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ABSTRACT

In this paper1, two types of MIMO Amplify-and-Forward
relay systems are considered: multi-hop and cooperative.
For both cases, the problem of maximizing the achievable
rate over the covariance matrices of the symbols transmitted
by the source and relay linear processing matrix is formu-
lated under the assumption of full channel state information
at each node. A sub-optimal iterative algorithm is proposed
and proved by numerical simulations to outperform known
schemes.

1. INTRODUCTION

Cooperation is a new paradigm for reliable and high- through-
put multi-user wireless communications. The building block
of cooperative systems is the relay channel, introduced in
[1], where a max-flow-min-cut upper bound for its capacity
was derived. To date, the capacity-achieving coding strat-
egy for this channel is still unknown, and simplified cooper-
ative communication schemes have been recently proposed
in [2], namely Amplify-and-Forward (AF) and Decode-and-
Forward (DF). The main difference between thesecoopera-
tive schemes and conventionalmulti-hop regenerative (DF)
or non-regenerative (AF) relaying schemes is that the desti-
nation decodes the source message from the signals received
from both the source and the relay node. Modified versions
of the original DF and AF collaborative protocols, capable
of achieving higher rates, have been introduced in [3]. Both
[2] and [3] focus on the case where each node is deployed
with a single antenna.

The multi-antenna relay channel has been recently in-
vestigated from different perspectives. The authors of [4]
extended the information-theoretic results of [1] to a multi-
antenna scenario and devised an algorithm to compute the
input covariance matrices that maximize the max-flow-min-
cut upper bound. Performance of the AF scheme of [2] in a
multi-antenna setting was analyzed in [5]. In particular, [5]

1This work was partially supported by grant from Samsung Electronics
Co., LTD.
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Fig. 1. Block diagram of a multi-hop (a) and cooperative
(b) MIMO Amplify-and-Forward relay system.

derived the optimal linear processing matrix at the relay, for
both multi-hop and cooperative MIMO AF relay systems,
under the assumption of perfect channel state information
(CSI) at each node and isotropic covariance matrix for the
symbol transmitted by the source.

In this paper, we consider multi-hop and cooperative
MIMO AF relay systems with perfect CSI at each node as
in [5]. However, differently from [5]: (i) for both multi-
hop and cooperative systems, the covariance matrix of the
symbols transmitted by the source isnot constrained to be
isotropic; (ii) for the cooperative scenario, the considered
AF protocol is the one presented in [3], whereby the source
transmits inboth time-slots (not only in the first). The prob-
lem of maximizing the achievable rate over the source co-
variance matrices and linear processing matrix at the relay
is formulated. An iterative algorithm, capable of finding a
sub-optimal feasible solution, is proposed for both multi-
hop and cooperative cases, and proved by numerical simu-
lations to outperform known schemes under broad channel
conditions.



2. THE MULTI-HOP MIMO AF RELAY

2.1. System model

The multi-hop MIMO Amplify-and-Forward relay is illus-
trated in fig.1-(a). In this system three nodes are involved in
the communication: a source, a relay and destination, each
equipped withN antennas. The operation is divided into
two time-slots: in the first time-slot the relay node receives
the vector symbol transmitted by the source, while in the
second time-slot the relay re-transmits the received vector
symbol towards the destination after a linear transformation.
The destination decodes based only on the signal received
in the second time-slot. All the nodes are assumed to have
full CSI. Moreover, the channel matrices are assumed to be
independent Rayleigh fading processes, with a coherence
time of at least two time-slots and i.i.d. entries.

During the first time slot, the relay receives a signal
yR = H1x + nR, wherex is theN × 1 vector transmitted
by the source,H1 is theN ×N source-relay channel matrix
andnR is theN ×1 noise vector at the relay node, assumed
to have distributionCN (0, σ2I). The relay processesyR

through multiplication by aN×N matrixG, retransmitting
the symbolxR = GyR in the second time-slot. Therefore,
the input/output relation for the overall system is:

y = H2xR + nD =

= H2GH1x + H2GnR + nD, (1)

wherey is the received symbol at the destination,H2 is the
N×N relay-destination channel matrix, andnD is theN×1
noise vector at the destination, assumed to have distribution
CN (0, σ2I).

2.2. Problem formulation

In this paper, we are interested in maximizing the mutual
information between the source inputx and the destination
outputy, I(x;y), over the source input covariance matrix
Q = E[xxH ] and the signal processing at the relayG, un-
der instantaneous power constraints over the source and re-
lay input symbols. Notice that the ergodic achievable rate
[6] of the system is1

2
EH[I(x;y)], whereEH[·] denotes the

average with respect to fading and the factor1/2 accounts
for the two-slots transmission. Thus, we can formulate our
optimization problem as

max
Q,G

I(x;y) (2a)

s.t.







