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Abstract—For memoryless sources, delayed side information
at the decoder does not improve the rate-distortion function.
However, this is not the case for more general sources with
memory, as demonstrated by a number of works focusing on
the special case of (delayed) feedforward. In this paper, a
setting is studied in which the side information is delayed and
the encoder is informed about the side information sequence.
Assuming a hidden Markov model for the sources, at first, a
single-letter characterization is given for the set-up where the
side information delay is arbitrary and known at the encoder,
and the reconstruction at the destination is required to be (near)
lossless. Then, with delay equal to zero or one source symbol,
a single-letter characterization is given of the rate-distortion
function for the case where side information may be delayed
or not, unbeknownst to the encoder. Finally, an example for a
binary source is provided.

I. INTRODUCTION

Consider a sensor network in which a sensor measures a

certain physical quantity Yi over time i = 1, 2, ...n. The aim

of the sensor is communicating a processed version Xn =
(X1, ..., Xn) of the measured sequence Y n = (Y1, ..., Yn)
to a receiver. As an example, each element Xi could be

obtained by quantizing Yi, for i = 1, 2, ...n. To this end,

the sensor communicates a message M of nR bits to the

receiver, based on the observation of Xn and Y n (R is

the message rate in bits per source symbol). The receiver is

endowed with sensing capabilities and hence it can measure

the physical quantity Y n as well. However, due to the fact

that the receiver is located further away from the physical

source, such measure may come with a delay of d symbols.

In other words, when estimating Xi, the receiver has available

not only the message M received from the sensor, but also

the sequence Y i−d = (Y1, ..., Y
i−d), so that the estimate Zi

is a function of M and Y i−d. Delay d may or may not be

known at the sensor1. The situation described above can be

illustrated schematically as in Fig. 1 and in Fig. 2, where Fig.

1 models the case where the delay d is known to the sensor

(i.e., the encoder), while 2 accounts for a setting where the

side information at the decoder, unbeknownst to the encoder,

may be delayed by d or not delayed.

1In order to ensure that the sensor can produce the message M based on
the entire sequences Xn and Y n, as in the example at hand, the delay at
the receiver corresponding to the given decoding rule (Xi(M,Y i−d)) can be
seen to be more precisely n+ d and not d (see, e.g., [1]). Nevertheless, we
will refer to the delay at the receiver as d for simplicity.

Figure 1. Lossy source coding with delayed side information at the decoder.
The side information is fully available at the encoder.

Prior work: If sequences Xn and Y n are memoryless, from

available results [2][3], it can be inferred that: (i) for zero

delay, i.e., d = 0, the performance of the systems in Fig. 1-2

would remain unchanged even if the decoder(s) had access to

non-causal side information, in which case the decision about

Zji, j = 1, 2, at each time i, could be based on the entire

sequence Y n, rather than only Y i; and (ii) for strictly positive

delay d > 0, delayed side information does not improve

performance. However, these conclusions do not generally

hold if the sources have memory.

For sources with memory, a number of works have focused

on the scenario of Fig. 1 where Xi = Yi, which entails

that the decoder observes sequence Xn itself with a delay

of d symbols. This setting is typically referred to as source
coding with feedforward, as introduced in [5]. Reference [1]

derives the rate-distortion function for this problem (i.e., Fig.

1 with Xi = Yi) for ergodic and stationary sources in terms

of multi-letter mutual informations2. This function is explicitly

evaluated for some special cases in [2][4] (see also [6]), while

an algorithm for its numerical calculation is also proposed in

[4]. The more general case of Fig. 1 with Xi �= Yi is studied in

[7] assuming stationary and ergodic sources Xn and Y n. The

rate-distortion function is expressed in terms of multi-letter

mutual informations, and no specific examples are provided

for which the function is explicitly computable. Moreover,

extensions of the characterization of achievable rate-distortion

trade-offs to the setting of Fig. 2 for sources with memory has

not, to the best of the authors’ knowledge, been studied. We

finally remark that for more complex networks than the ones

studied here, strictly delayed side information may be useful

2Extensions are also given for arbitrary sources using information-spectrum
methods.



