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Abstract—Source coding with a side information "vending ma-
chine" is a recently proposed framework in which the statistical
relationship between the side information available at the decoder
and the source sequence can be controlled by the decoder based
on the message received from the encoder. In this paper, the
characterization of the optimal rate-distortion performance as
a function of the cost associated with the control actions is
extended from the previously studied point-to-point set-up to two
multiterminal models. First, a distributed source coding model
is studied, in which two encoders communicate over rate-limited
links to a decoder, whose side information can be controlled based
on the control actions selected by one of the encoders. The rate-
distortion-cost region is characterized under the assumption of
lossless reconstruction of the source encoded by the node that
does not control the side information. Then, a three-node cascade
scenario is investigated, in which the last node has controllable
side information. The rate-distortion-cost region is derived for
general distortion requirements and under the assumption of
"causal" availability of side information at the last node.

Keywords: Distributed source coding, cascade source coding,
observation costs, side information, rate-distortion theory.

I. INTRODUCTION

Reference [1] introduced the notion of a side information

"vending machine". In this framework, unlike the conventional

Wyner-Ziv set-up, the joint distribution of the side information

Y available at the decoder and of the source X observed at the

encoder can be controlled through the selection of an "action"

A. Action A is selected by the decoder based on the message

M , of R bits per source symbol, received from the encoder,

and is subject to a cost constraint. The performance of the

system is thus expressed in terms of the interplay among three

metrics, namely the rate R, the cost budget Γ on the action A,
and the distortion D of the reconstruction X̂ at the decoder.

The rate-distortion-cost function R(D,Γ) is derived in [1] for

the case in which the side information Y is available "non-

causally" to the decoder, as in the standard Wyner-Ziv model,

and in the case in which it is available "causally", as introduced

in [2].

Recent works [3] and [4] generalized the characterization

of the rate-distortion-cost function in [1] to a multi-terminal

set-up analogous to the so called Heegard-Berger problem [5],

in which the side information vending machine may or may

not be available at the decoder. This entails the presence of

two decoders, one with access to the vending machine and
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Figure 1. Distributed source coding with a side information vending machine
at the decoder. Side information is assumed to be available "non-causally"
to the decoder.

one without any side information. Reference [4] also solved

the more general case in which both decoders have access

to the same vending machine, and either the side informations

produced by the vending machine at the two decoders satisfy a

degradedness condition, or lossless source reconstructions are

required at the decoders. Instead, the work [3] considered a

set-up that generalizes the Heegard-Berger problem mentioned

above by allowing for functional reconstructions of the source

X and of an additional sequence measured only through the

vending machine at the decoder. A further related work is

[6], where the model in [1] is extended to include secrecy

constraints.

Contributions: In this paper, we study two multi-terminal

extensions of the set-up of [1], namely the distributed source
coding setting of Fig. 1 and the cascade model of Fig. 2. In

the distributed source coding setting of Fig. 1, two encoders

(Node 1 and Node 2), which measure correlated sources X1

and X2, respectively, communicate over rate-limited links, of

rates R1 and R2, to a single decoder (Node 3). The action

sequence controlling the side information at Node 3 is selected

by Node 3 based on the message M1 (of rate R1) received

from Node 1. In Sec. II, we characterize the set R(D1,Γ) of all

achievable rates (R1, R2) for a given distortion constraint D1

on the reconstruction1 X̂1 and an action cost constraint of Γ,
under the requirement that source X2 must be decoded (near)

1Reconstruction X̂1 may be (a lossy version of) an arbitrary function of
sources X1 and X2.
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Figure 2. Cascade source coding with a side information vending machine.
Side information is assumed to be available "causally" to the decoder.

losslessly at the decoder. We also provide a numerical example

to obtain further insight into the role of control information

in achieving optimal performance. This result generalizes the

classical result of [7] for distributed source coding with "one

distortion criterion".

