(n+ 1)− ti(n) = ε0∆t
(Q)
i (n+ 1) + μ(ti(n)− ti(n− 1))

+(1− μ)Ti (3a)
= ε0∆ti(n+ 1) + μ(ti(n)− ti(n− 1))

+(1− μ)T
(Q)
i . (3b)

where T
(Q)
i = Ti + ε0Qi/(1− μ).

A typical choice for the convex weights αij on which we
will concentrate in the following is

αij =
PijPN

j=1,j 6=i Pij
, (4)

as proposed in [3] and [4] for first-order discrete-time PLLs,
with the convention that, if

PN
j=1,j 6=i Pij = 0 (i.e., node i

does not receive sufficient power from any other node j), we
set αij = 0 for all j.

III. SYSTEM ANALYSIS

The system (3b) can be cast as the second-order vector
difference equation

t(n+ 1) = (A+μI) · t(n)− μt(n− 1) + (1− μ)T(Q), (5)

where we defined the vectors t(n) = [t1(n) · · · tN (n)]T
and T = [T (Q)1 · · ·T (Q)N ]

T . Moreover, the system matrix reads



A = I−ε0L, with L being the graph Laplacian of the network:
[L]ii =

P
j 6=i αij = 1 (i.e., the in-degree of node i) and

[L]ij = −αij for i 6= j. Notice that matrix A is stochastic:
A · 1 = 1 or equivalently L · 1 = 0. Model (5) coincides with
the framework considered in the literature on consensus of
multi-agent networks for the special case μ = 0 and T(Q)= 0
[10]. In other words, the consensus model describes a scenario
with first-order PLLs (μ = 0), no propagation delays and
frequency synchronous clocks (T(Q)= 0).

A. Connectivity graph and some related definitions
The properties of distributed synchronization (described by

(5)) in a given network depend critically on the connectivity
among the participating nodes, which is captured by the
connectivity graph G = {N , E}. The latter is a directed graph
(or digraph) with set of verticesN ={1, 2, ...,N} given by the
nodes of the networks and set of edges E ={eij: αij > 0 for
i, j = 1, 2, ..., N}, each weighted by αij > 0 in (4). In other
words, in our model, there exists a directed edge eij between
two nodes i and j if and only if the power Pij received by
i from j is Pij > 0. Notice that the graph is directed, since
we have in general αij 6= αji for i 6= j, and non-birectional,
that is αij = 0 does not imply αji = 0 for i 6= j. A few
definitions are in order (for a more general presentation, the
reader is referred to [12]). A path2 between two nodes i and
j is a sequence of nodes {i, n1, n2, ..., nM,, j} with ni ∈ N
such that (i, n1), (ni, ni+1), (nM , j)∈ E. A directed graph
where there exists a path between any two nodes is said to
be strongly connected (SC). A subgraph Gs = {Ns, Es}⊆ G is
said to be a directed spanning tree if it is a directed tree (i.e.,
there exists a root node that has a unique path towards all the
other nodes in Ns) and has the same node set as G, Ns = N .
In case G contains a directed spanning tree, we say that the
directed graph is quasi SC. Finally, a directed graph G is said
to be a forest if it consists of one or more directed trees.

In order to be able to define conveniently the properties of
connectivity of a directed graph beside the basic ones listed
above of strong connectivity and quasi strong connectivity, it is
instrumental to introduce the concept of condensation digraph
G∗= {N ∗, E∗}. The idea is that an arbitrary graph G can be
partitioned into a number of subgraphs Gk = {Nk, Ek} ⊆ G
(k = 1, 2, ...,K), with Gi ∩ Gj = ® such that each Gk is SC.
To see this, it is enough to notice that any node is SC so that
each node in fact lies in a SC graph. Each subgraph Gk is
referred to as a SC component (SCC) of the graph. Now, we
build the condensation graph G∗ by associating each SCC Gi
with a single node in N ∗ and introducing a directed edge e∗ij
in E∗ between of the ith and jth SCC (Gi and Gj , respectively)
if and only if there exists at least one edge from any node in Gi
to any node in Gj in the original graph G. If the condensation
digraph G∗ contains a spanning tree, we refer to the SCC at
the root as the root SCC (RSCC). As we will see below, these
definitions play a key role when studying the properties of
convergence of distributed synchronization.

2In this paper, we do not consider weak paths [12] and thus refer to strong
paths simply as paths for brevity.

