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ABSTRACT

Utility (e.g., sum-rate) maximization for multiantenna broadcast and

interference channels (with one antenna at the receivers) is known to

be in general a non-convex problem, if one limits the scope to linear

(beamforming) strategies at transmitter and receivers. In this paper,

it is shown that, under some standard assumptions, most notably that

the utility function is decreasing with the interference levels at the

receivers, a global optimal solution can be found with reduced com-

plexity via a suitably designed branch-and-bound method. Although

infeasible for real-time implementation, this procedure enables a

non-heuristic and systematic assessment of suboptimal techniques.

In addition to the global optimal scheme, a real-time suboptimal al-

gorithm, which generalizes the well-known distributed pricing tech-

niques, is also proposed. Finally, numerical results are provided that

compare global optimal solutions with suboptimal (pricing) tech-

niques for sum-rate maximization problems, affording insight into

issues such as the robustness against bad initializations in real-time

suboptimal strategies.

Index Terms— Nonconvex optimization, branch-and-bound,

interference channel, multiple-input single-output channel

1. INTRODUCTION

Precoding and power control are well studied strategies that sup-

port high spectral efficiency in wireless network with multiple an-

tenna transceivers, when channel state information (CSI) is available

at the transmitters. Several system-wide objective functions have

been considered in the literature for precoding and power control

optimization of broadcast channels (BCs) and interference channels

(ICs). Some of these problems are convex, for example power min-

imization [1] or SINR balancing for the multiple-input single-output

(MISO) BC [2], and thus solvable with standard techniques in reas-

onable (polynomial) time. However, in general, the problems at hand

are non-convex. Unlike convex problems, non-convex problems typ-

ically do not afford efficient (i.e., polynomial-time) algorithms that

are able to achieve global optimality [9]. For example, it is known

that the weighted sum-rate maximization (WSRM) in parallel IC

channels, where interference from other users is treated as noise (a

non-convex problem) is NP-hard [3] (this result extends also to BC

as a special case).

In this paper, we address the global minimization of a system-

wide, in general non-convex, cost function with respect to the trans-
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mit covariance matrices {Qk}. Among global techniques, branch-
and-bound (BB) algorithms are methods to solve general non-convex

problems [5], producing an ε-suboptimal feasible point. BB meth-

ods have been already introduced to solve non-convex power control

problems, although so far only multi-user single-input single-output

systems have been addressed in [6] and references therein.

In this paper, we propose a novel BB framework for global

optimization of a problem formulation that includes, for instance,

MISO BC and IC WSRM with general convex power constraint.

The proposed BB approach is based on the observation that a fairly

general set of cost functions that arise in communication’s problems,

albeit non-convex, possess a Partly Convex-Monotone [7] structure.

This structure is satisfied whenever one can identify a suitable set

of interference functions fi ({Qk}), for which the following hold:
(i) The cost function is convex in the transmit covariance matrices

{Qk} once the interference functions fi ({Qk}) are fixed; (ii) The
cost function is monotone in the interference functions fi ({Qk}).
We design the BB scheme to exploit the Partly Convex-Monotone

structure of the problem. Branching is performed in a reduced

space (of the size of the set of all feasible interference level vectors

fi ({Qk})), instead of the original feasible space (of the size of the
set of all feasible covariance matrices {Qk}). Bounding is efficiently
carried out by solving only convex optimization problems.

In addition to the reduced-space BB method, we propose a sub-

optimal algorithm that attains quasi-optimal performance with poly-

nomial complexity. This algorithm reduces to the distributed pricing

scheme of [4], when applied to sum-rate maximization problems.

Numerical results are provided to compare the global optimal solu-

tion based on BB, the suboptimal (pricing) technique and the non-

linear dirty-paper coding scheme.

Notation: The Boldface is used to denote matrices (uppercase)

and vectors (lowercase); (·)T and (·)H denote the transpose and the

Hermitian transpose, respectively; Tr (·) denotes the trace of a mat-
rix; E [·] denotes the expectation operator. Moreover, given a vector
x we address its l-th component as [x]l, and the vector inequality
x � y means that [x]l ≤ [y]l ∀l. Finally, unless otherwise spe-

cified, we address the set of covariance matrices {Qk}
K

k=1 as {Qk}.

