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Abstract— A linear mesh network is considered in which
a single user per cell communicates to a local base station
via a dedicated relay (two-hop communication). Exploiting
the possibly relevant inter-cell channel gains, rate splitting
with successive cancellation in both hops is investigated as
a promising solution to improve the rate of basic single-
rate communications. Then, an alternative solution is proposed
that attempts to improve the performance of the second hop
(from the relays to base stations) by cooperative transmission
among the relay stations. The cooperative scheme leverages the
common information obtained by the relays as a by-product
of the use of rate splitting in the first hop. Numerical results
bring insight into the conditions (network topology and power
constraints) under which rate splitting, with possible relay
cooperation, is beneficial. Multi-cell processing (joint decoding
at the base stations) is also considered for reference.

I. INTRODUCTION

Wireless mesh networks are currently being investigated
for their potential to resolve the performance limitations of
both infrastructure (cellular) and multi-hop (ad hoc) networks
in terms of quality-of-service and coverage [1]. Basically,
mesh networks prescribe the combination of communication
via direct transmission to infrastructure nodes (base stations)
and via multi-hop transmission through intermediate nodes
(relay stations). The latter can generally be mobile terminals,
or fixed stations appropriately located by the service provider.
The assessment of the performance of such networks is
an open problem that has attracted interest from different
communities and fields, especially information-theory [2]
[3] and networking [4]. Recently, there has also been con-
siderable interest in further enhancing the performance of
infrastructure or mesh networks by endowing the system with
a central processor able to pool the received signals by the
base stations and perform joint processing (this scenario is
usually referred to as distributed antennas systems or multi-
cell processing) [5].

In this paper, we focus on a linear mesh network as
sketched in Fig. 1. It is assumed that one mobile terminal
(MT) is active in each cell in a given time-frequency resource
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Fig. 1. A linear two-hop mesh network.

(as for intra-cell TDMA or FDMA) and that each active MT
communicates with the same-cell base station (BS) via a
dedicated relay station (RS) (two-hop transmission). In order
to allow meaningful analysis and insight, this scenario is
modelled as illustrated in Fig. 2, where symmetry is assumed
in the channel gains, i.e., every cell is characterized by
identical intra- and inter-cell propagation conditions. This
framework follows the approach of [6] (see also [5]), which
extends the model of [7] to mesh networks.

The basic premise of this work is that the model in Fig. 2
can be seen as the cascade of two interference channels,
one for each hop, with many sources and corresponding
receivers (border effects are neglected). Therefore, from the
literature on interference channels, a promising approach is
that of employing rate splitting with successive interference
cancellation at the receivers [10] [11]. It is recalled that
the rationale of rate splitting is that joint decoding of (at
least part of) the transmitted signals at the receivers has
the potential to improve the achievable rates with respect to
single-user decoders that treat signals other than the intended
as noise. The main contributions of this work concerning the
analysis of a mesh network modelled as in Fig. 2 are:
• derivation of the performance of rate splitting applied to

both hops with decode-and-forward relaying (Sec. III);
• proposal of a cooperative transmission scheme for the

RSs that leverages the common information obtained by
the relays as a by-product of the use of rate splitting in
the first hop (Sec. IV);

• analysis of the cooperative transmission scheme above
in the presence of multi-cell processing (Sec. IV); and

• performance evaluation of rate splitting, with possible
relay cooperation in the second hop, via numerical
simulations; comparison with the reference cases of
single-rate transmission and multi-cell processing is
provided as well (Sec. V).



Related work was recently reported in [6] [8] [9], where a
cellular model similar to the one in Fig. 2 was addressed un-
der the assumption of amplify-and-forward [6] [8] or decode-
and-forward (DF) relaying [9] with single-rate transmission.

