
Energy-Efficient Sensing and Communication of
Parallel Gaussian Sources

Xi Liu∗, Osvaldo Simeone† and Elza Erkip∗
∗ECE Dept., Polytechnic Inst. of NYU, Brooklyn, NY, USA

†CWCSPR, ECE Dept., NJIT, Newark, NJ, USA
Email:xliu02@students.poly.edu, osvaldo.simeone@njit.edu, elza@poly.edu

Abstract—Energy efficiency is a key requirement in the design
of wireless sensor networks. While most theoretical studies only
account for the energy requirements of communication, the
sensing process, which includes measurements and compression,
can also consume comparable energy. In this paper, the problem
of sensing and communicating parallel sources is studied by
accounting for the cost of both communication and sensing. In
the first formulation of the problem, the sensor has a separate
energy budget for sensing and a rate budget for communication,
while, in the second, it has a single energy budget for both tasks.
Furthermore, in the second problem, each source has its own
associated channel. Assuming that sources with larger variances
have lower sensing costs, the optimal allocation of sensing energy
and rate that minimizes the overall distortion is derived for the
first problem. Moreover, structural results on the solution of
the second problem are derived under the assumption that the
sources with larger variances are transmitted on channels with
lower noise.

I. INTRODUCTION

Sensor networks consisting of battery-limited nodes need to
be operated in an energy-efficient manner in order to attain a
satisfactory lifetime. Energy consumption of a sensor node
usually consists of both computational and communication
energy [1], which come primarily from sensing and communi-
cation. The sensing component consumes energy in the process
of digitizing given information sources through a cascade
of acquisition, sampling, quantization and compression tasks,
while the communication component spends power for the
transmit circuitry and for the power amplifier. It is known
that the overall energy spent for compression is generally
comparable to that used for communication and that a joint
design of compression and transmission is critical to improve
the energy efficiency [2] [3]. We refer to the energy cost
associated with measurements and compression of information
sources as “sensing cost”.

The problem of allocating energy across sensing and
communication components of sensors in a wireless sensor
network, was studied in [4], where an on-line algorithm
that is able to choose between a finite number of possible
compression algorithms with different energy costs for a
multi-hop set-up was proposed. In this paper, instead, we
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consider an integrated sensor device consisting of multiple
sensor interfaces [5] that can simultaneously measure multiple
information sources, which are modeled as parallel Gaussian
sources. Being part of the same device, the sensor interfaces
share the same overall resource budget. Moreover, since the
sensor interfaces have distinct hardwares and sensitivities, we
assume the sensing costs of different sources are generally
different. Finally, for tractability, we model the sensing cost
of a given source as being constant per source sample. This is
analogous to the model used in the literature to account for the
transmitter processing cost of the communication component
of a wireless device [6]. In [6], it was shown that, when the
transmitter processing energy cost is not negligible, it is no
longer optimal to transmit continuously, but instead, bursty
transmission is optimal in terms of the achievable rate.

A. Contributions

With sensing costs present, we aim at optimizing the re-
source (energy or rate) allocation so as to minimize the overall
mean squared error distortion of all the sources. We consider
two types of resource constraints. In the first, the sensor
has a given energy budget used for sensing and a separate
rate constraint for communication to the destination (separate
sensing/communication). In the second, the sensor has an
overall energy budget which is to be spent for both sensing and
communication (joint sensing/communication). Moreover, in
the joint sensing/communication scenario, the sensed sources
are assumed to be transmitted over orthogonal additive white
Gaussian channels with different noise variances. This set-up
can model a scenario in which different sensor interfaces of the
integrated device are used at different times and, to avoid delay
and buffer overflow, the measurements are transmitted over a
time-varying channel to the destination as they are measured.

For the separate sensing/communication problem, we obtain
a closed-form solution for the case where the sources with
larger variances have lower sensing costs. This corresponds to
a situation when sources with lower variances might require
more energy-consuming sensor interfaces with higher sensitiv-
ity for sensing. For the joint sensing/communication problem,
assuming that sources with larger variances not only have
lower sensing costs, but also are transmitted over channels
with lower noise variances, we obtain structural results on the
optimal solution. Moreover, a closed-form solution is obtained



for the case where the energy budget is sufficiently large.
This paper is organized as follows. In Section II, we

formulate the problems of interest. Section III derives the ana-
lytical optimal solution to the separate sensing/communication
problem when the source variance and the sensing cost are
ordered. In Section IV, the structure of the optimal solution to
the joint sensing/communication problem is analyzed for the
ordered case. Finally, we make some concluding remarks in
Section V.