B. Main results
We are first interested in finding general expression for

(frequency or phase) synchronous steady states of system (5).
To this end, let us denote a possible value for the synchronized
frequency as 1/T ∗ and define the phases τ i(n) relative to
this frequency as ti(n) = nT ∗ + τ i(n). In vector form, the
previous equation becomes t(n) = nT ∗ · 1 + τ (n) with
τ (n) = [τ1(n) · · · τN (n)]T . Frequency-synchronized states
correspond to steady-state solutions t∗(n) of the form

t∗(n) = nT ∗ · 1+ τ ∗, (6)

where full synchronization further requires the phase vector to
satisfy τ ∗ = τ∗1, with τ∗ being a common phase.

Lemma 1: Synchronous steady-state solutions (6) of the
system (5) satisfy

T ∗ = vTT, (7)

with v being the normalized left eigenvector of matrix A
corresponding to eigenvalue 1 (ATv = v with 1Tv =1) and

Lτ ∗ = (1− μ)
∆T(Q)

ε0
, (8)

with [∆T(Q)]k = T
(Q)− T ∗1 being the frequency mismatch

vector between initial local frequency (that accounts for de-
lays) T (Q)k and common frequency T ∗.

Proof: Writing (5) as a function of the phases τ (n), we
easily obtain the vector difference equation

τ (n+1)−τ (n)= −ε0Lτ (n)+μ(τ (n)−τ (n−1)) + (1−μ)∆T(Q).
(9)

Imposing the condition τ (n + 1) = τ (n) = τ (n − 1) = τ ∗

in (9), we immediately get (8), from which (7) follows by
application of the equalities vT ·L = 0 and 1Tv =1.

From (8) (and the fact L · 1 = 0), we see that phase
synchronization (i.e., τ ∗ = τ∗1) is not achievable if a
frequency mismatch or propagation delays are present, that
is, if ∆T(Q) 6= 0.

1) First-order PLLs: In the following, we focus at first
on first-order PLLs (μ = 0). We now review a necessary
and sufficient condition for convergence in homogeneous
networks.

Proposition 1: Consider first-order PLLs (μ = 0) and
homogeneous networks (i.e., Pij = Pji). Convergence to
a synchronous state of the form (6) (and thus (7)-(8)) is
guaranteed if and only if the connectivity graph G is strongly
connected. Moreover, the steady-state phase vector satisfies

τ ∗ = 1·η+L
†

ε0
∆T(Q), (10)

with (·)† denoting the pseudoinverse and

η= vT
µ
τ (0)− L

†

ε0
∆T(Q)

¶
. (11)

Proof: Let us define τ 0(n) = τ (n) − L†∆T
ε0

. With this
change of variables, the difference equation (9) boils down to

τ 0(n+ 1) = A · τ 0(n). (12)



Convergence properties of system (12) (and in particular the
steady-state solution (10)-(11)) can be directly obtained from
Theorem 1 and 4 of [5]. In particular, to prove sufficiency, we
use the well-known fact that strong connectivity implies that
matrix A has a simple eigenvalue λ1 = 1 (or equivalently the
Laplacian matrix L has a simple zero eigenvalue), whereas all
the other eigenvalues are such that |λi| < 1 so that τ 0(n) →
1vTτ 0(0) (see also [10]).

When considering Proposition 1, it should be remarked that
strong connectivity is known to be only a sufficient condi-
tion for the achievement of synchronization in heterogeneous
networks, for which the underlying connectivity graph is not
bidirectional. We now consider a necessary and sufficient
condition for convergence in heterogeneous networks.

Proposition 2. Consider first-order PLLs (μ = 0) and a gen-
eral (heterogenous) network. Convergence to a synchronous
state of the form (6) (and thus (7)-(8)) is guaranteed if and
only if the connectivity graph G contains at least a spanning
directed tree (that is, if G is quasi SC). Moreover, under this
assumption, the steady-state phase vector satisfies (10)-(11).

Proof: Given the change of variables used in the proof of
Proposition 2, Proposition 3 follows directly from the results
in [10] [13] [12], where it is shown that a necessary and
sufficient condition for the Laplacian matrix to have a simple
zero eigenvalue is the presence of spanning directed tree in
the connectivity graph.