II. SYSTEM MODEL

We study the abstraction of the two-hop mesh network of
Fig. 1 as sketched in Fig. 2. Cells are arranged in a linear
fashion, one user transmitting on a given time-frequency
resource in each cell. Moreover, we focus on non-faded
Gaussian channels and assume homogeneous conditions for
the channel power gains so that the intra-cell MS-to-RS (first
hop) and RS-to-BS (second hop) power gains are β2 and γ2,
respectively, for all cells, and, similarly, the inter-cell power
gains between adjacent cells are α2 ≤ β2 and η2 ≤ γ2

for first and second hop, respectively. Notice that as in [7]
each cell receives signals only from adjacent cells. Moreover,
here there exist no direct paths between MTs and BSs and
no relevant inter-channels between RSs in adjacent cells.
Because of the latter assumptions, we can deal with either
full duplex or half duplex transmission at the relays with
minor modifications, as explained below. Considering, for
simplicity of exposition, full-duplex transmission (by means
of perfect echo-cancellation), the signal received at each time
by the mth RS (first hop) can be written as

Y 0
m = βXm + α(Xm−1 +Xm+1) +Nm, (1)

where β and α are the (real) channel gains, and we assume
the symbols transmitted by the MTs, Xm, to be drawn from
a circularly symmetric complex Gaussian distribution with
power E[|Xm|2] = P1. Moreover, the additive noise Nm is
complex Gaussian with E[|Nm|2] = 1. Similarly, the signal
received by the mth BS is

Ym = γZm + η(Zm−1 + Zm+1) +Mm, (2)

where the symbols transmitted by the RSs satisfy
E[|Zm|2] = P2 and the additive Gaussian noise is such that
E[|Mm|2] = 1.

By symmetry, we are interested in evaluating the common
rate achievable by all of the MTs over the network described
by Fig. 2 and equations (1)-(2). In order to simplify the
treatment, we will assume that the number of cells is large
enough in order to neglect border effects (see [5] for further
discussion on this point in the context of the cellular model
of [7]).

III. ACHIEVABLE RATE WITH RATE SPLITTING

As mentioned above, in this paper we focus for simplicity
of exposition on full-duplex RSs. Accordingly, we assume
a delayed block-by-block transmission strategy whereby the
information is transmitted through multiple blocks, and the
number of blocks is large enough so that we can neglect the
loss in spectral efficiency associated with the transmission of
first (MT to RS) and last (RS to BS) blocks. More specifi-
cally, in each block, the MTs communicate new information
to the RSs, and, at the same time, the RSs forward (after
decoding) the information received in the previous block to
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Fig. 2. A schematic model of the linear two-hop mesh network.

the BSs. The absence of a direct path between MTs and BSs
allows RSs and BSs to perform block-by-block decoding
without resorting to more complicated decoding strategies
[11]. Moreover, for the same reason, the full-duplex coding
schemes considered in this paper can be easily adapted to
half-duplex RSs by simply alternating transmission from MT
or RS in each block. In the case of half-duplex then, since the
MTs transmit new information only once every two blocks,
the corresponding achievable rates are easily seen to be just
half of the corresponding rates with full duplex derived here1.

In this section, we first review the basic reference case
of single-rate transmission (Sec. III-A) and then evaluate the
achievable rate with rate splitting in both hops (Sec. III-B
and III-C).

A. The reference case: single-rate transmission
As a preliminary example and reference case, consider

the following simple coding scheme based on DF relaying
(further analyzed in a more general framework in [9]).
In every block, each MT transmits to the same-cell RS
a Gaussian codeword taken from a rate-R codebook. The
RS decodes the message treating the signals from adjacent
cells as Gaussian interference (single-user decoding), and
forwards it in the next block to the same-cell BS, that finally
performs single-user decoding. The maximum achievable
rate per user of this scheme is easily shown to be

Ro = C

µ
min

µ
β2P1

1 + 2α2P1
,

γ2P2
1 + 2η2P2

¶¶
, (3)

where we have defined the function C(x) = log(1 + x)
and the two terms inside the inner parentheses correspond to
the signal-to-interference-plus-noise ratios (SINRs) at the RS
and BS, respectively. The performance of this scheme is poor
when the inter-cell interference, i.e., the value of parameters
α2 and η2, is large. In the next section, we attempt to alle-
viate this problem by leveraging on the idea of rate splitting
with Multiple Access Channel (MAC) decomposition, first
employed in [10] in the context of the conventional (2× 2)
interference channel (see also [11]).

1Strictly speaking, under average power constraint, the power used with
half-duplex by both sources and relays can be doubled with respect to the
full-duplex case.