Q � 0

tr(Q) = P
tr(R(Q,G)) = PR

(2b)

where

I(x,y) = C(H2GH1QHH
1 GHHH

2 (σ2I+σ2H2GGHHH
2 )−1),

(3)

R(Q,G) = E[xRxH
R ] = G(H1QHH

1 + σ2I)GH . (4)

To simplify the notation, we defineC(X) := log(det(I +
X)). According to (2b), the power is fixed toP for the
source and toPR for the relay node.

2.3. An iterative solution

The optimization problem (2) is not convex. However, if we
fix either of the two matrix variables,Q or G, the resulting
problem is convex in the remaining variable. Our solution
to the problem (2) is then an iterative procedure that alter-
nates between the optimization overG fixedQ and the op-
timization overQ fixedG. Absolute convergence to an op-
timal solution for this algorithm cannot be proved, since the
power constraint on the relay input symbol depends upon
both Q andG [7]. Nevertheless, if the problem is well-
conditioned the algorithm has shown in practice rapid con-
vergence (around five iterations) to a unique solution.

Let us start by fixingG. The resulting optimization
problem overQ has a concave objective function and two
affine equality constraints. However, as detailed in the fol-
lowing, for the sake of our algorithm, the second constraint
can be ignored. It follows that the resulting problem is

max
Q

C(PQPH) (5a)

s.t.

{
Q � 0

tr(Q) = P
, (5b)

whereP = (σ2I + σ2H2GGHHH
2 )−

H
2 H2GH1 (and the

matrix square-root is defined asF = F
H
2 F

1

2 ). Solution of
(5) can be found according to [6] by transmitting along the
eigenmodes of the equivalent channelP, with power dis-
tributed along the sub-channels following the water-filling
procedure.

On the other end, if we fixQ, the optimization problem
boils down to

max
G

C(H2GAAHGHHH
2 (σ2I + σ2H2GGHHH

2 )−1)

s.t. tr(G(AAH + σ2I)GH) = PR,
(6)

whereA = H1Q
H
2 is the equivalent first-hop channel. This

problem has been solved in [5]. Below we briefly summa-
rize the solution by casting it into our notation.

ExpandingH2 andA with the corresponding singular
value decompositionH2 = U2Λ2V

H
2 andA = UAΛAVH

A ,
the objective and constraint functions are easily diagonal-
ized by choosingG = V2DgU

H
A , whereDg is aN × N

diagonal matrix. The solution is similar to a water-pouring
over the eigenmodes of the relay-destination channelH2:

|gr|
2 =

1

(λ2
A,r + σ2)

[

f(µ; ηr) −
σ2

λ2
2,r

]+

(7)



f(µ; ηr) =

√
(ηr

2

)2

+ ηrµ2 −
ηr

2
, (8)

where[x]+ = max(x, 0); λA,r andλ2,r are ther-th singu-
lar value ofA andH2; gr is ther-th diagonal element of

the matrixDg andηr =
λ2

A,r

λ2

2,r

. The value ofµ is chosen

as to satisfy the power constraint on the relay input symbol
∑N

r=1

(
λ2

A,r + σ2
)
|gr|2 = PR.

Following from this results, we can finally detail our al-
gorithm: (a) solve the optimization problem (5) forQ keep-
ing G fixed; (b) solve the optimization problem (6) forG
keepingQ fixed. Notice that the last iteration of the algo-
rithm has to be (6), since this guarantees the enforcement of
all the constraints in the original problem (2).

3. THE COOPERATIVE MIMO AF RELAY

3.1. System model

The cooperative MIMO Amplify-and-Forward relay is illus-
trated in fig.1-(b). In the first time-slot the source transmits
a first signalx1 to both the relay and the destination; in the
second time-slot the relay retransmitsx1 after a linear trans-
formation, while the source transmits a second signalx2,
independent fromx1. At the end of the second time-slot,
the destinationjointly decodes(x1,x2) from the signals re-
ceived in the two time-slots.

The signal received by the destination node during the
first time-slot isy1 = H0x1 + nD,1,wherex1 is theN × 1
source input symbol,H0 is theN × N source-destination
channel, andnD,1 is theN × 1 noise vector at the destina-
tion. During the same time-slot, the relay node receives a
signalyR = H1x1 +nR,1, whereH1 is theN ×N source-
relay channel andnR,1 is theN ×1 noise vector at the relay
node. The relay processesyR through multiplication by a
N × N matrix G, retransmitting the symbolxR = GyR

in the second time-slot. At the same time, the destination
transmits a new symbolx2, independent fromx1. There-
fore, during the second time-slot the destination receivesa
symboly2 = H0x2 +H2xR +nD,2,whereH2 is the relay-
destination channel andnD,2 is theN × 1 noise vector at
the destination. Finally, the overall input/output relation for
this communication scheme is

[
y1

y2

]

=

[
H0 0

H2GH1 H0

] [
x1

x2

]

+ neq, (9)

where we have defined the equivalent noise vector as

neq =

[
I 0 0

0 H2G I

]




nD,1

nR,1

nD,2



 . (10)

Since each noise vector is assumed to have a distribution
CN (0, σ2I), the equivalent noise correlation matrix

C = E
[
neqn

H
eq

]
is

C =

[
σ2I 0

0 σ2I + σ2H2GGHHH
2

]

=

[
σ2I 0

0 C2(G)

]

.

