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Abstract�Physical layer-based distributed timing synchro-
nization among nodes of a wireless network is currently being
investigated in the literature as an interesting alternative to
packet synchronization. In this paper, we analyze the convergence
properties of such a system through algebraic graph theory, by
modelling the nodes as discrete-time oscillators and taking into
account the speci�c features of wireless channels (e.g., reciprocity,
fading). The analysis is corroborated by numerical results and by
comparison with the performance of a practical implementation
of the distributed synchronization algorithm over a bandlimited
noisy channel.

I. INTRODUCTION
Distributed timing synchronization among nodes of a wire-

less network has a wide range of applications, from sensor
networks cognitive tasks to over-the-air autonomous inter-base
station synchronization [1] or radio-frequency communications
among vehicles [2]. In all cases, timing synchronization is
needed to appropriately manage the radio resource allocation,
e.g., to ensure multiple access. Moreover, in the case of
sensor networks, timing synchronization among nodes entails
a wealth of novel opportunities that are being currently in-
vestigated, such as distributed detection and estimation [3] or
cooperative transmission.
Physical layer-based synchronization protocols [4], as op-

posed to packet-based synchronization [5], are currently being
investigated for their unique properties, such as scalability
and low computational complexity. The proposal in [4] was
inspired by synchrony of periodic activities in autonomous
"nodes" observed in biological systems, such as the �ashing
of �re�ies [6]. Accordingly, each node was modelled as
a pulse oscillator coupled with all (or some of) the other
nodes. This model was extended in [7] by explicitly including
the constraint that each node only communicates with its
neighbors. In particular, the authors derived a bound on the
velocity of convergence by using algebraic graph theory [8].
In this work, we modify the framework for physical layer-

based synchronization according to the algorithm employed
in [1] and [2]. More speci�cally, the nodes are modelled
as coupled discrete-time oscillators. Each node modi�es its
current timing synchronization based on a weighted average of
the difference in timing synchrony as measured with respect
to other nodes. A similar model is commonly employed in
the literature on consensus problems for networks of agents
[9]. However, here we address the analysis of the network
by considering the speci�c features of the problem at hand
related to the nature of the wireless communication channel

among nodes. In particular, here we study the impact of
channel reciprocity and randomness (fading) on the wireless
links between the nodes. Analysis of the convergence of the
synchronization process is carried out by algebraic graph the-
ory as in [7] allowing to relate global convergence properties
to the (random) local connectivity of the network.
Moreover, the analysis is corroborated by addressing the

issue of a practical implementation of the distributed syn-
chronization algorithm. Simulation results show the theoretical
convergence analysis provides an useful tool for validating the
performance of a practical synchronization scheme.

II. PROBLEM FORMULATION

In this Section, we study the system of discrete-time os-
cillators in the theoretical framework of [1] [9]. Practical
implementation issues will be addressed in Sec. V (see also
[2]). Let the wireless network be composed of K nodes, that
share a common free oscillation frequency 1=T: In the nth
period of this periodic signal (with respect to any arbitrary
reference system), each node, say the kth, emits a timing pulse
at time 0 � Tk(n) < T; as shown in �g. 1. This transmitted
signal identi�es the timing phase of the kth node. The temporal
width of the transmitted pulse (or equivalently the employed
bandwidth) has to be selected so as to guarantee the desired
resolution of timing synchronization. If pulses emitted by
different nodes are not overlapped in time (i.e., if nodes are
not synchronous), each node is able to measure the difference
between its timing and the corresponding quantities of nearby
nodes Ti(n)� Tk(n); i 6= k:
The signal transmitted by the ith node and received by

the kth node undergoes �at fading, that is modelled by a
random variable Pki denoting the received power on the
(i; k)th wireless link. Since the network is assumed to be
operated with the same carrier frequency, reciprocity of the
fading �uctuations implies Pik = Pki: We will consider the
general geometric model

Pki =
C

d
ki
�Gki; (1)

where C is an appropriate constant; dki = dik is the distance
between node i and node k and Gki is a random variable
accounting for the fading process.
At the (n + 1)th period, the kth node updates its timing
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Fig. 1. Timing signal transmitted by the kth node.