B. Rate splitting for transmission to the RSs

In this section, we focus on the first hop, between MTs and
RSs, and propose a coding scheme based on the principle of
rate splitting for the interference channel [10]. Accordingly,
each MT transmits the sum of two random Gaussian code-
books,

Xm = Xp,m(Wp,m) +Xc,m(Wc,m): (4)

a private codebook Xp,m(·) encoding a message Wp,m

intended to be decoded only at the same-cell RS, and a
common codebook Xc,m(·) that carries a message Wc,m to
be decoded not only at the same-cell RS but also at the
two adjacent-cell RSs2. The rate of the private and common
codebooks are denoted as R1p and R1c, respectively (i.e.,
Wp,m ∈ {1, 2, ..., 2nR1p} and Wc,m ∈ {1, 2, ..., 2nR1c}),
whereas the corresponding powers are P1p = E[|Xp,m|2]
and P1c = [|Xc,m|2]. The total power per MT P1 is divided
among the two codebooks as P1 = P1p+P1c. Similarly, the
total rate transmitted by the user to the same-cell RS is given
by Rrs,1 = R1p +R1c. Notice that each RS is informed of
the private codebook used by the same-cell MT and of the
common codebooks employed by the same-cell MTs and the
two adjacent-cell MTs.

From (1) and (4), the signal received at each mth RS can
be written as (dropping the arguments of the codewords):

Y 0
m = β(Xp,m +Xc,m) + α(Xc,m−1 +Xc,m+1) +(5)

+Sm +Nm,

where

Sm = α(Xp,m−1 +Xp,m+1). (6)

Based on (5), we assume that each mth RS jointly decodes
four messages: the private message Wp,m and the common
message Wc,m of the same-cell MT, and the common
messages Wc,m−1 and Wc,m+1 of the two adjacent-cell
MTs. The private messages Wp,m−1 and Wp,m+1 of the two
adjacent-cell MTs are instead considered as the (Gaussian)
interference terms Sm (6) with power E[|Sm|2] = 2α2P1p.
The channel (5) seen at any mth RS is then a four-user MAC
with inputs Xp,m, Xc,m, Xc,m−1 and Xc,m+1 and equivalent
Gaussian noise with power 1+2α2P1p. Accordingly, for each
choice of the power allocation (P1p, P1c), the achievable rates
R1p and R1c are limited by the fifteen inequalities defining
the capacity region Rrs,1(P1p, P1c) of the Gaussian MAC at

2Notice that the definition of private and common messages here is
receiver-centric, whereas elsewhere (see, e.g., [22] [17] [18]) it refers to
the message availability at the transmitters (but see also Sec. IV-A).

hand [15], which are easily shown to boil down to:

R1p ≤ C

µ
β2P1p

1 + 2α2P1p

¶
, Rmax1p (P1p) (7a)

R1c ≤ min

½
1

2
C

µ
2α2P1c

1 + 2α2P1p

¶
, (7b)

1

3
C

µ
(2α2 + β2)P1c
1 + 2α2P1p

¶¾
, min{Rmax,11c (P1p, P1c), R

max,2
1c (P1p, P1c)}

R1p + 2R1c ≤ C

µ
β2P1p + 2α

2P1c
1 + 2α2P1p

¶
(7c)

, Rsum,11 (P1p, P1c)

R1p + 3R1c ≤ C

µ
β2P1p + (2α

2 + β2)P1c
1 + 2α2P1p

¶
(7d)

, Rsum,21 (P1p, P1c).

Notice that in writing the conditions (7) we have removed
dominated inequalities.

In order to obtain some insight into the properties of
the achievable rate region of private and common messages
Rrs,1(P1p, P1c) defined by inequalities (7), Fig. 3 shows the
region Rrs,1(P1p, P1c) for P1p = 1, P1c = 1, β2 = 1 and
different values of α2. According to the value of the inter-
cell parameter α2, the achievable region Rrs,1(P1p, P1c)
is a polyhedron with different corner points. Fig. 3 shows
three illustrative cases for small (α2 = 0.4 in the figure),
intermediate (α2 = 0.65) and moderate inter-cell factor α2
(α2 = 0.8)3. In all cases, vertex A has a simple interpretation
in terms of successive interference cancellation: in fact,
it can be achieved by first jointly decoding the common
messages (Wc,m, Wc,m−1 and Wc,m+1), treating the private
information as noise, then cancelling the decoded common
messages and finally decoding the same-cell private message
Wp,m. To show this, notice that, since in the first decoding
stage the channel seen by the three common messages at any
RS is a three-user MAC with noise power 1+(2α2+β2)P1p
(due to the interference from the primary messages), the
common rate at vertex A is given by min(R11c, R21c), with