2. SYSTEM MODEL

We model a multi-user communication system consisting of K

transmitter-receiver pairs (or users). The k-th user has Nk transmit

antennas and one receive antenna (MISO system). The signal at the



k-th receiver is given by

yk = hkkxk︸ ︷︷ ︸
signal

+
∑

j �=k
hjkxj

︸ ︷︷ ︸
interference

+ wk (1)

where xk ∈ C
Nk×1 is the k-th transmitter’s signal, hkj ∈ C

1×Nk

accounts for the channel response of the MISO link between the

k-th transmitter and the j-th receiver, and wk ∈ C
1×1 mod-

els the additive white Gaussian noise (AWGN) at k-th receiver:

wk ∼ CN (0, σ2k). Assuming capacity-achieving Gaussian code-
books, we define the correlation matrix of the k-th transmitted signal

asQk = E
[
xkx

H
k

]
. While model (1) accounts for an IC, a BC can

be obtained as a special case by setting hjk = hk ∀j, k.

2.1. Problem Formulation

Due to multi-user interference, the system performance depends on

the transmission strategy of every user, i.e., on the set of covariance

matrices {Qk}. We consider the minimization with respect to {Qk}
of a system-wide cost function f (to be defined below) under a gen-

eral convex set constraintsQ:

min
{Qk}∈Q

f ({Qk} , fi ({Qk})) (2)

By defining a set of L auxiliary variables i, problem (2) can be recast

in the equivalent form

(P) min
{Qk}∈Q,i

f ({Qk} , i) (3)

s.t. i = f i ({Qk})

The equivalence means that if {Q∗
k} is a solution to (2), then

({Q∗
k} , fi ({Q

∗
k})) is a solution to (3). Conversely, if ({Q

∗
k} , i

∗)
is a solution to (3), then {Q∗

k} is a solution to (2).
We further make the following assumptions:

A1 The L interference levels are given by the real vector function

fi ({Qk}), affine with respect to {Qk}, that is bounded in
the L-dimensional rectangle

[
imin, imax

]
⊂ R

L (i.e., the l-

th component satisfies iminl ≤ [fi ({Qk})]l ≤ imaxl for l =
1, . . . , L). For instance, we typically have L = K and the

interference level at the k-th receiver reads [fi ({Qk})]k =∑K

j=1,j �=k hjkQjh
H
jk;

A2 The cost function f ({Qk} , i) is a real scalar function that is:
continuous in ({Qk} , i); monotonic increasing1 with respect

to i ∈
[
imin, imax

]
for fixed {Qk} ∈ Q; convex with respect

to {Qk} for fixed i ∈
[
imin, imax

]
;

A3 The set Q is closed and convex. For example, Q may

be the set of positive semidefinite covariance matrices

{Qk � 0} satisfying the generalized power constraints∑K

k=1Tr (Ak,ℓQk) ≤ Pℓ for ℓ = 1, . . . ,D, where {Ak,ℓ}
are positive semidefinite matrices (possibly Ak,ℓ = 0 if

k-th user doesn’t belong to ℓ-th constraint) and {Pℓ} are
non-negative coefficients. This definition includes some

important special cases studied in the literature, such as per-

antenna, per-group of antennas, the classical sum-power or

the interference constraints in cognitive radio scenarios.

Throughout the paper, we refer to problem (3) as (P). We next
provide examples of problems that satisfy these assumptions.

1By suitably modifying the same arguments, the proposed framework can
handle an analogous but more general case where f

(
{Qk} , i

+, i−
)
results

monotone increasing in i+ and monotone decreasing in i−.

2.2. Examples

An example of cost function included in our framework is the α-

fairness criterion [8]: f ({Qk}) =
∑K

k=1−wkfα (rk ({Qk})),
where wk is a positive constant, fα is an increasing strictly concave

function defined as

fα (r) : =

{
log r if α = 1

(1− α)−1 r1−α otherwise
, (4)

and rk ({Qk}) is the k-th user’s rate, which depends on covariance
matrices {Qk} and on the channel scenario. Theα-fairness criterion

reduces, as special cases, to the WSRM problem (α = 0) or the
proportional fairness problem (α = 1). Moreover, as α becomes
large, it converges to the max–min fairness problem [8].

