
On the Optimal Number of Hops in Linear Wireless
Ad Hoc Networks with Hybrid ARQ

Igor Stanojev, Osvaldo Simeone and Yeheskel Bar-Ness
Center for Wireless Communications and Signal Processing

New Jersey Institute of Technology, Newark, New Jersey 07102-1982, USA
e-mail: {iss2, osvaldo.simeone, yeheskel.barness}@njit.edu

Abstract�In this paper, we study the optimal design of a
linear wireless multihop network that employs Hybrid Automatic
Repeat reQuest (HARQ) protocols in a quasi-static fading envi-
ronment. Data transmission is assumed to be delay-tolerant up to
a certain prede�ned maximum delay (in transmission slots) that
is larger or equal to the number of hops. Multihop routing is
implemented through a time-division scheduling and decode-and-
forward relaying. Excess time is exploited for retransmissions
using either HARQ Type I or Chase Combining protocols on
the hops that result in link-outage. Relying on analysis and
numerical optimization, we seek answer to the following question:
given the maximum allowed delay and signal-to-noise ratio, what
is the optimal number of hops that maximizes the end-to-end
throughput?

I. INTRODUCTION

Characterized by low-powered single-antena terminals and
often lacking any supporting infrastructure, ad-hoc networks
typically operate in the low signal-to-noise ratio (SNR) regime
and, in general, need to rely on cooperation between terminals
in order to cover broader regions [1]. The simplest cooperative
transmission approach is multihopping, whereby a packet is
sequentially routed from source to destination through a series
of hops. For a given source-destination pair, the optimal
topology for a multihop network generally corresponds to a
linear network, wherein the terminals are equidistantly placed
on the line between source and destination. This network,
although rarely encountered in practice and considered to be
rather optimistic, allows for tractable analysis and for the
establishment of important insights into the performance of
general multihop networks [2].
Multihop transmission for a linear ad-hoc network was

investigated in [2], where it was demonstrated that multihop,
both with or without spatial reuse1, is advantageous (in terms
of power ef�ciency) in the low-SNR regime, thanks to power
gains or low interference (compared to the noise level), but
fails for large values of SNR, due to interference limitations
or throughput reduction (as a consequence of multiple trans-
missions). Approximate analytical solution for the optimal
number of hops in such a network, but without spatial reuse,
is given in [3] by the same authors. The analysis of [2]
and [3] is limited to Gaussian (unfaded) channels. In [4],

1Spatial reuse refers to a multihop scheme whereby the terminals are al-
lowed to transmit simultaneously, so as to increase the end-to-end throughput.
For a network with terminals operating in a half duplex regime, neighboring
terminals are not allowed to transmit at the same time.

a linear multihop network with no spatial reuse is analyzed
under a quasi-static fading assumption: an upper bound on
the probability of outage is found and exploited, along with
the result of [3], to determine the optimal number of hops.
Finally, in [5], the authors discuss the impact of various
classes of per-hop memoryless retransmission protocols on
linear multihop network performance. Namely, the main goal
of [5] is to determine the statistics of the overall number of
per-hop transmissions in the system, based on a Gilbert-Elliot
model for the wireless channels.
In this work, we adopt the same model of a linear multihop

network as in [2]-[4]. Speci�cally, we consider quasi-static
fading without spatial reuse, as in [4], and extend the analy-
sis therein by including Hybrid Automatic Repeat reQuest
(HARQ) retransmission protocols. We note that, with respect
to [5], our setting differs in terms of a wireless channel model
(quasi-static Rayleigh instead of Gilbert-Elliot of [5]); more
importantly, unlike [5], here we focus on the problem of
optimal network design along the lines of [2]-[4]. In particular,
we seek answer to the following question: for a linear network
with a given maximum tolerated delay, what is the optimal
number of hops (i.e., relays) that achieves the maximum
end-to-end throughput? Analytical framework is provided for
setting of the optimization problem, while the problem itself
is solved using numerical methods. Two HARQ protocols are
considered, namely HARQ Type I (HARQ-TI) protocol, that
prescribes memoryless detection (i.e., erroneous packets are
discarded at the receivers), and Chase Combining protocol
(HARQ-CC), whereby erroneous packets at the destination
are preserved for soft combing with the currently received
packet. It is interesting to notice that the results obtained
in this work qualitatively con�rm the main conclusions of
[2]-[4] (e.g., relative multihop gain in low- and high-SNR
regimes), notwithstanding the differences in the underlying
models, namely, the use of HARQ protocols in this paper to
cope with quasi-static fading channels.