according to the linear equations:

Tk(n+ 1) = Tk(n) + "�Tk(n+ 1) (2a)

�Tk(n+ 1) =
KX

i=1;i 6=k
�ki(Ti(n)� Tk(n)): (2b)

where " is the step-size (0 < " < 1) and the linear coef�cients
�ki are selected according to [1] as

�ki = Pki=
KX

j=1;j 6=k
Pkj : (3)

This choice accounts for the fact that timings measured over
an unreliable channels should not be taken into account when
updating the timing phase. Moreover, this design renders the
algorithm robust against measurement errors over the fading
channels [2] (see also Sec. V). Notice that by using (2b) we
are implicitly neglecting the propagation delays among nodes,
that are assumed to be smaller than the timing resolution: A
method to handle propagation delays is described in [1].
By de�ning the vector containing the timings of all nodes

as T(n) = [T1(n) � � �TK(n)]T ; we can express (2) as the
discrete-time vector equation

T(n) = AT(n� 1) (4)

where A is a K � K matrix such that Aii = 1 � " on
the main diagonal and Aij = " � �ij for i 6= j: Notice
that even though we assume channel reciprocity, matrix A is
not symmetric. Moreover, by construction, matrix A is non-
negative and stochastic since the sum of the elements on each
row sums to one, or equivalently

A � 1 = 1: (5)

Model (2) resembles the one considered in the literature
on multi-agent coordination (see, e.g., [9]). Synchronization
(consensus) is reached when the all the timing Tk(n) are equal
for n large enough, i.e.,

T1(n) = T2(n) = ::: = Tk(n) for n!1: (6)

On the other hand, the network fractionates into, say, two clus-
ters of synchronization if there exist a permutation function on
the nodes' labels, �(i) : [1; :::; n] ! [1; :::; n] such that for n
large enough

T�(1)(n) = � � � = T�(r)(n)
T�(r+1)(n) = � � � = T�(K)(n): (7)

The number of nodes in the two clusters is r and K � r
respectively. The de�nition above generalizes naturally to
more than two clusters.

In the following Sections, we will related the properties
of convergence of the dynamic system (2) to the algebraic
properties of the system matrix A and of the associated graph
(to be introduced in the following Section). As a preliminary
remark, we notice that the convergence properties of the
dynamic system depend on the largest absolute value of the
eigenvalues of A: Since, according to the Gershgorin theorem
[11], all the eigenvalues �i (i = 1; :::;K) of A satisfy the
condition j�i�(1�")j � "; the dominant eigenvalue is �1 = 1
(recall (5)). Moreover, the remaining eigenvalues can be at
most equal to 1. Multiplicity of the eigenvalue �1 = 1 will
play a key role in the analysis of convergence, as shown below.

III. CONVERGENCE ANALYSIS
The goal of this Section is to determine the conditions under

which the network converges to a unique cluster or to multiple
clusters of synchronization for a �xed realization of the fading
variable, i.e., matrix A is assumed to be deterministic. This
amounts to setting Gki = 1 in (1). We will de�ne the
conditions of convergence in terms of the properties of the
graph associated to the wireless network under study, or
equivalently in terms of the system matrix A.
The wireless network can be represented by the weighted

directed graph G=(V; E ,A) of order K, where V =f1; :::;Kg
is the set of nodes and E � V � V is the set of edges
weighted by the off-diagonal elements of the adjacency matrix
A =[�ij ]: The edge connecting the ith and the jth nodes,
i 6= j; belongs to E if and only if �ij > 0: Notice that
the graph is directed (�ij 6= �ji for i 6= j), even though
fading links are reciprocal (Pij = Pji for i 6= j). Moreover,
notice that the system matrix reads A = I�"A: The main
result of this Section (Theorem 1) relates the convergence
properties of distributed synchronization with the connectivity
of the associated graph G (or equivalently to the reducibility
of matrix A):
De�nition 1: A graph G is said to be strongly connected if

there exists a path (i.e., a collection of edges in E) that links
every pair of nodes.
It can be proved that strong connectivity of graph G is

equivalent to the irreducibility of matrix A [11].
De�nition 2: A K � K matrix A is said to be reducible

if there exists a K �K permutation matrix P and an integer
r > 0 such that

PTAP =

�
B C
0 D

�
; (8)

where B is r�r, D is K�r�K�r, C is r�K�r and the
zero matrix 0 is K � r � r. A matrix A is called irreducible
if it is not reducible.
The degree of irreducibility of a matrixA, or equivalently of

strong connectivity of the associated graph G; can be measured
by the following quantity (see, e.g., [10])

