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Abstract—A multi-relay network is considered in which com-
munication from source to relays takes place over a (discrete or
Gaussian) broadcast channel, while the relays are connected to
the receiver via orthogonal finite-capacity links. Unbeknownst to
the source and relays, link failures may take place between any
subset of relays and destination in a non-ergodic fashion. Upper
and lower bounds are derived on average achievable rates with
respect to the prior distribution of the link failures, assuming
the relays to be oblivious to the source codebook. The lower
bounds are obtained via strategies that combine the broadcast
coding approach, previously investigated for quasi-static fading
channels, and various robust distributed compression techniques.

I. INTRODUCTION

In modern packet data networks serving delay-sensitive
applications, link failures are often appropriately modelled as
being unpredictable and non-ergodic. The conventional trans-
mission design targets worst-case scenarios by transmitting at a
judiciously selected constant rate that guarantees an acceptable
outage probability. However, it is often possible, and desirable,
to deploy transmission strategies that are able to provide
variable-rate data delivery depending on the current state
of the involved links [1]-[3]. Moreover, data communication
networks are typically envisaged to include distributed nodes,
whose operation is decentralized. In this paper, we consider
a baseline model for communication networks that include
these two basic elements of non-ergodic link failures and
decentralized operation.

Consider a scenario in which a single source communicates
with a remote destination via a number of relays (also referred
to as "agents" in related literature), with no multi-access inter-
ference at the destination (i.e., orthogonal finite-capacity links,
see Fig. 1). In [6] the multi-relay network described above was
studied under the assumption that the relays are oblivious to
the codebook used by the source; that is, processing at the
relays cannot depend on the specific codebook selected by
the source (as in, e.g., compress-and-forward or amplify-and-
forward achievable strategies). This assumption is of particular
relevance for nomadic applications (in which no signalling is
in place to exchange information regarding modulation and
coding used at the source) or in networks with inexpensive
relays whose processing cannot adapt to the specific source
operation. A related model with unreliable (non-ergodic) con-
nectivity, in which, unbeknownst to the agents, the links to
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Fig. 1. A single transmitter communicates to a remote receiver via MT

relays connected to the destination through unreliable finite-capacity links
(non-ergodic erasures). The number of functioning links M is unknown to
source and relays (uninformed source and relays), and the relays are oblivious
to the codebook used by the source (oblivious agents) as in [6].

the destination may not be functioning, was studied in [4]
and [5] in the context of distributed source compression (the
CEO problem). In this work, we extend the analysis in [6] by
accounting for unreliable links between relays and destinations
(non-ergodic failures) in the sense of [4] and [5] (see Fig. 1).

The basic idea behind our approach to the analysis of
the system in Fig. 1 is to exploit the synergy between the
broadcast (BC) coding approach of [3] at the source, which
allows for variable-data delivery to the destination depend-
ing on the current connectivity conditions, and the robust
distributed compression strategies of [4] and [5]. It is noted
that a related idea was put forth in [1] and [2] (see also
references therein), in which the BC coding approach was
combined with successive-description compression techniques
for transmission of a Gaussian source over a slowly fading
channel without channel state information. For lack of space,
in this paper results are provided without formal proofs, which
can be found in [7].

Notation: The notation [a, b] with a, b integers represents the
interval [a, a+1, ..., b], with the convention that if a > b then
[a, b] = ∅. Similarly, the subscript notation X[a,b] denotes the
vector [Xa, ...,Xb] with the same convention that, if a > b,
X[a,b] = ∅. In general, lower-case letters represent instances of
the random variables denoted by the corresponding upper-case
letters. Moreover, using standard notation, we will sometimes
use superscripts to denote index bounds in sequences as in
xi = [x1, · · · , xi]. The use of the superscript will be made
clear by the context. Probability distributions are identified by
their arguments, e.g., pX(x) = Pr[X = x] , p(x).



