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Abstract—In the downlink of a multi-user MIMO system, the
base station can multiplex signals intended to different users
on the same spectral resource. Joint optimization of channel
assignment (scheduling) and beamforming in such a scenario is
an open problem. Assuming zero-focing linear beamforming at
the base station, this paper addresses this task by investigating
a novel greedy solution that approximately maximizes the sum-
rate. Performance of the proposed method is studied through
numerical simulation and compared with known solutions based
on combinatorial search.

I. INTRODUCTION

In the downlink of a multi-user system, deployment of
an antenna array at the base station (or access point) opens
up the possibility to multiplex signals intended for different
users in the same time/frequency resource. If the transmitter
is equipped with Np antenna and employs optimal non-linear
interference pre-subtraction (Dirty Paper Coding [1]), it has
been recently shown that up to N2 spatial streams can be
multiplexed and up to lez reserved to each user [2] (Ng is
the number of receiving antennas). This contrasts with the
case of base station and users equipped with a single antenna,
where it has been shown that transmission to the user with the
strongest channel is a strategy that achieves channel capacity
[5]-

Due to the large complexity of Dirty Paper Coding, sub-
optimal techniques have been investigated for the downlink
of a multiantenna system. In particular, (linear) zero-forcing
beamforming has been studied in [4] for the case Np = 1.
With zero-forcing techniques, only up to Np data streams
can be spatially multiplexed. Zero-forcing beamforming for a
multiuser MIMO scenario (i.e., with N > 1) has been inves-
tigated in [6] with a simplified channel allocation (schedul-
ing) over the users. In this latter case, joint optimization of
scheduling and beamforming is known to be a challenging
task due to the large set of possible transmitting strategies
that is necessary to explore. In [8] this issue was tackled by
maximizing a performance criterion related to the sum-rate,
for a given number of data streams assigned to each user.
Obtaining the optimal solution then requires a combinatorial
search over the possible channel assignments.

In this paper, a novel approximate greedy solution to
the problem of maximizing the sum-rate is proposed, that
circumvents the need of the above-mentioned combinatorial
search with moderate performance loss. Performance of the
proposed methods is studied through numerical simulation
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and compared to existing solutions and combinatorial search
approaches, showing the desirable features of the presented
techniques. For further analysis of the proposed scheme in
terms of fairness criteria, the reader is referred to [10].
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Fig. 1. Block diagram of a broadcast channel with linear interfaces at the

transmitter (base station) and receivers (users).

II. SIGNAL MODEL
A. Channel aware scheduling and linear precoding

A MIMO broadcast channel with beamforming matrices at
the transmitter and receivers is depicted in fig. 1. Let IC be
the set of K available users. The base station is equipped
with an antenna array of N elements, whereas each user has
Np, antennas. The subset of K (¢) users that are served by the
base station within the ¢th time slot is denoted as KC(¢)C K and
its elements are indexed by k = 1,2, ..., K(¢). The scheduler
distributes the N7 available spatial channels to the users in
KC(t) based on the knowledge of the channel state information
at the transmitter (channel aware scheduling). In particular,
the scheduler allocates dj,(t) < Np spatial channels to the kth
user so that all the Ny available spatial channels are used':

K(t)

> di(t) = Nr.
k=1

The signal intended for the kth user is collected into the
di(t) x 1 zero-mean complex Gaussian vector xj(t) with
Elxi(t)xi! (t)] = I and is linearly precoded by the

(1)

"Notice that in certain scenarios the equality constraint (1) might lead to a
degraded solution as compared to the case where a smaller number of spatial
streams is assigned (i.e., Z]i(:(tl) di(t) < Nr). However, throughout the
paper, we assume that the scheduler assigns all the N streams as in (1) in
order to simplify the presentation.
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Npxdy(t) matrix My (t). Following the conventional notation
for block fading channels (see, e.g., [3]) and referring to fig.
1, the signal received by the kth user across its Np receiving
antennas within the ¢th time slot can be written as the Ng x 1
vector y ()

yr(t) = Hy(t)M + ) Hy(t x;(t) +nx(t),
ié?(“ﬂ
2

where Hy(¢) is the Ng x Np channel matrix of the kth
user and the zero mean additive complex Gaussian noise is
n,(t) ~ CN(0,0%Iy,). The channel matrices Hy () are
assumed to be instantaneously known at the transmitter, e.g.,
through feedback channels. Moreover, they are assumed to be
constant in each transmission slot and varying independently
across different slots (ergodic block fading).