� = min
V1;V2

(
X

i2V1;j 62V1

�ij +
X

i2V2;j 62V2

�ij) (9)

where the minimum is taken over all non-empty proper subsets



of V , V1\V2 = � (V1[V2 = V). It can be shown that � = 0 if
and only if the matrix A is reducible, or the associated graph
G is not strongly connected.
The main result of this Section can be now stated as follows.
Theorem 1: (i) The distributed synchronization (2) con-

verges to a unique cluster of synchronized nodes, T1(n) =
::: = Tk(n) = T1 for n ! 1; if and only if the
associated weighted directed graph G is strongly connected,
or equivalently if system matrix A is irreducible. (ii) In this
case, the system (4) converges to

T1= v
TT(0); (10)

where v is the normalized left eigenvector of matrix A
corresponding to eigenvalue 1: ATv = v with 1Tv =1:
An immediate consequence of the Theorem 1 is that the

timing vectors converge to the average of their initial values
T(0) if and only if the system matrix A is doubly stochastic
(i.e., ifAT is stochastic as well). In fact, in this caseAT1 = 1
and vector v in (10) reads v =1=K�1: In sensor networks, this
result is of interest in applications where the steady state value
of synchronization is used in order to infer the status of the
process monitored by the sensor (e.g., change detection [3]).

Proof: The proof of part (i) of Theorem 1 is available
in the literature for applications where the graph G associated
to the dynamic system (4) is undirected [8]. In the case of a
directed graph, strong connectivity can generally be proved to
be only a suf�cient condition for synchronization. However,
in the wireless fading case with reciprocal channels the result
can be proved as shown in the following. The second part (ii)
of Theorem 1 follows from a result derived, among the others,
in [9].
As explained above, in order to prove Theorem 1, we only

need to show that strong connectivity is also a necessary
condition for synchronization. As a by-product, the proposed
proof brings insight into the formation of multiple clusters
of synchronization (7). Let us assume that A is reducible (or
equivalently the associated graph G is not strongly connected).
Then, by de�nition, there exists a permutation matrix P and
an integer r > 0 such that (8) holds. But if �ij = 0 in
A then for reciprocity Pij = Pji = 0 and then �ji = 0
(i 6= j): Therefore, the r�K � r matrix C in (8) has all zero
entries. Since the permuted matrix PTAP is non-negative
and stochastic, so are submatrices B and D: By applying the
permutation function �(k) = Pk[1 � � �K]T ; where Pk is the
kth row of matrix P; to the nodes' labels, we can write the
system (4) as

~T(n) =

�
B 0
0 D

�
~T(n� 1); (11)

where ~T(n) = PT(n): Therefore, the set of r nodes
f�(1); :::; �(r)g evolves independently from the remaining
nodes f�(r + 1); :::; �(K)g: Now, if either B or D are
reducible, the reasoning above can be iterated bringing to
the formation of multiple independent set of nodes evolving
separately. At the end of this procedure, the system matrix
can be written as a block matrix with irreducible stochastic

D

d

V1

1

2

3

4

V2

Fig. 2. The rectangular topology considered in the example in Sec. III-A.

blocks on the diagonal. Without loss of generality, let us then
assume that B and D are irreducible. From the �rst part of
the proof (see also Appendix-A), it follows the two cluster of
r and (K�r) nodes synchronize among themselves according
to (7). Moreover, the steady state values of the timing vectors
depend on the left eigenvectors of B and D according to (10):

lim
n!1

T�(i)(n) = vTB~Tr(0); i = 1; :::; r (12a)

lim
n!1

T�(i)(n) = vTD~TK�r(0); i = r + 1; :::;K � r(12b)

