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Abstract—In lossy source coding with side information at
the decoder (i.e., the Wyner-Ziv problem), the estimate of the
source obtained at the decoder cannot be generally reproduced
at the encoder, due to its dependence on the side information.
In some applications this may be undesirable, and a Common
Reconstruction (CR) requirement, whereby one imposes that
encoder and decoder be able to agree on the decoder’s estimate,
may be instead in order. The rate-distortion function under
the CR constraint has been recently derived for the point-to-
point (Wyner-Ziv) problem. In this paper, this result is extended
to the Heegard-Berger (HB) problem and to its variant with
cooperating decoders. Specifically, for the HB problem, the rate-
distortion function is derived under the assumption that the
side information sequences at the two decoders are stochastically
degraded. The rate-distortion function is also calculated explicitly
for the special case of binary source and erased side information
with Hamming distortion metric. The rate-distortion function is
then characterized also for the HB problem with cooperating
decoders and physically degraded side information.

I. INTRODUCTION

In source coding problems with side information at a single

decoder, such as in the Wyner-Ziv problem, or at multiple

decoders, such as in the Heegard-Berger (HB) problem [1],

the side information sequences are, in general, used in two

different ways. The first is as a means to reduce the rate

required for communication between encoder and decoders via

binning. The second is, instead, as an additional observation

that the decoders can leverage, along with the bits received

from the encoder, in order to improve their local estimates.

Leveraging the side information in this latter way, while

advantageous in terms of rate-distortion trade-off, may have

unacceptable consequences for some applications. In fact, this

use of the side information entails that the reconstruction X̂ at

a decoder cannot be reproduced at the encoder. In applications

such as transmission of sensitive medical information, this may

not be desirable. Instead, one may want to add the constraint

that the reconstruction at the decoder be reproducible by the

encoder [2].

This idea, referred to as the Common Reconstruction (CR)

constraint, was first proposed in [2], where it is shown that

for the Wyner-Ziv problem the rate-distortion function under

the CR constraint is given by

RCR
X|Y (D) = min I(X; X̂|Y ), (1)

where the minimum is taken over all probability mass func-

tions (pmfs) p(x̂|x) such that E[d(X, X̂)] ≤ D. Comparing
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Figure 1. Heegard-Berger source coding problem with common reconstruc-
tion (switch open). Closing the switch enables decoder cooperation.

(1) with the conventional Wyner-Ziv rate-distortion function,

namely RWZ
X|Y (D) = minI(X;U |Y ) with minimum overall

all pmfs p(u|x) and deterministic functions x̂(u, y) such that

E[d(X, x̂(U, Y ))] ≤ D, it can be seen that the additional CR

constraint prevents the decoder from using the side information

as a means to improve its estimate X̂ .

In this paper, we extend the characterization of the rate-

distortion function under the CR constraint of [2] from the

point-to-point setting to the HB problem [1] (Fig. 1, switch

open), and its variant, studied in [3], in which decoder cooper-

ation is enabled by a limited capacity link from one decoder,

Decoder 1, to the other, Decoder 2 (Fig. 1, switch closed).

We recall that [1] derived the rate-distortion function for the

HB problem (without CR constraints) under the assumption

that the side information sequences are stochastically degraded

versions of the source Xn. Instead, for the case with decoder

cooperation, inner and outer bounds on the rate distortion

region for this problem are obtained in [3] (without CR

constraints) under the assumption that the side information

of Decoder 2 is physically degraded with respect to that of

Decoder 1.

For the HB problem with the CR constraint, in Sec. II, we

derive the rate-distortion function under the assumption that

the side information sequences are stochastically degraded.

We also calculate this function explicitly for binary source

and erased side information with the Hamming distortion

metric. Moreover, for the HB problem with the CR constraint

and decoder cooperation, we derive the rate-distortion region



under the assumption that the side information sequences are

(physically) degraded in either direction (Sec. III-A and Sec.

III-B). We emphasize that the corresponding problem without

the CR constraint is still open as per the discussion above.

II. HEEGARD-BERGER PROBLEM WITH COMMON

RECONSTRUCTION

In this section, we first detail the system model for the HB

source coding problem in Fig. 1 (switch open) with CR in

Sec. II-A. Next, the characterization of the corresponding rate-

distortion performance is derived under the assumption that

one of the two side information sequences is a stochastically

degraded version of the other in the sense of [1]. Finally, an

example with binary sources is worked out in Sec. II-C. The

case of Gaussian sources under quadratic distortion is tackled

in [4]. The proofs of the results presented in the paper are

omitted due to space limitations and can be found in [4].

