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Abstract—This paper considers the problem of lossy compres-
sion for the computation of a function of two correlated sources,
both of which are observed at the encoder. Due to presence
of observation costs, the encoder is allowed to observe only
subsets of the samples from both sources, with a fraction of such
sample pairs possibly overlapping. For both Gaussian and binary
sources, the distortion-rate function, or rate-distortion function,
is characterized for selected functions and with quadratic and
Hamming distortion metrics, respectively. Based on these results,
for both examples, the optimal measurement overlap fraction is
shown to depend on the function to be computed by the decoder,
on the source correlation and on the link rate. Special cases are
discussed in which the optimal overlap fraction is the maximum
or minimum possible value given the sampling budget, illustrating
non-trivial performance trade-offs in the design of the sampling
strategy.

I. INTRODUCTION

Consider an encoder endowed with a sensor that is able to
measure two correlated discrete memoryless source sequences
Sn
1 = (S1,1, ..., S1,n) and Sn

2 = (S2,1, ..., S2,n), as shown in
Fig. 1. Due to the energy cost of source acquisition, sampling,
quantization and compression, it might not be possible for the
sensor to fully measure the sources S1 and S2. To simplify,
this limitation can be modelled by imposing that only nθk
samples can be measured from each source Sk, k = 1, 2, with
0 ≤ θk ≤ 1. The encoder compresses the measured samples to
nR bits, where R is the communication rate in bits per source
symbol. Based on the received bits, the decoder reconstructs a
lossy version of a target function Tn = fn(Sn

1 , S
n
2 ) of source

sequences Sn
1 and Sn

2 , which is such that Ti = f(S1,i, S2,i),
i = 1, ..., n. We refer to the above problem as lossy computing
with fractional sampling.

A key aspect of the problem of lossy computing with
fractional sampling is that the encoder is allowed to choose
which samples to measure given the sampling budget (θ1, θ2).
To fix the ideas, assume that we have (θ1 = 0.5, θ2 = 0.5),
so that only half of the samples can be observed from both
sources. As two extreme strategies, the encoder can either
measure the same samples from both sources, say S1,i, S2,i

for i = 1, ..., n/2, or it can measure the first source S1

for the first n/2 samples, namely S1,i for i = 1, ..., n/2,
and the second source S2 for the remaining n/2 samples,
namely S2,i for i = n/2 + 1, ..., n. With the first sampling
strategy, the encoder is able to directly calculate the desired
function Ti = f(S1,i, S2,i) for i = 1, ..., n/2, while having

no information (beside the prior distribution) about Ti for
the remaining samples. With the second strategy, instead, the
encoder collects partial information about T at all times in the
form of samples from source S1 or source S2. As it will be
discussed in this paper, the optimal sampling strategy depends
critically on the function f(·, ·), on the correlation between
S1,i and S2,i, and on the link rate R.

A. Related Work and Contributions
With full sampling of both sources, i.e., (θ1 = 1, θ2 =

1), the encoder can directly calculate the function Tn =
fn(Sn

1 , S
n
2 ) and the problem at hand reduces to the standard

rate-distortion set-up (see, e.g., [1]). Instead, if the encoder can
only measure one of the two sources, i.e., (θ1 = 1, θ2 = 0) or
(θ1 = 0, θ2 = 1), the problem at hand becomes a special case
of the indirect source coding set-up introduced in [2]. For a
discussion on problems related to computing and compression
in network scenarios, we refer to [3]. The framework of source
coding with fractional sampling was introduced in our previous
work [4] for a model in which an energy-constrained sensor
measures independent Gaussian sources for optimized fraction
of time and the receiver wishes to reconstruct all sources
with given quadratic distortion constraints. The model is also
related to that of compression with actions of [5].