R11c(P1p, P1c) =
1

2
C

µ
2α2P1c

1 + (2α2 + β2)P1p

¶
(8a)

R21c(P1p, P1c) =
1

3
C

µ
(2α2 + β2)P1c

1 + (2α2 + β2)P1p

¶
. (8b)

Our focus on vertex A in the achievable rate region
Rrs,1(P1p, P1c) is justified by the following fact. Given
the slope of the side of the polyhedron Rrs,1(P1p, P1c)
determined by conditions (7c)-(7d), it can be easily seen that
for each power allocation (P1p, P1c) vertex A corresponds to
the point where the rate on the first hop Rrs,1 = R1p+R1c

3Notice that an exact determination of the threshold values of α that lead
to different regions is conceptually simple but algebraically involved given
the characterization (7). Moreover, we remark that we avoided the use of
the term "strong interference" in this context in order to be consistent with
the conventional use of the term (see, e.g., [11]).



is maximum and reads

Rmaxrs,1 (P1p, P1c) = Rmax1p (P1p) + (9)
+min(R11c(P1p, P1c), R

2
1c(P1p, P1c)),

with definitions (7a) and (8). We remark the decoding order
that leads to vertex A (first common information, then pri-
vate), coupled with a specific power allocation, was recently
shown in [13] to attain every point in the capacity region
of the conventional interference channel to within one bit.
Finally, vertex points B and B0 also have similar interpreta-
tions in terms of successive interference cancellation. This is
further discussed in Appendix-A.

Remark 1 (very strong interference): Similarly to the case
of a conventional interference channel [12], it can be shown
that, if α2 is sufficiently larger than the direct channel β2
(thus contradicting our assumption that α2 ≤ β2), transmis-
sion of only common messages (P1p = 0 and P1c = P1)
is an optimal strategy that is able to achieve the single-user
upper bound to the achievable rate, Rrs,1 = log(1 + β2P1).
The exact condition on α2 is derived in Appendix-B.

C. Rate splitting in the second hop

With rate splitting in the first hop, each RS, say the mth,
decodes in each block the private message Wp,m and the
common message Wc,m of the same-cell MT, along with
the common messages of the adjacent cells Wc,m−1 and
Wc,m+1. The mth relay can then neglect the knowledge of
Wc,m−1 and Wc,m+1, and attempt to transmit to the mth
BS the two messages of the same-cell user Wp,m and Wc,m

by using rate splitting and interference cancellation exactly
as explained in the previous section for the first hop. Notice
that the total rate Rrs,1 = R1p + R1c, delivered to the RSs
by the MTs, can be now split into two streams, one private
and one common, in a generally different share with respect
to the first hop. In particular, the signal transmitted by the
mth RS is given by

Zm = Zp,m(Vp,m) + Zc,m(Vc,m), (10)

where Zp,m(·) corresponds to a Gaussian codebook of rate
R2p for the private message Vp,m (Vp,m ∈ {1, 2, ..., 2nR2p})
and Zc,m(·) is the R2c-rate code for the common message
Vc,m (Vc,m ∈ {1, 2, ..., 2nR2c}). The total rate achievable
on the second hop thus becomes Rrs,2 = R2p + R2c.
Moreover, the power allocation is P2 = P2p + P2c, where
P2p = E[|Zp,m|2] and P2c = E[|Zc,m|2]. Similarly to
the first hop, each BS is informed of the private codebook
used by the same-cell MT and of the common codebooks
employed by the same-cell MTs and the two adjacent-cell
MTs.