A. System Model

In this section the system model for the HB problem

with CR is detailed. The system is defined by the pmf

pXY1Y2(x, y1, y2) and discrete alphabets X ,Y1,Y2, X̂1, and

X̂2 as follows. The source sequence Xn and side information

sequences Y n
1 and Y n

2 , with Xn ∈ Xn, Y n
1 ∈ Yn

1 , and

Y n
2 ∈ Yn

2 are such that the tuples (Xi, Y1i, Y2i) for i ∈ [1, n]
are independent and identically distributed (i.i.d.) with joint

pmf pXY1Y2(x, y1, y2). The encoder observes a sequence Xn

and encodes it into a message J of nR bits, which is delivered

to the decoders. Decoders 1 and 2 wish to reconstruct the

source sequence Xn within given distortion requirements,

to be discussed below, as X̂n
1 ∈ X̂n

1 and X̂n
2 ∈ X̂n

2 ,

respectively. The estimated sequence X̂n
j is obtained as a

function of the message J and the side information sequence

Y n
j for j = 1, 2. The estimates are constrained to satisfy

distortion constraints defined by per-symbol distortion metrics

dj(x, x̂j) : X × X̂j → [0, Dmax] with 0 < Dmax < ∞. The

reconstructions X̂n
2 and X̂n

2 are also required to satisfy the

CR constraints, as formalized below.

Definition 1. An (n,R,D1, D2, ε) code for the HB problem

with CR consists of an encoding function

g: Xn → [1, 2nR], (2)

which maps the source sequence Xn into a message J ; a

decoding function for Decoder 1,

h1: [1, 2nR]× Yn
1 → X̂n

1 , (3)

which maps the message J and the side information Y n
1 into

the estimated sequence X̂n
1 ; a decoding function for Decoder

2

h2: [1, 2nR]× Yn
2 → X̂n

2 (4)

which maps message J and the side information Y n
2 into the

estimated sequence X̂n
2 ; and two reconstruction functions

ψ1: Xn → X̂n
1 (5a)

and ψ2: Xn → X̂n
2 , (5b)

which map the source sequence into the estimated sequences at

the encoder, namely ψ1(X
n) and ψ2(X

n), respectively; such

that the distortion constraints are satisfied, i.e.,

1

n

n∑
i=1

E
[
dj(X, X̂j)

]
≤ Dj for j = 1, 2, (6)

and the CR requirements hold, namely,

Pr
[
ψj(X

n) �= hj(g(X
n), Y n

j )
] ≤ ε, j = 1, 2. (7)

Given distortion pairs (D1, D2), a rate pair R is said to be

achievable if, for any ε > 0 and sufficiently large n, there a

exists an (n,R,D1 + ε,D2 + ε, ε) code. The rate-distortion

function R(D1, D2) is defined as R(D1, D2) =inf{R : the

triple (R,D1, D2) is achievable}.

B. Rate-Distortion Function

In this section, a single-letter characterization of the rate-

distortion function for the HB problem with CR is derived,

under the assumption that the joint pmf p(x, y1, y2) is such

that there exists a conditional pmf p̃(y1|y2) for which

p(x, y1) =
∑

y2∈Y2

p(x, y2)p̃(y1|y2). (8)

In other words, the side information Y1 is a stochastically

degraded version of Y2.

Proposition 2. If the side information Y1 is stochastically
degraded with respect to Y2, the rate-distortion function for
the HB problem with CR is given by

RCR
HB(D1, D2)=min I(X; X̂1|Y1) + I(X; X̂2|Y2X̂1)

=min I(X; X̂1X̂2|Y2)+I(X̂1;Y2|Y1), (9a)

where the mutual information terms are evaluated with respect
to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y1, y2)p(x̂1, x̂2|x), (10)

and minimization is performed with respect to the conditional
pmf p(x̂1, x̂2|x) under the constraints

E[dj(X, X̂j)] ≤ Dj , for j = 1, 2. (11)

The proof of the converse can be found in [4]. Achievability

follows as a special case of Theorem 3 of [1] and can be easily

shown using standard arguments. In particular, the encoder

randomly generates a standard lossy source code X̂n
1 for

the source Xn with rate I(X; X̂1) bits per source symbol.