II. SYSTEM MODEL

We consider the decentralized communication scenario of
Fig. 1, in which a source communicates to a destination via
MT "agents" or relays, connected to the receiver via orthog-
onal finite-capacity (backhaul) links of capacity C. No direct
connection from the source to the destination is available.
The channel from source to relays is memoryless and either
discrete or Gaussian. For the former case, the signal Yi,j ∈ Y
received by the agent i ∈ [1,MT ] at time instant j ∈ [1, n]
is the output of a symmetric memoryless channel defined
by the conditional distribution p(y1, ..., yMT |x), with input
x ∈ X and block length n. Symmetric here means that the
observations Yi,j for different i are statistically exchangeable
(see, e.g., [4]). For the Gaussian case, we similarly have the
input-output relation

Yi,j = Xj + Zi,j , (1)

with Xj being the jth transmitted symbol and the noise
Zi,j ∼ N (0, 1) being independent and identically distributed
(i.i.d.) over both i and j. We assume an average input power
constraint of P : 1/n

Xn

j=1
x2j ≤ P . In describing the model

below, we will use the notation for the discrete model, but
it is understood that the extension to the Gaussian model (1)
is immediate. To account for a nomadic scenario and/or to
simplify the operations at the relays, we assume, as in [6],
that the relays are not informed about the codebooks used by
the transmitter (i.e., they are oblivious agents); see below for
details.

The model described above coincides with the one studied
in [6]. Here, however, we are interested in investigating the
scenario in which the backhaul links from relays to destination
present non-ergodic failures. Specifically, following [4], we
assume that only a number M ≤MT of links are functioning
at a given coding block, while the remaining MT −M are
erased (e.g., in outage) for the entire duration of the current
transmission (non-ergodic scenario). We define the probability
that M = m as pm and collect the probabilities pm in vector
p = (pM0 , ..., pMT ), where M0 represents the minimum
guaranteed number of active links [4]. We remark that, by
the symmetry of p(y1, ..., yM |x) (discrete model) and (1)
(Gaussian model), the system configuration for a given M
depends only on the number M of active links active and not
on which links are active. Finally, in keeping with the models
of [4] and [5] (for distributed source coding), we are interested
in scenarios in which no instantaneous information regarding
the current state of the unreliable links (i.e., the value of M )
is available a priori to the source and the agents (i.e., we
assume uninformed source and agents). More precisely, the
only information that is available at source and relays is the
probability mass vector p.

We are interested in average achievable rates, where the
average is taken with respect to the a priori probability vector
p. Specifically, we consider a degraded message structure in
which the overall source message of rate TMT

[bits/ channel
use] is split into submessages (WM0

, ...,WMT
) , W[M0,MT ]

of rates RM0
, ..., RMT

, respectively, i.e., Wm ∈ [1, 2nRm ].
When M = m links are active, with m ∈ [M0,MT ], the
receiver decodes messages W[M0,m] = (WM0 , ...,Wm) of total
rate Tm =

Pm
i=M0

Ri. Notice that the more links are active
the more bits (and messages) are decoded. The average rate
R is defined as

R =

MTX
m=M0

pmTm. (2)

We remark that, as in [3], the average rate (2) does not have the
operational significance of an ergodic rate, the channel being
non-ergodic. It is instead a measure of the rate that could be
accrued with repeated, and independent, transmission blocks,
or of the "expected" rate or throughput. The setting is briefly
formalized in the following (see [7] for details).

(i) The encoder performs a (stochastic) mapping φ
(E)
F

(the superscript (E) denotes the encoder) from the messages
W[M0,MT ] to a codeword xn, namely xn = φ

(E)
F (W[M0,MT ])

with F ∈ F = [1, |X |n2nTMT ] being a random key that runs
over all possible codebooks of size 2nTMT . The key F ∈ F
is revealed to the destination, but not to the relays (oblivious
relays), and formalizes the fact that the relays have no prior
knowledge of the codebook. As detailed in [6], by appropri-
ately choosing the probability Pr[F = f ] of selecting a given
codebook φ

(E)
f , one can model a scenario in which the signal

transmitted by the source Xn, in the absence of knowledge
of F (i.e., at the relays), is distributed i.i.d. according to
a distribution pXn(xn) =