In the cascade model of Fig. 2, Node 1 is connected via a

rate-limited link, of rate R12, to Node 2, which is in turn

communicates with Node 3 with rate R23. Source X1 is

measured by Node 1 and the correlated source X2 by both

Node 1 and Node 2. Node 3 has side information Y , which

can be controlled via an action A selected by Node 3 based

on the message received from Node 2. In Sec. III, we derive

the set R(D1, D2,Γ) of all achievable rates (R12, R23) for

given distortion constraints (D1, D2) on the reconstructions

X̂1 and X̂2 at Node 2 and Node 3, respectively,2 and for

cost constraint Γ. This characterization is obtained under the

assumption that the side information Y be available causally

at Node 3. This result extends the characterization of the

rate-distortion achievable performance for the cascade model

studied in [9] to the set-up at hand with a side information

vending machine at Node 3.

II. DISTRIBUTED SOURCE CODING WITH A SIDE

INFORMATION VENDING MACHINE

In this section, we first detail the system model for the

setting of Fig. 1 of distributed source coding with a vending

machine. We then present the characterization of the corre-

sponding rate-distortion-cost performance in Sec. II-B. An

example follows in Sec. II-C.

A. System Model

The problem of distributed lossy source coding with

a vending machine and non-causal side information

is defined by the probability mass functions (pmfs)

pX1X2(x1, x2) and pY |AX1X2
(y|a, x1, x2) and discrete

alphabets X1,X2,Y,A and X̂ 1 as follows. The source

sequences Xn
1 and Xn

2 with Xn
1 ∈ Xn

1 and Xn
2 ∈ Xn

2 ,

respectively, are such that the pairs (X1i, X2i) for i ∈ [1, n]
are independent and identically distributed (i.i.d.) with joint

pmf pX1X2(x1, x2). Node 1 measures sequences Xn
1 and

encodes it into message M1 of nR1 bits, while Node 2

2Reconstructions X̂1 and X̂2 may be arbitrary functions of both X1 and
X2.

measures sequences Xn
2 and encodes it into message M2

of nR2 bits. Node 3 wishes to reconstruct the two sources

within given distortion requirements, to be discussed below,

as X̂n
1 ∈ X̂n

1 and X̂n
2 ∈ X̂n

2 .

To this end, Node 3 selects an action sequence An, where

An ∈ An, based on the message M1 received from Node

1. The side information sequence Y n is then realized as the

output of a memoryless channel with inputs (An, Xn
1 , X

n
2 ).

Specifically, given An, Xn
1 and Xn

2 , the sequence Y n is

distributed as

p(yn|an, xn
1 , x

n
2 ) =

n∏
i=1

pY |AX1X2
(yi|ai, x1i, x2i). (1)

The overall cost of an action sequence an is defined by a per-

symbol cost function Λ: A →[0,Λmax] with 0 ≤ Λmax < ∞.

The estimated sequences X̂n
1 and X̂n

2 are obtained as a func-

tion of both messages M1 and M2 and of the side information

Y n. The estimates X̂n
1 and X̂n

2 are constrained to satisfy

distortion constraints defined by two per-symbol distortion

metrics, namely d1(x1, x2, y, x̂1): X1 × X2 × Y × X̂1 →
[0, Dmax] with 0 ≤ Dmax < ∞ and d2(x2, x̂2) = dH(x2, x̂2):
X2 × X2 → {0, 1}. Note that, while metric d1(x1, x2, y, x̂1)
is arbitrary, metric d2(x2, x̂2) is assumed to be the Hamming
distortion dH(x2, x̂2), where dH(x2, x̂2) = 0 if x2 = x̂2 and

dH(x2, x̂2) = 1 otherwise.

More formally, an (n,R1, R2, D1, D2,Γ) code for the set-

up of Fig. 1 consists of two source encoders

g1: Xn
1 → [1, 2nR1 ],

and g2: Xn
2 → [1, 2nR2 ], (2)

which map the sequences Xn
1 and Xn

2 into messages M1 and

M2, respectively; an “action” function

�: [1, 2nR1 ] → An, (3)

which maps the message M1 into an action sequence An; and

a decoding function

h: [1, 2nR1 ]× [1, 2nR2 ]× Y n → X̂n
1 ×Xn

2 , (4)

which maps the messages M1 and M2, and the side informa-

tion sequence Y n into the estimated sequences X̂n
1 and X̂n

2 ;
such that the action cost constraint Γ is satisfied as

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ, (5)

and the distortion constraints D1 and D2 hold, namely

1

n

n∑
i=1

E
[
d1(X1i, X2i, Yi, X̂1i)

]
≤ D1

(6a)

and
1

n

n∑
i=1

E
[
dH(X2i, X̂2i)

]
=

1

n

n∑
i=1

Pr[X̂2i �= X2i] ≤ D2.