In the following we present some examples of channel scenario that

can be addressed within our framework:

• Parallel MISO IC: The k-th transmitter operates over LC par-

allel subcarriers, it has power constraint Pk and has know-

ledge of channels {hjkl} for j = 1, . . . ,K and ∀l.
The minimization of the (p, α)-fairness cost function reads

min
{rk},{Qkl�0}

K∑

k=1

−wkfα (rk) (5)

s.t.




rk ≤

LC∑
l=1

log

(
1+

hkklQklh
H
kkl

σ2
kl
+
∑

K

j=1,j �=k
hjklQjlh

H
jkl

)
∀k

Tr
(∑LC

l=1Qkl

)
≤ Pk ∀k

Defining [fi ({Qkl})]l+LC(k−1) =
∑K

j=1,j �=k hjklQjlh
H
jkl

∀k, l andQ =
{
Qkl � 0 ∀k, l | Tr

(∑LC
l=1Qkl

)
≤ Pk ∀k

}
,

problem (5) is recast into (P). Also, fi ({Qkl}) ∈ [0, i
max]

where imax is a proper upper bound on interference, always

available sinceQ is bounded (finite power constraints).

• Parallel MISO BC: This scenario is obtained from (5) by set-

ting hjkl = hkl ∀j and imposing a sum-power constraint

Tr
(∑K

k=1

∑LC
l=1Qkl

)
≤ Ptot.

3. PROBLEM SOLUTION VIA BRANCH-AND-BOUND

In this section we show that, adopting standard BB techniques (see

[5] and [7]), problem (P) can be optimally solved by means of
an efficient BB that exploits the structure dictated by assumptions

(A1-A3). The BB algorithm is fully characterized by two proced-

ures: branching and bounding. These are iteratively performed until

the solution’s suboptimality falls below some prescribed accuracy

ε. In the following we explicitly tailor those procedures to prob-

lem (P) and we show convergence of the proposed BB algorithm to
the global optimal solution of (P). For readability’s sake, we define
Q : = {Qk}

2 and we address an interval asM : = [a,b], meaning
that c ∈ M⇔ [a]l ≤ [c]l ≤ [b]l for l = 1, . . . , L.

3.1. Branching Procedure

A partition set Pt of rectangles {M} in the space RL, each labeled
with a lower LB (M) and upper UB (M) bounds, is given. By
splitting a rectangle that satisfiesMt ∈ argminM∈Pt LB (M) in

J non-overlapping sub-rectangles
{
M̂t

}
(i.e.,

⋂J

j=1 M̂
(j)
t = ∅ and

2Here and in the following, the expressionQ ∈ Q stands for {Qk} ∈ Q.



⋃J

j=1 M̂
(j)
t = Mt), the enhanced partition Pt+1 � {Pt\Mt} ∪{

M̂t

}
is obtained. Lower and upper bounds for each sub-rectangle

in
{
M̂t

}
are then obtained via the following bounding procedure.

3.2. Bounding Procedure

Exploiting the Partly Convex-Monotone structure of problem (P),
for every rectangle M =

[
imin, imax

]
∈ Pt, a lower bound

LB (M) is evaluated by solving the following problem:

LB (M) : = min
Q∈Q

f
(
Q, i

min
)

(6)

s.t. i
min � fi (Q) � i

max
.

Thanks to assumptions (A1-A3) two fundamental results can be veri-

fied: (i) problem (6) is convex since the cost function f (Q, i) is con-
vex for a fixed i and the constraints form a convex set, (ii) using

standard convex optimization arguments, it can be shown that this

bounding procedure satisfies the natural condition:

M′ ⊂M⇒ LB
(
M′

)
≥ LB (M) . (7)

Moreover, denoting withQ(LB ) the optimal solution of problem (6),

a valid upper bound UB (M) is obtained by evaluating the function

atQ(LB ), i.e., UB (M) : = f
(
Q(LB ), fi

(
Q(LB )

))
.