While the previous Propositions sheds light onto the role
of graph topology on the convergence of the distributed
synchronization algorithm, it does not clarify how the steady-
state solution (7), (10)-(11) is affected by the network topology
(connectivity). Notice that in order to characterize the steady-
state behavior (7), (10)-(11), we should determine how the left
eigenvector v corresponding to eigenvalue λ1 = 1 of matrix
A varies with the network topology.

Proposition 3. The ith component of vector v is strictly
positive vi > 0 if and only if node i is the root of a spanning
directed tree for the connectivity graph G.

Proof: Follows directly from the arguments used to prove
Proposition 1 and 2 and the results in [12].

The previous proposition brings evidence to a fairly intuitive
phenomenon: only the nodes whose timing signal reaches
(possibly through multiple hops) all the nodes in the network,
that is the root nodes of spanning trees, contribute to the final
value of the steady-state frequency (7) and phase (10)-(11).

Finally, we would like to comment on the possibility that
the network fractionates in multiple clusters of frequency or
phase synchronization. In other words, we are interested in
finding conditions under which there exist subsets Gk of the
original graph G composed of, say, Nk < N nodes, such that,
within Gk, convergence of the system to steady-state solutions
of the form (6) is guaranteed. One trivial conditions is that
the subsets Gk consist of isolated components of the graph G
(meaning that no edges exist to Gk from G\Gk and viceversa),
which contain a spanning directed tree (recall Proposition 2).
Excluding this trivial case, a necessary and sufficient condition
for the appearance of clusters of synchronization is provided

by the following Proposition.
Proposition 4. Consider first-order PLLs (μ = 0) and a

general (heterogenous) network with non-isolated components.
Disjoint clusters of nodes Gk ⊆ G (k = 1, 2, ...,K), with
Gi ∩ Gj = ® for i 6= j, exist in which the timing vectors
tGk(n) = [ti(n)]i∈Gk converge to synchronous solutions of
the form t∗Gk(n) = nT ∗Gk · 1+ τ ∗Gk with

T ∗Gk = v
T
GkT

(Q)
Gk (13)

and

τ ∗ = 1 · vTGk
Ã
τGk(0)−

L†Gk
ε0
∆T

(Q)
Gk

!
+
L†Gk
ε0
∆T

(Q)
Gk , (14)

(the subscript Gk identifies restriction of the corresponding
quantity to subgraph Gk) if and only if the following conditions
are satisfied: (i) each Gk is a RSCC for the condensation graph
of G; (ii) the condensation graph of G is a forest.

Proof: Follows directly from [12] and Proposition 3.
2) Second-order PLLs: While second order PLLs have

the potential to reduce of the steady-state phase error (as
it is clear from (8)), convergence of the system (5) is not
always guaranteed if the pole μ is sufficiently large. This is in
accordance with well known results for conventional point-to-
point PLLs. While at the moment we do not have conditions
for convergence as in the first-order case discussed above, we
can provide a characterization of the steady-state synchronous
solutions (6).

Proposition 5. Consider second-order PLLs (μ > 0) and
a general (heterogenous) network. A synchronous solution of
the form (6) (and thus (7)-(8)) satisfies

τ ∗ = 1 · vT
µ
τ (0)− (1− μ)

L†

ε0
∆T(Q)

¶
+(1−μ)L

†

ε0
∆T(Q).

(15)
Proof: Similarly to Proposition 1, consider the change of

variables τ 0(n) = τ (n)− (1− μ)L
†∆T
ε0

in (9). The resulting
system is a second-order vector difference equation, that can
be studied by recasting it as a first-order vector difference
equation in terms of vector τ̃ (n) = [τ 0(n)T τ 0(n − 1)T ]T
with system matrix

Ã =

∙
A+μI −μI
I 0

¸
. (16)

Convergence of the corresponding system

τ̃ (n) = Ãτ̃ (n− 1)
depends on the eigenvalues of Ã. It is easy to see that Ã
has an eigenvalue equal to one, with left and (normalized)
right eigenvectors z = 1 and zr = 1/(1 − μ)[vT −μvT ]T .
Therefore, the system (12) is stable if and only if all the
remaining 2K − 1 eigenvalues of Ã have absolute value
less than one (see, e.g., [10]). Assuming that the stability
condition mentioned above holds (which is not always the
case, as discussed above), then we have Ãn → z zTr for
n → ∞ (see, e.g., [10]) and the phases τ 0(n) converge as



τ 0(n) → 1vTτ 0(0), from which (15) follows (see also [5]).

