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Abstract—A network with two sensors communicating a re-
mote measurement to a common access point (AP) is investigated.
The sensors are connected via out-of-band and finite-capacity
communication links, e.g., thanks to an orthogonal radio inter-
face, thus enabling partial cooperation. Focusing on a Gaussian
model for source and observation noise and a quadratic (MSE)
distortion metric, both the source coding problem (corresponding
to error-free and orthogonal links to the AP), also known
as the "CEO problem", and the joint source-channel coding
problem over a Gaussian multiple access channel to the AP are
considered. In the first case, an achievable rate-distortion trade-
off is derived that generalizes known results for the CEO problem
in the absence of cooperation between the sensors. For the latter
case, achievable distortions are derived with separate or joint
source-channel coding. Optimality of the proposed schemes is
established asymptotically with the capacity of the inter-sensor
links. Moreover, it is concluded that, for both scenarios, even
modest values of such capacity enable the optimal performance
with full cooperation to be approached.

I. INTRODUCTION

The problem of communicating a given noisy measurement
from a set of sensors to an access point (AP) for data fusion
(estimation) has received considerable attention in the past few
years. From an information-theoretic standpoint, the scenario
falls in the category of remote and distributed source coding
problems if the channels to the AP are orthogonal (see, e.g.,
[1] [2] [3]) and of joint source-channel coding problems
in case the channel to the AP is a general multiple access
channel (MAC) (see, e.g., [4] [5]). For the first case, sometimes
referred to as the "CEO problem", focusing on Gaussian
source and observation noises, reference [2] derived the rate-
distortion region with any number of sensors, extending the
earlier results in [1] where the sum-rate was derived for a
symmetric scenario with homogeneous measurements. More-
over, a source-channel coding separation result was obtained
in [3] that applies to sensor-AP channels that are noisy but
orthogonal to each other (and not limited to be Gaussian). For
the second (joint source-channel coding) case, references [4]
[5] conclude that, when the bandwidth of source and channel
are the same, uncoded (analog) transmission of a Gaussian
source over a Gaussian MAC (GMAC) is exactly optimal.

In this work, we extend previous art in both scenarios
mentioned above by enabling cooperation between the two
active sensors via inter-sensor finite-capacity noiseless links
that are orthogonal to the sensors-AP channels (out-of-band),
as illustrated in Fig. 1. This assumption reasonably models
the presence of a secondary radio interface (e.g., Bluetooth)
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1U

2U

CC

1W

2W

sensor 1

S

sensor 2

source Ŝ

Fig. 1. Homogeneous sensor network with two active sensors cooperating
via out-of-band finite-capacity links and (a) orthogonal links to the access
point (AP) (CEO problem); (b) Gaussian multiple access channel (GMAC) to
the AP.

that the sensor can employ to communicate between them.
The analysis of cooperative techniques as enabled by finite-
capacity out-of-band links was initiated by [6] and then
extended in a number of works, see, e.g., [7] [8] in the context
of channel coding. Distributed source coding with direct [11]
[12] and remote [13] observations, and universal coding [14]
has also been considered. In particular, [13] derives a lower
bound on the rate-distortion function for the model in Fig.
1-(a) (CEO problem). Related works in the context of joint
source-channel coding where the cooperative links are in-band
(that is, in the same signal space as the sensors-AP channels)
are [16] [17].

Focusing on a symmetric (homogenous) network as in Fig.
1, where the inter-sensor links have capacity C (bit/ source
symbol), the main contributions of this paper are: (i) for
the CEO problem of Fig. 1-(a), an achievable rate-distortion
function is derived that reduces to the result in [1] for inter-
sensor capacity C = 0 and is asymptotically optimal (that
is, it achieves the performance with full cooperation for
C → ∞); (ii) for joint source-channel coding over a GMAC
as in Fig. 1-(b), an asymptotically optimal scheme based on



separate source and channel coding is proposed, along with an
"uncoded transmission" strategy, which is also asymptotically
optimal but only in the case of equal source and channel
bandwidths. For both scenarios, simulation results reveal that
optimality is in practice attained with small values of C.
Due to space limitations, proofs are only sketched and a full
treatment can be found in [19].
Notation: Vectors are denoted by bold-face characters, while

the corresponding ordinary font represents the entries, as in
v = [v(1) · · · v(N)] (the size N of the vector will be clear
from the context). Moreover, throughout the paper, all the
logarithms are in base 2.

II. SYSTEM MODEL

We consider a sensor network where at any given obser-
vation period two sensors communicate their measurements
of a phenomenon, described by the discrete-time sequence
S = [S(1) · · ·S(k)], to an AP (see Fig. 1). The "source"
sequence S is modelled as a real white Gaussian process with
S(t) ∼ N (0, σ2S), t = 1, ..., k. The two sensors are such that
their measurements of S are of the same quality:

Ui(t) = S(t) +Wi(t), (1)

with i = 1, 2, and Wi(t) being white Gaussian noise with
Wi(t) ∼ N (0, σ2W ). We also assume that the number k
of observed samples is large enough to allow the use of
information-theoretic results. The sensors have the ability to
both communicate between each other and to the AP. The
overall goal of the sensors is to design transmission strategies
that enable the AP to recover a "good" estimate of S, say
Ŝ, based on the signal received from the sensors. The quality
of the reconstruction Ŝ is measured by a quadratic (or mean
square error, MSE) distortion: D = 1

k

Xk

t=1

¯̄̄
S(t)− Ŝ(t)

¯̄̄2
.