Figure 2. Lossy source coding where side information at the decoder may
be delayed. The side information is fully available at the encoder.

also in the presence of memoryless sources. This is illustrated

in [9] for a multiple description problem with feedforward.

Contributions: In this work, we assume that the source Y n

is a Markov chain, and Xn is such that Xi is obtained by pass-

ing Yi through a memoryless channel q(x|y) for i = 1, ..., n,
i.e., Xn corresponds to a hidden Markov model. Note that the

latter may model a symbol-by-symbol processing of source Y n

as per the initial example. We derive a single-letter character-

ization of the minimal rate (bits/source symbol) required for

(near) lossless compression in the scenario of Fig. 1 for any de-

lay d ≥ 0 (Sec. III). Achievability is based on a novel scheme

that consists of simple multiplexing/demultiplexing operations

along with standard entropy coding techniques. Furthermore,

we derive a single-letter characterization of the minimal rate

(bits/source symbol) required for lossy compression in the

scenarios of Fig. 1 and Fig. 2 for delays d = 0 and d = 1
(Sec. IV). Finally, we study the specific example of a binary-

alphabet source with Hamming distortion (Sec. V).

Notation: For a, b integer with a ≥ b, we define [a, b] as the

interval [a, a+1, ..., b] and xb
a = (xa, ..., xb); if instead a < b

we set [a, b] = ∅ and xb
a = ∅. We will also write xb

1 for xb

for simplicity of notation. Given a sequence xn = [x1, ..., xn]
and a set I = {i1, ..., i|I|} ⊆ [1, n], we define sequence xI

as xI = [xi1 , xi2 , ..., xi|I| ] where i1 ≤ ... ≤ i|I|.

II. SYSTEM MODEL

We present the system model for the scenario of Fig. 2,

as the scenarios of Fig. 1 follows as a special case. The

random process Yi ∈ Y , i ∈ {...,−1, 0, 1, ...}, measured at

the encoder, and, possibly with delay, at the decoders, is a

stationary and ergodic Markov chain with transition probabil-

ity Pr[Yi = a|Yi−1 = b] = w1(a|b). We define the probability

Pr[Yi = a] � π(a) and also the k-step transition probability

Pr[Yi = ai|Yi−k = b] � wk(a|b), which are both indepen-

dent of i by stationarity of Yi. We also set, for notational

convenience, w0(a|b) = π(a). Sequence Y n = (Y1, ..., Yn)
is thus distributed as p(yn) = π(y1)

∏n
i=2 w1(yi|yi−1) for

any integer n > 0. The random process Xi ∈ X , i ∈
{...,−1, 0, 1, ...}, measured only at the encoder, is such that

vector Xn = (X1, ..., Xn) ∈ Xn, for any integer n > 0, is

jointly distributed with Y n as

p(xn, yn) = π(y1)q(x1|y1)
n∏

i=2

p(xi, yi|xi−1, yi−1)

= π(y1)q(x1|y1)
n∏

i=2

w1(yi|yi−1)q(xi|yi). (1)

In other words, process Xi ∈ X , i ∈ {...,−1, 0, 1, ...} cor-

responds to a hidden Markov model with underlying Markov

process given by Y n.
An (d, n,R,D1, D2) code, with delay d ≥ 0, is defined by:

(i) An encoder function

f: (Xn × Yn) → [1, 2nR], (2)

which maps sequences Xn and Y n into message M ∈
[1, 2nR]; (ii) a sequence of decoding functions for decoder

1

g1i: [1, 2
nR]× Yi−d → Z1, (3)

for i ∈ [1, n], which, at each time i, map message M, or

rate R [bits/source symbol], and the delayed side information

Y i−d into the estimate Z1i ∈ Z1; (iii) a sequence of decoding

function for decoder 2

g2i: [1, 2
nR]× Yi → Z2 (4)

for i ∈ [1, n], which, at each time i, map messages M and the

non-delayed side information Y i into the estimate Z2i ∈ Z2.