(6b)

Given a distortion-cost tuple (D1, D2,Γ), a rate pair

(R1, R2) is said to be achievable if, for any ε > 0 and suffi-

ciently large n, there exists a (n,R1, R2, D1+ε,D2+ε,Γ+ε)



code. The rate-distortion-cost region R(D1, D2,Γ) is defined

as closure of all rate pairs (R1, R2) that are achievable given

the distortion-cost tuple (D1, D2,Γ). We focus on charac-

terizing the rate-distortion-cost function R(D1,Γ), which is

defined as R(D1,Γ) = R(D1, 0,Γ), that is, we impose the

constraint 1
n

n∑
i=1

Pr[X̂2i �= X2i] → 0 for n → ∞.

B. Rate-Distortion-Cost Region

In this section, a single-letter characterization of the rate-

distortion-cost region R(D1,Γ) is derived.

Proposition 1. The rate-distortion-cost region R(D1,Γ) for
the model in Fig. 1 is given by union of the set of all of rate
tuples (R1, R2) that satisfy the inequalities

R1 ≥ I(X1;A|Q) + I(X1;V |A,X2, Y,Q) (7a)

R2 ≥ H(X2|A, Y, V,Q) (7b)

and R1 +R2 ≥ I(X1;A|Q) +H(X2|A, Y,Q) (7c)

+ I(X1;V |A,X2, Y,Q),

for some joint pmfs that factorizes as

p(q, x1, x2, y, v, a, x̂1) = p(q)p(x1, x2)p(a, v|x1, q)

· p(y|a, x1, x2)δ(x̂1 − x̂1(v, y, q)),
(8)

with pmfs p(q) and p(a, v|x1, q) and deterministic function
x̂1(v, y, q), such that the action cost and the distortion con-
straints

E [Λ(A)] ≤ Γ (9)

and E
[
d1(X1, X2, Y, X̂1)

]
≤ D1 (10)

hold. Finally, Q and V are auxiliary random variables whose
alphabet cardinality can be constrained as |Q| ≤ 6 and |V| ≤
6 |X1| |A|+ 3 without loss of optimality.

Remark 2. If we set p(y|a, x1, x2) = p(y|x1, x2), Proposition

1 reduces to [7, Theorem 1]. If, instead, X1 is independent

of X2, the minimum rate R1, given by the right-hand side of

(7a), recovers [1, Theorem 1].

For the proof of converse, we refer to [8]. As for achiev-

ability, the scheme at hand combines the distributed Wyner-Ziv

approach of [10, Theorem II] with the scheme proposed in [1,

Sec. II-B]. Specifically, Node 1 first maps the input sequence

Xn
1 into an action sequence An, so that the two sequences

are jointly typical. Conveying sequence An to the receiver

requires I(X1;A) bits per source sample, as follows easily

from standard rate-distortion theory results. The sequences

(An, Y n) are now regarded as side information available at

the decoder. Based on this, the distributed Wyner-Ziv scheme

proposed in [10, Theorem 2] is used to convey an auxiliary

codeword V n from Node 1 and sequence Xn
2 from Node

23. Note that the fact that sequences (An, Y n) are not i.i.d.

does not affect achievability of the rate region derived in [10].

3More precisely, since An is known to Node 1 as well, the codebook used
to map Xn

1 into V n is generated conditioned on An.

Finally, the decoder estimates X̂n
1 sample by sample by using

function x̂1(v, y, q) as X̂1i = x̂1(Vi, Yi, Qi).