where BTvB= vB, DTvD= vD; ~Tr(n) =
[T�(1)(n) � � �T�(r)(n)] is the r � 1 vector collecting the �rst
r entries of ~T(n) and ~TK�r(n) = [T�(r+1)(n) � � �T�(K)(n)]
is the K � r � 1 vector collecting the remaining entries.
As stated in the introduction, the convergence of the dy-

namic system at hand could be also studied in terms of the
subdominant eigenvalue of matrix A, similarly to approach
commonly adopted in the context of the analysis of Markov
chains. In particular, the following results can be proved
relating convergence to the multiplicity of eigenvalue 1.
Theorem 2: The distributed synchronization (2) converges

to a unique cluster of synchronized nodes as in (6) if and only
if the subdominant eigenvalue �2 6= 1:

Proof: By recalling Theorem 1, it is enough to prove
that: i) if �2 = 1 then the graph is not strongly connected;
ii) if the graph is not strongly connected then �2 = 1. Part
i) can be proved similarly to [9]; however, in Appendix-B
we give an alternative proof based on the measure � in (9)
of irreducibilty of A: Part ii) does not hold in general for
problems with directed graphs but it is easily shown under the
reciprocity assumption similarly to Theorem 1.

A. Numerical results

Here we present a numerical example to corroborate the
analysis discussed above. A network of K = 4 nodes is
considered where the nodes are divided into two groups,
V1 = f1; 2g and V2 = f3; 4g; as in �g. 2: The initial values
Tk(0) are set to T(0)=T = [0:1 0:4 0:6 0:8]T : The path loss
exponent is 
 = 3; whereas the value of C in (1) does not
affect the performance and is therefore irrelevant according to
de�nition (3). Fig. 3 shows the timing vector T(n) versus n
for D=d = 2 and " = 0:3. Notice that we are considering
the normalized distance D=d since the algorithm (2) is only
sensitive to relative distances. After a transient where the nodes
tend to synchronize in pairs within the two groups, the system
reaches the steady state to the average value T1=T = 0:475,
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Fig. 3. The timing Tk(n) versus time n for the rectangular topology in �g.
2 with D=d = 2 (" = 0:3; 
 = 3; K = 4).

as stated in Theorem 1, since the system matrix is easily shown
to be doubly stochastic for this speci�c example.
In order to quantify the rate of convergence, from Theorem

2, we notice that the convergence of the synchronization
protocol (2) depends on the subdominant eigenvalue �2: In
particular, as it is well known from the theory of dynamic
system, the rate of convergence is ruled by a term proportional
to j�2jn: If we de�ne a threshold To, we could say that the
protocol reaches the steady state condition at the time instant
no for which j�2jno = To: no = log To= log j�2j: Therefore,
we can take

v = � log j�2j (13)

as a measure of the rate of convergence of the algorithm.
Fig. 4 shows the rate of convergence v versus the normalized
distanceD=d for " = 0:3; 0:7: As expected the rate v decreases
with increasing D=d and decreasing ": Along with v; �g. 4
shows the measure of irreducibility (or strong connectivity) �
(9) as dashed lines. It is interesting to note that the rate of
convergence v and the measure of irreducibility � have the
same behavior as a function of D=d and ": This con�rms that
convergence is strictly related to the connectivity properties of
the associated graph, as proved in Theorem 1.

IV. EFFECT OF FADING
In this Section, the effect of fading on the rate of con-

vergence v is studied via simulation for linear, ring and star
topologies (see �g. 5, recall that convergence depends only
on relative distances). Rayleigh fading is assumed, i.e., the
fading amplitude gki in (1) is assumed to be an exponentially
distributed random variable with unit average. Fig. 6 plots the
average rate of convergence E[v] (where the average E[�] is
taken with respect to the distribution of fading) for the three
networks versus the number of nodes K (" = 0:3): Notice that
for K = 2 the three networks coincide and recall that only
relative distances are of concern for the behavior of the system
(2). As it is expected the star topology has the largest rate of
convergences whereas the linear network yields the slowest
convergence.