Following the previous section, we can define the rate
region Rrs,2(P2p, P2c) achievable in the second hop with
rate splitting for a given power allocation. This is easily
shown to be defined by inequalities (7), where subscript "2"
should be substituted for "1" and parameters (γ2, η2) should
be written in lieu of (β2, α2). Accordingly, the maximum rate
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achievable by successive interference cancellation where common messages
are decoded first followed by the same-cell private message.



in the second hop reads (recall (9))

Rmaxrs,2 (P2p, P2c) = Rmax2p (P2p) + (11)
+min(R12c(P2c, P2c), R

2
2c(P2p, P2c)),

where Rmax2p (P2p), R12c(P2c, P2c) and R22c(P2p, P2c) are
obtained from (7a) and (8), respectively, following the rules
mentioned above.

Since with rate splitting in both hops the two hops are
operated independently, the optimal strategy is to transmit in
both hops at the maximum sum-rates Rmaxrs,i (Pip, Pic) in (9)
and (11) for given power allocations (Pip, Pic), i = 1, 2. It
follows that, optimizing over the power allocation on both
hops, the rate achievable with rate splitting in both hops is

Rrs = min
i=1,2

Rmaxrs,i , (12)

with (i = 1, 2)

Rmaxrs,i = max
Pip,Pic

Rmaxrs,i (Pip, Pic)

s.t. Pip + Pic = Pi.
(13)

IV. IMPROVING THE ACHIEVABLE RATE IN THE SECOND
HOP

In this section, we investigate the performance of an
alternative transmission scheme for the second hop that
leverages the common information gathered at the RSs as
a by-product of the use of rate splitting in the first hop.
This contrasts with the naive scheme discussed in Sec. III-
C whereby the common messages from adjacent cells were
neglected when transmitting in the second hop. Moreover, for
reference, we evaluate the rate achievable with rate splitting
and multi-cell processing at the BSs (as in the case where
BSs are connected via a high capacity backbone) in Sec.
IV-B.

A. Cooperative transmission at the relays
The rate splitting-based scheme discussed in Sec. III-C for

transmission from RSs to BSs fails to exploit the knowledge
of the common messages of adjacent cells Wc,m−1 and
Wc,m+1 at any mth RS. Based on this side information, any
mth cell could cooperate with the adjacent cells m− 1 (and
m + 1) in order to deliver the common message Wc,m−1
(and Wc,m+1) to the intended BS in cell m − 1 (and
m + 1). The presence of shared information among the
transmitters has been previously considered in the context
of conventional (2 × 2) interference channels in different
scenarios. In particular, a model in which the two transmitters
have common information to deliver to both receivers has
been considered in [17] [18], whereas an asymmetric case
where one transmitter has knowledge of the message of the
other transmitter was studied in [19] [20] [21]. Also relevant
is the case of a MAC channel with common information
studied in [22].

Similarly to the above mentioned works, here we adopt
a superposition scheme whereby transmitters cooperate for
transmission of common information towards the goal of

achieving coherent power combining at the BSs. In particu-
lar, the signal transmitted by the mth RS according to this
scheme is given by

Zm = Zp,m(Wp,m) +
1X

i=−1
Zc,m+i(Wc,m+i), (14)

where Zp,m(·) is defined as above and Zc,m(·) accounts for
a common Gaussian codebook employed by the m − 1, m
and (m+ 1)th RSs for cooperative relaying of the common
messages Wc,m. Notice that variables Zp,m(·) and Zc,m(·)
are uncorrelated. The private (Wp,m) and common (Wc,m)
messages are the ones sent in the first hop by the MTs and
therefore have rates R1p and R1c, respectively. We focus on
a simple power allocation among the transmitted codewords
in (14), whereby the total power P2 is divided as P2 =
P2p + P2c with P2p = E[|Zp,m|2] for the private part and
the power P2c equally shared among the three cooperative
common signals as P2c = 3E[|Zc,m|2]. Moreover, as in the
previous section, each BS is assumed to know the private
codebook used by the same-cell MT and of the common
codebooks employed by the same-cell MTs and the two
adjacent-cell MTs. It should be remarked that a more general
transmission scheme than the one considered here could
be employed where joint encoding of private Wp,m and
common Wc,m messages takes place at each mth RS (instead
of the independent encoding by which we interpret (14)),
similarly to [22]. Here, for simplicity, we do not further
pursue the analysis of this scenario.