Random binning is used to reduce the rate to I(X; X̂1|Y1).
By the Wyner-Ziv theorem, this guarantees that both Decoder 1

and Decoder 2 are able to recover X̂n
1 (since Y1 is a degraded

version of Y2). The encoder then maps the source Xn into

the reconstruction sequence X̂n
2 using a codebook that is

generated conditional on X̂n
1 with rate I(X; X̂2|X̂1) bits per

source symbol. Random binning is again used to reduce the

rate to I(X; X̂2|Y2X̂1). From the Wyner-Ziv theorem, and

the fact that Decoder 2 knows the sequence X̂n
1 , it follows

that Decoder 2 can recover the reconstruction X̂n
2 as well.



Note that, since the reconstruction sequences X̂n
1 and X̂n

2 are

generated by the encoder, functions ψ1 and ψ2 that guarantee

the CR constraints (7) exist by construction.

Remark 3. If we remove the CR constraint, then the rate-

distortion function under the assumption of Proposition 2 is

given by [1]

RHB(D1, D2) = min I(X;U1|Y1) + I(X;U2|Y2U1), (12)

where the mutual information terms are evaluated with respect

to the joint pmf

p(x, y1, y2, u1, u2) = p(x, y1, y2)p(u1, u2|x), (13)

and minimization is performed with respect to the con-

ditional pmf p(u1, u2|x) and the deterministic functions

x̂j(uj , yj), for j = 1, 2, such that distortion constraints

E[dj(X, x̂j(Uj , Yj))] ≤ Dj , for j = 1, 2 are satisfied. Com-

parison of (9) with (12) reveals that, similar to the discussion

for the point-to-point set-up, the CR constraint permits the use

of side information only to reduce the rate via binning, but not

to improve the decoder’s estimates via the use of the auxiliary

codebooks represented by variables U1 and U2, and functions

x̂j(uj , yj), for j = 1, 2, in (13).

Remark 4. Consider the case in which the side information

sequences are available in a causal fashion in the sense of

[5]; that is, the decoding functions (3)-(4) are modified as

hji: [1, 2
nR] × Yi

j → X̂ji, for i ∈ [1, n] and j = 1, 2,

respectively. Following similar steps as in [5], it can be

concluded that the rate-distortion function in this case is

the same as if the two side information sequences were not

available at the decoders, and is thus given by (9) upon

removing the conditioning on the side information. Note that

this is true irrespective of the joint pmf p(x, y1, y2) and

hence it holds also for non-degraded side information. This

result can be explained by noting that, as explained in [5],

causal side information prevents the possibility of reducing

the rate via binning. Since the CR constraint also prevents the

side information from being used to improve the decoders’

estimates, it follows that the side information is useless in

terms of rate-distortion performance, if used causally.

C. Binary Source with Erased Side Information and Hamming
or Erasure Distortion

In this section, we consider a binary source X ∼ Ber( 12 )
with erased side information sequences Y1 and Y2. The source

Y2 is an erased version of the source X with erasure probabil-

ity p2 and Y1 is an erased version of X with erasure probability

p1 > p2. This means that Yj = e, where e represents an

erasure, with probability pj and Yj = X with probability

1−pj . Note that, with these assumptions, the side information

Y1 is stochastically degraded with respect to Y2. In fact,

we have the factorization (8), where additional distributions

p(y2|y1) and p̃(y1|y2) are illustrated in Fig. 2. As seen in

Fig. 2, the pmf p̃(y1|y2) is characterized by the probability p̃1
that satisfies the equality p̃1 = p2 + p̃1(1− p2). We focus on

Hamming and erasure distortions. For the Hamming distortion,

the reconstruction alphabets are binary, X̂1 = X̂2 = {0, 1},

and we have dj(x, x̂j) = 0 if x = x̂j and dj(x, x̂j) = 1
otherwise for j = 1, 2. Instead, for the erasure distortion the

reconstruction alphabets are X̂1 = X̂2 = {0, 1, e}, and we

have for j = 1, 2: dj(x, x̂j) = 0 if x̂j = x, dj(x, x̂j) = 1 if

x̂j = e and dj(x, x̂j) = ∞ otherwise.
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Figure 2. Illustration of the pmfs in the factorization (8) of the joint
distribution p(x, y1, y2) for a binary source X and erased side information
sequences (Y1, Y2).

In [4, Appendix C], it is proved that for the point-to-point

set-up with X ∼ Ber( 12 ) and erased side information Y with

erasure probability p, the rate-distortion function with CR

under Hamming distortion is given by

RCR
X|Y (D)=

{
RCR

B (D, p)
�
= p(1−H(D)) for D ≤ 1/2

0 for D > 1/2,

(14)

while under erasure distortion we get

RCR
X|Y (D) = RCR

BE (D, p)
�
= p(1−D), (15)

where H(x) denotes the binary entropy function. Note that

the rate-distortion function with erased side information and

Hamming distortion without the CR constraint is derived in

[7].