(11)
Assuming for the sake of simplicity thatx1 andx2 are in-
dependent, the input covariance matrix is block diagonal:

E[xxH ] = Q =

[
Q1 0

0 Q2

]

. (12)

Thanks to this assumption, this channel boils down to a two-
users MIMO multiple access channel. Thus, successive de-
coding of(x1,x2) is a capacity-achieving decoding strategy
and a full joint decoding is not needed.

3.2. Problem formulation

As in the previous section, we are interested in maximizing
the mutual information between the source inputs(x1,x2)
and the destination outputs(y1,y2), I(x1,x2;y1,y2), over
the input covariance matrices,Q1 andQ2, and the linear
processing matrix at the relay,G, under instantaneous power
constraints for the source and relay input symbols. Notice
that the ergodic achievable rate is1

2
EH[I(x1,x2;y1,y2)].

Thus we can formulate our optimization problem

max
Q1,Q2,G

I(x1,x2;y1,y2) (13a)

s.t.







Qi � 0 i = 1, 2
tr(Qi) = Pi i = 1, 2
tr(R(Q1,G)) = PR

(13b)

Given (12) and (9) the mutual information can be written as

I(x1,x2;y1,y2) =

C(Ĥ1(G)Q1Ĥ
H
1 (G)C−1(G) + Ĥ2Q2Ĥ

H
2 C−1(G))

(14)

whereĤ1(G) =

[
H0

H2GH1

]

andĤ2 =

[
0

H0

]

. In or-

der to gain further information-theoretic insight on this op-
timization problem, we can use the chain rule [8] to expand
the mutual information (14). SinceI(x2;y1|x1,y2) = 0,
we have

I(x1,x2;y1,y2) =

I(x1;y1)
︸ ︷︷ ︸

I1

+ I(x1;y2|y1)
︸ ︷︷ ︸

IR

+ I(x2;y2|x1)
︸ ︷︷ ︸

I2

. (15)

The total mutual information is the sum of three terms: the
first term I1 relates to the source transmission in the first
time-slot, the second termIR accounts for the signal re-
transmitted by the relay in the second time-slot, while the
third termI2 depends on the source transmission in the sec-
ond time-slot.



Recalling (9), the terms in (15) can be evaluated as fol-
lows2

I1 = C
(
H0Q1H

H
0

)

IR = C
(

H2GÃ(Q1)Ã
H(Q1)G

HHH
2 B−1(G,Q2)

)

I2 = C
(
H0Q2H

H
0 C−1

2 (G)
)
,

(16)

where theN × N matrixÃ(Q1) is

Ã(Q1) = H1(Q
−1

1 + HH
0 H0)

−
1

2 , (17)

and theN ×N matrixB(G,Q2) accounts for all the inter-
ference and noise on the channel between the relay and the
destination in the second time-slot:

B = σ2I + σ2H2GGHHH
2 + H0Q2H

H
0 . (18)

3.3. An iterative solution

The optimization problem (13) is not convex. However, if
we fix either(Q1,Q2) or G, the resulting problem is con-
vex in the remaining variable. Therefore, similarly to the
previous section, we can devise an iterative procedure that
alternates between the optimization overG fixed (Q1,Q2)
and the optimization over(Q1,Q2) fixed G. Again, abso-
lute convergence to an optimal solution for this algorithm
cannot be proved, since the power constraint on the relay
input symbol depends uponboth Q1 andG. Nevertheless,
if the problem is well- conditioned the algorithm has shown
in practice rapid convergence (around five iterations) to a
unique solution.

Let us first fixG. The resulting optimization problem
over(Q1,Q2) is convex. As we did in the previous section,
for the sake of our algorithm, the power constraint on the
relay input symbol can be ignored. Resorting to the mutual
information expression found in (14), our statement of the
problem is

max
Q1,Q2

C(Ĥ1Q1Ĥ
H
1 C−1 + Ĥ2Q2Ĥ

H
2 C−1) (19a)

s.t.

{
Qi � 0 i = 1, 2
tr(Qi) = Pi i = 1, 2

. (19b)

This problem is identical to finding the optimal input covari-
ance matrices for a two-users MIMO-MAC with channels
Ĥ1 andĤ2 and noise covariance matrixC. The solution to
this problem is the iterative-waterfilling algorithm proposed
in [9].