In order to derive the achievable rates of this scheme, let us
substitute (14) in the received signal (2) at the BSs (dropping
the arguments of the codewords):

Ym = γZp,m + (γ + 2η)Zc,m + (γ + η)Zc,m−1 +(15)
+(γ + η)Zc,m+1 + S0m +Mm,

where S0m represent the nuisance term due to the private
messages of adjacent cells and the common messages of cells
m− 2 and m+ 2:

S0m = ηZp,m−1 + ηZp,m+1 + ηZc,m−2 + ηZc,m+2. (16)

We remark that the common messages of cells m − 2 and
m+ 2 (Zc,m−2 and Zc,m+2) are considered as interference
by the mth BS since they are received without the ben-
efit of cooperation from other RSs. Therefore, adding the
constraint of correct decoding of these messages at the mth
BS would reduce unnecessarily the rate R1c of the common
codebooks Wc,i. From (15), it can be seen that any mth
BS observes a four-user MAC channel with equivalent noise
power 1 + E[|S0m|2] = 1 + 2η2(P2p + P2c/3). Therefore,
similarly to Sec. III-B, the achievable rates (R1p, P1c) of the
private and common information belong to the rate region



Rcoop,2(P2p, P2c) characterized by:

R1p ≤ C

µ
γ2P2p

1 + 2η2(P2p + P2c/3)

¶
R1c ≤ min

½
1

2
C

µ
2(γ + η)2P2c

1 + 2η2(P2p + P2c/3)

¶
,

1

3
C

µ
(2(γ + η)2 + (γ + 2η)2)P2c
1 + 2η2(P2p + P2c/3)

¶¾
R1p + 2R1c ≤ C

µ
γ2P2p + 2(γ + η)2P2c
1 + 2η2(P2p + P2c/3)

¶
R1p + 3R1c ≤ C

µ
γ2P2p + (2(γ + η)2 + (γ + 2η)2)P1c

1 + 2η2(P2p + P2c/3)

¶
.

The maximum achievable rate with rate splitting in the
first hop and cooperative transmission in the second hop,
according to the coding scheme described above, can be
found by solving the following optimization problem:

Rcoop = max
R1p,R1c,P1p,P1c,P2p,P2c

R1p +R1c (17)

s.t.

⎧⎨⎩ Pip + Pic = Pi, i = 1, 2

(R1p, R1c) ∈
Rrs,1(P1p,P1c)∩
Rcoop,2(P2p,P2c).

Notice that for each choice of the power allocation
(P1p,P1c, P2p,P2c), the optimization problem (17) can be
solved by linear programming.

B. Multi-cell processing

In this section we consider the possibility of performing
joint decoding of the received signals at the BSs [5]. As men-
tioned above, this requires the presence of a high capacity
backbone connecting all the BSs to a central processor. We
assume the use of rate splitting in the first hop, whereas in
the second hop the cooperative transmission scheme of Sec.
IV-A, which aims at coherent power combining at the BSs
for the common messages, is employed.

Similarly to [7], we can interpret the received signal (15)-
(16) as an equivalent inter-symbol interference (ISI) channel
over the BSs:

Ym = hp,m ∗ Zp,m + hc,m ∗ Zc,m +Mm, (18)

where ” ∗ ” denotes convolution and the finite-impulse
response filters hnc,m and hc,m are given by

hp,m = ηδm+1 + γδm + ηδm−1 (19a)
hc,m = ηδm+2 + (γ + η)δm+1 + (γ + 2η)δm(19b)

+(γ + η)δm−1 + ηδm−2,

with δm denoting the Kronecker delta function (δm = 1 for
m = 0 and δm = 0 elsewhere). The channel (18)-(19) is a
Gaussian MAC with ISI [23] so that, allocating the transmis-
sion powers as in Sec. IV-A, the region Rmcp,2(P2p,P2c) of
achievable rates (R1p, R1c) in the second hop with multicell
processing and relay cooperation is easily shown to satisfy

the following conditions:

R1p ≤
Z 1

0
C
¡
P2p(γ + 2η cos(2πf))

2
¢
df

R1c ≤
Z 1

0
C

µ
P2c
3
(γ + 2η + 2(γ + η) cos(2πf)+

+2η cos(4πf))2
¢
df

R1p +R1c ≤
Z 1

0
C
¡
P2p(γ + 2η cos(2πf))

2

+
P2c
3
(γ + 2η ++2(γ + η) cos(2πf) +

+2η cos(4πf))2
¢
df.