This paper formulates the problem of lossy computing with
fractional sampling of correlated sources (Section II). After
providing a general expression for the distortion-rate and the
rate-distortion functions (Section III), we focus on two specific
examples that illustrate the trade-offs involved in the design of
the sampling strategy. Specifically, we first consider correlated
Gaussian sources and assume that linear functions of the form
T = w1S1 + w2S2 are to be reconstructed at the decoder
with quadratic distortion constraints (Section IV). We then
consider correlated binary sources with arbitrary functions
T = f(S1, S2) and Hamming distortion (Section V). Various
conclusions are drawn regarding conditions under which the
optimal sampling strategy prescribes the maximum or the
minimum possible overlap between the samples measured
from the two sources.

II. SYSTEM MODEL

In this section, we formally introduce the system model of
interest. As shown in Fig. 1, the encoder has access to two dis-
crete memoryless source sequences Sn

1 = (S1,1, ..., S1,n) and
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Figure 1. The encoder measures correlated sources S1 and S2 for a fraction
of time θ1 and θ2, respectively, and the decoder estimates a function Tn =
fn(Sn

1 , S
n
2 ).

Sn
2 = (S2,1, ..., S2,n) respectively, which consist of n indepen-

dent and identically distributed (i.i.d.) samples (S1,i, S2,i) with
S1,i ∈ S1 and S2,i ∈ S2, i = 1, ..., n, where S1 and S2 are
the alphabet sets for S1 and S2 respectively. All alphabets are
assumed to be finite unless otherwise stated. Due to presence
of observation costs, we assume the encoder can only sample
a fraction θk of the samples for source Sk, with 0 ≤ θk ≤ 1
for k = 1, 2. Given the i.i.d. nature of the sources, without loss
of generality, we assume that the encoder measures the first θ1
fraction of samples of source S1 and measures the θ2 fraction
of samples of S2 starting from sample n(θ1 − θ12) + 11, as
shown in Fig. 2. The samples measured at the encoder from the
two sources thus overlap for a fraction θ12, with θ12 satisfying

θ12,min ≤ θ12 ≤ θ12,max, (1)

with θ12,min = (θ1 + θ2 − 1)+ and θ12,max = min(θ1, θ2),
where (·)+ denotes max(·, 0). We refer to the triple
(θ1, θ2, θ12) as a sampling profile, and to (θ1, θ2) as the
sampling budget.

The decoder wishes to estimate a function Tn =
fn(Sn

1 , S
n
2 ), where Ti = f(S1,i, S2,i) for i = 1, ..., n. We let

d : T ×T̂ → [0,+∞) be a distortion measure, where T and T̂
are the alphabet sets of the variables T and T̂ respectively. We
assume, without loss of generality, that for each t ∈ T there
exists a t̂ ∈ T such that d(t, t̂) = 0. The link between the
encoder and the decoder can support a rate of R bits/sample.
Formal definitions follow.
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Figure 2. Sampling profile (θ1, θ2, θ12) at the encoder: a fraction, θ1−θ12,
of samples is measured only from source S1; a fraction, θ12, of samples is
measured from both sources; a fraction, θ2 − θ12, of samples is measured
only from source S2; and the remaining fraction, 1 + θ12 − θ1 − θ2, of
samples is not measured for either source (0 ≤ θ1, θ2 ≤ 1, and θ12 as in
(1)).

Definition 1: A (n,R,D, θ1, θ2, θ12) code for the problem
of lossy computing of two memoryless sources with fractional
sampling consists of an encoder h : Snθ1

1 × Snθ2
2 →

{1, ..., 2nR}, which maps the measured θ1-fraction of source
S1, i.e., (S1,1, ..., S1,nθ1), and the measured θ2-fraction of
source S2, i.e., (S2,n(θ1−θ12)+1, ..., S2,n(θ1+θ2−θ12)), into a

1Throughout the paper, quantities such as nθ1, nθ2 and n(θ1 + θ2 − θ12)
are implicitly assumed to be rounded to the largest smaller integer.

message of rate R bits per source sample (where the normal-
ization is with respect to the overall number of samples n); and
a decoder g : {1, ..., 2nR} → T̂ n, which maps the message
from the encoder into an estimate T̂n, such that distortion
constraint D is satisfied, i.e.,