II. PROBLEM FORMULATION

We consider a system in which a sensor measures Q
independent parallel Gaussian sources and communicates them
to a single destination. The ith source consists of n indepen-
dent and identically distributed (i.i.d.) samples with variance
σ2
i , i = 1, ..., Q. In this paper, we assume measuring each

sample of the ith source entails a given sensing cost ϵS,i
joules per source sample, which takes into account the energy
spent for acquisition, sampling, quantization and compression.
Note that, more generally, the energy costs associated with
quantization and compression may depend on the compression
rate and the target distortion level [7], which is not pursued
here for simplicity. We are interested in minimizing the overall
average distortion D of the reproduction of the sources at
the destination. We consider two related problems. In the first
(separate sensing/communication), we assume that the sensor
has two resource budgets, an energy budget for sensing and
a rate budget for communication. In the second (joint sens-
ing/communication), instead, we consider energy allocation
between the tasks of sensing and communications.

A. Separate Sensing/Communication of Parallel Sources
For the separate sensing/communication problem, we as-

sume the sensor has an energy budget E to be used exclusively
for sensing of the Q sources, and a total rate R that can be
allocated for communication. Both E and R are normalized
by n so that E is the energy budget per source sample and
similarly for R. When E and R are limited, it might not be
optimal, or possible, to sense all the samples from all the
sources. We assume instead that the sensor node measures a
fraction θS,i, with 0 ≤ θS,i ≤ 1, of samples from of the ith
source, and then sends a compressed version of the sensed
samples of the ith source with rate Ri (Ri ≥ 0). Given the
above, the mean square error (MSE) of the reconstruction
at the destination for the ith source can be obtained as
Di = σ2

i f(θS,i, Ri) [8], where

f(θS,i, Ri) =

{
1 if θS,i = 0

(1− θS,i) + θS,i2
− 2Ri

θS,i otherwise
. (1)

We define the sampling fraction vector and rate allocation
vector as θS = [θS,1 ... θS,Q]

T and R = [R1 ... RQ]
T ,

respectively. The problem of minimizing the total MSE is
finally given by

min
θS ,R

D(θS ,R) =

Q∑
i=1

σ2
i f(θS,i, Ri), (2)

subject to
Q∑
i=1

θS,iϵS,i ≤ E, (3a)

and
Q∑
i=1

Ri ≤ R, (3b)

where (3a) and (3b) reflect the sensing energy and rate budget
constraints respectively.

B. Joint Sensing/Communication of Parallel Sources

For the joint sensing/communication problem, the com-
munication link is modeled as a collection of Q orthogonal
channels. We assume that the compressed version of the sensed
samples from the ith source (1 ≤ i ≤ Q) are transmitted over
the ith channel, which is an independent complex Gaussian
noise channel with noise variance Ni. Each channel consists
of nτ channel uses, where τ is the channel-source bandwidth
ratio for each source-channel pair. It is also assumed that the
sensor has a joint energy constraint B on the sensing and
communication components. Similar to E and R in Section
II-A, the energy B is normalized by n as well. The sensor
measures a fraction θS,i, with 0 ≤ θS,i ≤ 1, of the samples
of the ith source, and transmits the corresponding compressed
samples with power Pi (Pi ≥ 0) over the ith channel. The
MSE of the reproduction of the ith source at the destination
can be obtained as Di = σ2

i h(θS,i, Pi), where

h(θS,i, Pi) =

{
1 if θS,i = 0

(1− θS,i) + θS,i(1 +
Pi

Ni
)
− 2τ

θS,i otherwise
,

(4)
since the compression rate for each sensed sample of the ith
source is given by τ

θS,i
log2

(
1 + Pi

Ni

)
.

We define the power allocation vector as P = [P1 ... PQ]
T .

The problem of minimizing the overall MSE is then given by

min
θS ,P

D(θS ,P) =

Q∑
i=1

σ2
i h(θS,i, Pi), (5)

subject to
Q∑
i=1

θS,iϵS,i + τPi ≤ B, (6)

where (6) reflects the overall energy budget constraint.

