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Abstract—The problem of multiple descriptions for a Gaussian
source is considered, in which all the decoders have access to cor-
related Gaussian side-information. Two variations of this problem
are studied. First, the rate-distortion tradeoff is characterized
under the assumption of a common reconstruction constraint,
in which the estimate produced at each of the decoders is also
exactly recoverable at the encoder. Secondly, a generalization of
this setup is studied in which possibly different distortions are
tolerable between the estimates at the encoder and the respective
estimates at each of the decoders.

I. INTRODUCTION

The rate distortion function for lossy transmission of a
memoryless source X to a decoder that has access to correlated
side information Y was characterized by Wyner and Ziv
in [1]. There are two ways in which the side-information
is useful in the Wyner-Ziv problem. First, since the side
information Y is correlated with the source X , the encoder
can reduce the communication rate via binning; and secondly,
the reconstruction X̂ at the decoder depends on both the
digital information received from the encoder and the side-
information Y . The second property, i.e., the dependence of
the decoder’s estimate X̂ on the side-information Y (which
is unavailable at the encoder) may be undesirable for certain
applications. As an example, consider the transmission of
sensitive medical records, for which it is of utmost importance
that the decoder and the encoder agree upon the estimates of
the records.

To take such scenarios into account, the problem of common
reconstruction (CR) was proposed by Steinberg in [2], in
which the rate-distortion function is characterized for a point-
to-point system under a common reconstruction constraint.
Formally, a common reconstruction constraint refers to a
restriction that the encoder should also be able to reconstruct
the estimate at the decoder. The common reconstruction con-
straint can be perhaps too restrictive since it precludes the
decoder to use its side-information to create the estimate. A
relaxed version of the common reconstruction constraint in
which some distortion is tolerable between the estimate at the
encoder and the estimate at the decoder was studied in [3].
The corresponding rate-distortion function was characterized
in [3] (henceforth referred to as the rate-distortion function
under constrained reconstruction (ConR)).

Some generalizations and extensions of [2] to multi-user
settings have been studied recently. In particular, the rate-
distortion function for the Heegard-Berger problem with CR
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Fig. 1. Multiple descriptions with side-information and CR constraints.

constraints has been recently obtained in [4]. Furthermore, the
rate-distortion tradeoff for a class of cascade source coding
problems under the CR constraint has also been obtained
in [4]. It is noted that in the latter case, the problem of
determining the rate-distortion tradeoff is open when one does
not impose the CR constraint. This demonstrates that the
CR constraint may simplify the design problem by limiting
the space of possible strategies, as already discussed in [2]
and [5]. A source coding problem with complementary side
information under a CR constraint has been studied in [6].
Joint source-channel coding for a Gaussian source over a slow
fading Gaussian broadcast channel is studied in [5], where
it is shown that the natural broadcast strategy coupled with
successive refinement source coding is in fact optimal under
the CR constraint (also see [2, Sec. IV]).

In this paper, we generalize the point-to-point common-
reconstruction problem of [2], and the point-to-point con-
strained reconstruction problem of [3] to the problem of
multiple descriptions (MD) with decoder side information. We
focus on the MD problem with three decoders, in which all the
decoders have access to the same correlated side-information
Y (see Figure 1). We focus on Gaussian source and side
information. Specifically, an encoder wishes to convey a mem-
oryless Gaussian scalar source X to three decoders via two
rate-limited orthogonal links. The distortion constraints at all
the decoders are assumed to be measured by the mean-squared
error (MSE). The correlated side information Y , which is
assumed to be jointly Gaussian with X is available at all
the three decoders. In the absence of side-information, this
problem was solved by Ozarow [7]. Instead, the more general
case in which correlated Gaussian side-information is available
at all decoders was solved by Diggavi and Vaishampayan [8].

In this paper, we impose an additional CR constraint. We



first characterize the set of achievable rates and distortion
tuples for the Gaussian MD problem under the CR constraint.
We next consider the ConR generalization of this setup,
in which some pre-specified MSE distortions are tolerable
between the estimates at the encoder and the corresponding
estimates at the decoders. It is shown that the optimal strategy
is based on separation, in the sense that a combination of
coding for the MD problem, followed by binning with respect
to side-information Y , is optimal.

