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Abstract—This paper studies the joint design of transmit
beamformers, receive combiners, and linear relaying matrix for a
two-way amplify-and-forward (AF) relay system equipped with
multiple-antennas at sources and relay. A single data stream
is transmitted by each source. Due to the non-convexity of the
optimization problem, finding a solution that maximizes the
sum-rate appears to be intractable. Hence, a solution to the
original problem is approximated via the iterative solution of
three optimization problems, one for the transmit beamformer,
one for the receive combiner, and one for the linear relaying
matrix. Since the latter is non-convex, a suboptimal iterative
procedure is proposed. Joint optimization is assumed to be
performed at the relay, which designs the transceiver (thanks
to perfect channel state information) and informs the sources of
the transmit beamformers/receive combiners. Finally, an upper
bound to the achievable sum-rate is provided. The proposed
technique shows achievable sum-rate performance very close to
the upper bound. Moreover, the algorithm converges to the final
solution in a reasonable number of iteration.

I. INTRODUCTION

Relay-based cooperative communications and MIMO sys-

tems are by now considered as key techniques to enhance

system capacity by increasing coverage and reliability [1],

[2]. A relay network of specific interest consists of two

nodes communicating to one another via a relay (two-way

relay channel). For this network, amplify-and-forward (AF)

has been shown to be a promising solution [1]-[8]. Two-way

relay methods with multiple-antennas at the relay only have

been studied in [3][4]. The authors of [3] characterized the

corresponding achievable rate region by providing an iterative

algorithm that designs linear relay processing matrices that

achieve Pareto-optimal points. A linear processing matrix that

maximizes the sum-rate in the high signal-to-noise ratio (SNR)

regime is provided in [4] via an iterative algorithm.

Studies of two-way AF relay system with multiple-antennas

both at the source nodes and at the relay can be found in

[5]-[8]. Zero-forcing (ZF) and minimum MSE (MMSE) based

transceiver designs at the relay node were investigated in [5].

Furthermore, the optimization of the linear precoder in terms

of minimizing the sum of MSE and maximizing sum-rate by

using gradient descent algorithm were proposed in [6] and [7],

respectively. In [7], precoding matrices at the sources are fixed

(not optimized) to provide multiplexing without precoding

gains. In [8], a two-way relay system where we have multiple

communication pairs and a single relay is studied, and the

relay processing matrix is optimized based on both ZF and

MMSE criteria. Each user (source node) in [8] is equipped

with predetermined transmit beamforming/receive combining

vectors.

Based on the review above, to the best of our knowledge,

the literature has not yet addressed the problem of jointly op-

timizing the transceivers at both sources and relay in multiple-

antenna two-way AF relay system in terms of sum-rate. We

focus on the case where each source transmits a single stream

and the main contributions of this paper are as follows: (i)
Upper bound: We extend the result in [1] to provide an upper

bound on the achievable sum-rate of the system, based on the

consideration of two appropriate non-interfering point-to-point

channels; (ii) Sum-rate maximizing technique: We propose an

approximate solution to the problem of sum-rate maximization

with respect to the transmit beamformers, receive combiners,

and the linear processing matrix for the two-way AF relay

system.

This paper is organized as follows. The two-way AF relay

model with multiple antennas and the beamforming at the

sources and the relay is described in Section II-A; an upper

bound on the sum-rate is derived in Section II-B. Section III

proposes the jointly designed solution and Section IV provides

numerical results on achievable sum-rate and convergence

performances of the proposed techniques. Finally, Section V

presents our conclusions.

Notation: A bold face letter denotes a vector or a matrix;

[·]T , [·]∗, [·]†, tr(·) the transpose, the conjugate transpose,

the pseudo-inverse, and the trace of a vector or a matrix,

respectively; vec(AAA) a vector which stacks the columns of

a matrix AAA; ‖AAA‖F the Frobenius norm of a matrix AAA; ‖aaa‖ the

2-norm of a vector aaa; min(x, y) the minimum element between

x and y; AAA⊗BBB the Kronecker product of vectors or matrices

AAA and BBB; E[·] an expected value of a vector or a matrix; III
the identity matrix.
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Fig. 1. Two-way relay system equipped with multiple antennas at the relay
and the sources.

II. SYSTEM MODEL

A. Signal Model

We consider a two-way relay channel consisting of two

source nodes, S1 and S2, each with Ns antennas, and a relay

node, R, equipped with Nr antennas, as shown in Fig. 1.