Yn

i=1
pX(xi) and similarly the

received signals Y n
j at the relays appear i.i.d.; (ii) Each ith

relay (i ∈ [1,MT ]), unaware of the codebook F (oblivious
relays) and of M, maps the received sequence yi ∈ Yn into
an index si ∈ [1, 2nC ] via a given mapping si = φ(i)(yni ); (iii)
The decoder, if M = m links are active, decodes messages
W[M0,m] = (WM0 , ...,Wm) based on its knowledge of the
codebook key F and the received indices si over the m active
links (these can be assumed by symmetry to be s1, ..., sm)

via a decoding function φ
(D)
F ; (iv) The probability of error

when M = m links are active (averaged over F ) is defined
as Pn

e,m = Pr[φ
(D)
F (S[1,m]) 6= W[M0,m]]. An average rate R

(2) is achievable if there exists a sequence of codes such that
all rates Tm =

Pm
j=M0

Rj for m ∈ [M0,MT ] are achievable,
i.e., maxm Pn

e,m → 0 as n→∞. The average capacity Cavg
is the supremum of all average achievable rates (2).

III. REFERENCE RESULTS

In this section, we start the study of the system presented
above by deriving an upper bound on the capacity Cavg. It is
noted that, as in [6], for the Gaussian model, we restrict the
input distribution to be Gaussian with no claim of optimality.

Proposition 1: (Cooperative relays) The following is an
upper bound on the capacity Cavg for the discrete model:

Cavg ≤ max
XMT

m=M0

pm

³Xm

j=M0

Rj

´
, (3)



where the rates

RM0 = I(UM0 ;VM0) (4a)
Rm = I(Um;Vm|Um−1) for m ∈ [M0,MT − 1] (4b)

RMT = I(X;VMT |UMT−1), (4c)

are calculated with respect to a joint distribution

p(u[M0,MT−1], x, y[1,MT ], v[M0,MT ])

= p(u[M0,MT−1], x)p(y[1,MT ]|x)p(v[M0,MT ]|y[1,MT ]), (5)

and the maximization is taken with respect to the marginals
p(u[M0,MT−1], x) and p(v[M0,MT ]|y[1,MT ]) that factorize as

p(u[M0,MT−1], x) =
MT−1Y
m=M0

p(um|um−1)p(x|uMT−1),

(6a)

p(v[M0,MT ]|y[1,MT ]) =

MTY
m=M0

p(vm|y[1,m]) (6b)

and satisfy the condition

mC ≥ I(Vm;Y[1,m]). (7)

Moreover, for the Gaussian model, the relationship (3) is an
upper bound (under the constraint that the input distribution
is Gaussian) with

Rm =
1

2
log2

⎛⎜⎝1 + mβmP

1 +mσ2m +mP
XMT

k=m+1
βk

⎞⎟⎠ , (8)

for m ∈ [M0,MT ], where the maximization is taken with
respect to parameters βM0

, ..., βMT
≥ 0 with βM0

+ ... +
βMT

= 1 and σ2m = (1/m+ P )/(22mC − 1).
Remark 1: The upper bounds of Proposition 1 are obtained

by assuming that all of the M relays that are connected to the
corresponding active links can fully cooperate in processing
their received signals (notice that this implies that they are
also informed of which links are active). The upper bounds
can be interpreted as stating that, under this assumption,
the best way to operate at the source is to use a standard
BC code characterized by auxiliary random variables Um
(m ∈ [M0,MT − 1]) for the discrete case or powers βmP
(m ∈ [M0,MT ]) for the Gaussian case. Such variables (or
powers) correspond to the transmission of message Wm to be
decoded at the receiver when M = m. Notice that variables
Um satisfy the Markov chain condition (6a), or equivalently
U1−U2−...−UMT−1−X as for a regular degraded broadcast
channel [8]. Moreover, the result in Proposition 1 also proves
that the M = m fully cooperative relays can employ without
loss of optimality compress-and-forward (CF) techniques to
communicate to the receiver, where the auxiliary variables Vm
account for the quantization codebook used when M = m
and parameter σ2m is the corresponding compression noise
power for the Gaussian case. In fact, from standard rate-
distortion considerations, condition (7) is easily interpreted
in this sense as being necessary and sufficient to guarantee

successful compression for all m. Notice that the optimality
of CF in this context is a consequence of the obliviousness
assumption (see also [6]).