Finally, accounting for both first and second hops, the rate
achievable with rate splitting, relay cooperation and mul-
ticell processing can be obtained by solving the following
optimization problem:

Rmcp = max
R1p,R1c,P1p,P1c,P2p,P2c

R1p +R1c (20)

s.t.

⎧⎨⎩ Pip + Pic = Pi, i = 1, 2

(R1p, R1c) ∈
Rrs,1(P1p,P1c)∩
Rmcp,2(P2p,P2c).

Notice again that, for fixed power allocation
(P1p,P1c, P2p,P2c), problem (20) can be solved by
linear programming. As a final remark, we recall that, as
stated in Sec. IV-A, an alternative transmission scheme to
(14) could employ joint encoding of common and private
messages following [22]. The performance advantages of
this solution are not further investigated here.

V. NUMERICAL RESULTS

Here we present some numerical results in order to corrob-
orate the analysis and gain some insight into the performance
of the proposed coding schemes. Throughout this section,
we set β2 = γ2 = 1 and α2 = η2. We are interested at first
in investigating the conditions under which rate splitting is
advantageous over single-rate transmission. Toward this goal,
we consider a symmetric scenario with P1 = P2 = P and
evaluate the optimal fraction of power f to be devoted to the
private message assuming rate splitting in both hops as per
(13). By symmetry, it is clear that the optimal fraction f̂ is
the same in both hops, i.e., f̂ = P̂1p/P = P̂2p/P, where the
hat notation identifies optimal quantities. Fig. 4 shows the
optimal fraction f̂ versus the inter-cell gains α2 = η2. It can
be seen that for small inter-cell gains α2 = η2, it is optimal to
use single-rate transmission (f̂ = 1) until a given threshold
gain, after which it is in general increasingly better to devote
more power to common messages. This result is in line with
the known results on the interference channel [12] [10] and
confirms our initial motivation (see Sec. III). Moreover, for
increasing power P the threshold gain at which common
messages should carry more power decreases significantly.

We now turn to the performance assessment of rate
splitting (with possible cooperation or multi-cell processing
in the second hop) in terms of achievable rates. In order
to obtain meaningful results, we focus on a scenario where
the second hop is the bottleneck by setting P2 = P1/2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

P=9dB 

P=12dB 

f̂

22 ηα =

P=6dB 

P=3dB 

Fig. 4. Optimal fraction f̂ of power devoted to the transmission of private
messages when rate splitting is used in both hops versus inter-cell gains
α2 = η2 (β2 = γ2 = 1).

(to be interpreted in linear scale). While this might not be
the case in typical applications where RSs are fixed and
endowed with a power supply, it is an interesting case study
to assess the possible benefits of more elaborate processing
in the second hop. Figs. 5 and 6 show the achievable rates
with single-rate transmission Ro (3), rate splitting in both
hops Rrs (12), cooperation at the relays in the second hop
Rcoop (17) and multi-cell processing in the second hop Rmcp

(20) for P1 = 3dB and P1 = 10dB, respectively. Also
shown is the maximum rate achievable on the first hop with
rate splitting and optimal power allocation Rmaxrs,1 (13). This
provides an upper bound on the overall achievable rate in
the considered scenario where the second hop creates the
performance bottleneck. It can be seen that: (i) as expected
from the discussion on Fig. 4, rate splitting is advantageous
with respect to single-rate transmission if the inter-cell gains
α2 = η2 are large enough; (ii) for sufficiently small signal-
to-noise ratio (i.e., power P1) cooperation at the relays
provides relevant performance gains over rate splitting in
both hops and allows to achieve the upper bound Rmaxrs,1

for α2 = η2 large enough (Fig. 5); (iii) for signal-to-noise-
ratio sufficiently large, the additional interference created by
the common messages relayed with cooperative transmission
in the second hop (recall the discussion in Sec. IV-A) has
a deleterious effect on the rate if gains α2 = η2 are
relevant and, accordingly, the benefits of cooperation are less
pronounced (Fig. 6); (iv) multi-cell processing in the second
hop allows the system to achieve the upper bound Rmaxrs,1 for
α2 = η2 large enough.