1

n
E

[
n∑

i=1

d(Ti, T̂i)

]
≤ D. (2)

Given any sampling profile (θ1, θ2, θ12), a tuple
(R,D, θ1, θ2, θ12) is said to be achievable, if for any ε > 0,
and sufficiently large n, there exists a (n,R,D+ε, θ1, θ2, θ12)
code. The distortion-rate function for a given sampling profile
D(R, θ1, θ2, θ12) is defined as D(R, θ1, θ2, θ12) = inf{D:
the tuple (R,D, θ1, θ2, θ12) is achievable}. The distortion-
rate function with sampling budget (θ1, θ2), D(R, θ1, θ2),
is defined as D(R, θ1, θ2) = minθ12 D(R, θ1, θ2, θ12)
where the minimum is taken over all θ12 satisfying
(1). Similar definitions are used for the rate-distortion
function. Specifically, the rate-distortion function given a
sampling profile (θ1, θ2, θ12) and distortion D is defined as
R(D, θ1, θ2, θ12) = inf{R: the tuple (R,D, θ1, θ2, θ12) is
achievable}, and the rate-distortion function with sampling
budget (θ1, θ2) as R(D, θ1, θ2) = minθ12 R(D, θ1, θ2, θ12)
where the minimum is taken over all θ12 satisfying (1).

III. RATE-DISTORTION TRADE-OFF WITH FRACTIONAL
SAMPLING

In this section, we characterize the distortion-rate functions
D(R, θ1, θ2, θ12) and D(R, θ1, θ2) defined above as well as
their rate-distortion counterparts. To elaborate, we first define
the standard distortion-rate function for the memoryless source
T as D12(R) = minp(t̂|t): I(T ;T̂ )≤R E[d(T, T̂ )] [1]. We sim-
ilarly define the corresponding rate-distortion function with
full sampling as R12(D) = minp(t̂|t): E[d(T,T̂ )]≤D I(T ; T̂ ).
Moreover, we define the indirect distortion-rate function for
compression of T when only Sk is observed at the encoder,
for k = 1, 2, as Dk(R) = minp(t̂|sk): I(Sk;T̂ )≤R E[d(T, T̂ )].
We similarly define the corresponding rate-distortion func-
tion Rk(D) = minp(t̂|sk): E[d(T,T̂ )]≤D I(Sk; T̂ ). Finally,
we define Dk,min as Dk,min = limR→∞ Dk(R) =
mingk(·) E(d(gk(Sk), T )), for k = 1, 2, where function gk(·)
is defined as gk : Sk → T̂ , which maps Sk to an estimate T̂ .

Lemma 1: For any given sampling profile (θ1, θ2, θ12) and
link rate R, the distortion-rate function for computing T is
given by2

D(R,θ1, θ2, θ12) = min
R1,R12,R2≥0

(θ1 − θ12)D1

(
R1

θ1 − θ12

)

+ θ12D12

(
R12

θ12

)
+ (θ2 − θ12)D2

(
R2

θ2 − θ12

)

+ (1 + θ12 − θ1 − θ2)Dmax, (3)

2For any given convex function Q(x) for x ≥ 0, we define 0 ·Q(x/0) =
0, for x ≥ 0, if limx→0 x ·Q(1/x) = 0.



with Dmax = mint̂∈T̂ E[d(T, t̂)], and where the minimization
is taken under the constraint

R1 +R2 +R12 ≤ R. (4)

For convenience, we let

Dmin(θ1, θ2, θ12) = lim
R→∞

D(R, θ1, θ2, θ12)

=(θ1 − θ12)D1,min + (θ2 − θ12)D2,min

+ (1 + θ12 − θ1 − θ2)Dmax. (5)

Similarly, for any given sampling profile (θ1, θ2, θ12) and
distortion level D ≥ Dmin(θ1, θ2, θ12), the rate-distortion
function for computing T is given by