II. SYSTEM ANALYSIS
A. System Model
Consider a linear k�hop wireless network, consisting of

the source N1, destination Nk+1 and k � 1 relays, N2; ::;Nk,
equidistantly placed on the line connecting N1 and Nk+1, as
depicted in �g. 1. The nodes operate in half-duplex, and only
one node can transmit at a given slot, i.e., no spatial reuse
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Fig. 1. Linear wireless k�hop network.

is allowed. Thus, a packet originating from the source and
intended for the destination is routed through each of the k
hops in a separate time-slot and the successful transmission
requires at least k time-slots. Furthermore, the overall delay
tolerated by the network, measured in transmission slots, is
L � k. The additional L � k transmissions slots are used (if
necessary) for retransmissions via HARQ-TI or HARQ-CC
protocols on the hops that failed to support successful packet
delivery. The channel gains h(t)i , where i is the number of
the hop and t is the number of the retransmission attempt
(including the original transmission, t = 1) on that hop, are
modelled as independent proper complex Gaussian random
variables with unit power. That is, the model assumes Rayleigh
block-fading, whereby the channel gain is constant during
a slot but changes independently with each slot. All nodes
transmit with equal power, and the signal-to-noise ratio of the
single-hop system (k = 1) is SNR. Denoting the path-loss
exponent as �, the signal-to-noise ratio on any of the hops of
a k-hop network is then SNRk =SNR�k�.

B. Analysis

As stated earlier, our goal is to determine the optimal num-
ber of hops k; given the maximum delay L and SNR. As the
performance criterion, we employ the end-to-end throughput,
de�ned as the average number of successfully transmitted bits
per slot. This section is largely dedicated to the derivation of
the throughput and its relation to parameters k, L and SNR.
Once this relation is established, we discuss the problem of
solving for optimal k; i.e., kopt(L;SNR), in Sec. II-C.
Using renewal theory, the overall throughput R can be

shown to be (irrespective of the employed HARQ protocol)
[6]:

R =
r (1� Pout (L))

�l
; (1)

where r is the rate (in bit=s=Hz) of the original transmission
(transmission rate); Pout(L) is the probability of outage after
L slots, i.e., the probability that after L slots the destination
node Nk+1 still did not successfully decode the packet; and
�l is the average number of slots per packet used for end-to-
end transmission, k � �l � L. It is noted that a packet is
dropped (i.e., outage event occurs) if the maximum number
of retransmissions L is reached and the packet is still not
correctly decoded.

The average number of slots �l in (1) can be written as

�l = k +
LX
l=k

(l � k) [Pout (l � 1)� Pout (l)]

+(L� k)Pout(L)

= k +
L�1X
l=k

Pout(l); (2)

where we exploited the fact that Pout(l � 1)� Pout(l) is the
probability of the successful end-to-end transmission achieved
after exactly l slots [6]. Using the previous equation, the end-
to-end throughput R in (1) can be conveniently expanded as:

R = r
1� Pout (L)

k +
PL�1

l=k Pout(l)
: (3)

In order to derive the probability of outage after l transmis-
sion slots, Pout(l), we �rst de�ne pS(ai) as the probability
that the ith hop delivers successfully a packet from the node
Ni to the node Ni+1 after exactly ai � 1 (integer) slots.
Denoting

P
Aj
(�) as the summation over all the tuples in

the set Aj = f(a1; ::; ak) j ai 2 N , a1 + ::+ ak = jg, thenP
Aj

Qk
i=1 pS(ai) is the probability of successful end-to-end

transmission after a total delay of exactly j slots. Furthermore,
since the outage after l transmission slots excludes all events
that would lead to successful transmission within l slots (i.e.,
j = k; ::; l), the probability of outage Pout(l) can be written
as:

Pout(l) = 1�
lX

j=k

X
Aj

kY
i=1

pS(ai): (4)

Furthermore, the probability pS(ai) can also be expressed in
terms of the probability of unsuccessful transmission in the
ith hop after ai slots, pe(ai) [6]:

pS(ai) = pe(ai � 1)� pe(ai): (5)