II. PROBLEM STATEMENT

The encoder observes a memoryless source Xn and pro-
duces two indices

J1 = f
(n)
1 (Xn) and J2 = f

(n)
2 (Xn),

where {f (n)j : Xn → Jj}j=1,2 are the encoding functions.
The index J1 (resp. J2) is received at decoder 1 (resp. decoder
2). Both the indices (J1, J2) are received at decoder 0. The
decoders form their estimates as follows:

X̂n
j = g

(n)
j (J, Y n), j = 1, 2, and X̂n

0 = g
(n)
0 (J1, J2, Y

n),

where g
(n)
j is the reconstruction function at decoder j, for

j = 0, 1, 2. We denote the estimates at the encoder as follows:

X̂n
e,1 = ψ1(Xn), X̂n

e,2 = ψ2(Xn) and X̂n
e,0 = ψ0(Xn).

A. Common Reconstruction (CR)

We call the set of ({fnj }j=1,2, {g(n)j }j=0,1,2, {ψnj }j=0,1,2)

functions an (n,R1, R2, D0, D1, D2)-code if |J1| ≤ 2nR1 ,
|J2| ≤ 2nR2 and the reconstruction sequences satisfy

1

n

n∑
t=1

E[dd(Xt, X̂j,t)] ≤ Dj , j = 0, 1, 2, (1)

and

Pr (ψ1(Xn) 6= g1(J1, Y
n)) ≤ ε (2)

Pr (ψ2(Xn) 6= g2(J2, Y
n)) ≤ ε (3)

Pr (ψ0(Xn) 6= g0(J1, J2, Y
n)) ≤ ε. (4)

The non-negative tuple (R1, R2, D0, D1, D2) is achievable
if for every ε > 0 and sufficiently large n, there exists
an (n,R1 + ε, R2 + ε,D0 + ε,D1 + ε,D2 + ε)-code. We
denote RDCR as the closure of the set of all achievable
(R1, R2, D0, D1, D2) tuples.

B. Constrained Reconstruction (ConR)

We next extend the CR constraint to the ConR
constraint. In this setting, some distortion is permissi-
ble between the estimate at the decoder(s) and the re-
spective estimate(s) at the encoder. We call the set
of ({fnj }j=1,2, {g(n)j }j=0,1,2, {ψnj }j=0,1,2) functions an
(n,R1, R2, D0, D1, D2, De,0, De,1, De,2)-code if |J1| ≤
2nR1 , |J2| ≤ 2nR2 and the reconstruction sequences satisfy

(1) and

1

n

n∑
t=1

E[de(X̂j,t, X̂e,j,t)] ≤ De,j , j = 0, 1, 2. (5)

The non-negative tuple (R1, R2, D0, D1, D2, De,0, De,1, De,2)
is achievable if for every ε > 0 and sufficiently large
n, there exists an (n,R1 + ε, R2 + ε,D0 + ε,D1 +
ε,D2 + ε,De,0 + ε,De,1 + ε,De,2 + ε)-code. We denote
RDConR as the closure of the set of all achievable
(R1, R2, D0, D1, D2, De,0, De,1, De,2) tuples.

This paper considers the case in which the source X is
Gaussian with variance σ2

X and the side information Y is
jointly Gaussian with X . Under this model, we can write

Y = X + Z, (6)

where Z is a zero-mean, Gaussian random variable with
variance σ2

Z , and independent of X . The distortion measures
are quadratic and are defined as follows:

dd(a, b) , (a− b)2 and de(a, b) , (a− b)2. (7)

Before presenting our results, we recall the rate-distortion
region without side-information [7]:

DNo−SI
1 ≥ exp(−2R1) (8)

DNo−SI
2 ≥ exp(−2R2) (9)

DNo−SI
0 ≥ exp(−2(R1 +R2))

1

1− (
√

ΠNo−SI −
√

∆No−SI)2
,

(10)

where

DNo−SI
j ,

Dj

σ2
X

, j = 0, 1, 2, (11)

ΠNo−SI , (1−DNo−SI
1 )(1−DNo−SI

2 ) (12)

∆No−SI , DNo−SI
1 DNo−SI

2 − exp(−2(R1 +R2)). (13)

The rate-distortion region with side-information (without any
constraints) [8] is given as

DSI
1 ≥ exp(−2R1) (14)

DSI
2 ≥ exp(−2R2) (15)

DSI
0 ≥ exp(−2(R1 +R2))

1

1− (
√

ΠSI −
√

∆SI)2
, (16)

with DSI
j being defined as

DSI
j , Dj ·

(
σ2
X + σ2

Z

σ2
Xσ

2
Z

)
=

Dj

VX|Y
, j = 0, 1, 2, (17)

where the quantities (ΠSI,∆SI) are defined as in (12) and (13)
with (DNo−SI

1 , DNo−SI
2 ), replaced by (DSI

1 , D
SI
2 ) and VX|Y =

Var(X|Y ) =
σ2
Xσ

2
Z

σ2
X+σ2

Z
denotes the variance of X given Y .