R(D,θ1, θ2, θ12) = min
D1,D12,D2

(θ1 − θ12)R1

(
D1

θ1 − θ12

)

+ θ12R12

(
D12

θ12

)
+ (θ2 − θ12)R2

(
D2

θ2 − θ12

)
, (6)

where the minimization is taken over all choices of D1, D2

and D12 satisfying D12 ≥ 0,

D1 ≥ (θ1 − θ12)D1,min, (7a)
D2 ≥ (θ2 − θ12)D2,min, (7b)

D1+D2 +D12 + (1 + θ12 − θ1 − θ2)Dmax ≤ D, (7c)

In the lemma above, rate Rk is assigned for the description
of the (θk − θ12)-fraction of samples in which only source
Sk is measured, k = 1, 2, while rate R12 is assigned for
the description of the θ12-fraction of samples in which both
sources are measured (recall Fig. 2). Distortions D1, D2 and
D12 are the corresponding average per-symbol distortions in
the reconstruction of T at the decoder. The proof follows
immediately from the independence of the samples measured
from the different fraction of samples, and it is thus omitted.
The following property is a consequence of the operational
definitions given above.

Lemma 2: D(R, θ1, θ2) is continuous and convex in R,
for R ≥ 0. Similarly, R(D, θ1, θ2) is continuous and con-
vex in D, for D ≥ Dmin(θ1, θ2), where Dmin(θ1, θ2) =
limR→∞ D(R, θ1, θ2) = minθ12 Dmin(θ1, θ2, θ12).

IV. GAUSSIAN SOURCES

In this section, we focus on the case in which sources
S1 and S2 are jointly Gaussian, zero-mean, unit-variance and
correlated with coefficient ρ, with ρ ∈ [−1, 1]. The decoder
wishes to compute a weighted sum function T = f(S1, S2) =
w1S1 +w2S2, with w1, w2 ∈ R, under the mean square error
(MSE) distortion measure d(t, t̂) = (t− t̂)2. In the following,
we study two specific choices for the weights w1 = 1, w2 = 0
and w1 = w2 = 1, resulting in the weighted sum functions
T = S1 and T = S1 + S2, respectively. These two cases
are selected in order to illustrate the impact of the choice of
the function f(S1, S2) on the optimal sampling strategy. The
discussion can be extended with appropriate modifications to
arbitrary choices of weights (w1, w2).

A. Computation of T = S1

Proposition 1: For a given sampling budget (θ1, θ2), the
distortion-rate function for computing T = S1 is

D(R, θ1, θ2) =






1− θ1 + θ12
− 2R

θ1 , if R ≤ θ1
2 log2

(
1
ρ2

)
,

1− θ1 − ρ2(θ2 − θ∗12)

+(θ1 + θ2 − θ∗12)2
− 2R

θ1+θ2−θ∗12

·
(
ρ2
) θ2−θ∗12

θ1+θ2−θ∗12 , otherwise ,
(8)

where θ∗12 = θ12,min is the optimal fraction of samples to
be measured by both the encoder and the decoder. The rate-
distortion function R(D, θ1, θ2) can be obtained by inverting
function (8) with respect to variable D.

Proof: The proof is based on Lemma 1 and the details
can be found in [6].

Proposition 1 confirms the intuition that if the receiver
is interested in source 1 only, i.e., T = S1, the encoder
should simultaneously measure both sources S1 and S2 for
a fraction of time to be kept as small as possible. Moreover,
if R ≤ θ1/2 log2(1/ρ

2), the entire rate R is used to describe
only the θ1-fraction of samples measured from source S1 only;
otherwise, both the θ1-fraction of source S1 and the (θ2−θ∗12)-
fraction of source S2 that is not overlapped are described at
positive rates. Note that, for rate R ≤ θ1/2 log2(1/ρ

2), since
only source S1 is described, the choice of the overlapping
fraction, in fact, does not matter, i.e., any θ12 satisfying
θ12,min < θ12 ≤ θ12,max is also optimal in this case.