Proposition 5. The rate-distortion function for the HB prob-
lem with CR for the binary source with the stochastically
degraded erased side information sequences illustrated in Fig.
2 under Hamming distortion is given by

RCR
HB(D1, D2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
if D1 ≥ 1/2 and D2 ≥ 1/2

RCR
B (D1, p1)

if D1 ≤ 1/2 and D2 ≥ min(D1, 1/2)
RCR

B (D2, p2)
if D1 ≥ 1/2 and D2 ≤ 1/2

R̃CR
HB(D1, D2)

if D2 ≤ D1 ≤ 1/2

(16)

where RCR
B (D,N) is defined in (14) and

R̃CR
HB(D1, D2)

�
= p1(1−H(D1)) + p2(H(D1)−H(D2)).

(17)
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Moreover, for the same source under erasure distortion
the rate-distortion function is given by (16) by substituting
RCR

BE (Dj , pj) as defined in (15) for RCR
B (Dj , pj) for j = 1, 2

and by substituting R̃CR
HB,E(D1, D2)

�
= p1(1−D1)+p2(D1−

D2) for (17).

Characterization of the rate distortion function (16) re-

quires different considerations for the four subregions of

the (D1, D2) plane sketched in Fig. 3. In fact, for D1 ≥
1/2 and D2 ≥ 1/2, the required rate is zero, since the distor-

tion constraints are trivially met by setting X̂1 = X̂2 = 0 in

the achievable rate (9). For the case D1 ≥ 1/2 and D2 ≤ 1/2,

it is sufficient to cater only to Decoder 2 by setting X̂1 = 0
and X = X̂2 ⊕ Q2, with Q2 ∼ Ber(D2) independent of X ,

in the achievable rate (9). That this rate cannot be improved

upon is a consequence of the trivial converse

RCR
HB(D1, D2) ≥ max{RCR

B (D1, p1), R
CR
B (D2, p2)}, (18)

which follows by cut-set arguments. The same converse suf-

fices also for the regime D1 ≤ 1/2 and D2 ≥ min(D1, 1/2).
For this case, achievability follows by setting X = X̂2 ⊕Q2

and X̂1 = X̂2 in (9), where Q2 ∼ Ber(D2) is independent

of X . In the remaining case, namely D2 ≤ D1 ≤ 1/2, the

rate-distortion function does not follow from the point-to-point

result (14) as for the regimes discussed thus far. The analysis of

this case can be found in [4, Appendix D]. Similar arguments

apply also for the erasure distortion metric.
We now compare the rate-distortion function above with the

following related settings: (i) the Kaspi model [8], in which

the encoder knows the side information, and for which the

rate-distortion function RKaspi(D1, D2) for the example at

hand was calculated in [7]; and (ii) the HB setting with no

CR constraint, whose rate-distortion function RHB(D1, D2)
for the example at hand was derived in [6]. We clearly have

the inequalities

RKaspi(D1, D2) ≤ RHB(D1, D2) ≤ RCR
HB(D1, D2), (19)

where the first inequality in (19) accounts for the impact of

the availability of the side information at the encoder, while

the second reflects the potential performance loss due to the

CR constraint.

Fig. 4 shows the aforementioned rate-distortion functions

with p1 = 1 and p2 = 0.35, which corresponds to the case

where Decoder 1 has no side information, for two values of the

distortion D2 versus the distortion D1. For D2 ≥ p/2 = 0.175,

the given settings reduce to one in which the encoder needs to

communicate information only to Decoder 1. Since Decoder

1 has no side information, the Kaspi and HB settings yield

the same performance i.e., RKaspi(D1, D2) = RHB(D1, D2).
Moreover, if D1 is sufficiently smaller than D2, the operation

of the encoder is limited by the distortion requirements of

Decoder 1. In this case, Decoder 2 can in fact reconstruct

as X̂1 = X̂2 while still satisfying its distortion constraints.

Therefore, we obtain the same performance in all of the

three settings, i.e., RKaspi(D1, D2) = RHB(D1, D2) =
RCR

HB(D1, D2). We also note the general performance loss due

to the CR constraint, unless, as discussed above, distortion D1

is sufficiently smaller than D2.
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Figure 4. Rate-distortion functions RKaspi(D1, D2) [7], RHB(D1, D2)
[6] and RCR

HB(D1, D2) (16) for a binary source under erased side information
versus distortion D1 (p1 = 1, p2 = 0.35, D2 = 0.05 and D2 = 0.3).