III. MAIN RESULTS

Theorem 1: The set RDCR of all achievable
(R1, R2, D0, D1, D2)-tuples for the Gaussian MD problem
with decoder side-information and CR constraints is given as



follows:

DCR
1 ≥ exp(−2R1) (18)

DCR
2 ≥ exp(−2R2) (19)

DCR
0 ≥ exp(−2(R1 +R2))

1

1− (
√

ΠCR −
√

∆CR)2
, (20)

where we have defined

DCR
j ,

(
σ2
X + σ2

Z

σ2
Xσ

2
Z

)(
Djσ

2
Z

Dj + σ2
Z

)
, j = 0, 1, 2. (21)

ΠCR , (1−DCR
1 )(1−DCR

2 ) (22)

∆CR , DCR
1 DCR

2 − exp(−2(R1 +R2)). (23)

The proof of Theorem 1 is given in the appendix.
Theorem 2: The set RDConR of all achievable

(R1, R2, D0, D1, D2, De,0, De,1, De,2)-tuples for the
Gaussian MD problem with decoder side-information
and ConR constraints is given as follows:

DConR
1 ≥ exp(−2R1) (24)

DConR
2 ≥ exp(−2R2) (25)

DConR
0 ≥ exp(−2(R1 +R2))

1

1− (
√

ΠConR −
√

∆ConR)2
,

(26)

where for j = 0, 1, 2, we have defined

DConR
j

,


(
σ2
X+σ2

Z

σ2
Xσ

2
Z

)
Dj ,

√
σ2
ZDe,j ≥ min

{
Dj ,

σ2
Xσ

2
Z

σ2
X+σ2

Z

}
;(

σ2
X+σ2

Z

σ2
Xσ

2
Z

)(
σ2
Z(Dj−De,j)

σ2
Z+Dj−2

√
σ2
ZDe,j

)
, otherwise,

(27)

and

ΠConR , (1−DConR
1 )(1−DConR

2 ) (28)

∆ConR , DConR
1 DConR

2 − exp(−2(R1 +R2)). (29)

The proof of Theorem 2 is omitted due to space limitations
and can be found in [9].

Remark 1: The optimal coding schemes achieving the
tradeoffs in Theorems 1 and 2 are based on a separation based
strategy, i.e., a combination of coding for the MD problem,
followed by binning with respect to side-information Y . This
is evident by comparing the expressions in Theorems 1 and
2 to the corresponding tradeoff regions in (8)-(10) and (14)-
(16). It is interesting to note that all four regions are described
by a similar set of constraints, except that the definition of
the effective distortions DNo−SI, DSI, DCR and DConR differ
depending on the problem under consideration. We also note
that as De,j → 0, for j = 0, 1, 2, we have DConR

j → DCR
j ,

and the region in Theorem 2 collapses to the one in Theorem
1.

We illustrate these tradeoffs in Figure 2 for the symmetric
case in which D1 = D2 = D0 = Dsym, and R1 = R2 =
Rsym, De,1 = De,2 = De,0 = De,sym = 0.05, with σ2

X = 4
and σ2

Z = 1. From Figure 2, it is worth noting that for values
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Fig. 2. Illustration of symmetric rate-distortion tradeoffs, σ2
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Z = 1.

of Dsym below a certain threshold, the ConR constraints
are automatically satisfied, and hence the minimal rate under
ConR coincides with the minimal rate without any constraints.

IV. CONCLUSIONS

This paper has focused on the generalization of the Gaus-
sian multiple-description problem with side-information at the
decoders by imposing a common reconstruction constraint as
in [2] and also constrained reconstruction constraints as in [3].
These additional distortion constraints effectively control the
amount of side-information to be used in creating the source
estimate at each decoder. The complete rate-distortion tradeoff
has been characterized for the case of common-reconstruction
constraints. This result is then generalized to the constrained-
reconstruction setting with MSE distortion measures at each
of the decoders. These tradeoffs reflect the penalty in terms
of additional communication rates of the encoder, if it seeks
to agree with the estimates at the decoders.
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VI. APPENDIX

A. Proof of Theorem 1

1) Coding Scheme with CR: The following region is
achievable for the MD problem with a CR constraint:

R1 ≥ I(X;U1|Y )

R2 ≥ I(X;U2|Y )

R1 +R2 ≥ I(X;U1, U2|Y ) + I(U1;U2|Y )

where the random variables (U1, U2, X, Y ) satisfy the Markov
condition (U1, U2) → X → Y , and there exist functions



g1(·), g2(·) and g0(·, ·) such that

X̂1 = g1(U1), X̂2 = g2(U2), X̂0 = g0(U1, U2),

satisfying E[d(X, X̂j)] ≤ Dj for j = 0, 1, 2.