III. SEPARATE SENSING/COMMUNICATION: THE ORDERED
VARIANCE/COST CASE

In this section, we consider the separate sensing and com-
munication problem described in Section II-A. To facilitate
the analysis, we divide the Q Gaussian sources into K classes
with class k (1 ≤ k ≤ K) containing qk sources with the
same variance σ2

k. Without loss of generality, the variances
are in descending order, i.e., σ2

1 > σ2
2 > ... > σ2

K . Since
each class can contain an arbitrary number qk of sources, we
have strict inequalities among the variances. It is also assumed



that sources in class k have the same sensing cost ϵS,k and
that sources with larger variances have lower sensing costs,
i.e., ϵS,1 ≤ ... ≤ ϵS,K . Such an order would be valid if more
energy-consuming sensor interfaces with higher sensitivities
are required to measure sources with lower variances. Note
that, while for the general case, the problem in (2)-(3) can
be shown to be convex, there is no closed-form solution.
For details, we refer to the reader to [9]. Focusing on the
ordered case allows us to obtain an analytical expression for
the optimal solution and gain insights into the problem.

For convenience, we divide the range of the energy E into
a sequence of intervals E1 = (e0, e1], E2 = (e1, e2],..., EK =
(eK−1, eK), where e0 = 0, eK = +∞ and em =

∑m
i=1 qiϵS,i

for 1 ≤ m ≤ K − 1, and divide the range of rate R into a
sequence of intervals R1 = (r0, r1], R2 = (r1, r2],..., RK =
(rK−1, rK), where r0 = 0, rK = +∞ and

rl =
1

2

l∑
j=1

qj log2

(
σ2
j

σ2
l+1

)
, 1 ≤ l ≤ K − 1. (7)

By the convexity of function D(θS ,R), it is easy to see that
we can assume the same fraction θS,k and rate Rk are assigned
to each source in the kth class1. We have the following result.

Proposition 1: For K ≥ 2, assuming σ2
1 > ... > σ2

K and
ϵS,1 ≤ ... ≤ ϵS,K , the optimal solution for the separate sensing
and communication problem in Section II-A is obtained as
follows. Given E ∈ Em for some 1 ≤ m ≤ K,

1) If R ∈ Rl for some integer l with 1 ≤ l ≤ m− 1, then
it is optimal to fully sample the first l classes of sources,
i.e., θ∗S,k = 1 for 1 ≤ k ≤ l, and to allocate rates as

R∗
k =

1∑l
j=1 qj

R+
1

2

l∑
j=1,j ̸=k

qj log2

(
σ2
k

σ2
j

) ,

(8)
where 1 ≤ k ≤ l. Moreover, there is no need to sense
the remaining K − l classes of sources, i.e., θ∗S,k = 0
and R∗

k = 0, for l + 1 ≤ k ≤ K.
2) If instead R > rm−1 (or R ∈

∪
l≥m Rl), then it is

optimal to sample the first m−1 classes of sources fully,
i.e., θ∗S,k = 1 for 1 ≤ k ≤ m− 1, and the mth class for
a fraction θ∗S,m = min((E − em−1)/(qmϵS,m), 1), and
to allocate rates as

R∗
k =

θ∗S,k∑m
j=1 qjθ

∗
S,j

R+
1

2

m∑
j=1,j ̸=k

qjθ
∗
S,j log2

(
σ2
k

σ2
j

) ,

(9)
where 1 ≤ k ≤ m. Moreover, there is no need to sense
the remaining K −m classes of sources, i.e., θ∗S,k = 0
and R∗

k = 0 for m+ 1 ≤ k ≤ K.
Proof: The proof is based on solving the KKT conditions

[11] but special care must be taken since the objective function

1In fact, fixing all other parameters, function D(θS ,P) is Schur-convex
with respect to the fractions of samples and the rates assigned to the sources
in a class. Therefore, an equal fraction and rate allocation is optimal (see,
e.g., [10]).
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Fig. 1. Illustration of the optimal solution for case 2) of Proposition 1,
where K = 5, qk = 1 for k = 1, ..., 5 and E and R are chosen to satisfy
e2 < E < e3 and R > r4.

in (2) is not continuously differentiable in the entire feasible
set. Details of the proof are provided in [9].