We remark that an extension of Proposition 1 to any number

of encoders can be found in [8].

C. A Binary Example

We now focus on a specific example in order to illustrate

the result derived in Proposition 1. Specifically, we assume

that all alphabets are binary and that (X1, X2) is a doubly

symmetric binary source (DSBS) characterized by probability

p, with 0 ≤ p ≤ 1/2, so that p(x1) = p(x2) = 1/2 for

x1, x2 ∈ {0, 1} and Pr[X1 �= X2] = p. Moreover, the decoder

wishes to reconstruct both X1 and X2 losslessly in the sense

discussed above. This implies that we set d1(x1, x2, y, x̂1) =
dH(x1, x̂1) and D1 = 0. The side information Yi is such that

Yi =

{
f(X1i, X2i) if Ai = 1
1 if Ai = 0

, (11)

where f(x1, x2) is a deterministic function to be specified.

Therefore, when a unitary action, Ai = 1, is selected, then

Yi = f(X1i, X2i) is measured at the receiver, while with Ai =
0 no useful information is collected by the decoder. The action

sequence An must satisfy the cost constraint (5), where the

cost function is defined as Λ(Ai) = 1 if Ai = 1 and Λ(Ai) =
0 if Ai = 0. It follows that, given (11), a cost Γ implies

that the decoder can observe f(X1i, X2i) only for at most nΓ
symbols. As for the function f(x1, x2), we consider two cases,

namely f(x1, x2) = x1 ⊕ x2, where ⊕ is the binary sum and

f(x1, x2) = x1 	 x2, where 	 is the binary product.

Under the requirement of lossless reconstruction for both

X1 and X2 (i.e., D1 = 0 along with D2 = 0), it can be easily

shown from Proposition 1 that the minimum sum-rate R1+R2

for a given cost constraint Γ, which we denote as Rsum(Γ) is

given by the right-hand side of (7c) with V = X1, namely4

Rsum(Γ) = min I(X1;A) +H(X1, X2|A, Y ), (12)

where the mutual informations are calculated

with respect to the distribution p(x1, x2, y, a) =
p(x1, x2)p(a|x1)p(y|a, x1, x2), and the minimum is taken

over all distributions p(a|x1) such that E [Λ(A)] = E [A] ≤ Γ.
Note that, by its definition, function Rsum(Γ) is non-

increasing for all Γ ≥ 0 (and constant for Γ ≥ 1) so that in

particular Rsum(1) = minΓ≥0 Rsum(Γ). Given the function

f(x1, x2), evaluation of (12) requires solving a simple convex

optimization problem. We do not provide a more explicit

expression here, as it can be easily derived. Instead, we

discuss some numerical results for the two functions f(x1, x2)
mentioned above, namely (binary) sum and product.

To start with, we evaluate the sum-rate (12) Rsum(1), which

provides the minimum value of Rsum(Γ) over Γ, as discussed

above. With Γ = 1, it is clearly optimal to set A = 1,
irrespective of the value of X1. It is not difficult to see that

4The entire rate region R(0,Γ) also follows immediately by setting V =
X1.
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we have R⊕
sum(1) = 1 for the sum side information, while for

the product side information we obtain

R�
sum(1) = H

(
1− p

1 + p
,

p

1 + p
,

p

1 + p

)(
1 + p

2

)
, (13)

where we have used the definition H (p1, p2, ..., pk) =
−∑k

i=1 pi log2 pi. By comparing these two expressions, it can

be seen that, if p is sufficiently small, namely if p � 0.33, we

have R�
sum(1) < R⊕

sum(1) and thus product side information

is more informative than the sum, while for p � 0.33 the

opposite is true (and for p = 1, they are equally informative).

We now evaluate the sum-rate (12) for a general cost budget

0 ≤ Γ ≤ 1 for both sum and product side information. We

are interested in emphasizing the role of data and control

information in achieving the optimal sum-rate (12). To this

end, we compare (12) with the performance attainable by

imposing that the action A be selected by Node 3 a priori, that

is, without any control from Node 1. The sum-rate attainable

by such a scheme, which is referred to as "greedy", following

[1], can be easily seen to be given by5

Rsum, greedy(Γ) = ΓH(X1, X2|Y ) + (1− Γ)(1 +H(p)).
(14)

We use, as above, the notations R⊕
sum, greedy(Γ) and

R�
sum, greedysum(Γ) for (14) as evaluated with sum and prod-

uct side informations.