2) Gaussian MD with CR constraints: For the case in
which (X,Y ) are jointly Gaussian, we select

U1 = X +N1, U2 = X +N2, (30)

where (N1, N2) are jointly Gaussian, independent of X , with
a covariance matrix as follows:

KN1,N2 =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (31)

The estimates X̂i are selected as the minimum MSE (MMSE)
estimators of X given U1, U2 and (U1, U2) for decoders
1, 2 and decoder 0, respectively. Note that such a selection
automatically satisfies the common reconstruction constraints
for all the three decoders. The achievable distortions are hence
given as

D1 =
σ2
Xσ

2
1

σ2
X + σ2

1

, D2 =
σ2
Xσ

2
2

σ2
X + σ2

2

(32)

and

D0 =
σ2
Xσ

2
1σ

2
2(1− ρ2)

σ2
1σ

2
2(1− ρ2) + σ2

X(σ2
1 + σ2

2 − 2σ1σ2ρ)
. (33)

We select σ2
1 and σ2

2 such that the distortion constraints in
(32) are met with equality, i.e., we select

σ2
j =

Djσ
2
X

σ2
X −Dj

, j = 1, 2. (34)

Also, note that we have for j = 1, 2

DCR
j ,

(
σ2
X + σ2

Z

σ2
Xσ

2
Z

)(
Djσ

2
Z

Dj + σ2
Z

)
(35)

=
σ2
j (σ2

X + σ2
Z)

σ2
Xσ

2
j + σ2

Xσ
2
Z + σ2

Zσ
2
j

(36)

where we have used (32).
The individual rate constraints for j = 1, 2 are given as

Rj ≥ I(X;Uj |Y ) =
1

2
log

(
1

DCR
j

)
. (37)

The sum-rate constraint is given as

R1 +R2 ≥ I(X;U1, U2|Y ) + I(U1;U2|Y ) (38)
= h(U1|Y ) + h(U2|Y )− h(U1, U2|X) (39)

=
1

2
log

(
(VX|Y + σ2

1)(VX|Y + σ2
2)

σ2
1σ

2
2(1− ρ2)

)
(40)

=
1

2
log

(
1

DCR
1 DCR

2 (1− ρ2)

)
. (41)

Hence, ρ can be chosen arbitrarily as long as it satisfies

ρ2 ≤ DCR
1 DCR

2 − exp(−2(R1 +R2))

DCR
1 DCR

2

. (42)

We select ρ as follows:

ρ = −
√
DCR

1 DCR
2 − exp(−2(R1 +R2))√

DCR
1 DCR

2

. (43)

Substituting this value of ρ in the expression for D0 in (33)
and using (32), we arrive at

DCR
1 ≥ exp(−2R1) (44)

DCR
2 ≥ exp(−2R2) (45)

DCR
0 ≥ exp(−2(R1 +R2))

1

1− (
√

ΠCR −
√

∆CR)2
, (46)

with ΠCR and ∆CR as defined in Theorem 1.

3) Converse Proof under the CR Constraint: We note that
R1 and R2 must always satisfy the following bounds:

Rj ≥ RCR(Dj), j = 1, 2. (47)

From [2, Eq. (25)], RCR(D) is given as

RCR(D) =
1

2
log

(
σ2
Xσ

2
Z

σ2
X + σ2

Z

D + σ2
Z

Dσ2
Z

)
(48)

,
1

2
log

(
1

DCR

)
, (49)

where DCR is as defined in (21). Hence, from (47) and (49),
we have the following bounds:

DCR
j ≥ exp(−2Rj), j = 1, 2. (50)

We now obtain a lower bound on the sum rate R1 + R2 as
follows:

n(R1 +R2)

= H(J1) +H(J2) (51)
≥ H(J1|Y n) +H(J2|Y n) (52)
= H(J1, J2|Y n) +H(J1|Y n) +H(J2|Y n)−H(J1, J2|Y n)

(53)
= H(J1, J2|Y n) + I(J1; J2|Y n) (54)
= I(Xn; J1, J2|Y n) + I(J1; J2|Y n) (55)
≥ nRCR(D0) + I(J1; J2|Y n). (56)

As in [7], we define

T , exp

(
2

n
I(J1; J2|Y n)

)
. (57)

Using (56), we have the following inequalities:

DCR
1 ≥ exp(−2R1) (58)

DCR
2 ≥ exp(−2R2) (59)

DCR
0 ≥ exp(−2(R1 +R2))T. (60)