Before we discuss the solution given in Proposition 1,
we revisit the classical reverse water-filling approach, which
solves the separate sensing and communication problem in
(2) in the case of zero sensing costs, i.e., ϵS,k = 0 for all
1 ≤ k ≤ K. With zero sensing costs, it is optimal to sample
all of the sources fully, that is, θ∗S,k = 1 for all 1 ≤ k ≤ K.
Moreover, if R ∈ Rl with 1 ≤ l ≤ K, only the first l source
classes are assigned positive rates and the rate allocation is
given by (8). It is noted that this rate allocation leads to the
same distortion level σ2

k2
−2R∗

k for all the sources that are
assigned a non-zero rate. Proposition 1 states that, when the
sensing costs are taken into account, the optimal solution in the
ordered case entails sensing sources with the highest variances
and then optimally allocating rates among the sensed sources
using either the reverse water-filling procedure or a variation
of it.

Specifically, in case 1) of Proposition 1, that is, if E ∈ Em
with 1 ≤ m ≤ K and R ∈ Rl with 1 ≤ l ≤ m − 1, the
first l classes of sources are fully sensed and compression
rates are assigned according to the classic reverse water-filling
solution. Note that in this case, even though there is enough
energy to sample more than l classes of sources, given the rate
constraint, the optimal rate allocation only assigns positive rate
to the first l classes. Instead, in case 2) of Proposition 1, i.e.,
if E ∈ Em and R > rm−1, it is optimal to fully sample the
first m − 1 classes of sources, while the sources in the mth
class are sampled only partially using the remaining energy.
For the mth class, the optimal sampling fraction is equal to
θ∗S,m = min((E−em−1)/(qmϵS,m), 1) and the optimal rate is
assigned according to (9) such that the normalized distortion
for the sampled fraction of any source in the mth class D̂∗

m =
σ2
m2−2R∗

m/θ∗
S,m is equal to the distortion of any source in the

first m−1 classes. Moreover, from (2), the distortion attained
for each source in class m is given by θ∗S,mD̂∗

m+(1−θ∗S,m)σ2
m,

where θ∗S,mD̂∗
m is the total distortion of the sampled fraction



of the source, while σ2
m(1 − θ∗S,m) corresponds to the total

distortion of the non-sampled fraction.
We pictorially illustrate the solution for case 2) of Propo-

sition 1 in Fig. 1, where we assume K = 5 and qk = 1,
k = 1, ..., 5. In this example, the energy E and the rate
R are assumed to satisfy e2 < E < e3 and R > r4.
Thus, it is optimal to have source 1 and source 2 both
fully sampled and have source 3 only partially sampled for
a fraction θ∗S,3 = (E− e2)/ϵS,3. The first two sources and the
sampled fraction of source 3 are all described with the same
distortion, i.e., D∗

1 = D∗
2 = D̂∗

3 , where we recall that D̂∗
3 is

the average distortion only for the sampled fraction of source
3. The overall distortion for source 3 is θ∗S,3D̂

∗
3+(1−θ∗S,3)σ

2
3 .

Since source 4 and source 5 are not sampled at all, they
are assigned zero rates and thus the corresponding distortions
are equal to their variances. Recall that in the zero sensing
cost case, all the five sources would be fully sampled and
since R > r4, all of them would be described with the same
distortion, i.e., D∗

1 = D∗
2 = ... = D∗

5 .

IV. JOINT SENSING AND COMMUNICATION: THE
ORDERED VARIANCE/COST/NOISE CASE

In Section III, we have investigated the optimal solution
to the separate sensing and communication problem in (2)-
(3) when source variances and sensing costs are ordered. In
this section, we analyze the joint sensing and communication
problem in (5)-(6) when the source variances, the sensing
costs and the channel noise variances are ordered. Similar to
Section III, we divide the Q parallel source-channel pairs into
K classes, with class k having qk source-channel pairs, where
1 ≤ k ≤ K. It is assumed that the sources in class k have
the same variance σ2

k and the channels in class k have the
same noise variance Nk. Following Section III, we assume
the source variances satisfy σ2

1 > σ2
2 > ... > σ2

K and the
sensing costs satisfy ϵS,1 ≤ ... ≤ ϵS,K . It is also assumed that
the channel noise variances satisfy N1 ≤ ... ≤ NK . While for
the general case, the problem in (5)-(6) can be shown to be
convex (see [9]), there is no closed form solution. However,
for the ordered case described above, finding an analytical
solution in closed form is possible under certain conditions.