B. Computation of T = S1 + S2

We now consider the case in which the desired function is
T = S1+S2. Note that T is a Gaussian random variable with
zero mean and variance Dmax = 2(1+ ρ), and that T and S1

(or S2) are jointly Gaussian with correlation coefficient ρ̃ =√
(1 + ρ)/2. Moreover, since T = 0 for ρ = −1, it is enough

to focus on ρ ∈ (−1, 1]. We observe that the distortion-rate
function for T = S1+S2 is given by D12(R) = 2(1+ρ)2−2R,
for R ≥ 0 [1]. Moreover, the indirect distortion-rate function
is given as Dk(R) = 2(1 + ρ)(1− ρ̃2 + ρ̃22−2R), for R ≥ 0
and k = 1, 2 [7]. The following is again a consequence of
Lemma 1 (see full proof in [6]).

Proposition 2: Given sampling budget (θ1, θ2), the
distortion-rate function for computing T = S1 + S2 is

D(R, θ1, θ2) = min
θ12,R12

(1 + ρ)2(θ1 + θ2 − 2θ12)2
− 2(R−R12)

θ1+θ2−2θ12

+ 2(1 + ρ)
(
1 + ρθ12 + θ122

− 2R12
θ12

)
− (1 + ρ)2(θ1 + θ2),

(9)

where the minimization in (9) is taken over all θ12 satisfying
(1) and all R12 satisfying 0 ≤ R12 ≤ R.

In order to obtain further analytical insight into the optimal
sampling strategy, we now consider some special cases of
interest.

Corollary 1: For R → ∞, we have

Dmin(θ1, θ2) = 2(1+ρ)(1+ρθ∗12)− (1+ρ)2(θ1+θ2), (10)
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Figure 3. Distortion-rate function when θ1 = 0.5 and θ2 = 0.75, with
correlation coefficient ρ chosen to be ρ = −0.5, 0, 0.5, respectively.

where θ∗12 = θ12,min if ρ > 0, θ∗12 = θ12,max if ρ < 0, and
θ∗12 is arbitrary if ρ = 0.

This corollary is easily obtained from Proposition 2. It says
that, if the sources (S1, S2) have positive correlation, i.e.,
ρ > 0, and there are no rate limitations (R → ∞), the MSE
distortion increases linearly with θ12, and it is thus optimal
to set θ12 to be the smallest possible value θ∗12 = θ12,min.
In contrast, if ρ < 0, the MSE distortion decreases linearly
with θ12, and thus the optimal θ∗12 is the largest possible
value, θ∗12 = θ12,max. This shows the relevance of the source
correlation in designing the optimal sampling strategy.

The general conclusions about the optimal sampling strate-
gies discussed above for infinite rate can be extended to finite
rates R in certain regimes. Corollary 2 below states that if
ρ ≤ 0, then, just as in the case of infinite rate R of Corollary
1, the encoder should set θ12 to be as large as possible, i.e.,
θ∗12 = θ12,max, irrespective of the value of R. Furthermore,
Corollary 3 below suggests that for sufficiently small rates, the
optimal overlap θ∗12 tends to be maximum, i.e., θ∗12 = θ12,max,
for a larger range of correlation coefficients ρ than ρ ≤ 0.
This is mainly because when rate R is small enough, it is
generally more efficient to use the available rate to describe
T directly during the overlapping θ12-fraction, rather than
indirectly describing T based on observations of S1 or S2

alone. Both corollaries are proved in [6].
Corollary 2: For ρ ≤ 0, the distortion-rate function is

D(R, θ1, θ2) =






(θ1 + θ2 − θ∗12)(1 + ρ)22
− 2R

θ1+θ2−θ∗12

·
(

2
1+ρ

) θ∗12
θ1+θ2−θ∗12 + 2(1 + ρ)(1 + ρθ∗12)

−(1 + ρ)2(θ1 + θ2), if R > θ∗
12
2 log2

(
2

1+ρ

)
,

2(1 + ρ)
(
1− θ∗12 + θ∗122

− 2R
θ∗12

)
, otherwise,

(11)
where θ∗12 = θ12,max is the optimal overlapping fraction.