Notice that, in order to calculate the throughput R in
(3), according to (4) and (5), it suf�ces to calculate the
probability of unsuccessful transmission in the ith hop after ai
transmission slots, pe(ai), which depends on employed HARQ
protocols. Applying the information-theoretic setting as in,
e.g., [6], the event of unsuccessful per-hop transmission after
ai transmission slots is de�ned as the event wherein the rate
achievable after ai transmissions on the ith hop is smaller than
the transmission rate r. The following two subsections, Sec. II-
B.1 and Sec. II-B.2, are dedicated to the throughput derivation
for HARQ-TI and HARQ-CC protocols, respectively.
1) HARQ-TI: Since the HARQ-TI protocol is memoryless,

i.e., the erroneously received packets are dropped, the proba-
bility pe(ai) for HARQ-TI can be written as:

pe;TI(ai) = Pr

�
r > max

t=1;::;ai
log2

�
1 +

���h(t)i ���2 SNRk��
= Pr

�
max

t=1;::;ai

���h(t)i ���2 < 2r � 1
SNRk

�
= Pr

����h(t)i ���2 < 2r � 1
SNRk

�ai
: (6)



Notice that in (6) we assumed that the terminals are using
capacity-achieving Gaussian codebooks. Recalling that h(t)i is
a complex Gaussian random variable, it follows that jh(t)i j2
is an exponentially distributed random variable, and, �nally,
pe;TI(ai) becomes:

pe;TI(ai) =
�
1� e��(r;k;SNR)

�ai
; (7)

where
�(r; k;SNR) =

2r � 1
2SNR � k� : (8)

In the following, we drop the dependence of � on r; k and
SNR, for notation convenience.
Applying (7) to (5), we �nd

pS;TI(ai) = e
�� �1� e���ai�1 : (9)

Then, using (4), we have that the probability of outage after l
slots, Pout(l), reads:

Pout;TI(l) = 1�
lX

j=k

X
Aj

Yk

i=1
pS;TI(ai) (10)

= 1�
lX

j=k

X
Aj

e�k�
�
1� e��

�j�k
;

where we used the fact that, for the set Aj ,
Pk

i=1 ai = j.
Furthermore, as shown in the Appendix, the cardinality of set
Aj is �j = jAj j =

�
j�1
k�1
�
. Then, (10) can be further simpli�ed

as

Pout;TI(l) = 1�
lX

j=k

�je
�k� �1� e���j�k

= 1� e�k�
l�kX
j=0

�j+k
�
1� e��

�j
: (11)

With (11), the denominator of (3), i.e., the average number of
exploited transmission slots per packet �l (2), for the HARQ-TI
protocol, is easily shown to be:

�lTI = k +
L�1X
l=k

Pout(l) (12)

= L� e�k�
L�1X
l=k

l�kX
j=0

�j+k
�
1� e��

�j
= L� e�k�

L�k�1X
l=0

�l+k(L� k � l)
�
1� e��

�l
:

Finally, applying (11) and (12) to (3), the throughput for
HARQ-TI protocol reads:

RTI = r

e�k�
L�kP
l=0

�l+k(1� e��)l

L� e�k�
L�k�1P
l=0

�l+k(L� l � k)(1� e��)l
: (13)

2) HARQ-CC: For HARQ-CC protocol, the previously
received erroneous packets are preserved and soft-combined
at the receiver with the currently received packet, and the
probability pe(ai) for HARQ-CC protocol reads:

pe;CC(ai) = Pr

(
r > log2

 
1 +

aiX
t=1

���h(t)i ���2 SNRk
!)

= Pr

(
aiX
t=1

���h(t)i ���2 < 2r � 1
SNRk

)
= F (2�; 2ai); (14)

where F (x; �) is a cumulative distribution function of a chi-
square random variable taken at value x with � degrees of
freedom, and � was de�ned in (8). Notice that in (14) we
exploited the fact that

Pai
t=1 jh

(t)
i j2 is a chi-square random

variable with 2ai degrees of freedom. Recalling that ai is an
integer, the probability pe;CC(ai) can also be written as [7]:

pe;CC(ai) = F (2�; 2ai) =
(ai; �)

�(ai)

= 1� e��
ai�1X
j=0

�j

j!
; (15)

where we exploited the fact that for an integer index ai, the in-
complete and the ordinary Gamma functions are conveniently
expressed as (ai; �) = (ai � 1)!

�
1� e��

Pai�1
j=0

�j

j!