We assume there is no direct link between the sources, i.e.,

due to large path loss. The transmission protocol uses two-

consecutive time-slots. During the first time-slot (uplink), the

two sources transmit to the relay, while in the second time-slot

(downlink), the relay broadcasts to the source nodes. Channel

reciprocity during the uplink and the downlink is assumed.

The channel matrices HHH and GGG (see Fig. 1) keep constant

over at least two time slots and are assumed to be perfectly

known at the relay. The received signal at the relay node in

the first time-slot is written as

rrr =HHHfff1s1 +GGGfff2s2 +nnn, (1)

where rrr ∈ C
Nr×1; HHH,GGG ∈ C

Nr×Ns are the channel matrices

from S1 and S2 to the relay, respectively; fff1, fff2 ∈ C
Ns×1 are

the transmit beamforming vectors at S1 and S2, respectively,

with power constraints ‖fff1‖2 ≤ 1 and ‖fff2‖2 ≤ 1; s1 and s2
are the transmitted symbols from S1 and S2, respectively, with

E[|s1|2] = P1 and E[|s2|2] = P2; and nnn ∈ C
Nr×1 is the noise

vector at the relay with E[nnnnnn∗] = σ2
RIII . We emphasize that

each node sends a single data stream, unlike [5]-[7]. The relay

node applies AF operation to rrr, constructing its transmitted

signal as

xxx =WWWrrr, (2)

where xxx ∈ C
Nr×1 is the signal broadcasted from the relay to

the source nodes and WWW ∈ C
Nr×Nr is the linear processing

matrix at the relay. Transmit power at the relay is restricted

to Pr, i.e.,

tr{E(xxxxxx∗)} = tr {P1WWWHHHfff1fff
∗
1HHH

∗WWW ∗

+P2WWWGGGfff2fff
∗
2GGG

∗WWW ∗ + σ2
rWWWWWW ∗} ≤ Pr

(3)

With an assumption of the channel reciprocity during the

uplink and the downlink, the received signals at S1 and S2

are expressed as

y1 = ddd∗1HHH
∗xxx+ ddd∗1zzz1

= ddd∗1HHH
∗WWW (HHHfff1s1 +GGGfff2s2 +nnn) + ddd∗1zzz1

= ddd∗1HHH
∗WWWHHHfff1s1 + ddd∗1HHH

∗WWWGGGfff2s2 + ddd∗1HHH
∗WWWnnn+ ddd∗1zzz1,

(4)

and

y2 = ddd∗2GGG
∗WWWHHHfff1s1 + ddd∗2GGG

∗WWWGGGfff2s2 + ddd∗2GGG
∗WWWnnn+ ddd∗2zzz2,

(5)

respectively, where ddd1, ddd2 ∈ C
Ns×1 are the receive com-

bining vectors at S1 and S2, respectively. zzz1, zzz2 ∈ C
Ns×1

are the noise vectors at S1 and S2 where E[zzz1zzz
∗
1] =

σ2
S1III and E[zzz2zzz

∗
2] = σ2

S2III . The terms ddd∗1HHH
∗WWWHHHfff1s1 and

ddd∗2GGG
∗WWWGGGfff2s2 in y1 and y2, respectively, are self-interference

that can be removed under an assumption of perfect receive

CSI. S1 and S2 are also assumed to know ddd∗1HHH
∗WWWGGGfff2 and

ddd∗2GGG
∗WWWHHHfff1, respectively, for data detection. This can be

obtained; e.g., training-based channel estimation as explained

in [9] prior to data transmission. After self-interference can-

cellation, y1 and y2 become

y1 = ddd∗1HHH
∗WWW (GGGfff2s2 +nnn) + ddd∗1zzz1,

y2 = ddd∗2GGG
∗WWW (HHHfff1s1 +nnn) + ddd∗2zzz2.

(6)

From (6), assuming standard Gaussian codebooks at the

sources, we can express the achievable rate for the link from

S1 to S2 as

R12 =
1

2
log2

(
1 +

P1ddd
∗
2GGG

∗WWWHHHfff1fff
∗
1HHH

∗WWW ∗GGGddd2
σ2

Rddd
∗
2GGG

∗WWWWWW ∗GGGddd2 + σ2
S2ddd

∗
2ddd2

)
, (7)

and that for the reverse link as

R21 =
1

2
log2

(
1 +

P2ddd
∗
1HHH

∗WWWGGGfff2fff
∗
2GGG

∗WWW ∗HHHddd1
σ2

Rddd
∗
1HHH

∗WWWWWW ∗HHHddd1 + σ2
S1ddd

∗
1ddd1

)
. (8)

Thus, the total sum-rate of the system is Rsum = R12 + R21.

