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Abstract— In this paper, a cognitive radio scenario composed of
one primary (licensed) node and M secondary (unlicensed) nodes
coexisting in the same spectral resource is considered. According
to the commons model of cognitive radio, the secondary nodes
are required to guarantee Quality-of-Service (QoS) constraints
on the primary activity. Assuming a collision channel model, the
stability region of the arrival rates at the secondary queues is
investigated for given primary throughput and QoS constraints
defined in terms of average delay of primary packets. Inner and
outer bounds on the stability region are derived. The analysis
is carried out at first for the case M = 2 and then generalized
for any number of secondary nodes (M > 2), and is based on
the concept of dominant systems. The results shed light on the
impact of detection errors at the secondary nodes and of different
levels of QoS requirements of the primary user to the achievable
(stability) rate region of the secondary nodes. Numerical results
suggest that the derived inner bound is a tight approximation of
the real stability region.

I. INTRODUCTION

Cognitive radio has been recently proposed as a technology
that aims at guaranteeing the coexistence of primary licensed
users and secondary unlicensed users in the same spectral
resource [1]. In this paper, we focus on the cognitive com-
mons model [2], which is characterized by the facts that
primary nodes are oblivious to the secondary activity and
that the transmissions of the secondary nodes are required
to be transparent to the primary activity. In [3], a simple
cognitive commons model scenario composed of one primary
and one secondary node transmitting to two separate receivers
over a slow fading channel has been considered. Therein, the
maximum stable throughput of the secondary transmitter with
and without relaying capability has been investigated through
the concept of dominant system, explicitly introduced in [4].

In this paper, we consider a scenario characterized by
a primary node and M secondary nodes operating over a
collision channel for transmission to a common receiver (e.g.,
access point, see fig. 1). While the primary node is allowed
to access the bandwidth at any time (that is, at any time-
slot), the secondary nodes seek opportunity for transmission
by exploiting the idle time-slots of the primary transmitter.
Moreover, multiple access to the channel by the secondary
nodes is ruled by a random access policy. Due to errors in
sensing the primary activity by the secondary users, inter-
ference to the primary transmission is unavoidable (see, e.g.,
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Fig. 1. Cognitive scenario with one primary node and M secondary nodes
transmitting over a collision channel to a common receiver.

[1]-[3]) and appropriate mechanisms should be put in place in
order to guarantee Quality-of-Service (QoS) constraints on the
primary activity. Here we focus on QoS requirements defined
in terms of maximum average delays of primary packets.
By leveraging the concept of dominant systems, we derive
inner and outer bounds on the region of the average arrival
rates at the secondary nodes for which all the queues in the
system remain stable under given primary throughput and QoS
constraints.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the cognitive scenario in fig. 1, where a
primary licensed node P and M secondary nodes Si (i ∈
M = {1, 2, ...,M}) transmit in the same spectral resource to
a common receiver (e.g., access point). We refer to this system
as Ω(M) in the following. Each terminal is equipped with
infinite-length buffers, where the incoming packets are stored.
The packets arrival processes at each node are independent
and i.i.d. Bernoulli processes with mean λP [packets/slot] for
the primary user and λS,i [packets/slot] for the ith secondary
node (i ∈M). Let QP(t) be the stochastic process referring
to the number of packets stored in the queue of the primary
node and, similarly, let QS,i(t) refer to the number of packets
stored in the queue of the secondary node Si. Time is slotted



and all the packets have the same length, equal to one time slot
(the average arrival rates, thus, correspond to the probabilities
of an arrival at a given node in a given time slot). We employ
the standard definition of stability for a queue Q(t) as in, e.g.,
[7], that is, a queue Q(t) is stable if and only if its probability
of being empty does not vanish as time progresses:

lim
t→+∞Pr[Q(t) = 0] > 0. (1)

As for the physical layer, a collision channel is considered.
This means that any packet is correctly received by the
destination if and only if only one transmission takes place
in a given time-slot. Moreover, according to the paradigm
of cognitive radio, the primary should be oblivious to the
secondary and the activity of the secondary nodes must be
compliant with QoS constraints on the primary transmission.
In order to respect this principle, here we assume that the
primary node P attempts transmission whenever it has packets
in its queue, while any secondary node Si (i ∈M), at each
time slot, senses the channel and, if no primary activity is
detected, transmits a packet (if it has any in its queue) with
probability pi (random access). Due to inevitable errors, the
secondary transmitter Si can correctly detect the activity of the
primary user with a probability Pd,i (probability of detection),
while it can detect primary activity even in an idle slot and,
consequently, miss an opportunity for transmission with a
probability Pfa,i (probability of false alarm) [1]-[3]. This
implies that, in a given idle time-slot, any secondary node
Si, if its queue is not empty, attempts the transmission of a
packet with probability