The received signal yi(t) lies in a Np-dimensional linear
space. However, only di(t) < Np spatial channels are
assigned to the kth user by the scheduler. Therefore, the useful
part of the received signal spans a dj(t)-dimensional subspace
span{Hy (t)My(t)} that we refer to as receiving subspace.
The receiving subspace can be described as the subspace
spanned by a Ng X di(t) orthonormal matrix By/(t)

B (t)Br(t) = Lo, (1), 3)

i.e., span(By(t)) is the receiving subspace for user k. Now, the
goal of the scheduler can be described as that of selecting at
each time-slot ¢ the set B(t) = {By(t)}<_ |, where By (t) = 0
if the kth user does not belong to the set of active users.

According to the discussion above, at the kth terminal, suf-
ficient statistics for the estimation of the dj(t) x 1 transmitted
vector xx(t) can be obtained by projecting the received signal
v« (t) within the receiving subspace by the dj(t) x Ny matrix
BI (1

Ye(t) = By (t)yr(t) = Hi(t)Mr(t)x(t) +
+ Y Hi@Mi(t)xi(t) + 1 t), ()
i#£k
i€k (t)

where we have defined the dy(t) x Nt equivalent channel
Hy(t) = B (t)H(¢) and the noise fix(t) = B (¢)n.(t).
Notice that from (3) the noise correlation matrix reads
E[ng(t)nf ()] = azIdk(t). In this paper, we consider the
problem of joint designing of channel aware scheduling (i.e.,
design of the set B(t) = {B(t)}£ ;) and precoding (i.e.,
design of the set M(t) = {M ()} ).

B. Zero-forcing linear precoding

In this work, linear precoding is assumed to be designed
according to the zero-forcing criterion. Therefore, precoding
matrices M (¢) {My(t)} | are selected so that the
following condition is guaranteed:

H;(t)M;(t) = 0 for i # j, (5)
which implies that the received signal (4) can be written as
¥ (t) = Fx ()M (£)x5 (t) + g (1) (6)

In other words, zero-forcing linear precoding equivalently
forms a set of parallel MIMO channels free from inter-user
interference.

III. MAXIMIZATION OF THE SUM-RATE

In this Section, we address the problem of joint channel
aware scheduling and zero-forcing precoding optimization
aimed at maximizing the sum-rate in each time-slot. The
argument ¢ is dropped in the following to simplify the notation.
The problem can be formulated as:

{B,M} = argmaXZC (B, M) (7
B, i=1

ot { (1), 3)05)

Ul S (MM < P

where C;(B, M) is the link rate for the ith user [3]

1 ~ -
Ci(B, M) = logy [Ty, + S HMMH|  (8)

and the last constraint in (7) limits the total transmitted power
at the base station in each time slot. Note that the rate for
each user (8) does not account for interference because of the
zero-forcing constraint (5). In the remaining of this section,
we review existing approaches to the solution of problem (7).
This discussion sets the ground for the presentation of a novel
technique in Sec. IV, that will be proved to have desirable
performance as compared to known solutions in Sec. V by
numerical results.

A. Review of existing approaches to the solution of (7)

1) Separate optimization of zero-forcing precoding and
scheduling (LSV) [6]: In [6], problem (7) is tackled by
decoupling the optimization of precoding M and scheduling
B. Let us at first consider the optimization of M for a given
scheduling B. As a consequence of the constraint (5), any
precoding matrix can be written as

where \_/% is a N7 X dj matrix with orthonormal columns
selected so as to null the inter-user interference as in (5), i.e.,
(see Appendix-A for an explicit computation of V]l)

o7l . .
H,V; =0 for i# (10)

and Qy, is a dj x dj matrix that performs beamforming and
power allocation on the interference-free single-user MIMO
channels (6) created by zero-forcing precoding. In particular,
from (6) and (10) we have

(11

so that we can use the well known results on single-user
MIMO channels in order to design matrix Q based on the
singular value decomposition (SVD) of matrix H; V- [3].
If the condition on the transmit antennas Np > K Np is
satisfied, there is no need for the scheduling step since all
the KNp deployable spatial channels can be allocated. In this

¥ = H Vi Quxy, + 1y,
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case, optimality with respect to (7) is guaranteed by setting
the number of spatial channels for each user to dy = Ng
and By = Iy,, and by computing the precoding matrices as
explained above. However, in general, the number of transmit
antennas is not large enough (N7 < K Ng).