Let us now fixQ1, Q2. In this case, it is better to use the
mutual information expansion found in (16), since it fully

2Notably, we could have obtained (16) also using the properties of the
determinant of block matrices. Anyway, we preferred to present this result
according to a more insightful information-theoretic approach.

reveals the role played byG in this scheme. Obviously,G
affects only the second time-slot terms. Focusing on these
last two terms, it appears to be very hard to find an analytical
expression for a matrixG capable of maximizingjointly
the relay mutual information termIR and the source mutual
information termI2. However, we observe that, as further
detailed in Sec. 4, under appropriate conditions (namely
a sufficiently good channel between source and relay) the
termI2 can be neglected without relevant performance loss.
It can be proved that, with a further manipulation of the
expression ofIR, the optimization problem boils down to
a form similar to (6), so we can use the same arguments
discussed in the previous section. In particular, if we set
G = Ṽ2D̃gŨ

H
A , whereD̃g is diagonal,̃V2 is the matrix of

the right eigenvectors of̃H2 = (I + 1

σ2 H0Q2H
H
0 )−

H
2 H2

andŨA is the matrix of the left eigenvectors of̃A, it can be
shown that the maximization ofIR overG leads to

|g̃r|
2 =

1

λ̃2
A,r + σ2

[

f̃(µ; η̃r) −
σ2

λ̃2
2,r

]+

(20)

f̃(µ; η̃r) =

√
(

η̃r

2

)2

+
λ̃2

A,r + σ2

arr + σ2
η̃rµ2 −

η̃r

2
, (21)

whereλ̃A,r and λ̃2,r are ther-th singular value of̃A and
H̃2; g̃r is ther-th diagonal element of the matrix̃Dg; arr is
the nonnegativer-th diagonal element of the semi-definite

positive matrixŨH
A H1Q1H

H
1 ŨA, and η̃r =

λ̃2

A,r

λ̃2

2,r

. The

value ofµ is chosen as to satisfy the power constraint on the
relay input symbol

∑N

r=1

(
arr + σ2

)
|g̃r|2 = PR.

Following from this results, we can finally detail our al-
gorithm: (a) solve the optimization problem (19) for (Q1,
Q2) keepingG fixed; (b) solve the the problem of opti-
mizing IR overG keeping (Q1, Q2) fixed. Notice that the
last iteration of the algorithm has to be the optimization of
IR overG, since this guarantees the enforcement of all the
constraints in the original problem (13).

4. SIMULATION RESULTS

In this section, we assume that the relay is located on a line
between the source and the destination, at a normalized dis-
tanced ∈ [0, 1] from the source and(1−d) from the destina-
tion. It follows that, assuming a path-loss exponent of4, the
channel matrixHi has entries distributed asCN (0, d−4

i ),
whered1 = d, d2 = (1−d) andd0 = 1. Moreover, for lack
of space, we focus on the collaborative scenario (similiar re-
sults hold for the multi-hop case). As far as the power con-
straints are concerned, we fixP1 = 1 andP2 = PR = 1

2
, so

as to satisfy a per-slot sum-power constraintP2 + PR = 1
and obtain fair performance comparison.



Fig. 2. Achievable rates of different communication
schemes for the cooperative system with1

σ2 = 5dB, N =
3.

The achievable rates of different algorithms for the co-
operative scenario are depicted in fig. 2 versus the dis-
tanced for 1

σ2 = 5dB and a number of antennas at each
nodeN = 3. In particular, both the technique presented
in [5] (that assumes an isotropic covariance matrixQ =
N−1I) and the proposed method are compared to the ref-
erence performance of direct transmission (between source
and destination). In this case, the proposed algorithm out-
performs both direct transmission (by up to1.5 bps/Hz) and
the scheme of [5] (by up to0.8 bps/Hz) for almost every
value ofd.

Finally, we would like to comment on the choice of ne-
glecting the termI2 while optimizing forG in Sec. 3.3.
Fig. 3 showsI2 versusd for the proposed scheme, along
with the upper boundI2 ≤ C( 1

σ2 H0Q2H
H
0 ) = I2ub. It is

seen that ford ≤ 0.4 (i.e., for a sufficiently good channel
between source and relay), there is no optimality loss due
to I2. However, ford ≥ 0.4 it is envisaged that ajoint op-
timization of I2 andIR over G might bring performance
benefits.

5. CONCLUSIONS

In this paper multi-hop and cooperative MIMO Amplify-
and-Forward relay systems were considered. The problem
of maximizing the achievable rate over the source covari-
ance matrices and linear processing at the relay has been
formulated assuming full CSI at each node. A sub-optimal
iterative algorithm has been devised, exploiting the convex-
ity properties of the problem.

Fig. 3. Rate componentI2 and upper boundI2ub as a func-
tion of d for 1

σ2 = 5dB, N = 3.
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