IV. ACHIEVABLE RATES

In the following, motivated by the upper bound of Proposi-
tion 1, we propose achievable schemes based on the BC coding
strategy of [3] and CF at the relays. The source transmits a
superposition of MT −M0 + 1 codewords of rates Rm for
m ∈ [M0,MT ]. When M = m, the receiver decodes W[M0,m].
The two techniques proposed in the following differ in the way
the CF strategy is implemented in terms of compression at the
agents and decompression/ decoding at the receiver, and entail
increasing levels of complexity.

A. Broadcast Coding and Single-Description Compression
(BC-SD)

In this section, we consider a transmission strategy based
on BC coding and single-description (SD) compression at the
relays. In other words, each relay sends over the backhaul link
a single index (description), which is a function of the received
signal. The compression/ decompression scheme is inspired
by the technique used in [4] for robust distributed source
coding in a CEO problem. The technique works by performing
random binning at the agents, as is standard in distributed
compression. Moreover, the binning scheme is designed so that
the receiver can recover with high probability the compressed
signals on the M active links irrespective of the realized value
of M as long as it is M ≥M0 (as guaranteed by assumption).
In other words, design of the compression scheme targets
the worst-case scenario of M = M0. Notice that, should
more than M0 links be active (M > M0), the corresponding
compressed signals would also be recoverable at the receiver,
since, by design of the binning scheme, any subset of M0

descriptions can be decompressed [4]. After decompression is
performed, the receiver uses all the M signals obtained from
the relays to decode the codewords up to the M th layer (that
is, the layers with rates Rm with M0 ≤ m ≤M).

Proposition 2: (BC-SD) The average rate (2) is achievable
for the discrete model with

RM0 ≤ I(UM0 ;V[1,M0]) (9a)
Rm ≤ I(Um;V[1,m]|Um−1) for m ∈ [M0 + 1,MT − 1]

(9b)
RM ≤ I(X;V[1,MT ]|UMT−1). (9c)

where the variables at hand satisfy the joint distribution

p(u[M0,MT−1], x, v[1,MT ], y[1,MT ]) (10)

=

MT−1Y
m=M0

p(um|um−1)p(x|uMT−1)p(y[1,MT ]|x)
MTY
i=1

p(vi|yi),

with p(vi|yi) being the same for every i ∈ [1,MT ], and the
condition

C ≥ 1

M0

£
H(V[1,M0])−M0H(Vi|Yi)

¤
. (11)



Moreover, for the Gaussian model, the average rate (2) is
achievable with

Rm ≤ 1
2
log2

Ã
1 +

mβmP

1 + σ2 +mP
PMT

k=m+1 βk

!
(12)

and σ2 satisfying

C ≥ 1
2
log2

"µ
1 +

M0P

1 + σ2

¶ 1
M0
µ
1 +

1

σ2

¶#
, (13)

for any power allocation βM0
, ..., βMT

≥ 0 with βM0
+ ...+

βMT
= 1.

Remark 2: Similar to the discussion around Proposition 1,
the auxiliary random variable Um for the discrete case and
power βmP for the Gaussian case, m ∈ [M0,MT − 1],
represents the codebook used for the transmission of the mth
layer to be decoded at the receiver when M = m. Moreover,
the variable Vi represents the compression codebook vni used
at each agent i. Notice that by symmetry the same distribution
p(vi|yi) is selected for all i ∈ [1,MT ]. Conditions (11) for the
discrete case and (13) for the Gaussian case are shown in [4]
to guarantee that the decoder is able to decompress the signals
corresponding to any set of M0 agents. We finally notice that
the only difference between the achievable rate of Proposition
2 obtained with BC-SD and the upper bound of Proposition
1 is related to the variables Vm used for compression, and in
the Gaussian case to the power of the equivalent compression
noise (compare (12) with (8)).