In this case, [6] proposes to set as active the spatial channels
corresponding to the largest singular values of the channel
matrices {H;} . Therefore, scheduling can be equivalently
stated as the solution of the following optimization problem:
find the set B so that

B = (12)

K
argglaxz ||BZHHZH2 ,
i=1

s.t. (1) and (3).

We will refer to this technique that performs separate opti-
mization of precoding and scheduling as the Largest Singular
Value (LSV) method.

2) Approximate joint optimization of scheduling and pre-
coding with given {d;}X | (GM-OSDMA)[8]: The approxi-
mate solution of the problem (7) proposed by [6] and reviewed
in the previous section suffers from degraded performance (as
it will be shown in Sec. V) mainly because the precoding
matrices M and the scheduling matrices B are optimized
separately. In [8] a technique is propose that partially cir-
cumvents this inconvenient. The approach is based on the
approximation of the objective function C;(B, M) by its first
term of the Taylor expansion: C;(B, M) ~ HBlHHlMlH2 /o?
(see also [9] for a similiar approach). Moreover, it exploits the
fact that, due to the zero-forcing assumption, the optimization
of the sets B and V*+ = {V}}K | for the management
of the inter-user interference on one hand, and {Qj}X ,
for transmission over the single-user MIMO channels on the
other, can be conveniently decoupled (recall (9)). Therefore,
it follows that the tackled problem has the form

K
{B,Vt} = argmax Y N;(B, V1),

s.t. (1), (3) and (10),

(13)

where we defined N;(B,V+) = HB;HHZ-\_/Z-LH2 as the norm
of the equivalent single-user MIMO matrices in (11). Once
problem (13) is solved, matrices {Qy}_, are computed as
explained above.

The technique proposed in [8] for the solution of (13)
is limited in that it assumes the knowledge of the number
of spatial channel per users {d;}X, (which is in general
a variable of the optimization problem). The method starts
by letting B; = In,xd,, and then proceeds to optimize the
matrices B; and V} of each user, given those of all other
users. The iteration stops when orthogonality between the
users is achieved, i.e. when HBFHZ\_/'j-H2 ~ ( for each i # j.
According to the denomination used by the its authors, we
refer to this technique as Generalized Multiuser Orthogonal
Space Division Multiple Access (GM-OSDMA).

IV. APPROXIMATE JOINT OPTIMIZATION OF SCHEDULING
AND PRECODING (SVS)

In this section, a technique that performs joint optimiza-
tion of scheduling and zero-forcing precoding according to
problem (13) is proposed. As compared to the solution of
[8], pre-determination of the number of spatial channels per
user {d;}X, is not assumed. The methods adopts a greedy
approach as detailed in the following. Notice that subopti-
mality of this technique with respect to the original sum-rate
maximization problem (7) is twofold: (i) as for the method
in [8], the more tractable merit function (13) is considered,
(if) a suboptimal greedy approach to the solution of (13) is
proposed. Suboptimality due to point (if) can be quantified by
numerical simulations through performance comparison with
the GM-OSDMA method applied with a combinatiorial search
over every possible choice of parameters {d; } XX | as discussed
in Sec. V.

A. The SVS algorithm

The idea is to select at each step the spatial channel that
yields the largest increase of the objective function (13). Let
us denote with the superscript (n) the quantities of interest
as computed at the nth iteration. At each iteration a spatial
channel (out of the Ny available) is allocated to a specific user
so that a total number of Ny iterations are needed according to
the constraint (1). In particular, at the nth iteration, the number
of assigned spatial channels is 21K:1 dE") = n. Moreover,
at each iteration, we are interested in updating the basis of
the receiving subspaces B, (initialized as BEO) equal to an
empty matrix) and the basis of the transmitting subspaces
V-, or equivalently its orthogonal complement V; (see (23),
initialization: V;© =1Ty,).