Note that, in (7) and (8), WWW is required for computing R12

and R21, while {fff1, ddd2} and {fff2, ddd1} are needed only for R12

and R21, respectively. Throughout this paper, we assume, for

simplicity, that σ2 = σ2
R = σ2

S1 = σ2
S2 and P = P1 = P2 and

set the ρ = P/σ2. The solution provided in this paper can be

easily extended to an asymmetric scenario.

From (7) and (8), the sum-rate maximization problem of the

two-way AF relay system transmitting single stream at each

source is expressed as

max
{ddd1,ddd2,fff1,fff2,WWW}

Rsum

s.t. (3) and ‖fff i‖2 ≤ 1, i = 1, 2.
(9)

B. Sum-rate Upper Bound

In this section, we derive an upper bound on the sum-rate

Rsum of the AF relay system described above. To this end, we

consider, following [3], S1→R→S2 and S2→R→S1 as in-

terference free communication links, as depicted in Fig. 2 and

apply different linear processing matrices WWWUB
1 ∈ C

Nr×Nr

and WWWUB
2 ∈ C

Nr×Nr to the two links. The total power

of the relay, Pr, is allocated to support both directions of

communication so as to maximize the total sum-rate, i.e.
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Fig. 2. Two-way relay system that provides upper bound.

Pr = PLink1 +PLink2, where PLink1 and PLink2 are the transmit

power at the relay for Link1 and Link2, respectively. The max-

imum rate for the one-way AF relay links S1→R→S2 and

S2→R→S1 has been derived in [1]. Specifically, let fffUB
1 and

let dddUB
1 be the beamforming and the combining vectors at S1;

and fffUB
2 and dddUB

2 be those at S2. Moreover, let HHH = UUU1ΣΣΣ1VVV
∗
1

and GGG = UUU2ΣΣΣ2VVV
∗
2, where ΣΣΣ1,ΣΣΣ2 ∈ C

Nr×Ns are diagonal

matrices with descending ordered singular-values of HHH and

GGG, respectively; UUU1,UUU2 ∈ C
Nr×Nr and VVV 1,VVV 2 ∈ C

Ns×Ns

are unitary matrices with the left and right singular vectors of

HHH and GGG, respectively. From [1], fffUB
1 = qqq1 and dddUB

2 = qqq2,

where qqq1 and qqq2 are the first column vectors of VVV 1 and VVV 2,

respectively, WWWUB
1 = γ1qqq3qqq

∗
4, where qqq3 and qqq4 are the first

column vectors of UUU2 and UUU1, respectively, and

γ1 =

√
PLink1

(Pω2
1 + σ2)

,

with ω1 being the largest singular value of HHH . As a result, an

upper bound of the achievable sum-rate, RUB
sum = RUB

12 +RUB
21 ,

can be expressed as

RUB
sum = max

PLink1,PLink2

s.t. Pr=PLink1+PLink2

{
1
2 log2

(
1 +

γ2
1Pω2

1ω
2
2

γ2
1σ

2ω2
2+σ2

)

+ 1
2 log2

(
1 +

γ2
2Pω2

1ω
2
2

γ2
2σ

2ω2
1+σ2

)}
.

(10)

III. SUM-RATE MAXIMIZATION SOLUTION

In this section, we propose a suboptimal solution to the sum-

rate maximization problem (9). The optimization problem (9)

is not convex. To tackle it, we propose to approximate its

solution by decomposing the original problem into the three

simpler optimization problems that are iteratively solved. The

corresponding optimization problems for the transmit/receive

vectors are convex and easy to solve. The problem for the

linear processing matrix WWW is still non-convex and an approx-

imate solution is proposed. We propose to find a suboptimal

solution by iterating the solution of the three problems below

in an alternate maximization fashion:

max
ddd1,ddd2

Rsum for given fff1, fff2, and WWW .

max
fff1,fff2

Rsum for given ddd1, ddd2, and WWW , s.t. ‖fff i‖2 ≤ 1.

max
WWW

Rsum for given fff1, fff2, ddd1, and ddd2, s.t. (3).