�
and

�(ai) = (ai � 1)!, respectively.
Using (15) in (5), we �nd:

pS;CC(ai) = e
�� �ai�1

(ai � 1)!
: (16)

Then, using (4), we have:

Pout;CC(l) = 1�
lX

j=k

X
Aj

Yk

i=1
pS;CC(ai)

= 1�
lX

j=k

X
Aj

e�k�
�j�kQk

i=1(ai � 1)!

= 1� e�k�
l�kX
j=0

�j+k�
j ; (17)

where �l =
P

Aj

Qk
i=1

1
(ai�1)! . Furthermore, (17) can be

exploited to determine the denominator of (3), i.e., the average
number of slots per packet, �l (2), for the HARQ-CC protocol:

�lCC = k +
L�1X
l=k

Pout;CC(l) (18)

= L� e�k�
L�1X
l=k

l�kX
j=0

�j+k�
j

= L� e�k�
L�k�1X
l=0

�l+k(L� k � l)�l:



Applying (17) and (18) to (3), the throughput R for HARQ-
CC protocol �nally reads:

RCC = r

e�k�
L�kP
l=0

�l+k�
l

L� e�k�
L�k�1P
l=0

�l+k(L� l � k)�l
: (19)

C. Discussion on System Design
As discussed in [6], [8]-[9], in order for HARQ protocols

to reach their full potential, an optimal choice of the rate r
(i.e., transmission rate) for the given SNR, is mandatory. This
is even more relevant for multihop systems that can exploit
the increase in per-hop signal-to-noise ratio (SNRk =SNR�k�)
by increasing their transmission rate so as to compensate for
the throughput reduction due to the k transmissions and the
absence of spatial reuse. The optimization of rate R in (13)
and (19) over transmission rate r can be stated as:

ropt(k; L;SNR) = argmax
r�0

R(r; k; L;SNR): (20)

The solution to this problem demands, to the best of our
knowledge, numerical methods for global optimization; for-
tunately, (20) is a one-dimensional problem and, therefore,
relatively easily solved. Interested reader is referred to [6], [8]-
[9], wherein the authors present the analysis for the optimal
rate r in single-hop networks using the HARQ protocols, under
different assumptions and optimization goals.
Having obtained ropt (20), the following and �nal step of

our optimization process is to determine the optimal number
of hops (relays),

kopt = arg max
k=1;2;::L

R(ropt(k; L;SNR); k; L; SNR): (21)

The problem (21) belongs to the integer programming class.
We note, however, that one can approach it using an exhaustive
search over k 2 f1; 2; ::; Lg. Namely, since the maximum
delay L is, in practice, rarely expected to be large, a brute force
optimization (21) would in general be acceptable in terms of
memory and processing demands.

III. NUMERICAL EXAMPLES
As explained in the previous section, the optimization

process exempli�ed by (20)-(21) is hardly tractable analyti-
cally. In order to get a further insight into the system behavior
and understand the properties of optimal design, we resort in
this section to numerical results.
Fig. 2 aims at illustrating the optimization problem (20) by

presenting the throughput R versus the transmission rate r,
for a �xed delay L = 14, 1 � k � 12, SNR = �10 dB and
(as used throughout this section, unless explicitly mentioned
otherwise) � = 3 and HARQ-CC protocol (19). It can be seen
from this �gure that, for given k, L and SNR, the throughput
R has a quasi-concave shape as a function of rate r and a
global maximum. In particular, as it also follows from (3),
the throughput (for a given k) increases with the transmission
rate r, but only up to a point (given by ropt (20)) when the
negative impact on the probability of outage Pout(l) becomes
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Fig. 2. HARQ-CC: Throughput R versus transmission rate r and number
of hops k, for the delay L = 14 and SNR = �10 dB.

dominant. Furthermore, note that the optimal transmission rate
ropt increases with an increase of the number of hops, due to
the enlargement of effective SNR per hop, SNRk.
Having obtained ropt in (20), the next step is the optimiza-

tion over the number of hops (21). Fig. 2 already depicts one
important property of this step: the optimized throughput (i.e.,
the throughput maximized over r) increases with k (i.e., with
SNRk) up to a point, given by kopt, when the number of
hops becomes a limiting factor for the throughput. To further
shed light on properties of (21), �g. 3 shows the system
throughput versus SNR for �xed L = 4, 1 � k � 3 and
optimized transmission rate ropt. In fact, a larger number of
hops is mostly preferable in the low-SNR region, where the
bene�t of the effective SNR increase of k� times is particularly
important2. However, performance of multihop schemes for
larger SNR falls behind the single-hop scheme, as the rate
becomes limited by the number of hops, and the retransmission
protocols become preferable. Notice that these conclusions
(obtained through numerical results) are similar to the results
in [2], based on a Gaussian (unfaded) model.
Based on �g. 3, �g. 4 aims at concluding our discussion