VI. CONCLUSIONS

In a mesh network with a regular (cellular) structure, there
exists a rich structure in the underlying wireless connections
that can be exploited in order to design more effective
coding strategies. In this paper, we have explored one such
opportunity for a two-hop mesh network with one active
user (and relay) per cell. In particular, we have exploited the
presence of meaningful inter-cell propagation paths (from
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Fig. 5. Achievable rates with single-rate transmission Ro (3), rate splitting
in both hops Rrs (12), relay cooperation in the second hop Rcoop (17) and
multi-cell processing in the second hop Rmcp (20) versus inter-cell gains
α2 = η2 (P2 = 0.5 · P1, P1 = 3dB).
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Fig. 6. Achievable rates with single-rate transmission Ro (3), rate splitting
in both hops Rrs (12), relay cooperation in the second hop Rcoop (17) and
multi-cell processing in the second hop Rmcp (20) versus inter-cell gains
α2 = η2 (P2 = 0.5 · P1, P1 = 10dB).

terminals to relays and/or from relays to base stations) by
considering the use of a rate splitting coding approach,
which is know to be close to optimal (or even optimal, in
certain cases) for conventional interference channels. Based
on this basic scheme, we have further proposed an alternative
cooperative transmission scheme in the second hop, that
takes advantage of the side information available at the relays
as a by-product of the use of rate splitting in the first hop.
Numerical results confirm that rate splitting is able to provide
significant gains as long as the inter-cell power gains are
large enough.

VII. APPENDIX

A. Further discussion on the capacity regions in Fig. 3
In Sec. III-B, the successive interference strategy achiev-

ing the rate-maximizing vertex A in the rate region
Rrs,1(P1p, P1c) was discussed in detail (recall Fig. 3). Here



we would like to further interpret the corner points B and
B0 in terms of successive interference cancellation. Vertex
B, arising in scenarios with weak interference, is obtained
by detecting first the common message from same-cell MT,
then the private message from same-cell MT and finally
common messages from adjacent-cell. This leads to R1c =

Rmax,11c and R1p = R11p = C
³

β2P1p
1+2α2P1p+2α2P1c

´
. Similarly,

vertex B0, arising with intermediate interference, can be
achieved by first detecting the private message and then
jointly recovering the common messages, leading to R1c =

Rmax,21c and R1p = R21p = C
³

β2P1p
1+2α2P1p+(2α2+β2)P1c

´
.

Finally, vertex C is characterized by the common rate R31c =
C
³

β2P1c
1+2α2P1p+β2P1p+2α2P1c

´
.

B. Derivation of the condition of very strong interference
Following Remark 1, here we look for conditions on the

inter-cell power gain α2 that allow that system to achieve the
single-user upper bound Rrs,1 = C(β

2P1) on the achievable
rate of the first hop, through transmission of only common
messages. Setting P1c = P1 (and P1p = 0), we need to
impose the condition that all the rate inequalities defining
the capacity region of the three-user MAC channel seen by
the common messages at each RS support rates larger than
C(β

2P1). Notice that, since here we allow α2 > β2, we
should now consider all the seven inequalities of the MAC
capacity region (as opposed to (7) where some bounds were
dominated under the assumption that α2 ≤ β2). This leads
to: (i) from single-user bounds, it immediately follows that
we need α2 ≥ β2; (ii) from two-user bounds, we have

1

2
C(2α2P1) ≥ C(β

2P1) (21a)
1

2
C((α

2 + β2)P1) ≥ C(β
2P1), (21b)

from which we obtain

α2 ≥ β2 ·max
µ
P1
2
+ 1, β2P1 + 1

¶
; (22)

(iii) from three-user bounds, it follows that
1

3
C((2α

2 + β2)P1) ≥ C(β2P1), (23)

which implies

α2 ≥ β2 · (2 + 3P1 + β4P1). (24)

Noticing that condition (24) dominates (22) for any β2, we
finally obtain the result that, in order for rate-splitting to
achieve the single-user bound, we need an inter-cell power
gain that satisfies the very strong interference conditions (24).
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