Similar to Section III, it can be readily shown that it is
optimal to allocate the same sampling fraction θS,k and the
same transmit power Pk to all source-channel pairs in class k.
For convenience, we divide the range of B to a sequence of
intervals: B1 = (b0, b1], B2 = (b1, b2],..., BK = (bK−1, bK),
where b0 = 0, bK = +∞, and

bi = τ

i∑
j=1

qjNj

(σ2
jNi+1

σ2
i+1Nj

) 1
2τ+1

− 1

 , 1 ≤ i ≤ K − 1.

(10)
We now first summarize the solution of (5)-(6) in the special

case of zero sensing costs, i.e., when ϵS,k = 0 for all 1 ≤ k ≤
K. In this case, we can sample all the sources fully, i.e, we
set θS,k = 1 for all 1 ≤ k ≤ K, without loss of optimality.

Lemma 1: For K ≥ 2, assuming σ2
1 > ... > σ2

K , N1 ≤
... ≤ NK and ϵS,1 = ... = ϵS,K = 0, if B ∈ Bm for some

1 ≤ m ≤ K, then it is optimal to assign positive transmit
powers only to the first m classes of source-channel pairs as

P ∗
k =

B + τ
∑m

j=1,j ̸=k qjNj

(
1−

(
σ2
jNk

σ2
kNj

) 1
2τ+1

)
τ
∑m

j=1 qj

(
σ2
jN

2τ
j

σ2
kN

2τ
k

) 1
2τ+1

, (11)

where 1 ≤ k ≤ m, and to assign zero power to the remaining
classes, i.e., P ∗

k = 0, for m+ 1 ≤ k ≤ K.
Proof: With θS,1 = ... = θS,K = 1, the optimization of

powers P in (5) is convex and can be easily performed using
the standard Lagrangian approach [12].

It is interesting to note that, unlike the reverse water-
filling solution, all the source-channel pairs that are allocated
positive powers (or positive rates for reverse water-filling) are
not assigned the same distortion level in the joint sensing
and communication problem considered here. Instead, the
distortion level D∗

k = σ2
k(1+P ∗

k /Nk)
−2τ for any class k that

is assigned a positive power is proportional to (σ2
kN

2τ
k )

1
2τ+1

(See [9] for details). This shows that only in the special case
σ2
kN

2τ
k = 1 for all 1 ≤ k ≤ m, all the source-channel pairs

with positive powers have the same distortion.
Now we proceed to analyze the problem in (5)-(6) for the

ordered case when there are nonzero sensing costs.
Proposition 2: For K ≥ 2, assuming σ2

1 > ... > σ2
K , 0 <

ϵS,1 ≤ ... ≤ ϵS,K and N1 ≤ ... ≤ NK , it is optimal to sense
and transmit only the first m source classes, for some m with
1 ≤ m ≤ K depending on the energy budget B. Moreover,
for the sensed m classes, the sampling fractions satisfy 0 <
θ∗S,m ≤ ... ≤ θ∗S,1 ≤ 1, with θ∗S,i = θ∗S,j (1 ≤ i < j ≤ m)
only when both are 1.

Proof: The structural results on the optimal solution
are obtained using the KKT conditions. As in the proof of
Proposition 1, special care must be taken since the objective
function in (5) is not continuously differentiable in the entire
feasible set. Details of the proof are provided in [9].

Proposition 2 suggests that the sources with larger vari-
ances are sampled for a fraction greater than or equal to
that of the sources with smaller variances. While this is
an important property of the optimal solution to the joint
sensing/communication problem in the presence of nonzero
sensing costs, it appears difficult to obtain an analytical
characterization of the optimal solution even for the ordered
case. In the following, we characterize the optimal solution in
closed form for the special case when the energy budget is
sufficiently large so that all sources can be fully sensed. We
also compute the minimum energy budget that guarantees this.
To this end, let us define the set B̄ as B̄ =

[
b̄,+∞

)
, where b̄

is the solution to the equation

σ2
K

ϵS,K

(
1−

(
1 +

P̄K

NK

)−2τ [
1 + 2τ ln

(
1 +

P̄K

NK

)])