We now obtain a lower bound on T by using Ozarow’s
technique of inducing conditional independence [7]. For this
purpose, we define an artificial Gaussian random variable as
follows:

Si = Xi +Wi, i = 1, . . . , n, (61)



where the sequence of random variables {Wi}ni=1 is inde-
pendent and identically distributed with each element being
a zero-mean, Gaussian random variable with variance η, and
Wn is assumed to be independent of (Xn, Y n). To lower
bound T , we have the following sequence of inequalities:

I(J1; J2|Y n)

≥ I(J1; J2|Y n)− I(J1; J2|Y n, Sn) (62)
= I(J1;Sn|Y n)− I(J1;Sn|Y n, J2) (63)
= h(Sn|Y n) + h(Sn|J1, J2, Y n)

− h(Sn|J1, Y n)− h(Sn|J2, Y n) (64)
= h(Sn|Y n) + h(Sn|J1, J2, Y n)

− h(Xn +Wn|J1, Y n)− h(Xn +Wn|J2, Y n) (65)
≥ h(Sn|Y n) + h(Sn|J1, J2, Y n)

− n

2
log(2πe(D∗1 + η))− n

2
log(2πe(D∗2 + η)) (66)

=
n

2
log
(
VX|Y + η

)
+ h(Sn|J1, J2, Y n)

− n

2
log(2πe(D∗1 + η))− n

2
log(2πe(D∗2 + η)), (67)

where we have defined

VX|Y ,
σ2
Xσ

2
Z

σ2
X + σ2

Z

, D∗1 ,
D1σ

2
Z

D1 + σ2
Z

and D∗2 ,
D2σ

2
Z

D2 + σ2
Z

.

(68)

The bounding step (66) follows from the following sequence
of inequalities:

h(Xn +Wn|J1, Y n)

≤ h(Xn +Wn|X̂n
1 , Y

n) (69)

= h(Sn|X̂n
1 , Y

n) (70)

= h(Sn|ψ1(Xn), X̂n
1 , Y

n) + I(ψ1(Xn);Sn|X̂n
1 , Y

n) (71)

≤ h(Sn|ψ1(Xn), X̂n
1 , Y

n) + nε (72)
≤ h(Sn|ψ1(Xn), Y n) + nε (73)
= h(Xn +Wn|ψ1(Xn), Y n) + nε (74)

≤ n

2
log (D∗1 + η) + nε, (75)

where (72) follows from the CR constraint and application of
Fano’s inequality, and (75) follows from arguments as in [2,
Sec. V-A eqn. 69− 72] and [2, Sec. V-C]. Next, consider the
second term in (67):

exp
(

2

n
h(Xn +Wn|J1, J2, Y n)

)
≥ exp

(
2

n
h(Xn|J1, J2, Y n)

)
+ exp

(
2

n
h(Wn|J1, J2, Y n)

)
(76)

= exp
(

2

n
h(Xn|J1, J2, Y n)

)
+ (2πe)(η), (77)

where in (76), we have used the fact that Wn is independent
of (Xn, Y n, J1, J2) and the conditional version of the entropy
power inequality (EPI).

We now note the following sequence of inequalities:

h(Xn|J1, J2, Y n)

= h(Xn|Y n)− I(Xn; J1, J2|Y n) (78)
= h(Xn|Y n)−H(J1, J2|Y n) (79)
= h(Xn|Y n)−H(J1|Y n)−H(J2|Y n) + I(J1; J2|Y n)

(80)
≥ h(Xn|Y n)−H(J1)−H(J2) + I(J1; J2|Y n) (81)
≥ h(Xn|Y n)− nR1 − nR2 + I(J1; J2|Y n), (82)

which implies that

exp

(
2

n
h(Xn|J1, J2, Y n)

)
≥ exp

(
2

n
h(Xn|Y n)

)
exp(−2(R1 +R2))T (83)

= (2πe)VX|Y · exp(−2(R1 +R2))T (84)

Hence, from (77) and (84), and using (67), we obtain the
following lower bound on T :

T ≥ η∗(η∗ + 1)

(DCR
1 + η∗)(DCR

2 + η∗)− (η∗ + 1) exp(−2(R1 +R2))
,

where η∗ , η
VX|Y

and DCR
j =

D∗j
VX|Y

for j = 1, 2. The
following choice of η∗ maximizes the right hand side above:

η∗ =

√
∆CR

√
ΠCR −

√
∆CR

, (85)

which upon substitution, yields the following lower bound on
T :

T ≥ 1

1− (
√

ΠCR −
√

∆CR)2
. (86)

Hence, (58)-(60) and (86) complete the proof of Theorem 1.
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