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Abstract— In this paper the benefits provided by multi-cell
processing of signals transmitted by mobile terminals which
are received via dedicated relay terminals (RTs) are assessed.
Unlike previous works, each RT is assumed here to be capable of
full-duplex operation and receives the transmission of adjacent
relay terminals. Focusing on intra-cell TDMA and non-fading
channels, a simplified uplink cellular model introduced by Wyner
is considered. This framework facilitates analytical derivation of
the per-cell sum-rate of multi-cell and conventional single-cell
receivers. In particular, the analysis is based on the observation
that the signal received at the base stations can be interpreted as
the outcome of a two-dimensional linear time invariant system.
Numerical results are provided as well in order to provide further
insight into the performance benefits of multi-cell processing with
relaying.

I. I NTRODUCTION

Techniques for provision of better service and coverage
in cellular mobile communications are currently being inves-
tigated by industry and academia. In this paper, we study
the combination of two cooperation-based technologies that
are promising candidates for such a goal, extending previous
work in [1] [2]. The first is relaying, whereby the signal
transmitted by a mobile terminal (MT) is forwarded by a
dedicated relay terminal (RT) to the intended base station (BS)
[3] (see also [4] for a more recent account). The throughput
of such hybrid networks has recently been studied in the limit
of asymptotically many nodes [5][6]. Moreover, information
theoretic characterization of related single-cell scenarios has
been reported in [7]. The second technology of interest hereis
multi-cell processing (MCP), which allows the BSs to jointly
decode the received signals, equivalently creating a distributed
receiving antenna array [8]. The performance gain provided
by this technology within a simplified cellular model was
first studied in [9][10], and then extended to include fading
channels by [11], under the assumption that BSs are connected
by an ideal backbone (see [12][13] for surveys on MCP).

Recently, the interplay between these two technologies has
been investigated for amplify-and-forward (AF) and decode-
and-forward (DF) protocols in [1] and [2], respectively. The
basic framework employed in these works is the Wyner uplink
cellular model introduced in [9]. Following the linear variant
of this model, cells are arranged in a linear geometry and
only adjacent cells interfere with each other. Moreover, inter-
cell interference is described by a single parameterα ∈ [0, 1],
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Fig. 1. Network model

which defines the gain experienced by signals travelling to
interfered cells. Notwithstanding its simplicity, this model
captures the essential structure of a cellular system and it
provides insight into the system performance. The RTs added
to the basic Wyner model in [1][2] are assumed to operate in
a half-duplex mode and to receive signals from the MTs only
(and not from adjacent RTs).

In this work we relax the latter restrictions by allowing full-
duplex operation at the RTs and considering the signal path
between adjacent RTs. Focusing on an intra-cell time-division
multiple-access (TDMA) operation and non-fading channels,
we assess the gain provided by the joint MCP approach
over the conventional single-cell processing (SCP) schemeby
deriving the per-cell sum-rate in the two scenarios. We finally
remark that a further contribution of this paper with respect to
[1][2] is the extension to a relaying scenario of the analytical
framework introduced in [9], whereby the signal received by
the BSs is interpreted as the outcome of a linear time-invariant
system.

II. SYSTEM MODEL

We consider the uplink of a cellular system with a dedicated
RT for each transmitting MT. We focus on a scenario with no
fading and employ the framework of a linear cellular uplink



channel presented by Wyner [9]. RTs are added to the basic
Wyner model following the analysis in [1][2] (see Fig. 1 for
a schematic diagram of the setup). Throughout this paper we
make the following underlying assumptions:

• The system includes infinitely many identical cells ar-
ranged on a line.

• A single MT is active in each cell at a given time (intra-
cell TDMA protocol).

• A dedicated single RT is available in each cell to relay
the signal from the MT.

• The signals from the MTs are received by the BSs via
the relays (and not directly from the MTs).

• Each RT receives the signals of the MTs from its own
cell and the two adjacent cells only.

• Each BS receives the signals of the RTs from its own cell
and the two adjacent cells only.

• The channel power gain from the MT to its local RT,
and its two adjacent RTs are denoted byβ2 and α2

respectively.
• The channel power gain from the RT to its local BS,

and its two adjacent BSs are denoted byη2 and γ2

respectively.
• The channel power gain from the RT to its two adjacent

RTs isµ2.
• The MTs use independent randomly generated complex

Gaussian codebooks with zero mean and powerP .
• The average transmit power of each RT isQ.
• The RTs are assumed to be oblivious and to use an AF

relaying scheme.
• The RTs are assumed to be capable of receiving and

transmitting simultaneously (i.e., we assume full-duplex
operation, which amounts to assuming perfect echo-
cancellation between transmit and receive paths).