A first observation is that, with sum side information, we

have that (see [8] for details)

R⊕
sum, greedy(Γ) = R⊕

sum(Γ). (15)

This shows that a "greedy" approach, in which only data

information is conveyed by Node 1, is optimal. Instead, this is

not the case with product side information and we generally

have R�
sum, greedy(Γ) ≥ R�

sum(Γ), where inequality can be

strict (unless, of course, Γ = 1). The reason is that, if X1 = 0,

5It can be obtained from (12) by setting p(a|x1) = Γ for a = 1 irrespective
of the value of X1.

the value of the side information is always Y = X1	X2 = 0
irrespective of the value of X2. Therefore, if X1 = 0, the

side information is less informative than if X1 = 1 and thus

it may be advantageous to save on the action cost by setting

A = 0. Consequently, choosing actions based on the message

received from Node 1 can result in a lower sum-rate.

To illustrate the discussion above, Fig. 3 depicts the sum-

rates (12) and (14) versus the action cost Γ for p = 0.4. It can

be seen that, for sufficiently large probability p (here, p = 0.4),

while a product side information is less advantageous that sum

side information for Γ = 1, as per the discussion above, this

may not be the case for smaller costs. Moreover, in this case,

the greedy approach suffers from a significant performance

loss for product side information.

III. CASCADE SOURCE CODING WITH A SIDE

INFORMATION VENDING MACHINE

In this section, we first describe the system model for the

setting of Fig. 2 of cascade source coding with a side infor-

mation vending machine. We recall that side information Y
is here assumed to be available causally at the decoder (Node

3). We then present the characterization of the corresponding

rate-distortion-cost performance in Sec. III-B.

A. System Model

The problem of cascade lossy computing with causal

observation costs at second user is defined by the pmfs

pX1X2(x1, x2) and pY |AX1X2
(y|a, x1, x2) and discrete alpha-

bets X1,X2,Y,A, X̂1, X̂2. The source sequences Xn
1 and Xn

2

with Xn
1 ∈ Xn

1 and Xn
2 ∈ Xn

2 , respectively, are such

that the pairs (X1i, X2i) for i ∈ [1, n] are i.i.d. with joint

pmf pX1X2(x1, x2). Node 1 measures sequences Xn
1 and

Xn
2 and encodes them in a message M12 of nR12 bits,

which is delivered to Node 2. Node 2 estimates a sequence

X̂n
1 ∈ X̂n

1 within given distortion requirements. Moreover,

Node 2 encodes the message M12, received from Node 1, and

the locally available sequence Xn
2 in a message M23 of nR23

bits, which is delivered to node 3.

Node 3 wishes to estimate a sequence X̂n
2 ∈ X̂n

2 within

given distortion requirements. To this end, Node 3 receives

message M23 and based on this, selects an action sequence

An, where An ∈ An. The action sequence affects the quality

of the measurement Y n of sequence Xn
1 and Xn

2 obtained at

the Node 3. Specifically, given An, Xn
1 and Xn

2 , the sequence

Y n is distributed as in (1). The estimated symbol X̂2i with

X̂2i ∈ X̂2 is then obtained as a function of M23 and Y i for

i ∈ [1, n]. Estimated sequences X̂n
j for j = 1, 2 must satisfy

distortion constraints defined by functions dj(x1, x2, y, x̂j):
X1 × X2 × Y × X̂j → [0, Dmax] with 0 ≤ Dmax < ∞ for

j = 1, 2, respectively.

The formal description of an (n,R12, R23, D1, D2,Γ) code

for the set-up of Fig. 2 can be constructed similar to Sec. 2

following the discussion above and is fully detailed in [8].