Corollary 3: For any 0 < ρ ≤ 1, if R ≤
(θ12,min/2) log2(2/(1 + ρ)), the distortion-rate function is
given as

D(R, θ1, θ2) = 2(1 + ρ)(1− θ∗12) + 2(1 + ρ)θ∗122
− 2R

θ∗12 , (12)
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Figure 4. Optimal overlap fraction θ∗12 as a function of rate R when θ1 = 0.5
and θ2 = 0.75, with correlation coefficient ρ chosen to be ρ = −0.5, 0, 0.5,
respectively.

where θ∗12 = θ12,max.
Fig. 3 and Fig. 4 show the minimum MSE distortion D and

the optimal overlap fraction θ∗12 versus rate R, respectively,
for θ1 = 0.5, θ2 = 0.75, and ρ = −0.5, 0, 0.5. The curves
are obtained by numerically solving the optimization in (9).
It can be seen from Fig. 4 that, as predicted by Corollary
2, the optimal overlap fraction θ∗12 is equal to the maximum
possible fraction θ12,max = 0.5, for ρ = −0.5 < 0 and ρ = 0.
Moreover, for ρ = 0.5 > 0, with sufficiently small rates R,
as described in Corollary 3, the optimal overlap fraction θ∗12
equals to the maximum overlap θ12,max = 0.5. However, as
R grows beyond some threshold, θ∗12 drops to the minimum
value θ12,min = 0.25, which is consistent with Corollary 1.

V. BINARY SOURCES

In this section, we consider binary sources so that S1 =
S2 = T = T̂ = {0, 1}, and (S1, S2) is a doubly symmetric
binary source (DSBS) characterized by probability Pr[S1 (=
S2] = p, 0 ≤ p ≤ 1/2. We take the Hamming distortion as the
distortion measure, i.e., d(t, t̂) = 1−δtt̂, where δtt̂ = 1 if t = t̂
and δtt̂ = 0 otherwise. Since all non-trivial binary functions
are equivalent, up to relabeling, to either the exclusive OR or
the AND [8], it suffices to consider only these two options
for function T = f(S1, S2): (i) the exclusive OR or binary
sum, i.e., T = S1 ⊕ S2; (ii) the AND or binary product, i.e.,
T = S1 ⊗ S2. In the following, we focus on deriving the
rate-distortion R(D, θ1, θ2) for convenience, since in general
it takes a simpler analytical form as compared to the distortion-
rate function D(R, θ1, θ2).

A. Computation of T = S1 ⊕ S2

Proposition 3: For given sampling budget (θ1, θ2), the rate-
distortion function for computing T = S1 ⊕ S2 is given by

R(D, θ1, θ2) =






h(p)− h
(

D−(1−θ∗
12)p

θ∗
12

)
,

if (1− θ∗12)p ≤ D < p,

0, if D ≥ p,

(13)



where h(x) = −x log2(x)− (1− x) log2(1− x) is the binary
entropy function, and θ∗12 = θ12,max is the optimal overlap
fraction, for (1− θ∗12)p ≤ D < p.

The above proposition can be proved by using the fact
that T = S1 ⊕ S2 is a Bernoulli(p) random variable, and is
independent of S1 and S2. Therefore, the observation of either
S1 or S2 is not useful for computing T , and thus one should
choose the overlap fraction to be as large as possible, i.e.,
θ∗12 = θ12,max. The rate-distortion function (13) then follows
immediately from the rate-distortion function of the binary
random variable T [1].