III. HEEGARD-BERGER PROBLEM WITH COOPERATIVE

DECODERS AND COMMON RECONSTRUCTION

The system model for the HB problem with CR and decoder

cooperation is similar to the one provided in Sec. II-A with the

following differences. Here, in addition to encoding function

given in (2) which maps the source sequence Xn into a mes-

sage J1 of nR1 bits, there is an encoder at Decoder 1 given by

g1: [1, 2nR1 ]× Yn
1 → [1, 2nR2 ], which maps message J1 and

the source sequence Y n
1 into a message J2. Moreover, instead

of the decoding function given in (3), we have the decoding

function for Decoder 2, h2: [1, 2nR1 ]× [1, 2nR2 ]×Yn
2 → X̂n

2 ,
which maps the messages J1 and J2 and the side information

Y n
2 into the estimated sequence X̂n

2 .



A. Rate-Distortion Region for X − Y1 − Y2

In this section, a single-letter characterization of the rate-

distortion region is derived under the assumption that the joint

pmf p(x, y1, y2) is such that the Markov chain relationship

X − Y1 − Y2 holds.

Proposition 6. The rate-distortion region RCR(D1, D2) for
the HB source coding problem with CR and cooperative
decoders under the assumption that X − Y1 − Y2 forms a
Markov chain is given by the union of all rate pairs (R1, R2)
that satisfy the conditions

R1 ≥ I(X; X̂1X̂2|Y1) (20a)

and R1 +R2 ≥ I(X; X̂2|Y2) + I(X; X̂1|Y1, X̂2),(20b)

where the mutual information terms are evaluated with respect
to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y1)p(y2|y1)p(x̂1, x̂2|x), (21)

for some pmf p(x̂1, x̂2|x) such that the constraints (11) are
satisfied.

The proof of the converse can be found in [4]. As for

the achievability, it follows as a straightforward extension

of [3, Sec. III] to the setup at hand where Decoder 2 has

side information as well. It is worth emphasizing that the

reconstruction X̂2 for Decoder 2, which has degraded side

information, is conveyed by using both the direct link from

the Encoder, of rate R1, and the path Encoder-Decoder 1-

Decoder 2. The latter path leverages the better side information

at Decoder 1 and the cooperative link of rate R2.

Remark 7. If we remove the CR constraint, the problem of

determining the rate-distortion region for the setting of Fig. 1

under the Markov assumption X − Y1 − Y2 is still open [3].

B. Rate-Distortion Region for X − Y2 − Y1

In this section, a single-letter characterization of the rate-

distortion region is derived under the assumption that the joint

pmf p(x, y1, y2) is such that the Markov chain relationship

X − Y2 − Y1 holds.

Proposition 8. The rate-distortion region RCR(D1, D2) for
the HB source coding problem with CR and cooperative
decoders under the assumption the Markov chain relationship
X − Y2 − Y1 is given by the union of all rate pairs (R1, R2)
that satisfy the conditions

R1 ≥ I(X; X̂1|Y1) + I(X; X̂2|Y2, X̂1) (22a)

and R2 ≥ 0, (22b)

where the mutual information terms are evaluated with respect
to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y2)p(y1|y2)p(x̂1, x̂2|x), (23)

for some pmf p(x̂1, x̂2|x) such that the constraints (11) are
satisfied.

The proof of achievability follows immediately by neglect-

ing the link of rate R2 and using rate R1 as per the HB

scheme of Proposition 2. The converse follows by considering

an enhanced system in which Decoder 2 is provided with the

side information of Decoder 1. In this system, link R2 becomes

useless since Decoder 2 possesses all the information available

at Decoder 1. It follows that the system reduces to the HB

problem with degraded sources studied in the previous section

and the bound (22a) follows immediately from Proposition 2.

Remark 9. In the case without CR, the rate-distortion function

is given similarly to (22), but with the HB rate-distortion

function (12) in lieu of the rate-distortion function of the HB

problem with CR in (22a).

IV. CONCLUDING REMARKS

The Common Reconstruction requirement [2], substantially

modifies the problem of source coding in the presence of side

information at the decoders. A general subject of theoretical

interest is identifying those models for which the CR require-

ments enables a solution of problems that have otherwise

resisted solutions for some time. For instance, reference [4]

extends the result of this paper to cascade models in the sense

of [9]. Other examples that are worth investigating include

the Heegard-Berger and cascade source coding problems with

no assumptions on side information degradedness and the

one-helper lossy source coding problem. Applications of the

generalized CR constraint of [10] are also of interest (see [4]).
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