1 2 3 4 5 6 7 8 9 1010
­4

10
­3

10
­2

10
­1

10
0

10
1

D/d

3.0=ε

7.0=ε
rate of convergence v
measure of irreducibilityσ
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V. PRACTICAL IMPLEMENTATION OF DISTRIBUTED
COUPLED DISCRETE-TIME OSCILLATORS

In this Section, we present a practical scheme that im-
plements the distributed synchronization over a bandlimited
noisy channel. The scheme follows [2], to which we refer to a
more thorough presentation. A carrier frequency is dedicated
to the synchronization channel, where each node, say the
kth, transmits square root raised cosine pulses (centered) at
(absolute) times �Tk(n): The transmitted waveform occupies a
bandwidth B = (1 + �)=Ts where Ts is the symbol period
and � the roll-off factor. The symbol period Ts de�nes the
timing resolution of the system. Each node works in the half-
duplex node and measures the received signal on a interval
of duration T around the current timing instant �Tk(n); i.e.,
within t 2 ( �Tk(n)�T=2; �Tk(n)+T=2]: The receiver performs
baseband �ltering matched to the transmitted waveform and
than samples the received signal at symbol frequency 1=Ts:
Based on the N = T=Ts samples received, the node computes
the update �Tk(n+1) = �Tk(n)+T+��Tk(n) similarly to (2a)-
(2b), as explained below.
The discrete-time baseband signal received by the kth node

in the nth time period reads (�N=2 < m � N=2)

yk(n;m) =
KX

i=1;i 6=k

p
Eki � �ki � g(mTs � �Ti;k(n)) +w(n;m)

(14)
where the average energy per symbol reads Eki = C=d
ki �TS
(recall (1)); �ki denotes the Rayleigh fading coef�cient, that
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is a zero-mean and unit-power complex (circulary symmetric)
Gaussian random variable with j�kij2 = Gki; and w(n;m) is
the additive (circulary symmetric) Gaussian noise with zero
mean and power N0: Moreover, �Ti;k(n) = �Ti(n) � �Tk(n) is
the timing difference between the node i and the receiving
node k: Notice that the sample in m = 0; and possibly nearby
samples, are not measured due to the half-duplex constraint
(m = 0 corresponds to the timing instant ~Tk(n)) and the
switching time between receive and transmit mode of node k.
A simple implementation of protocol (2a)-(2b) then leads to:

��Tk(n) =
X
m2J

��km �m; (15a)

��km =
jyk(n;m)j2P
i2J jyk(n; i)j2

(15b)

where J is the subset of time instants m 2 (�N=2; N=2]
for which the received signal jyk(n;m)j2 is above a threshold
selected so as to ensure a given probability of false alarm as
in [2].
For the example of Sec. III-A (no fading) and the algorithm

explained above, �g. 7 shows the standard deviation of timing
vectors as compared to the steady state value T1: �(n) =q
1=4 �

P4
k=1(Tk(n)� T1)2; versus n (" = 0:5). All nodes

transmit the same power and the signal to noise ratio for
transmission to the closest node (e.g., from 2 to 1) is set to
SNR = E12=N0 = 15dB; the probability of false alarm to
10�3 and D=d = 2: The performance of the synchronization
algorithm is compared with the theoretical performance of the
system (2). The gap between the two curves is due to the �nite
signal to noise ratio and the �nite resolution of the system.

VI. CONCLUSION

In this work, the convergence properties of physical layer-
based distributed timing synchronization based on discrete-
time coupled oscillators has been investigated using tools from
algebraic graph theory. The analysis has been corroborated by
numerical results and by comparison with the performance of
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Fig. 7. Standard deviation �(n) of the timing signals with respect to the
steady state value T1 for the synchronization algorithm over a bandlimited
Gaussian channel (15) and for the dynamic system (2) (network in �g. 2,
SNR = 15dB, D=d = 2, " = 0:5; 
 = 3; K = 4).

a practical implementation of the distributed synchronization
algorithm over a bandlimited noisy channel.

VII. APPENDIX: PROOF OF THEOREM 2
We need to prove that if �2 = 1 then the graph is not

strongly connected. Toward this goal, we note that we have
the following bound on the measure of irreducibility � (9)
[10]:

j1� �2j � �
8

2K2 + (�1)K � 1 ; (16)

from which it easily follows that if �2 = 1; � = 0 and thus
the graph is not strongly connected.
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