Here we remark that the “action” function at Node 3

�: [1, 2nR23 ] → An, (16)



maps the message M23 into an action sequence An; and that

we have the decoding function at Node 2

h1: [1, 2nR12 ]×Xn
2 → X̂n

1 , (17)

which maps the message M12 and the measured sequence Xn
2

into the estimated sequence X̂n
1 ; and a sequence of decoding

functions at Node 3

h2i: [1, 2
nR23 ]× Yi → X̂2, (18)

for i ∈ [1, n] which maps the message M23 and the mea-

sured sequence Y i into the ith estimated symbol X̂2i =
h2i(M23, Y

i). We also note that the action cost constraint (5)

and distortion constraints Dj

1

n

n∑
i=1

E
[
dj(X1i, X2i, Yi, X̂ji)

]
≤ Dj for j = 1, 2, (19)

must be satisfied. Achievability and the rate-distortion-cost
region R(D1, D2,Γ) are defined similar to Sec. 2.

B. Rate-Distortion-Cost Region

We have the following characterization of the rate-

distortion-cost region.

Proposition 3. The rate-distortion-cost region R(D1, D2,Γ)
for the set-up of Fig. 2 is given by the union of all rate pairs
(R12, R23) satisfying the inequalities

R12 ≥ I(X1;U,A, X̂1|X2) (20a)

and R23 ≥ I(X1, X2;U,A), (20b)

for some joint pmf that factorizes as

p(x1, x2, y, a, u, x̂1, x̂2) = p(x1, x2)p(a, u, x̂1|x1, x2)

· p(y|a, x1, x2)δ(x̂2 − x̂2(u, y)),
(21)

with pmf p(a, u, x̂1|x1, x2) and deterministic function
x̂2(u, y), such that the action and the distortion constraints

E [Λ(A)] ≤ Γ (22)

and E[dj(X1, X2, Y, X̂j)] ≤ Dj , for j = 1, 2, (23)

respectively, hold. Finally, U is an auxiliary random variable
whose alphabet cardinality can be constrained as |U| ≤
|X1| |X2|+ 4, without loss of optimality.

Remark 4. If p(y|a, x1, x2) = p(y|x1, x2), Proposition 3

reduces to [9, Theorem 1].

The proof of converse is provided in [8]. The coding

strategy that proves achievability is a combination of the

techniques proposed in [1] and [9, Theorem 1]. Specifi-

cally, Node 1 first maps sequences Xn
1 and Xn

2 into the

action sequence An and an auxiliary codeword Un using

the standard joint typicality criterion. This mapping operation

requires a codebook of rate I(X1, X2;U,A). Then, given

the so obtained sequences An and Un, source sequences

Xn
1 and Xn

2 are further mapped into the estimate X̂n
1 for

Node 2 so that the sequences (Xn
1 , X

n
2 , A

n, Un, X̂n
1 ) are

jointly typical. This requires rate I(X1, X2; X̂1|U,A). Lever-

aging the side information Xn
2 available at Node 2, con-

veying the codewords An, X̂n
1 and Un to Node 2 requires

rate I(X1, X2;U,A)+I(X1, X2; X̂1|U,A)−I(U,A, X̂1;X2),
which equals the right-hand side of (20a). Node 2 conveys

Un and An to Node 3 by simply forwarding the index

received from Node 1 (of rate I(X1, X2;U,A)). Finally, Node

3 estimates X̂n
2 through a symbol-by-symbol function as

X̂2i = x̂2(Ui, Yi) for i ∈ [1, n].

IV. CONCLUDING REMARKS

As a concluding remark, one aspect worth emphasizing of

the two problems solved in this paper concerns the way the

side information is assumed to be available at the decoder.

For distributed source coding, we have in fact assumed that

side information is available in a non-causal fashion in the

conventional sense of the Wyner-Ziv problem. Adaptation of

the results given here to a model where side information

is available only causally, in the sense of [2], proved chal-

lenging and is left open by this work. On the contrary, for

the cascade/triangular model, we have assumed causal side

information at the decoder. In this case, adaption of the given

results to the set-up of non-causal side information proved

difficult, and is again left as an open problem.
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