Encoding/decoding functions (2)-(4) must satisfy the distortion

constraints

1

n

n∑

i=1

E[dj(Xi, Yi, Zji)] ≤ Dj , for j = 1, 2, (5)

where the distortion metrics dj(x, y, zj): X × Y × Zj →
[0, dmax] are such that 0 ≤ dj(x, y, zj) ≤ dmax < ∞ for

all (x, y, z) ∈ X × Y × Zj for j = 1, 2. Note that these

constraints are fairly general in that they allow to impose

not only requirements on the lossy reconstruction of Xi or

Yi (obtained by setting dj(x, y, zj) independent of y or x,
respectively), but also on some function of both Xi and Yi

(by setting dj(x, y, zj) to be dependent on such function of

(x, y)).

Given a delay d ≥ 0, for a distortion pair (D1, D2), we say

that rate R is achievable if, for every ε > 0 and sufficiently

large n, there exists a (d, n,R,D1+ ε,D2+ ε) code. We refer

to the infimum of all achievable rates for a given distortion

pair (D1, D2) and delay d as the rate-distortion function
Rd(D1, D2). For the setting of Fig. 1, we similarly define

the rate-distortion function Rd(D1).

III. LOSSLESS SOURCE CODING WITH DELAYED SIDE

INFORMATION

Here we consider the setting of Fig. 1 and we characterize

the rate-distortion function Rd(D1) for any delay d ≥ 0 under

the Hamming distortion metric (i.e., d1(x, y, z1) = 1(x �=
z1), where 1(a) = 1 if a is true and 1(a) = 0 otherwise)

for D1 = 0. In other words, we impose that the sequence



Xn be recovered with vanishingly small average symbol error

probability as n → ∞ at the decoder. We refer to this scenario

as (near) lossless. We have the following characterization of

Rd(0).

Proposition 1. For any delay d ≥ 0, the rate-distortion
function for the set-up in Fig. 1 under Hamming distortion
is given at D1 = 0 by

Rd(0) = H(Xd+1|Xd
2 , Y1), (6)

where the conditional entropy is calculated with respect to the
distribution

p(y1, x1) = π(y1)q(x1|y1) for d = 0, (7)

and p(y1, x2, ..., xd+1) = π(y1) (8)

·
∑

yi∈Y
i∈[2,d+1]

d+1∏

i=2

w1(yi|yi−1)q(xi|yi),

for d ≥ 1.
The proof of achievability is sketched below. Details can be

found in [10], along with the proof of the converse.

Remark 2. Proposition 1 provides a “single-letter” characteri-

zation of Rd(0) for the setting of Fig. 1, since it only involves

a finite number of variables. This contrasts with the general

characterization for stationary ergodic processes of Rd(D)
(in the general lossy case D ≥ 0) given in [7], which is

a “multi-letter” expression, whose computation can generally

only attempted numerically using approaches such as the ones

proposed in [4]. Note that a multi-letter expression is also

given in [2] to characterize Rd(D) for negative delays d < 0.

Remark 3. By setting d = 0 in (6) we obtain R0(0) =
H(X1|Y1). This result generalizes [2, Remark 3, p. 5227]

from i.i.d. sources (Xn, Y n) to the hidden Markov model

(1) considered here. Note that, for d = 1, we instead obtain

R1(0) = H(X2|Y1). As another notable special case, if side

information is absent, or equivalently if d → ∞, in accordance

to well-known results, we obtain that R∞(0) equals the

entropy rate H(X ).