Finally, the algorithm checks if the prescribed accuracy is met (i.e.,

if minUB (M) −minLB (M) ≤ ε) otherwise it goes back to the
branching procedure.

3.3. Convergence Analysis

Here we proves convergence of the proposed BB algorithm.

Lemma 1 The proposed BB algorithm (which is performed in the

reduced space spanned by interference levels/variable i), is conver-

gent to a global optimal solution of problem (P).

Proof. As explained above, since the chosen bounding procedure

satisfyies (7), the BB algorithm generates a sequences of partition

sets {Mt} collapsing to a point
⋂
t→∞Mt = i∗ (recall thatMt

is the rectangle selected for splitting at the t-th branching iteration).

In order to prove convergence we need to show that, as the size of

rectangleMt gets smaller, UB (Mt)−LB (Mt) is also sufficiently
small. The proof follows standard arguments [5]. This is shown in

Appendix.

3.4. Broadcast WSRM Example

Considering the BCWSRM scenario (see Sec.2.2), for a given inter-

valM =
[
imin, imax

]
, the evaluation of a lower bound LB results

in the following convex problem

LB (M) : = min
{Qk�0}

K∑

k=1

−wk log

(
1+
hkQkh

H
k

σ2k+i
min
k

)
(8)

s.t.




Tr
(∑K

k=1Qk

)
≤ Ptot

imink ≤ hk
(∑

j �=kQj

)
hHk ≤ i

max
k ∀k

.

Defining {Q∗
k} the optimal solution of (8), a valid upper bound is

given by UB (M) : =
∑K

k=1−wk log
(
1+

hkQ
∗
kh

H
k

σ2
k
+ik

)
where ik =

hk

(∑
j �=kQ

∗
j

)
hHk ∀k.

4. SUBOPTIMAL SOLUTION

While the proposed BB algorithm always converges to the global op-

timal solution and has reduced complexity with respect to a general-

purpose implementation of BB, it is still feasible only for offline

simulation. In this section we propose a suboptimal algorithm with

polynomial complexity that extends the distributed pricing schemes

of [4] to the more general class of problem (P).
Exploiting the Partly Convex-Monotone structure, problem (3) can

be equivalently reformulated as the non-convex problem:

min
i∈M0

sup
λ

[
min
Q∈Q

[
f (Q, i) + λT fi (Q)

]
− λT i

]
. (9)

where λ is the Lagrange multiplier associated to the affine constraint

i = fi (Q). Building on (9), in the following table we formalize the
proposed suboptimal algorithm.

Algorithm 1 - Suboptimally solve problem (P)

0: Set ελ, εi

1: Initialize λ =λ̂
2: Initialize i =̂i

3: EvaluateQ∗ = arg min
Q∈Q

f
(
Q, î

)
+ λ̂

T
fi (Q)

4: If

∥∥∥̂i− fi (Q∗)
∥∥∥ > εi

5: Update î = fi (Q
∗)

6: Go back to step 3

7: elseIf

∥∥∥∥λ̂−
∂f(Q,i)

∂i

∣∣∣
Q=Q∗,i=î

∥∥∥∥ > ελ

8: Update λ̂ = ∂f(Q,i)
∂i

∣∣∣
Q=Q∗,i=î

9: Go back to step 2

10: end

Since a stationary point of this algorithm fulfills the necessary

Karush-Kuhn-Tucker (KKT) conditions of problem (3), if the al-

gorithm converges, it attains a local optimal point of problem (3).

It is worth noticing that, by specializing our framework to the case

when the cost function f (Q, i) is the WSRM (i.e., fα (rk) = rk
∀k in (5)) the Lagrangian multiplier λ plays the role of the inter-

ference prices defined in the distributed pricing algorithm [4]. Thus

Algorithm 1 can be seen as a generalization of distributed pricing

technique with an arbitrarily cost function and arbitrary interference

functions (satisfying assumptions A1-A3).

Finally, since the problem at hand is non-convex, initialization of

the parameters λ and i results crucial for performances and con-

vergence. In Sec.5 we assess the performances of this technique in

relation to the global optimal solution evaluated via BB algorithm.