Let b; be a possible candidate vector to be included in
the basis B§n) of user j at the nth iteration (j = 1,..., K).
As a result of the choice of b; at the nth iteration, the
objective function (13) can be written as the sum (dropping the
functional dependence on B, V* for simplicity of notation)

K K

K
DN (b)) =Y NV 4 YT AN (by).

=1 i=1

(14)

Among all the possible vectors b; for all users j =1, ..., K,
the vector b; is selected so as to maximize the increase of
the objective function "% | AN (b;). In the following, the
computation of AN™ (b;) is carried out.

To elaborate, we need to define for each user a basis U;")
that spans the range space of the channel matrix H; that, at the
nth iteration, has not been assigned to any receiving subspace
yet. Formally, it is: span{Ugn)} = span{U;} N null{Bjn)}.
Therefore, the corresponding initialization is U;O) = U;. At
the nth iteration, the candidate vectors to be included in the
receiving subspace of the jth user are linear combinations of
the columns of Ugn):

b; = Uay, with [ja,]|* = 1. (15)
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Therefore, according to (15), maximization of the increase
ZiK:1 ANi(”)(bj) has to be carried out with respect to vector
a;. In order to stress this point, in the following, with a slight
abuse of notation, we will write Zfil ANi(")(aj).

With the selection of a; in (15), the corresponding basis
of the receiving subspace is updated as B;n) = [B("_l),

b;] while its transmit subspace remains unchanged, VL(”) =
Vi 1), since no new constraint (10) is imposed on it. It

follows that the increase in (14) reads

(16)

However, the choice of a; for user j results in an additional
zero-interference constraint for any other user ¢ # j since the
constraint (10) reduces to:

7L(n
b H,; V™ =0,

2
n 1(n

(17

or equivalently the condition v; = H'b; € null (V)
or v; € span(\_fgn)) holds true. The above formulation of
constraint (17) leads directly to the update of \_/'En) as

[Vg”*” wl} , (18)

where, in order to preserve the orthonormality of the up-
dated precoding set VE”), w; is the projection of v; onto

1(n—1)
span(V; )

v =

scaled to unit norm

wi = (Vi 0T HVE 0y [V v

vil-

19)
V" is updated as well, so that span(V; null(V™).
This step can be performed, e.g., by updating the QR decom-
position of (18) [7]. On the other hand, nothing changes at
the receiver side of the ith user as B{"”) = B{" ™" so that
the decrease in the objective function (14) due to increased
interference reads:

ANi( )(a]

(n))

2
HB(")HH Wi

i ]
To sum up, from (16) and (20) the increase of objective

function (13) due to the choice of vector b; at the nth iteration
is

(20

Hpyp Lo
Hbj H,V™| -

> e

The first term accounts for the increased useful power received
by user j on the assigned spatial channel, whereas the other
terms represent the power loss suffered from the other users
from being prevented to transmit over w; in order to guarantee
the zero-forcing constraint (10).

Recalling (15) and (19), function (21) can be recognized to
be a sum of Rayleigh quotients in terms of vector a;:

K
ST AN (ay) Q1)
=1

ZW’L

HR(”)

HR () H
3 anria) - My s
it

HR®) H’
a/R; "a;

oo (22)
v

25

20

SVs

ergodic sum-rate E[C] [bit/s/Hz]

random selection

10
SNR [dB]

Flg 2.
o2 =1).

Ergodic sum-rate E[C] versus SNR (K =4, Ny = 4, Ng = 2,

where for the definition of correlation matrices Ryl), Rgn)

and I—{En) and a derivation of (22) the reader is referred to
Appendix-B. While the maximization of a single Rayleigh
quotient is analytically feasible since it corresponds to the
solution of a generalized eigenvalue problem, maximizing a
sum of Rayleigh quotients requires sophisticated techniques in
the context of global optimization. Here, we resort to a sub-
optimal approach that exploits the structure of the considered
problem. In particular, we constraint a; to be a column of an
identity matrix, which translates to restricting our search of
the optimal u; to the columns of Ugn)

V. NUMERICAL RESULTS

In this section, numerical analysis is presented for the down-
link of a MIMO system with N = 4 transmitting antenna at
the base station and Np = 2 antennas at each terminal. The
channel matrix Hy(¢) is assumed to be zero mean complex
Gaussian with independent identically distributed entries and
variance o%. Matrices Hy(t) are independent over users (k)
and time (t).