(11)

The optimal ddd1 and ddd2 in the first problem

of (11) are well-known to be the MMSE filters

d̂dd1 = (HHH∗WWWWWW ∗HHH + III)
−1

HHH∗WWWGGGfff2 and d̂dd2 =
(GGG∗WWWWWW ∗GGG+ III)

−1
GGG∗WWWHHHfff1. Moreover, the solution of

the second problem in (11) leads easily to the matched filter

(MF) solution f̂ff1 = α1HHH
∗WWW ∗GGGddd2 and f̂ff2 = α2GGG

∗WWW ∗HHHddd1
where α1 and α2 normalize ‖f̂ff1‖ and ‖f̂ff2‖, respectively, to

1.

The third problem in (11) is non-convex and we pro-

pose an algorithm that attempts to obtain a solution to the

Karush-Kuhn-Tucker (KKT) conditions, which are necessary

for optimality [10]. Specifically, by taking the first derivative

for the Lagrangian function of the third problem in (11)

with respect to the linear relaying matrix WWW , the first KKT

condition is given by ∇WWWL(WWW ) = ∇WWWRsum + λ∇WWW (Pr −
tr{PWWWHHHfff1fff

∗
1HHH

∗WWW ∗ + PWWWGGGfff2fff
∗
2GGG

∗WWW ∗ + σ2WWWWWW ∗}) =
0, where λ is the Lagrange multiplier for the power constraint

(3). By algebraic manipulation, we are able to write the above

condition as

RRR(www)www = RsumVVV (www)www, (12)

where www = vec(WWW ). Matrices RRR(www) and VVV (www) are defined

as

RRR(www) = (ρμ2 + ν2)TTT 1 + (ρμ1 + ν1)TTT 3, (13)

and

VVV (www) = 1
(ρμ1μ2+μ1ν2+ν1μ2)

×{ν2μ1(ρμ2 + ν2)TTT 2 + ν1μ2(ρμ1 + ν1)TTT 4 + (ν1ν2)
2λQQQ3},

(14)

respectively, where μ1 = www∗TTT 1www, μ2 = www∗TTT 3www, ν1 =
www∗TTT 2www+ddd∗2ddd2, ν2 = www∗TTT 4www+ddd∗1ddd1 and (15). Imposing also

the second KKT condition, namely the power constraint, (3),

the Lagrange multiplier λ can be obtained as

λ =
μ1

Prν21

(
ρ
μ2

ν2
+ 1

)
ddd∗2ddd2 +

μ2

Prν22

(
ρ
μ1

ν1
+ 1

)
ddd∗1ddd1, (16)

which is obtained by multiplying www∗ to both side of (12).

Notice that RRR(www) and VVV (www) in the KKT condition (12)

depend on the unknown www. If such dependence were removed,

then clearly www could be found as the generalized eigenvector

of RRR and VVV . Since this is not the case, here we propose an

iterative algorithm based on the power iteration technique [4]

[11]. The algorithm works as described in Algorithm 1.

Algorithm 1
1: Initialize WWW 0, λ0, and t ← 1
2: while Γ ≥ ε or t ≤ tmax do
3: Compute RRR(wwwt−1) and VVV (wwwt−1) with λt−1 from (13)-

(15)

4: wwwt =
√
γaaat, aaat =

VVV (wwwt−1)
†RRR(wwwt−1)wwwt−1

‖VVV (wwwt−1)†RRR(wwwt−1)wwwt−1‖ = vec(AAAt),

γ = Pr

tr{PAAAtHHHfff1fff
∗
1HHH

∗AAA∗
t+PAAAtGGGfff2fff

∗
2GGG

∗AAA∗
t+σ2

rAAAtAAA
∗
t }

5: Compute λt from (16) and Γ = ‖WWW t −WWW t−1‖2F
6: t ← t+ 1
7: end while
8: ŴWW =WWW t−1

920



TTT 1 =
(
(HHHfff1)

T ⊗ ddd∗2GGG
∗)∗ ((HHHfff1)

T ⊗ ddd∗2GGG
∗) ,TTT 2 = (IIIT ⊗ ddd∗2GGG

∗)∗(IIIT ⊗ ddd∗2GGG
∗),

TTT 3 =
(
(GGGfff2)

T ⊗ ddd∗1HHH
∗)∗ ((GGGfff2)

T ⊗ ddd∗1HHH
∗) ,TTT 4 = (IIIT ⊗ ddd∗1HHH

∗)∗(IIIT ⊗ ddd∗1HHH
∗);

QQQ1 =
(
(HHHfff1)

T ⊗ III
)∗ (

(HHHfff1)
T ⊗ III

)
,QQQ2 =

(
(GGGfff2)

T ⊗ III
)∗ (

(GGGfff2)
T ⊗ III

)
,QQQ3 = PQQQ1 + PQQQ2 + σ2III.