θi = pi(1− Pfa,i). (2)

The outcome of the detection at any secondary node can
be considered as independent from the other ones. The QoS
constraint on the primary activity is specified as

D
(M)
P (p) ≤ Dmax, (3)

where D
(M)
P (p) is the average delay of primary packets in

system Ω(M)(see Sec. III-A), that depends on the transmission
probabilities p = [p1, p2, ..., pM ]T . Notice that the maximum
delay constraint Dmax on the primary activity implies the
stability of the primary queue QP(t).

In this paper, our aim is to find inner and outer bounds
to the (stability) region S(M)(Dmax) of the average arrival
rates {λi}i∈M at the secondary nodes {Si}i∈M for which at
least one combination of the transmission probabilities p exists
that guarantees stability of the secondary queues {QS,i}i∈M,
under the specified QoS constraint Dmax and given system
parameters [λP, {Pd,i}i∈M , {Pfa,i}i∈M].

III. STABILITY ANALYSIS

According to the definition above, the stability region
S(M)(Dmax) can be expressed as:

S(M)(Dmax) =

⎧⎨⎩ [
pi,i∈M

S̃(M)(p) | pi ∈ [0, 1]

with i ∈M, D(M)
P (p) ≤ Dmax

o
, (4)

where S̃(M)(p) is the stability region of the average arrival
rates at the secondary nodes for given transmission probabil-
ities p.

Various bounds to the stability region of M interacting
queues in a random access environment have been found in
[4]-[7], and the exact region identification has been achieved
only for the cases M = 2 [4], [6] and M = 3 [5]. However,
the cognitive radio scenario at hand differs significantly from
the homogeneous random access model considered in [4]-[6],
since the secondary queues interact not only among themselves
but also with the primary queue QP(t), which, in addition,
requires delay constraints for the transmission of its packets.

An outer bound on the stability region S(M)(Dmax) can be
trivially obtained by assuming that the primary queue QP(t) is
always empty (or, equivalently, λP = 0), which leads exactly
to the results in [4] and [5]. For example, for the special case
of M = 2, this outer bound is analytically characterized by
the relationship

p
λS,1+

p
λS,2 = 1, see [4]. In the remaining

part of this section, after obtaining an analytical expression for
the primary delay constraints in Sec. III-A, we derive inner
bounds on the region S(M)(Dmax) for the cases M = 2 and
M > 2 in Sec. III-B and III-C, respectively.

The following analysis is based on the concept of dom-
inant systems, which, in general, allow to obtain sufficient
conditions for stability of a system of interacting queues: by
construction, if a dominant system is stable, then the original
system is [4]. Applying this idea to our system, here we
introduce the following class of dominant systems:

Ω̄(M) =
n
Ω̄
(M)
V

o
V⊆M

, (5)

where Ω̄(M)
V is any system which differs from the original

system Ω(M) for two facts: (i) in any time-slot occupied by
the primary transmission, every secondary user {Si}i∈M, if
failing the detection, transmits a (possibly dummy) packet with
probability pi even if its queue is empty; (ii) in any time-slot
left idle by the primary user, a subset V of the M secondary
nodes continues to transmit (possibly dummy) packets with
probability θi defined in (2) even if their queues are empty.
Since transmission of dummy packets does not decrease the
queue sizes but can still cause collisions, any system belonging
to the class Ω̄(M) is a dominant system with respect to the
original system Ω(M): any average arrival rates set {λS,i}i∈M
which can be supported (with given QoS constraint Dmax

on the primary) in any system Ω̄
(M)
V can also be supported

in Ω(M). In particular, it should be noticed that the average
delay D

(M)

P (p) experienced by the primary packets in systems



belonging to the class Ω̄(M) (to be derived in the next section)
is an upper bound on D

(M)
P so that the QoS constraint

D
(M)

P (p) ≤ Dmax (6)

in systems Ω̄(M) implies also (3) in Ω(M). In other words,
the stability region of any system in Ω̄(M) for given QoS
constraint Dmax provides an inner bound on the stability
region S(M)(Dmax) on Ω(M).