Remark 4. Is delayed side information useful (when known

also at the encoder)? That this is generally the case follows

from the inequality Rd(0) = H(Xd+1|Xd
2 , Y1) ≤ R∞(0) =

H(X ), since R∞(0) is the required rate without side infor-

mation. However, the inequality above may not be strict, and

thus side information may not be useful. This is the case

for instance if Xi is an i.i.d. process or in the setting of

source coding with feedforward [5], [1], i.e., Xi = Yi, with

a Markov source Xn. We will see below that the conclusion

that feedforward is not useful for Markov sources need not

hold for lossy compression (i.e., for D1 > 0).

A. Proof of Achievability for Proposition 1

Proof: (Achievability) Here we propose a coding scheme

that achieves rate (6). The basic idea is a non-trivial extension

of the approach discussed in [2, Remark 3, p. 5227] and is

di
i
di YX −+− ,1

iX M
Demux ..

Enc

Enc

Enc

Enc
.
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M Demux

Dec
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Dec
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1
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Figure 3. A block diagram for encoder (a) and decoder (b) used in the proof
of achievability of Proposition 1.

described as follows. A block diagram is shown in Fig. 3

for encoder (Fig. 3-(a)) and decoder (Fig. 3-(b)). We first

describe the encoder, which is illustrated in Fig. 3-(a). To

encode sequences (xn, yn) ∈ (Xn×Yn), we first partition the

interval [1, n] into |X |d−1|Y| subintervals, which we denote as

I(x̃d−1, ỹ) ⊆ [1, n], for all x̃d−1 ∈ X d−1 and ỹ ∈ Y . Every

such subinterval I(x̃d−1, ỹ) is defined as

I(x̃d−1, ỹ) = {i: i ∈ [1, n] and yi−d = ỹ, xi−1
i−d+1 = x̃d−1}.

(9)

In words, the subinterval I(x̃d−1, ỹ) contains all symbol

indices i such that the corresponding delayed side information

available at the decoder is yi−d = ỹ and the previous d−1 sam-

ples in xn are xi−1
i−d+1 = x̃d−1. For the out-of-range indices

i ∈ [−d + 1, 0], one can assume arbitrary values for xi ∈ X
and yi ∈ Y , which are also shared with the decoder once and

for all. Note that
⋃

x̃d−1∈Xd−1, ỹ∈Y I(x̃d−1, ỹ) = [1, n]. Fig.

4 illustrates the definitions at hand for d = 2.

As a result of the partition described above, the en-

coder “demultiplexes” sequence xn into |X |d−1|Y| sequences

xI(x̃d−1,ỹ), one for each tuple (x̃d−1, ỹ) ∈ X d−1×Y . This

demultiplexing operation, which is controlled by the previous

values of source and side information, is performed in Fig.

3-(a) by the block labelled as “Demux”, and an example of

its operation is shown in Fig. 4. By the ergodicity of process

Xi and Yi, for every ε > 0 and all sufficiently large n, the

length of any sequence xI(x̃d−1,ỹ1) is guaranteed to be less

than npY1X2,...,Xd
(ỹ, x̃d−1) + ε symbols with abitrarily large

probability.

The entropy encoder can be implemented in different

ways, e.g., using typicality or Huffman coding. Here we

consider a typicality-based encoder. Note that the entries

Xi of each sequence XI(x̃d−1,ỹ) are i.i.d. with distribution



Figure 4. An example that illustrates the operations of the “Demux”
block of the encoder used for the achievability proof of Proposition 1,
as shown in Fig. 3, for sequences xn = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1) and
yn = (0, 1, 1, 0, 1, 1, 0, 0, 1, 1), n = 10 and d = 2 (symbols corresponding
to out-of-range indices are set to zero).

pXd+1|Y1X2,...,Xd
(·|ỹ, x̃d−1), since conditioning on the event

{yi−d = ỹ, xi−1
i−d+1 = x̃d−1} makes the random variables Xi

independent. Therefore, a rate in bits per source symbol of

H(Xd+1|Xd
2 = x̃d−1, Y1 = ỹ)+ ε is sufficient for the entropy

encoder to label all ε-typical sequences.

We now describe the decoder, which is illustrated in Fig.