=

(
τ
∑K

j=1 qj(2σ
2
jN

2τ
j )

1
2τ+1

b̄−
∑K

j=1 qj(ϵS,j − τNj)

)2τ+1

, (12)



where

P̄K =
b̄− bK−1 −

∑K
j=1 qjϵS,j

τ
∑K

j=1 qj

(
σ2
jN

2τ
j

σ2
KN2τ

K

) 1
2τ+1

. (13)

Note that with b̄ ≥ bK−1 +
∑K

j=1 qjϵS,j , the solution to (12)
is unique, since over this range, the left side of (12) is a
strictly increasing function of b̄, while the right side is a strictly
decreasing function of b̄.

Proposition 3: For K ≥ 2, assuming σ2
1 > ... > σ2

K , 0 <
ϵS,1 ≤ ... ≤ ϵS,K and N1 ≤ ... ≤ NK , if B ∈ B̄, it is
optimal to fully sample all the K classes of sources, i.e., to
set θ∗S,k = 1 for all 1 ≤ k ≤ K and to assign transmit powers
as

P ∗
k =

B −
∑K

j=1 qjϵS,j + τ
∑K

j=1,j ̸=k qjNj

[
1−

(
σ2
jNk

σ2
kNj

) 1
2τ+1

]
τ
∑K

j=1 qj

(
σ2
jN

2τ
j

σ2
kN

2τ
k

) 1
2τ+1

,

(14)
where 1 ≤ k ≤ K.

Proof: Details of the proof are provided in [9].
Proposition 3 states that, if the energy budget is larger than

the threshold b̄, then it is optimal to fully sample all the sources
and to allocate power as for the case with no sensing costs
(see (11)) but with energy budget discounted by the energy
needed for sensing (i.e., with energy B −

∑K
j=1 qjϵS,j). It is

interesting to note that the threshold b̄ is, in fact, strictly larger
than bK−1 +

∑K
j=1 qjϵS,j . We recall that bK−1 is the energy

threshold above which it is optimal to assign positive powers to
all K classes of source-channel pairs in the zero sensing cost
case, while

∑K
j=1 qjϵS,j is the total sensing energy needed to

sense all the sources.
Fig. 2 shows the optimal sampling fractions for the joint

sensing/communication problem as a function of energy bud-
get B when parameters are chosen as q1 = q2 = 1, σ2

1 = 1.25
and σ2

2 = 1, ϵS,1 = ϵS,2 = 1, N1 = N2 = 4. The results
are obtained via numerical methods [11]. It can be seen from
Fig. 2, for any B, θ∗1 is greater than or equal to θ∗2 , which
is consistent with the optimal structure derived in Proposition
2. Moreover, when 2 < B < 3, both sources are partially
sampled, which is not encountered in the optimal solution of
the separate sensing and communication problem of Section
III. As B grows beyond 6, both classes are fully sampled.
This threshold corresponds to threshold b̄ in (12) with K = 2
and is strictly larger than b1 + q1ϵS,1 + q2ϵS,2 = 2.3. It can
be observed from Fig. 2 that, if 2.3 < B < 6, the optimal
solution entails partial sampling of at least source 2 which has
the lower variance. In this case, fully sampling both sources
is strictly suboptimal.

V. CONCLUSIONS

In this paper, we studied an energy-constrained sensor
system that has a constant sensing energy cost per source
sample and we investigated the impact of the sensing en-
ergy cost on the end-to-end distortion of parallel Gaussian
sources. We formulated a distortion minimization problem
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Fig. 2. Optimal sampling fractions θS for q1 = q2 = 1, σ2
1 = 1.25,
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with either separate constraints on the sensing energy budget
and on the communication rates, or a joint constraint on the
energy budget for both sensing and transmission. For both
problems, we studied the special case in which sources with
larger variances have lower sensing costs. We showed that,
for the separate sensing/communication problem, the optimal
strategy is to sense the sources starting from the one with the
largest variance and to allocate the communication rate using
reverse water-filling, or a variant of it, on the sensed sources.
Moreover, for the joint sensing/communication problem, it is
generally optimal to sense, possibly partially, only a subset
of the sources with the largest variances and to allocate the
transmit powers among their respective channels.
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