A. Average primary delays

As discussed in the previous section, the activity of the
secondary nodes must guarantee the QoS condition D

(M)
P ≤

Dmax on the average delay D
(M)
P experienced by the primary

packets. The analysis of the average delay D
(M)
P in system

Ω(M) is very difficult since it requires, in principle, to find
the stationary distribution of an M + 1-dimensional Markov
chain in which the state is defined by the vector of queue
sizes

£
QP(t), {QS,i}i∈M

¤
. The task is complicated by the

boundaries transition anomalies of the M + 1-dimensional
Markov chain, which are caused by the interaction of the
queues [4]. However, as explained above, here we restrict the
focus to study the class of dominant systems Ω̄(M) defined in
(5). Interestingly, in any system belonging to the class Ω̄(M),
the primary queue therein can be treated as an isolated discrete
Markov process, uncoupled from the stochastic processes
{QS,i}i∈M accounting for evolution of the ith secondary
queue. Therefore, the average delay D

(M)
P in the modified

system is easily calculated as:

D
(M)

P (p) =
1− λP

μ̄P(p)− λP
, (7)

where μ̄P(p) is the average departure rate from queue QP(t)
in systems Ω̄(M). The latter can be obtained by considering
that the primary node can successfully transmit a packet
if and only if the packet experiences no collision over the
channel. This event happens when either all the secondary
nodes correctly detect primary activity (which happens with
probability

QM
i=1 Pd,i), or when any subset of secondary nodes

V fails detection but decides not to attempt transmission
(which happens with probability

Q
j∈V (1− Pd,j) (1 − pj)).

Therefore, we have the following:

μ̄P(p) =
MY
i=1

Pd,i +
X
V⊆M

⎛⎝Y
j∈V

(1− Pd,j) (1− pj)

⎞⎠(8)

×
⎛⎝Y
j /∈V

Pd,j

⎞⎠ .

An important related quantity is the probability of a transmis-
sion opportunity for the secondary nodes in systems belonging
to the class Ω̄(M), which coincides with the probability that
the primary user has no packets stored in its queue and reads:

Pr[QP(t) = 0] = η̄ = (1− λP/μ̄P(p)). (9)

B. Inner bounds on S(2)(Dmax)

An inner bound on the stability region S(2)(Dmax) (that
is, in the case M = 2) is derived in the following by
considering the class of dominant systems Ω̄(2) and building
on the analysis in [4]. In particular, we focus on systems Ω̄(2)1
and Ω̄(2)2 according to (5), with V = {1} and V = {2},
respectively. Considering the dominant system Ω̄(2)1 , it follows
from Loynes’ theorem [8] that stability of the secondary queue
QS,2(t) is guaranteed if [4]:

λS,2 < μ̄1S,2 = θ2(1− θ1)η̄. (10)

The equation above simply states that a sufficient condition
for the stability of queue QS,2(t) in the considered dominant
system Ω̄(2)1 is that its average arrival rate λS,2 is smaller than
its average departure rate μ̄1S,2, obtained as the product of
the probability θ2 that the secondary queue QS,2(t) attempts
transmission in an idle time-slot, the probability (1 − θ1)
that the secondary queue QS,1(t) does not transmit and the
probability η̄ that the primary queue QP(t) is empty (9).
Similarly, the secondary user S1 has an average departure rate
equal to θ1η̄ if queue QS,2(t) is empty or equal to θ1(1−θ2)η̄
if queue QS,2(t) is non-empty, so that the condition

λS,1 <

Ã
θ1

Ã
1− λS,2

μ̄1S,2

!
+ θ1(1− θ2)

λS,2
μ̄1S,2

!
η̄ (11)

guarantees stability of queue QS,2(t). To sum up, from consid-
eration of the dominant system Ω̄(2)1 , the conditions (10) and
(11) provide an inner bound on the stability region S̃(2)(p).
Moreover, following the same approach for the dominant sys-
tem Ω̄(2)2 , we obtain further sufficient conditions for stability:(

λS,1 < μ̄2S,1 = θ1(1− θ2)η̄

λS,2 <
³
θ2

³
1− λS,1

μ̄2S,1

´
+ θ2(1− θ1)

λS,1
μ̄2S,1

´
η̄

(12)

In conclusion, an inner bound on the stability region S̃(2)(p)
is defined by considering at the same time equations (10), (11),
(12), and an inner bound on the stability region S(2)(Dmax)
is then obtained from (4). Each point on the boundary of the
inner bound to stability region S(2)(Dmax) can be obtained by
solving the following optimization problem: fixed λS,1 = λ̄S,1,
maximize λS,2 (or viceversa) with respect to the transmission
probabilities p under the constraint (6).