A. LVS versus SVS scheduling

At first, a comparison of the performance of the algorithms
LSV and SVS is presented. As discussed in Sec. III, both
algorithms aim at maximizing the sum-rate but while the
first performs a separate optimization of scheduling and zero-
forcing precoding, the latter approximate the problem of joint
optimization of the two stages. Since GM-OSDM assumes the
knowledge of the number of spatial channel to be granted to
each user, it will be considered separately below. We con51der
K = 4 users and a homogeneous scenario with o7 = 1
for k = 1,.., K. As reference performance, a random user
selection algorithm that chooses randomly a set K of users
so as to satisfy (1) with By = Iy, for £ = 1,.. K
is considered. On this randomly selected subset, orthogonal
precoding is applied as detailed in Sec. III. The ergodic sum-
rate E[C] = ). | E[C;] is shown versus the signal to noise
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Fig. 3. Ergodic sum-rate E[C] versus the number of users K for SVS and
GM-OSDM (Nt =6, Ng = 3, 02 = 1, SNR = 10dB, 20dB).

ratio SNR = P/o? in fig. 2. The proposed SVS algorithm
yields a gain of about 4dB in SN R as compared to the LSV
algorithm and the random users selection.

B. SVS scheduling versus GM-OSDM with combinatorial
search over {d;(t)}£ ,

In order to evaluate the suboptimality of SVS with respect
to the approximate sum-rate optimization problem (13), a
comparison between SVS and GM-OSDM is presented here.
In particular, as discussed in Sec. I1I-A.2, for GM-OSDM an
exhaustive search is performed over all possible allocations
of spatial channels {d;(t)}X,. Here we consider Ny = 6
transmitting antennas at the base station and Ny = 3 antennas
at each terminal for varying number of users K. The fading
scenario is assumed to be homogeneous with o7 = 1. The
ergodic sum-rate E[C] is shown versus K for differerent
signal-to-noise ratios SNR = P/o? (10 and 20dB) in fig.
3. It can be noticed that the gain of GM-OSDM over SVS is
approximately constant with respect to K and slightly increas-
ing for larger SNR (around 2.5dB for SNR = 10dB and
3dB for SNR = 20dB). On the other side, the computational
cost of GM-OSDM is substantially higher since the method
occasionally requires a large number of iterations to converge
(as opposed to the fixed number of N iterations needed by
the SVS algorithm), and, above all, it demands an exhaustive
search over the assignment of the number of spatial channels

{di(®)}E,.
VI. CONCLUSION

Joint optimization of channel-aware scheduling and zero-
forcing linear precoding has been addressed for the downlink
of a MIMO system. A novel approximate greedy algorithm is
proposed for the maximization of the sum-rate. This method
avoids the need of a combinatorial search over the number
of spatial channels to be assigned to each user with moderate
performance loss.

VII. APPENDIX-A: COMPUTATION OF MATRIX Vi

The precoding matrix Vi in (9) has to ensure the zero-
forcing constraint (10). Therefore, it should be computed as a
Nrp X dy, basis of the dj-dimensional null space of the Ny x
(Nt — dj,) matrix H with the singular value decomposition

Ay = |- HHT - HET =
A I A G Y

VIII. APPENDIX-B: PROOF OF (22)
According to (15) and (19), the increment function (21) for

b; = U§-")aj becomes

K _ 2

S AN = [|afuitE V| - 24)
i=1

2

|BM TP HI UM,

)

2 ;
it HPil(n_l)HfIUg‘n)aj H
where Pj‘("_l) = Vj'(n_l)\_fj‘(n_l)H. Equation (24) can be
written in terms of the sum of Rayleigh quotients (22) by
defining the correlation matrices

R = uWfEp EIUM,
R = uW'Ep " VHIBVBM H P " VHIU
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