• The RTs amplify and forward the received signal with a
delay ofλ ≥ 1 symbols (an integer).

• The propagation delays between the different nodes of the
system are negligible with respect to the symbol duration.

• No cooperation is assumed among MTs.
• No cooperation is assumed among RTs.
• All the attenuation parameters are known to the BSs.

The main differences between the current model and the
model presented in [1] [2], are: (a) full-duplex operation at the
relays (which introduces the relaying delayλ); (b) no direct
connection between the MTs and the BSs; and (c) the RTs
receives also the signals of the two adjacent MTs.

Accounting for the underlying assumptions listed above, a
baseband representation of the signal transmitted by them’th
RT for an arbitrary time indexn is given by

Rm,n = g (βXm,n + αXm−1,n + αXm+1,n+

µRm−1,n−λ + µRm+1,n−λ + Zm,n) , (1)

whereZ represents the additive complex Gaussian noise pro-
cessZm,n ∼ CN (0, σ2

Z), which is assumed to be independent
and identically distributed (i.i.d.) with respect to both the time
and cell indices. The received signal at them’th BS antenna
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Fig. 2. Equivalent 2D LTI channel.

is given by

Ym,n = γRm,n−λ+ηRm−1,n−λ+ηRm+1,n−λ+Wm,n , (2)

where W represents the additive complex Gaussian noise
processWm,n ∼ CN (0, σ2

W ), which is assumed to be i.i.d.
with respect to both the time and cell indices and to be
statistically independent ofZ. In addition, the RTs’ gaing
is selected to satisfy the average power limitation

σ2
r (g) , E{|Rm,n|2} ≤ Q .

III. SUM-RATE ANALYSIS

In this section, we derive the per-cell sum-rate of the cellular
system at hand with MCP at the BSs and in the reference case
with SCP.

A. Joint Multi-Cell Processing

In this section we assume that the signals received at all
BSs are jointly decoded by an optimal central receiver. The
receiver is connected to the BSs via an ideal backbone and
is assumed to be aware of the Gaussian codebooks of all the
MTs. It is noted that using similar arguments as in [9], it can
be shown that in this setup an intra-cell TDMA protocol is
optimal.

Extending the one dimensional (1D) model introduced in
[9], the linear equations (1) and (2) describing the networkof
Fig. 1 can be interpreted as a two dimensional (2D) linear time
invariant (LTI) system. The block diagram of the equivalent
2D LTI system is depicted in Fig. 2 where the 2D filters read

h1m,n = δn(αδm−1 + βδm + αδm+1)

h2m,n = δn(ηδm−1 + γδm + ηδm+1)

hrm,n = gδn−λδm

h3m,n = µδn(δm−1 + δm+1) ,

(3)

with δn denoting theKronecker delta function. The corre-
sponding 2DFourier transforms of the signals in (3) are given
by

H1(θ, ϕ) = β + 2α cos θ

H2(θ, ϕ) = γ + 2η cos θ

Hr(θ, ϕ) = ge−jλϕ

H3(θ, ϕ) = 2µ cos θ .

(4)

Since the noise processesZ and W are zero mean i.i.d.
complex Gaussian and statistically independent of each other
and of the input signalX , the output signal at the BSs can be
expressed as

Ym,n = Sm,n + Nm,n , (5)



whereSm,n and Nm,n are zero mean wide sense stationary
(WSS) statistically independent processes representing the
useful part of the signal and the noise respectively. Now, using
the 2D extension of Szegö’s theorem [9], the achievable rate
in the channel (5) (without spectral shaping), which is equal
to the achievable per-cell sum-rate of the network, is givenfor
arbitraryg by

Rmcp =
1

(2π)2

∫ 2π

0

∫ 2π

0

log

(

1 +
SS(θ, ϕ)

SN (θ, ϕ)

)

dϕ dθ , (6)

where SS(θ, ϕ) and SN (θ, ϕ) are the 2D power spectral
density (PSD) functions ofS andN respectively.