From (15), the potential reduction in the static phase error
due to the presence of the pole is apparent. It is also important
to remark that the results of Propositions 3 and 4 on the
contribution of different nodes to the synchronous state (15)
for different network topologies apply verbatim to the case of
second-order PLLs. This is due to the fact that the results of
Propositions 3 and 4 only depend on the properties of the left
eigenvector v of the Laplacian matrix L. In the next section,
our conclusions are corroborated via numerical results.

IV. NUMERICAL RESULTS

We consider the distributed wireless networks sketched in
the upper parts of figures 2-5, where we have NB = 16 nodes
of class B (gray dots) regularly placed on square of size 1
and a different number NA of nodes of class A (black dots)
(N = NA +NB). The received power (1) is characterized by
Cij = 1, path loss exponent γ = 3 and the transmit power is
Gj = 1 for nodes of class B and Gj = 8 for nodes of class
A. Moreover, the power threshold for pulse detection is set to
β = (NB/2)

γ/2 in order to allow correct reception of a pulse
sent by a class-B node by the eight class-B nodes surrounding
it. These choices create the connectivity graphs shown in the
upper parts of figures 2-5. Parameters of the second-order
PLLs are selected as ε0 = 0.9, μ = 0.3. Finally, initialization
of the local oscillators is carried out by considering frequency
synchronous clocks, T1 = ... = TN = 1, and initial phases
equi-spaced in the interval (0, 1).

Figures 2-5 consider four scenarios characterized by differ-
ent number NA of class-A nodes, respectively NA = 0, 1, 2, 4,
and plot the phases τ (n) of the different (class-A and class-B)
nodes versus time n. Class-A node phases are shown in dashed
lines and class-B node phases in solid lines. These experiments
are mainly meant to corroborate the results in Propositions
3 and 4 about the impact of topology on synchronization.
We start with fig. 2, where the connectivity graph is SC and,
accordingly, the phases τ (n) synchronize to a common value
that depend on all the initial phases τ (0): moreover, since
the graph is balanced (that is, 1 =

P
j 6=i αij =

P
j 6=i αji),

it can be easily shown that the common phase is simply the
arithmetic average of all the initial phases [5] . In the scenario
of fig. 3, the connectivity graph contains only one spanning
directed tree, with root in the class-A node: as expected from
Proposition 3, the phases of all nodes synchronize to the initial
phase of the class-A node. Fig. 4 considers a network with
two class-A nodes, where the connectivity graph contains a
forest with two spanning trees, each having one class-A nodes
as root. Accordingly (and by symmetry), convergence occurs
to the arithmetic average of the initial phases of the two
class-A nodes. Finally, fig. 5 corresponds to a scenario where
the condensation graph of the connectivity graph contains a
forest with two directed trees, having each as RSCC the two
class-A nodes on either side. Therefore, as per Proposition
4, the phases within the RSCCs synchronize, which implies
pairwise synchronization between the nearby class-A nodes,
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Fig. 2. Connectivity graphs (upper figure) and convergence of the local
phases versus time (lower figure) with NA = 0 class-A nodes (frequency-
synchronous clocks, ε0 = 0.9 and μ = 0.3).
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Fig. 3. Connectivity graphs (upper figure) and convergence of the local
phases versus time (lower figure) with NA = 1 class-A nodes (frequency-
synchronous clocks, ε0 = 0.9 and μ = 0.3).
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Fig. 4. Connectivity graphs (upper figure) and convergence of the local
phases versus time (lower figure) with NA = 2 class-A nodes (frequency-
synchronous clocks, ε0 = 0.9 and μ = 0.3).

but in general synchronization does not occur for the other
nodes.

V. CONCLUSIONS

In this paper, time synchronization via pulse-coupled PLLs
has been studied for heterogeneous distributed wireless net-
works, where participating nodes can have different power
constraints. The analysis derives necessary and sufficient con-
ditions for frequency or phase synchronization of distributed
first-order PLLs, and presents a characterization of steady-state
synchronous solutions for both first and second-order PLLs.
The results illuminate the impact of network topology on the
performance of time synchronization, thus providing useful
guidelines for the deployment of infrastructure-enhanced dis-
tributed networks (e.g., sensors networks with access points
or fusion centers).
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