Remark 3: For MT =M0 (fully reliable links), the achiev-
able rate of Proposition 2 coincides with the one presented in
Theorem 1 of [6].

Remark 4: (Joint Decompression/ Decoding) A potentially
more efficient (but also more complex) implementation of a
system working with BC coding and SD compression can be
designed based on joint decompression/ decoding, similarly to
the scheme proposed in [6]. We refer to [7] for further analysis
and discussion.

B. Broadcast Coding and Multi-Description Robust Compres-
sion (BC-MD)

In this section, we propose to couple the BC coding ap-
proach considered throughout the paper with multi-description
(MD), rather than SD, compression at the agents. The idea
follows the work in [5] , which focused on the CEO problem.
Accordingly, each relay shares the nC bits it can convey to
the destination between multiple descriptions of the received
signal to the decoder. The basic idea is that different descrip-
tions are designed to be recoverable only if certain connectivity
conditions are met (that is, if the number of functioning links
M is sufficiently large). This adds flexibility and robustness
to the compression strategy.

To simplify the presentation, here we focus on the two-agent
case (MT = 2). Dealing with the more general setup requires
a somewhat more cumbersome notation, but is conceptually a
straightforward extension. Moreover, without loss of general-
ity, we assume M0 = 0 or M0 = 1, since with M0 =MT = 2

the system coincides with the one with fully reliable links
studied in [6]. The two agents send two descriptions: a basic
one to be used at the receiver in case the number of active
links turns out to be M = M0 = 1 and a "refined" one that
will be used only if M = MT = 2. It is also noted that
for the scheme at hand the only difference between the cases
M0 = 0 and M0 = 1 is in the prior p =(p0, p1, p2), where in
the former case, unlike the latter, we have p0 > 0.

Proposition 3: (BC-MD) For MT = 2, M0 = 0 or 1, the
average rate (2) is achievable for the discrete model for

R1 ≤ I(U ;V1i) (14a)
R2 ≤ I(X;V11, V12, V21, V22|U) (14b)

with joint distribution

p(u, x, v11, v12, v21, v22, y1, y2) (15)

= p(u, x)p(y1, y2|x)
2Y

i=1

p(v1i, v2i|y1),

where p(v1i, v2i|y1) is the same for i = 1, 2, satisfying the
constraint

C ≥ I(V1i;Y1) +
1

2
I(V21, V22;Y1, Y2|V11, V12). (16)

Moreover, for MT = 2, M0 = 0 or 1 and the Gaussian model,
the average rate (2) is achievable for

R1 ≤ 1
2
log2

µ
1 +

βP

1 + (1− β)P + σ21 + σ22

¶
(17a)

R2 ≤ 1
2
log2

µ
1 +

2(1− β)P

1 + σ22

¶
(17b)

with any power allocation 0 ≤ β ≤ 1, and any σ21 and σ22
such that

C ≥ 1

2
log

µ
1 +

P + 1

σ21 + σ22

¶
(18)

+
1

4
log

Ã ¡
σ21 + σ22

¢2 ¡
2P + σ22 + 1

¢ ¡
σ22 + 1

¢
(2P + σ21 + σ22 + 1) (σ

2
1 + σ22 + 1)σ

4
2

!
.