C. Inner bounds on S(M)(Dmax)

In this section, we consider the case M > 2. From the
same considerations of the dominant systems (5), following a
similar approach as in the previous section, we can find that
the region S(M)(p) of the arrival rates guaranteeing stability
of the secondary queues given a choice of the transmission
probabilities p is inner-bounded by the following conditions
(see Appendix for details):

λS,i <
θi

(1− θi)
max

1≤k≤M

⎡⎣η̄Y
j 6=k
(1− θj)− λS,k

⎤⎦ , for i ∈M.

(13)
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Fig. 2. Inner bounds (solid lines) on the stability region S(2)(Dmax)
for different values of the maximum allowed delay Dmax for the primary
transmissions. The outer bound (obtained from [4]) is also shown in dashed
line (λP = 0.2, Pd,1 = 0.8, Pd,2 = 0.8, Pfa,1 = 0.02, Pfa,2 = 0.02).

Finally, the inner bound on the stability region S(M)(Dmax)
can be found as (4).

IV. NUMERICAL RESULTS

In order to get insight into the performance of the system,
we first focus on a system with M = 2 secondary users.
Fig. 2 shows the obtained inner bounds on the stability
region S(2)(Dmax) defined as (4) for different values of the
maximum primary average delay Dmax specified by the QoS
constraints. System parameters are selected as follows: λP =
0.2, Pd,1 = 0.8, Pd,2 = 0.8, Pfa,1 = 0.02, Pfa,2 = 0.02.
As a reference, the outer bound corresponding to the case of
absence of primary user discussed in Sec. III is also shown.
The inner bounds suggest that QoS delay constraint Dmax has
a significant impact on the achievable secondary rates region
S(2)(Dmax).

In order to validate the inner bound on S(2)(Dmax) derived
in this paper, fig. 3 shows a numerical estimation of the
quantity limt→+∞ Pr[QS,1(t) = 0] versus the average arrival
rate λS,1 for the original system Ω(M) where the vector
of the probabilities of transmission p is selected so as to
guarantee that queue QS,2(t) is stable and that the primary
delay constraint (6) is satisfied 1. We recall that, from (1),
limt→+∞ Pr[QS,1(t) = 0] is a measure of stability. The other
system parameters are the same as in fig. 2, with Dmax = 1.3.
As a reference, fig. 3 also shows the quantity λ̄S,1 which
is the maximum stable value of λS,1 according to our inner

1Given a choice for (λS,1, λS,2), we estimate this probability by: (i) fixing
vector p; (ii) evaluating via Monte Carlo simulations the average of the
quantity (1/(N − K)) N

t=K 1[QS,1(t) = 0] (where 1 is the indicator
function) and the average primary delay D

(M)
P (p); (iii) repeating (i) and

(ii) to search the probability simplex of p; (iv) selecting the maximum
value of considered quantity under the condition that the corresponding
D
(M)
P (p) ≤ Dmax (here we have selected N = 104 and K = N/2).
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Fig. 3. Numerical estimation of the quantity limt→+∞ Pr[QS,1(t) = 0]
versus the average arrival rate λS,1 for the original system Ω(M) where the
vector of the probabilities of transmission p is selected so as to guarantee
that queue QS,2(t) is stable and that the primary delay constraint (6) is
satisfied. As a reference, the figure also shows the quantity λ̄S,1 (maximum
stable value of λS,1 according to our inner bound) in dashed line (system
parameters selected as in fig. 2, with Dmax = 1.3).

bound. As it is clear from fig. 2, outer bounds are far away
and, for the sake of intelligibility of the graph, not shown.
As we can see, the estimated asymptotic probability of an
empty queue is always greater than zero for λS,1 < λ̄S,1 and
tends to vanish as λS,1 is larger than λ̄S,1. By recalling the
definition of queue stability given in (1), these results suggest
that stability of queue QS,1(t) is guaranteed if λS,1 is smaller
than λ̄S,1, whereas for λS,1 slightly larger than the bound λ̄S,1
the secondary queue tends to instability. This lends evidence to
the fact that the derived inner bounds on S(2)(Dmax) provide
a tight approximation of the real stability region of the system.