B. Computation of T = S1 ⊗ S2

In this subsection, we focus on the binary product T = S1⊗
S2, which is Bernoulli distributed with probability (1− p)/2.
For convenience, we start by finding the minimum possible
distortion at the decoder given (θ1, θ2), i.e., Dmin(θ1, θ2) as
defined in Lemma 2, and the minimum required rate to achieve
it. Then, we proceed to derive the rate-distortion function. All
proofs can be found in [6] along with numerical results.

Proposition 4: For given sampling budget (θ1, θ2), the min-
imum achievable distortion for computing T = S1 ⊗ S2 is
given by

Dmin(θ1, θ2) =
1− p

2
+

(
p− 1

2

)
(θ1+θ2)+

(
1− 3p

2

)
θ∗12,

(14)
where θ∗12 = θ12,max if 1/3 ≤ p ≤ 1/2 and θ∗12 = θ12,min

if 0 ≤ p < 1/3. Moreover, distortion Dmin(θ1, θ2) can be
achieved as long as R ≥ θ1 + θ2 −

(
2− h

( 1−p
2

))
θ∗12.

The results in Proposition 4 can be seen as the counterpart
of Corollary 1 for binary sources. In fact, they show that, for
sufficiently large R, if 0 ≤ p < 1/3, the average Hamming
distortion increases linearly with θ12 and thus we should set
θ12 to the smallest possible value θ12,min; instead, if 1/3 ≤
p ≤ 1/2, the optimal value of θ12 is the largest possible,
namely, θ12,max.

Before we proceed to investigate the general rate-distortion
function R(D, θ1, θ2), we first derive the indirect rate-
distortion function R1(D) for T = S1 ⊗ S2 when only S1

is observed at the encoder.
Lemma 3: The indirect rate-distortion function for T =

S1 ⊗ S2 is given by

R1(D) =






min
1−p−2D

1−2p ≤y≤1
h

(
D + y(1− p) +

p− 1

2

)
− 1

2
h(y)

− 1
2h(2d+ y(1− 2p) + p− 1), p

2 < D ≤ 1−p
2 ,

0, D ≥ 1−p
2 ,

(15)

By symmetry, the indirect rate-distortion function R2(D)
for T when S2 is observed at the encoder is also given by
Lemma 3. The rate-distortion function R12(D) for variable
T is instead given from standard results [1] as R12(D) =
h((1− p)/2)− h(D) if 0 ≤ D ≤ (1− p)/2, and R12(D) = 0
if D > (1− p)/2.

Proposition 5: For a given sampling budget (θ1, θ2), the
rate-distortion function for computing T = S1 ⊗ S2 is given
as

R(D, θ1, θ2) =






min
θ12,D3,D12

θ12

(
h

(
1− p

2

)
− h

(
D12

θ12

))

+(θ1 + θ2 − 2θ12)R1

(
D3

θ1+θ2−2θ12

)
,

if Dmin(θ1, θ2) ≤ D < 1−p
2 ,

0, if D ≥ 1−p
2 ,

(16)

where Dmin(θ1, θ2) is as given in Proposition 4 and the
minimization is taken over all choices of θ12, D3 and D12

such that (1) is satisfied, p(θ1 + θ2 − 2θ12)/2 ≤ D3 ≤
(1−p)(θ1+θ2−2θ12)/2, pθ12/2 ≤ D12 ≤ (1−p)θ12/2, and

D3 +D12 +

(
1− p

2

)
(1 + θ12 − θ1 − θ2) = D. (17)

Numerical results, reported in [6], show a qualitatively
similar behavior as in the Gaussian example in terms of the
impact of source correlation and rate.

VI. CONCLUSIONS

In this paper, we have considered the problem of lossy
compression for computing a function of correlated sources.
Motivated by the fact that acquiring the information necessary
for computation may be costly in sensor networks, we assumed
that the encoder can only observe a fraction of the samples
from each source according to a sampling strategy that is
subject to design. The results highlight the dependence of the
optimal sampling strategy on the function to be computed
by the decoder, on the source correlation and on the link
rate. Interesting future work includes investigation of related
scenarios with side information or distributed source coding.
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