on the optimization (21), by determining the optimal number
of hops kopt, for a given delay L and SNR. It shows that, as
the SNR decreases, the system tends to increase the number
of hops and, for extremely low SNR, the maximum delay
is fully exploited for multihopping, limSNR!0 kopt = L3.
Furthermore, note that for any SNR value (visible for SNR>
�30 dB in �g:4), there exists an upper limit on the optimal
number of relays that can improve the system performance,
even if an in�nite delay is allowed.

2It is also obvious that the larger values of propagation-loss exponent �
would exercise a positive in�uence on multihop scheme.
3Notice that the delay values (i.e., L) in �g. 4 are extremely large and rarely

encountered in practice. However, while the results would not be qualitatively
altered for lower values of L, the choice of L in �g. 4 is convenient for
description of delay-unconstrained system.
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Figures 2-4 described the optimization process and the
properties of optimal parameters ropt and kopt. The throughput
of optimally designed system, i.e., the system employing
ropt and kopt, is shown in �g. 5, as a function of SNR
and delay (L = 4; 12). For comparison, �g. 5 also shows
the "pure" HARQ-CC (single-hop) and "pure" multihop (no
retransmissions) schemes employing L = 4; 12 and k = 4; 12
slots, respectively, and a single hop system with no delay
(L = 1). The �gure con�rms that the "pure" HARQ-CC and
"pure" multihop schemes perform poorly in low and high-SNR
region, respectively; however, by exploiting both approaches
(multihop-HARQ), the system throughput will increase for a
broad SNR region.
Finally, �g. 6 compares the throughput of optimized

schemes employing the multihopping with HARQ-TI and
HARQ-CC protocols. As expected, the scheme employing
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the memoryless HARQ-TI is outperformed by the scheme
exploiting the HARQ-CC protocol. Notice that the difference
between two schemes is relatively constant over a broad SNR
region. This behavior is quite different than the behavior of
"pure" HARQ schemes, wherein the difference between the
two protocols is more emphasized in region where SNR is low.
Namely, as the SNR decreases, the (optimized) network relies
heavily on the multiple hops, rather than on retransmissions,
and the memory of HARQ-CC protocol cannot achieve the full
advantage. Optimization of the transmission rate r in�uences
the system in a similar manner, as it prevents a need for a large
number of retransmissions, which again reduces the advantage
of HARQ-CC protocol.

IV. CONCLUSIONS
In this work, we investigated the optimal linear network de-

sign, i.e., the number of employed hops/relays that maximizes



end-to-end throughput, for a delay-tolerant (up to a given max-
imum delay) system employing both multihop and HARQ-
TI/CC protocols. It was determined by numerical examples
that an optimally designed system exploits the delay primarily
through multihopping and HARQ protocols in low and high-
SNR region, respectively; the relatively good performance of
multihop in low-SNR region (and its relatively poor perfor-
mance in high-SNR region) con�rms the analytical results
of [3], that were limited to Gaussian (unfaded) channels.
Furthermore, we also observed that for relatively large values
of SNR, even if in�nite delay is allowed, there is an upper limit
on the optimal number of relays that would result in further
throughput increase. Finally, the results showed that the system
employing both multihop and HARQ, if optimally designed,
signi�cantly bene�ts from the allowed delay, as compared to
the systems employing only multihop or HARQ protocols.

APPENDIX
CARDINALITY OF SET Aj

Recall that the set Aj is de�ned as

Aj = f(a1; ::; ak) j ai = 1; 2; ::; a1 + ::+ ak = jg : (22)

The cardinality of such a set is equal to the number of solutions
(a1; ::; ak) of the following equality:

a1 + :::+ ak = j; (23)

where a1; ::; ak are positive integers. Notice that this problem
is equivalent to placing k � 1 objects of one type between
j sequentially placed objects of another type. The number of
solutions of such a problem and, therefore, the cardinality of
set Aj , is then

jAj j =
�
j � 1
k � 1

�
: (24)
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