We now consider a scenario with M = 3 secondary
users. Fig. 4 shows the inner bound on the stability region
S(3)(Dmax) for selected values of λS,3, given the following
choice for the system and channel parameters: λP = 0.2,
Pd,1 = 0.8, Pd,2 = 0.8, Pd,3 = 0.8, Pfa,1 = 0.02, Pfa,2 =
0.02, Pfa,3 = 0.02, Dmax = 1.6. The figure highlights the
trade-off among the rates achievable by the secondary nodes.

V. CONCLUSIONS

In this paper, the considered cognitive scenario is composed
of one primary licensed node and M secondary unlicensed
nodes coexisting on the same spectral resource and operating
over a collision channel. Inner and outer bounds on the
stability region of the average arrival rates at the secondary
nodes under constraints of maximum delay for the primary
packets have been derived. Numerical simulations have shown
that the found inner bounds represent a tight approximation of
the real stability region.
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VI. APPENDIX: DERIVATION OF (13)
Here we derive the inner bounds on the region S̃(M)(p) for

M > 2 stated in (13). Towards this end, we extract from the
class Ω̄(M) the system Ω̄(M)

K so that, with reference to relation
(5), V = {K ≤ i ≤M}. Our goal is to find a sufficient
condition for the stability of the dominant system Ω̄(M)

K , which
will also be sufficient for the stability of the original system
Ω(M). In particular, following a similar discussion as in [7],
according to Loynes’ theorem, the mth secondary node is
stable in the dominant system Ω̄(M)

K if:

λS,m < θmη̄P
(K)
E

Y
j 6=m

K≤j≤M

(1− θj), (14)

where P
(K)
E is defined as the probability that the first K − 1

secondary users do not transmit in a given idle time-slot and
reads:

P
(K)
E = Pr[QS,1(t) = 0] Pr[queues from 2 to

K − 1 do not transmit | QS,1(t) = 0] + Pr[QS,1(t) 6= 0]
×Pr[queues from 1 to K − 1 do not transmit | QS,1(t) 6= 0]
and the term (1 − θj), for j such that K ≤ j ≤ M , is the
probability that the secondary queue QS,j(t) does not transmit
given that it is not empty, which is an under-estimation of
the overall (non conditional) non-transmission probability of
queue QS,j(t). A lower bound on P

(K)
E can be found as:

P
(K)
E ≥ Pr[QS,1(t) = 0]

K−1Y
j=2

(1− θj) + Pr[QS,1(t) 6= 0]

×
K−1Y
j=1

(1− θj), (15)

since Pr[queues from 2 to K − 1 do not transmit | QS,1(t) =
0] ≥ QK−1

j=2 (1 − θj) and Pr[queues from 1 to K − 1 do not

transmit |QS,1(t) 6= 0] ≥
QK−1

j=1 (1−θj). Moreover, by Little’s
theorem, we have that Pr[QS,1(t) = 0] = 1−λS,1/μ̄S,1, where
μ̄S,1 is the average service rate of the secondary node S1 and
satisfies the following inequality:

μ̄S,1 ≥ θ1η̄
MY
j=2

(1− θj), (16)

Using (16), we can consequently rewrite (15) as:

P
(K)
E ≥

K−1Y
j=2

(1− θj)− λS,1

η̄
MQ
j=K

(1− θj)

(17)

By using (17), a sufficient condition for the secondary queue
QS,m(t) in system Ω̄(M)

K to be stable is:

λS,m <
θm

(1− θm)

⎛⎝η̄
Y
j 6=1
(1− θj)− λS,1

⎞⎠ (18)

Without loss of generality, we assume that:

η̄
Y
j 6=1
(1− θj)− λS,1 = max

1≤k≤M

⎡⎣η̄Y
j 6=k
(1− θj)− λS,k

⎤⎦ (19)

Therefore, by exploiting the stochastic dominance of the
considered system Ω̄

(M)
K on the original system Ω(M), with

a similar discussion as in [7], we obtain that, given the
probabilities of transmission p and the system parameters
[λP, {Pd,i}i∈M , {Pfa,i}i∈M], the secondary queues in system
Ω(M) are stable if condition (13) is satisfied.
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