Remark 5: In the MD scheme achieving the rate above,
each transmitter divides its capacity C into two parts, say
with a fraction 0 ≤ λ ≤ 1 devoted to the first (m = 1)
and (1 − λ) to the second (m = 2) description. Auxiliary
variables Vmi in (14) represent the quantization codebooks
corresponding to the mth description (m = 1, 2) of the ith
terminal (i = 1, 2). As explained above, the binning scheme
for the mth description is designed so that the description is
recoverable at the destination whenever M = m. To ensure
this, it is sufficient to impose the condition λC ≥ I(V1i;Y1)
for m = 1 from standard rate-distortion theoretic arguments,
and 2(1−λ)C ≥ I(V21, V22;Y1, Y2|V11, V12) for m = 2, from
distributed lossy distortion theory, see, e.g., [5]. Notice that
the latter inequality exploits the fact that the first descriptions
V11 and V12 have been correctly decompressed at the decoder
when M = 2, and thus provide side information. In the
Gaussian model, variances σ21 and σ22 in (17)-(18) account for
the compression noises for the first and second description,



respectively, and condition (18) corresponds to (16). The
auxiliary random variable U in the discrete model and powers
(βP, (1− β)P ) represent, as in the rest of the paper, the BC
code.

Remark 6: On setting V21 and V22 to be constant for the
discrete model or letting σ22 → ∞ for the Gaussian model,
Proposition 3 reduces to Proposition 2 for MT = 2, M0 = 0
or 1.

V. NUMERICAL RESULTS

Consider a two-agent system (MT = 2) with M0 = 1
guaranteed functioning links. We compare the performance
of the schemes described above, with single description (SD)
or multi-description (MD) compression. For reference, we
consider the upper bound (8) corresponding to cooperative
relays (labelled as "cooperative"). To assess the impact of
non-ergodic link outage, we also show the performance of a
system in which the link outages occur in an ergodic fashion
so that the agents effectively see a link capacity equal to the
average C̄ = (1 − p1/2)C (labelled "ergodic"). This rate
clearly sets another upper bound on the average capacity,
and can be found from [6] to be Cavg ≤ 1/2 log2(1 +

2P (1 − 2−4C̄(
q
P 2 + 24C̄(1 + 2P ) − P ))). Finally, the rate

of a baseline single-layer (SL), or non-broadcast, transmission
in which the source only sends one information layer to
be decoded in the worst case scenario M0 = 1 and the
relays perform SD compression is shown for reference. The
rate of this SL-SD scheme is easily seen to be RSL−SD =
1
2 log2

¡
1 + P/(1 + σ2)

¢
, with σ2 = (1 + P )/(22C − 1).

Fig. 2 shows the average rates of the proposed schemes for
P = 15dB and C = 0.5 versus the probability p2 = 1 − p1
of having M = 2 active links (rather than the minimum
guaranteed M0 = 1). The rates are optimized numerically over
the parameters at hand (i.e., the compression noise variances
σ2i and power allocation β). It can be seen that the BC
coding strategy provides relevant advantages over SL as long
as the probability p2 is sufficiently large, since it offers the
possibility to exploit better connectivity conditions when they
arise. Moreover, MD compression clearly outperforms the SD-
based approach for all values of p2 for which BC coding is
advantageous, due to the added flexibility in allocating part
of the backhaul link rate for the case of full connectivity
(M =MT ). In particular, BC-MD performs very close to the
upper bound of cooperative relays and for p2 = 1 achieves the
capacity for M0 =MT = 2 of [6] (that is, the ergodic bound
above with p1 = 0).

VI. CONCLUDING REMARKS

Focusing on a multi-relay network with one transmitter-
receiver pair and unreliable orthogonal link between each relay
and the destination, we have exploited the synergy between
the BC approach of [3] and the distributed source coding
techniques of [4] and [5] to propose a number of robust
communication strategies. Via comparison with performance
upper bounds, we have shown that the proposed techniques
are almost optimal for the model in which the relays are
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Fig. 2. Average achievable rates (2) for the proposed BC-based schemes
with single description (SD) or multi-description (MD) compression, versus
the probability p2 = 1 − p1 of having M = 2 active links. For reference,
the upper bound (8) achievable with cooperative relay, the upper bound
corresponding to ergodic link failures and the rate of single-layer (SL), or
non-broadcast, transmission with SD compression are also shown (P = 15dB
and C = 0.5).

oblivious to the source codebooks. This work opens a number
of possible avenues for future research, such as the extension
to multi-user scenarios with more than one source.
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