On examining Fig. 2, we see that the PSD of the useful
signal is given by

SS(θ, ϕ) = P |HS(θ, ϕ)|2 = P

∣

∣
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∣

2

, (7)

while the PSD of the noise is given by

SN (θ, ϕ) = σ2
Z |HN (θ, ϕ)|2+σ2

W = σ2
Z

∣

∣

∣

∣

HrH2

1 − HrH3

∣

∣

∣

∣

2

+σ2
W ,

(8)
where the transfer functionsH1, H2, Hr, andH3 are defined
in (4).

Proposition 1 The per-cell sum-rate of MCP with AF relaying
is given by

Rmcp =
1

2π

∫ 2π

0

log

(

A + B +
√

(A + B)2 − C2

B +
√

B2 − C2

)

dθ ,

(9)
where

A , Pg2(β + 2α cos θ)2(γ + 2η cos θ)2

B , σ2
Zg2(γ + 2η cos θ)2 + σ2

W (1 + 4g2µ2 cos2 θ)

C , 4σ2
W gµ cos θ .

Furthermore, the optimal relay gain go is the unique solution
to the equation σ2

r(g) = Q where

σ2
r(g) =

(Pβ2 + σ2
Z)g2

√

1 − (2µg)4
+

4Pα2g2

√

1 − (2µg)2 + 1 − (2µg)2
(10)

is the relay output power.

Proof: See Appendix A.
It can be seen that the optimal gain is achieved when the
relays use their full powerQ, and thatgo −→

Q→∞

1/(2µ). Other

observations are that the sum-rateRmcp is not interference
limited and that it is independent of the actual RT delay value
λ. In the following, we consider some relevant special cases.

1) No adjacent RTs reception (µ = 0): This scenario
refers to the case in which the RTs are employing directional
antennas pointed toward their local BSs (see also discussion
in [1] [2]). In this case, the general expression (9) reducesto

Rmcp−da =

1

2π

∫ 2π

0

log

(

1 +
Pg2(β + 2α cos θ)2(γ + 2η cos θ)2

σ2
Zg2(γ + 2η cos θ)2 + σ2

W

)

dθ .

(11)

In addition, by settingµ = 0 in (10) we obtain that

g2
o =

Q

P (β2 + 2α2) + σ2
Z

. (12)

2) Half-duplex operation: In this case, the RTs are not ca-
pable of simultaneous receive-transmit operation. Accordingly,
the time is divided into equal slots: during odd numbered slots
the MTs are transmitting with power2P and the RTs only
receive, while during even numbered slots the MTs are silent
and the RTs transmit. It is easily verified that the per-cell sum-
rate in this case is given by multiplying (11) by1/2 while
replacingP andQ respectively with2P and2Q, in both (11)
and (12).

B. Single Cell-Site Processing

In this section we consider a conventional SCP scheme in
which no cooperation between cells is allowed. According to
this scheme, each cell-site receiver is aware of the codebooks
of its own users only, and it treats all other cell-site signals
as interference. Notice that since the RTs are oblivious, their
AF operation is not influenced by the fact that the BSs are
not cooperating. In addition, since the input signals and noise
statistics remain the same, expression (10) is also valid for the
current setup.

The output signal can be expressed as

Ym,n = SU m,n + SIm,n + Nm,n ,

where the useful part of the output signalSU is defined as

SU m,n =

∞
∑

l=−∞

hS0,n−lXm,l ,

and hS and hN are the signal and noise space-time impulse
response functions whose Fourier transforms are given in (7)
and (8) respectively. The interference part of the output signal
SI is defined as

SIm,n =

∞
∑

l1=−∞

l1 6=m

∞
∑

l2=−∞

hSm−l1,n−l2Xl1,l2 ,

and the noise part of the signal is defined as

Nm,n =

∞
∑

l1=−∞

∞
∑

l2=−∞

hNm−l1,n−l2Zl1,l2 + Wm,n .

SinceX , Z, andW are independent of each other, zero-mean
complex Gaussian and i.i.d. in space and time, it is easily
verified thatSU , SI , andN are independent and zero-mean
complex Gaussian as well. It is also evident that for eachm
the processes are WSS along the time axisn. Accordingly,
the output process at them’th cell can be seen as a Gaussian
inter-symbol interference (ISI) channel with additive colored
independent interference and noise.