(15)
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Fig. 3. Achievable sum-rate performances of the two-way AF relay systems
with multiple-antennas, Nr = Ns = 4.

Here, ε and tmax are parameters to control the accuracy and

maximum number of iteration. Notice that Step 4 corresponds

to a lower iteration steps. If the procedure detailed above

converges, the solution, ŴWW , satisfies the first order necessary

KKT conditions (12) and (16). Since the original problem is

non-convex, however, this cannot guarantee optimality. The

proposed technique is seen to converge and to provide a good

suboptimal solution via the simulation results in Section IV

compared to the upper bound (10).

IV. NUMERICAL RESULTS

In this section, we present simulation results of the achiev-

able rates of the techniques proposed in this paper. Perfor-

mance comparison is provided with respect to the techniques

proposed in [4][5][7]. Since the technique of [4] assumes sin-

gle antenna transmitters and those in [5][7] transmit multiple

streams, for fairness, in all cases, we select the best two

antennas (i.e., with largest channel gains) for transmission of a

single stream from each source as in the proposed scheme. To

assess the role of the linear precoding matrix on the achievable

sum-rate performance, the trivial solution WWW = γ′III with

γ′ =
√

Pr

Ptr(HHHfff1fff
∗
1HHH

∗)+Ptr(GGGfff2fff
∗
2GGG

∗)+σ2tr(III) , chosen so as to

satisfy (3), is also considered.

We model the elements of the channel between each source

and the relay as independent complex Gaussian random vari-

ables with zero mean and unit variance and average the rates

to get achievable sum-rate performance. It is assumed that the

sources and the relay deploy the same transmit power, i.e.,

Pr = P .
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Fig. 4. Achievable sum-rate performance of the two-way AF relay systems
with an increasing number of relay antennas, Ns = 2 and SNR=15dB.

A. Sum-rate Performance of Two-way AF Relay Methods

Fig. 3 compares the achievable sum-rate performance of

the various techniques for a two-way AF relay channel with

Ns = Nr = 4. It is seen that the achievable sum-rate

performance of the proposed technique (labeled as ‘SR max’)

is very close to the upper bound. It is also observed that

there is significant performance loss of by setting WWW = γ′III
(‘SR max, WWW = γ′III’). Previous techniques also show inferior

performance compared to the proposed technique, e.g., about

3dB difference between the proposed technique and the ZF-

based method of [5] (with optimal antenna selection, as

explained above).

Achievable sum-rate versus the number of relay antennas

Nr is shown in Fig. 4 for SNR is 15 dB and Ns = 2. As Nr

increases, while setting WWW = γ′III shows increasing perfor-

mance loss, the performance of ZF-based method approaches

to the upper bound (given the ability of the relay to effectively

cancel interference).

B. Convergence

In Fig. 5, the convergence property of the proposed sum-rate

maximizing algorithm is presented in terms of average mean

squared error (MSE). We compare the convergence behavior

when Nr = Ns = 2, Nr = Ns = 4, and SNR=15dB. MSE of

the system at each iteration can be obtained by the following

calculation:

MSEt =
∥∥∥d̂dd1 − ddd1,t

∥∥∥2 + ∥∥∥d̂dd2 − ddd2,t

∥∥∥2
+
∥∥∥f̂ff1 − fff1,t

∥∥∥2 + ∥∥∥f̂ff2 − fff2,t

∥∥∥2 + ∥∥∥ŴWW −WWW t

∥∥∥2
F
,
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where t denotes the iteration number. Since we enforce the

iteration number as 50, d̂dd1 = ddd1,50 and it is same to the others.

As the number of antennas at the sources and the relay in-

creases, the algorithm converges slowly. The algorithm rapidly

converges to the final solution in 10 iterations and it seems 30

iterations are enough to say the algorithm almost reaches the

final solution. We cannot assure that the proposed algorithm

always converges or not, however, it provides jointly designed

system parameters in a reasonable number of iteration.

V. CONCLUSION

In this paper, we proposed near-sum rate optimal system

designs for the two-way AF relay system equipped with

multiple antennas at the sources and the relay for transmission

of a single stream from each source. An upper bound to

the achievable sum-rate was also provided. Numerical results

confirmed that the proposed technique showed comparable

achievable sum-rate performance, which was very close to the

upper bound of the system. Moreover, the reasonable number

of iteration was needed to reach steady state of the iterative

algorithm.
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