3-(b). By undoing the multiplexing operation just described,

the decoder, from the message M , can recover the individual

sequences xI(x̃d−1,ỹ) through a simple demultiplexing opera-

tion for all x̃d−1 ∈ X d−1 and x̃d−1 ∈ X d−1. This operation is

represented by block “Demux” in Fig. 3-(b). However, while

the individual sequences xI(x̃d−1,ỹ) can be recovered through

the discussed demultiplexing operation, this does not imply

that the decoder is also able to reorder the symbols in the

sequences so as to obtain the original sequence xn. However,

note that at time i, the decoder knows Yi−d and the previously

decoded Xi−1 and can thus identify the subinterval I(x̃d−1, ỹ)
to which the current symbol Xi belongs. This symbol can be

then immediately read as the next yet-to-be-read symbol from

the corresponding sequence xI(x̃d−1,ỹ). Note that for the first

d symbols, the decoder uses the values for xi and yi at the out-

of-range indices i that were agreed upon with the encoder (see

above). A more detailed description, including the analysis of

the impact of errors, can be found in [10].

IV. LOSSY SOURCE CODING WHERE SIDE INFORMATION

MAY BE DELAYED

In this section, we consider the general problem of lossy

compression for the set-up of Fig. 2, and we obtain an

achievable rate R
(a)
d (D1, D2) ≥ Rd(D1, D2) for all delays

d ≥ 0 and prove that such rate equals the rate-distortion

function, i.e., R
(a)
d (D1, D2) = Rd(D1, D2), for d = 0 and

d = 1.

Proposition 5. For any delay d ≥ 0 and distortion pair
(D1, D2), the following rate is achievable for the setting of
Fig. 2

R
(a)
d (D1, D2) = min I(XY ;Z1|Yd) + I(X;Z2|Y YdZ1)

(10)

= min I(Y ;Z1|Yd) + I(X;Z1Z2|Y Yd), (11)

with mutual informations evaluated with respect to the joint
distribution

p(x, y, yd, z1, z2) = π(yd)wd(y|yd)q(x|y)p(z1, z2|x, y, yd),
(12)

and where minimization is done over all conditional distribu-
tions p(z1, z2|x, y, yd) such that

E[dj(X,Y, Zj)] ≤ Dj , for j = 1, 2. (13)

Moreover, rate (10)-(11) is the rate-distortion function, i.e.,
R

(a)
d (D1, D2) = Rd(D1, D2), for d = 0 and d = 1.

Remark 6. Rate (10) can be easily interpreted in terms of

achievability. To this end, we remark that variable Yd plays

the role of the delayed side information Y i−d at decoder

1. The coding scheme achieving rate (10) operates in two

successive phases. In the first phase, the encoder encodes the

reconstruction sequence Zn
1 for decoder 1. Since decoder 1 has

available delayed side information, using a strategy similar

to the one discussed in Sec. III-A, this operation requires

I(XY ;Z1|Yd) bits per source sample. Note that decoder 2

is able to recover Zn
1 as well, since decoder 2 has available

side information Y i, and thus also the delayed side information

Y i−d. In the second phase, the reconstruction sequence Zn
2 for

decoder 2 is encoded. Given the side information available at

decoder 2, this operation requires rate I(X;Z2|Y YdZ1), using

again an approach similar to the one discussed in Sec. III-A.

Details can be found in [10], along with the converse proof.

Remark 7. For memoryless sources Xn and Y n, by compar-

ison with the results in [3], it can be concluded that delayed
side information is not useful for memoryless sources. This

conclusion generalizes the result of [2], which applies for

the setting of Fig. 1 in the special case of feedforward (i.e.,

Xi = Yi).

Note that, by setting D2 = dmax in R
(a)
d (D1, D2), we

obtain an achievable rate R
(a)
d (D1) for the setting of Fig. 1

(see [10] for details).