Proposition 2 The per-cell sum-rate of SCP with AF relaying
is given for an arbitrary relay gain 0 < g < go, by

Rscp =
1

2π

∫ 2π

0

log

(

1 +
SU (ϕ)

SI(ϕ) + SN (ϕ)

)

dϕ ,
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where SU (ϕ), SI(ϕ), and SN (ϕ) are the 1D PSDs of the
useful signal, interference, and noise respectively:

SU (ϕ) =
P

(2π)2

∣

∣

∣

∣

∫ 2π

0

HS(θ, ϕ)dθ

∣

∣

∣

∣

2

SI(ϕ) =
P

2π

∫ 2π

0

|HS(θ, ϕ)|2 dθ − P

(2π)2

∣

∣

∣

∣

∫ 2π

0

HS(θ, ϕ)dθ

∣

∣

∣

∣

2

SN (ϕ) =
σ2

Z

2π

∫ 2π

0

|HN (θ, ϕ)|2 dθ + σ2
W .

Proof: See Appendix B.
It is noted that in contrast to the MCP scheme,Rscp is
interference limited. It is also easy to verify thatRscp is
independent of the actual RT delay valueλ.

IV. N UMERICAL RESULTS

In Fig. 3-a the sum-rates per-cell of the MCP and the SCP
schemes are plotted as functions of the inter-relay interference
factor µ for P/σ2 = 10 [dB], Q/σ2 ≤ 20 [dB], σ2

Z = σ2
W =

σ2 = 1, α = η = 0.2, andβ = γ = 0.8. The curves are plotted
for an optimal selection of the relay gaing, which is shown for
both schemes in Fig. 3-b. Examining the figures, it is observed
that for this setting the MCP scheme demonstrates a meaning-
ful improvement on performance over the SCP scheme. The
deleterious effect of increasing inter-relay interference µ is
also demonstrated for both schemes. Moreover, the optimal
relay gain for both schemes also decreases withµ. Another
observation is that the optimal gain of the SCP scheme is
lower than that of the of the MCP scheme forµ larger than
some threshold. Hence, using the full power of the RTs is
sub-optimal for the SCP scheme under certain conditions.

V. CONCLUDING REMARKS

In this paper, joint MCP of MTs that are received only
via dedicated RTs applying full-duplex AF relaying, has been

considered. The received signal at the BSs can be seen as the
output of a 2D LTI channel. Using the 2D version of Szegö’s
Theorem, a closed form expression for the achievable per-cell
sum-rate of intra-cell TDMA protocol has been derived. As
a reference the rate of a conventional SCP scheme, which
treats other cell MTs’ signals as interference, has also been
derived. Comparing the rates of the two schemes, the benefits
of the MCP scheme has been demonstrated. Moreover, we
have observed that the rates of both schemes are decreasing
with the intra-relay interference factor,µ. The latter can be
explained for the MCP scheme, by the fact that the equivalent
2D LTI channel becomes more distorted with increasingµ.
Since no MTs cooperation is allowed and no rate splitting is
used, this distortion can not be mitigated by power allocation
over time or space, and the resulting rate decreases with
µ. We also have shown that using the full power of the
RTs is unconditionally optimal only for the MCP scheme.
Numerical results have revealed that under certain conditions,
the SCP setting produces an equivalent noisy ISI channel, the
rate of which is not necessarily maximized by using the full
RTs power. Other more sophisticated relaying schemes, are
currently under further investigation.

APPENDIX

A. Proof of Proposition 1

It is easily verified that the RT output signalRm,n (1) is a
WSS complex Gaussian 2D process with zero mean. Hence,
its power can be expressed by

σ2
r (g) = E{|Rm,n|2}

=
1

(2π)2

∫ 2π

0

∫ 2π

0

(P |H1|2 + σ2
Z) |Hr|2

|1 − HrH3|2
dϕ dθ

=

∫ 2π

0

∫ 2π

0

(2π)−2(P (β + 2α cos θ)2 + σ2
Z)g2

1 − 4gµ cosθ cos(λϕ) + 4g2µ2 cos2 θ
dϕ dθ ,

(13)
where the third equality is achieved by substituting (4). Ex-
amining (13), it is clear that in order for the relay to transmit
finite power (or for the whole system to be stable) the poles
of the integrand must lie inside the unit circle. Assuming that
g is real this condition implies that

g <
1

2µ
.