5. NUMERICAL RESULTS

We assess the performance of the two proposed techniques: a multi-

user linear precoder optimized via (i) the efficient BB algorithm (BB

- LB and UB); (ii) the suboptimal Algorithm 1.

We consider the sum-rate utility function (i.e., in (5), fα (rk) = rk
∀k and wk = 1 ∀k). In BB algorithm, the solution’s accuracy is
ε = 10−3, while, in Algorithm 1, we run two different price initial-
izations (λk = 10−5 ∀k and λk = 1 ∀k) and for both we initialize
ik = σ

2
k ∀k, selecting σ

2
k = 1 at each receive antenna.

Fig.1 shows the sum-rate versus the transmitting power for a single-
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Fig. 1. Sum-Rate versus transmitting power for the single-carrier

(LC = 1) BC scenario. The figure compares the two proposed lin-
ear precoding algorithms: the optimal BB algorithm (BB - LB and

UB) and the suboptimal Algorithm 1 considering two different ini-

tializations (λk = 10
−5 ∀k and λk = 1 ∀k). The optimal non-linear

DPC technique is also plotted as a reference.

carrier (LC = 1) BC channel3 where a N = 4 transmit anten-
nas base-station serves K = 4 single-antennas users, subject to a

sum-power constraint, Tr
(∑K

k=1Qk

)
≤ Ptot. The sum-capacity

achieving non-linear technique Dirty Paper Coding (DPC) is also

plotted as a reference.

It can be noticed that the suboptimal Algorithm 1, while showing

near-optimal performance at several power levels, happens to be

quite sensitive to initialization. For instance, initialization λk =
10−5 ∀k yields a suboptimal slope in high power regime, as ob-
served for Ptot|dB > 31, and, at Ptot|dB = 25dB both initializ-

ations lead to highly suboptimal performances. A last observation

pertains to the significant gains of non-linear DPC with respect to

linear precoding at high power regime.

Finally, not to confuse the reader, since a utility function (sum-rate)

instead of a cost function is plotted, in fig.1, the lower bound results

as the maximum feasible value while the upper bound is the max-

imum upper bound among BB partitions.

6. CONCLUSIONS

This work presents a global optimization framework for the minim-

ization of non-convex cost functions in MISO BC and IC channels.

Examples are given for the general α-fairness optimization consider-

ing parallel IC and BC channels. Knowing the global optimal solu-

tion, even if impractical for real-time implementation, allows to as-

sess the quality and to fine-tune (e.g., initialize) suboptimal schemes.

In addition to the global optimal BB, we have proposed a real-time,

hence suboptimal, algorithm that generalizes the pricing scheme of

[4]. Extensions to MIMO networks are the subject of future work.

3Due to space limitation, Fig.1 channels realization is available at:
http://web.njit.edu/~mr227/papers/paper_BB_H_BC.mat

7. APPENDIX

We need to prove that, as the maximum length of the edges ofMt,

denoted by size(Mt), goes to zero, the difference between upper
and lower bounds uniformly converges to zero, i.e., ∀ε > 0 ∃δ >
0 ∀Mt ⊆M0 size(Mt) ≤ δ =⇒ UB (Mt)− LB (Mt) ≤ ε.

For each î ∈ Mt =
[
imin, imax

]
, we define the function F

(
î
)
as

the result of the following constraint optimization problem:

min
Q∈Q

f
(
Q, î

)

s.t. i
min � fi (Q) � i

max
.

Using this notation, the lower bound in (6) is given by LB =
F
(
imin

)
, while an upper bound is given by UB = F (imax).

From jointly-continuity of the function f
(
Q, î

)
with respect to

(
Q, î

)
(assumption A2) and from the definition of F

(
î
)
, we have

that F
(
î
)
is continuous in the norm of î (i.e.,

∥∥∥̂i
∥∥∥). It follows that

also LB and UB will result continue in

∥∥∥̂i
∥∥∥, thus it holds

∀ε ∃δ
∥∥∥imax − imin

∥∥∥ ≤ δ =⇒
∣∣∣F (imax)− F

(
i
min
)∣∣∣ ≤ ε

concluding the proof.
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