V. EXAMPLE: BINARY HIDDEN MARKOV MODEL

In this section, we assume that Yi is a binary Markov chain

with symmetric transition probabilities w1(1|0) = w1(0|1) �
ε and we assume that Xi = Yi ⊕ Ni, with “⊕” being the

modulo-2 sum and Ni being i.i.d. binary variables, indepen-

dent of Y n, with pNi(1) � q, q ≤ 1/2. Note that we have

the k-step transition probabilities wk(1|0) = wk(0|1) � ε(k),
which can be obtained recursively as ε(1) = ε and ε(k) =
2ε(k−1)(1 − ε(k−1)) for k ≥ 2. We adopt the Hamming

distortion d1(x, z1) = x⊕ z1.

We start by showing in Fig. 5 the rate Rd(0) obtained from

Proposition 1 corresponding to zero distortion (D1 = 0) versus

the delay d for different values of ε and for q = 0.1. For d = 0,

we have R0(0) = H(X1|Y1) = Hb(q) = 0.589, irrespective

of the value of ε, where we have defined the binary entropy

function Hb(a) = −a log2 a− (1−a) log2(1−a). Instead, for

d increasingly large, the rate Rd(0) tends to the entropy rate



Figure 5. Minimum required rate Rd(0) for lossless reconstruction for the
set-up of Fig. 1 with binary sources versus delay d (q = 0.1).

R∞(0) = H(X ). Note that a larger memory, i.e., a smaller ε,

leads to smaller required rate Rd(0) for all values of d.

Fig. 6 shows the rate Rd(0) for ε = 0.1 versus q for different

values of delay d. For reference, we also show the performance

with no side information, i.e., R∞(0) = H(X ). For q = 1/2,

the source Xn is i.i.d. and delayed side information is useless

in the sense that Rd(0) = R∞(0) = H(X1) = 1 (Remark 4).

Moreover, for q = 0, we have Xi = Yi, so that Xi is a Markov

chain and the problem becomes one of lossless source coding

with feedforward. From Remark 4, we know that delayed side

information is useless also in this case, as Rd(0) = R∞(0) =
H(X ) = Hb(ε) = 0.469.3 For intermediate values of q, side

information is generally useful, unless the delay d is too large.

Finally, we evaluate the achievable rate of Proposition 2 for

a general non-zero distortion D1 (see details in [10]), obtaining

R
(a)
d (D1) = Hb(ε

(d) ∗ q)−Hb(D1) (14)

for 0 ≤ D1 ≤ min{ε(d) ∗ q, 1 − ε(d) ∗ q} and R
(a)
d (D1) = 0

otherwise, where p ∗ q � p(1 − q) + (1 − p)q. This result

with q = 0 (i.e., with feedforward) and d = 1 recovers the

calculation in [5, Example 2] (see also [4]). We remark that

the rate-distortion function of a Markov source Xn without

feedforward, i.e., R∞(D1), is equal to Hb(ε) −H(D1) only

for D1 smaller than a critical value, but is otherwise larger

[8]. This demonstrates that feedforward, unlike in the lossless

setting discussed above, can be useful in the lossy case for

distortion levels D1 sufficiently large.

VI. CONCLUDING REMARKS

A general information-theoretic characterization of the

trade-off between rate and distortion for the problem of

compressing information sources in the presence of delayed

side information can be generally given in terms of multi-

letter expressions, as done in [7]. In this work, we have

instead focused on a specific class of sources, which evolve

3We use the conventional definition of the binary entropy as H(x) �
−x log2 x− (1− x) log2(1− x).

Figure 6. Minimum required rate Rd(0) for lossless reconstruction for the
set-up of Fig. 1 with binary sources versus parameter q (ε = 0.1).

according to hidden Markov models, and derived single-

letter characterizations of the rate-distortion trade-off. Such

characterizations are established based on simple achievable

scheme that are based on standard “off-the-shelf” compression

techniques. Moreover, we have extended the analysis to a more

general set-up in which side information may or may not be

delayed.
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