It is also verified by differentiating the integrand of (13) with
respect tog that σ2

r (g) is an increasing function ofg with
σ2

r(0) = 0. By making a change of variableϕ′ = λϕ, and
integrating (13) overϕ′ we get

σ2
r(g) =

1

2π

∫ 2π

0

(P (β + 2α cos θ)2 + σ2
Z)g2

1 − 4g2µ2 cos2 θ
dθ , (14)

where the last equality is achieved by using formula 3.616.2
of [14] and some algebra. It is noted that (14) implies that the
power of the relay signal isindependent of the actual relay
delay duration. Expression (14) can be further simplified into
its final closed form of (10), by applying formulas 3.653.2 and
3.682.2 of [14] and some additional algebra.



To derive the per-cell sum-rate expression for an arbitrary
RT gaing, we substitute (7) and (8) into (6) to obtain

Rmcp =
1

(2π)2

∫ 2π

0

∫ 2π

0

log

(

1 +
P |H1HrH2|2

σ2
Z |HrH2|2 + σ2

W |1 − HrH3|2

)

dϕ dθ . (15)

It is easily verified by differentiating the integrand of (15) with
respect tog, that the rate is an increasing function of the RT
gaing for 0 ≤ g < 1/(2µ). We can conclude that, sinceσ2

r (g)
is also an increasing function ofg, the rate is maximized when
the RTs use their full power by setting their gain togo which
is the unique solution toσ2

r(g) = Q. Finally, by substituting
(4), applying formula 4.224.9 of [14] twice to (15), and using
some algebra we obtain (9).

B. Proof of Proposition 2

First, we express the three PSDs of interest in terms of
the system signal and noise 2D transfer functionsHS(θ, ϕ)
andHN (θ, ϕ). Starting with the noise component, it is easily
verified that its PSD is given by

SN (ϕ) =
1

2π

∫ 2π

0

SN (θ, ϕ)dθ

= σ2
Z

1

2π

∫ 2π

0

|HN (θ, ϕ)|2 dθ + σ2
W ,

where the 2D filterHN (θ, ϕ) is defined in (8).
To calculate the useful signal PSD, let us define the follow-

ing 2D filter ĥU m,n , δmhSm,n . It is easily verified that

SU m,n =
∞
∑

l1=−∞

∞
∑

l2=−∞

ĥU l1−m,l2−nXl1,l2 ,

and that the 2D Fourier transform ofĥU m,n is given by

ĤU (θ, ϕ) = F{hSm,n} ∗ ∗F{δm} = HS(θ, ϕ) ∗ ∗2πδ(ϕ)

=
1

2π

∫ 2π

0

HS(θ, ϕ)dθ ,

where∗∗ denotes a 2D cyclic convolution operation, andδ(ϕ)
denotes theDirac delta function. Hence, the useful signal PSD
becomes

SU (ϕ) = P
1

2π

∫ 2π

0

∣

∣

∣
ĤU (θ, ϕ)

∣

∣

∣

2

dθ

= P
1

2π

∫ 2π

0

∣

∣

∣

∣

1

2π

∫ 2π

0

HS(θ′, ϕ)dθ′
∣

∣

∣

∣

2

dθ

= P
1

(2π)2

∣

∣

∣

∣

∫ 2π

0

HS(θ, ϕ)dθ

∣

∣

∣

∣

2

.

To calculate the interference PSD, let us define the following
2D filter ĥIm,n , (1 − δm)hSm,n . Then we have that

SIm,n =

∞
∑

l1=−∞

∞
∑

l2=−∞

ĥI l1−m,l2−nXl1,l2 ,

and that the 2D Fourier transform ofĥSm,n is given by

ĤI(θ, ϕ) = F{hSm,n} ∗ ∗F{1 − δm}
= HS(θ, ϕ) ∗ ∗((2π)2δ(θ)δ(ϕ) − 2πδ(ϕ))

= HS(θ, ϕ) − 1

2π

∫ 2π

0

HS(θ, ϕ)dθ .

Hence, the interference PSD is given by

SI(ϕ) = P
1

2π

∫ 2π

0

∣

∣

∣
ĤI(θ, ϕ)

∣

∣

∣

2

dθ

= P
1

2π

∫ 2π

0

∣

∣

∣

∣

HS(θ, ϕ) − 1

2π

∫ 2π

0

HS(θ′, ϕ)dθ′
∣

∣

∣

∣

2

dθ

= P
1

2π

∫ 2π

0

|HS(θ, ϕ)|2 dθ − P
1

(2π)2

∣

∣

∣

∣

∫ 2π

0

HS(θ, ϕ)dθ

∣

∣

∣

∣

2

.
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