The sensors can communicate with each other over direc-
tional finite-capacity links of capacity C bit/ source symbol.
In other words, the total number of bits that can be exchanged
in each direction for observation block is kC. These links
are orthogonal to each other and to the channels towards the
AP. Moreover, the sensors are connected to the AP according
to either one of two commonly considered models, namely
noiseless and orthogonal links (Fig. 1-(a), see Sec. III) or
GMAC (Fig. 1-(b), see Sec. IV).

III. COOPERATIVE CEO PROBLEM: NOISELESS AND
ORTHOGONAL LINKS

In this section, we address the scenario where noiseless
and orthogonal links exist between the sensors and the AP
(CEO problem). We are interested in characterizing the trade-
off between the available rate (bit/ source symbol) on the
orthogonal links to the AP, say R0, and the corresponding
distortion D of the reconstruction Ŝ, for a given inter-sensor
capacity C. It is noted that, by symmetry, the two links to
the AP are assumed to have equal rate R0, and the results are
given in terms of the sum-rate R = 2R0. Using conventional
definitions, we will say that a given sum-rate R is achievable
with distortion D, given inter-sensor capacity C, if there

exists a transmission scheme, comprising inter-sensor and
sensors-AP communications1, which allows the source S to
be reconstructed with distortion smaller or equal to D.

A. Reference Results
Here we establish reference results corresponding to the

rate-distortion trade-off in the absence of cooperation (C = 0)
or full cooperation (C → ∞). These results clearly set,
respectively, an upper and a lower bound on the smallest
achievable sum-rate R for a given distortion D in the presence
of finite-capacity links between the sensors (0 < C <∞).
Proposition 1 [1]. The rate-distortion function with no

cooperation (NC) is given by

RNC(D) =
1

2
log+

µ
σ2S(µ

2σ2W + 1)2
µ
1

σ2S
+

2µ2

µ2σ2W + 1

¶¶
(2)

for µ such that 1
D = 1

σ2S
+ 2

σ2W+ 1
µ2
. Moreover, in the presence

of full cooperation (FC) (C →∞), the rate-distortion function
is:

RFC(D) =
1

2
log+

µ
σ2S −D0

D −D0

¶
(3)

with
D0 =

1
1
σ2S
+ 2

σ2W

. (4)

Remark 1: The rate-distortion RFC(D) with FC is easily
obtained by considering that, in the presence of FC, the two
sensors share both measurements U1 and U2, and thus can be
considered as a single transmitter. It follows that the model can
be studied as a point-to-point system with remote observations,
for which the rate-distortion function is well known. We also
notice that D0 in (4) is the distortion that could be achieved if
the AP had direct access to the two sequences of measurements
U1 and U2, that is D0 = E[(S−E[S|U1U2])2], and is thus a
lower bound on the achievable distortion for any transmission
strategy, including cooperation: D > Do.

B. Achievable Rate-Distortion Function With Partially Coop-
erating Sensors

The following proposition defines an achievable rate for the
scenario at hand of partially cooperating sensors.
Proposition 2. Let us define the parameter

σ2Q(C) =
σ2W

22C − 1
µ
2 + σ2W/σ2S
1 + σ2W/σ2S

¶
. (5)

The following sum-rate is achievable with distortion D and
inter-sensor capacity C

RC(D,C) =
1

2
log+

µ
σ2S
¡
µ2K2 + 1¢2µ 1

σ2S
+

2µ2

µ2K2 + 1

− µ4P(P + 2σ2S)
σ2S (µ

2K2 + 1)2
!!

, (6)

1We use standard definitions for available transmission strategies, see, e.g.,
[6] for a rigorous statement.



with definitions

K2(C) =
(1 + a2)

(1 + a)2
σ2W +

a2

(1 + a)2
σ2Q(C) (7a)

P =
2aσ2W
(1 + a)2

(7b)

for any a and µ that satisfy
1

D
=

1

σ2S
+

2

σ2W + 1
µ2 +

a2

(1+a)2σ
2
Q(C)

. (8)

Remark 2: The achievable rate (6) is easily shown to reduce
to the upper bound (2) for C → 0 (by setting a = 0 in (6))
and to the lower bound (3) for C →∞.
Remark 3: A lower bound on the achievable rate (6) was

calculated in [13] for a more general observation model (1)
with unequal noise powers. As discussed in [19], this bound
is quite loose for the scenario at hand here.
Sketch of proof of Proposition 2: As detailed in the full proof

in [19], the achievable rate (6) is obtained with the following
transmission scheme. Each jth sensor (j = 1, 2) compresses
the local measurement Uj via a Gaussian quantization code-
book using C bit/ source symbol. The quantized codeword
Ûj is then sent by the jth sensor to the other sensor (say the
ith) via the corresponding finite-capacity link using Wyner-
Ziv compression. This compression exploits the fact that the
ith sensor has side information about Uj , having available the
correlated sequence Ui [18]. Based on the local measurement
Ui and the signal received from the other sensor Ûj , the ith
sensor reconstructs a local estimate U0

i = Ui + aÛj , where
a is a parameter. The local estimates U0

i, i = 1, 2, are then
compressed at the two sensors using the Berger-Tung coding
scheme, which essentially amounts to vector quantization
followed by random binning (see [1] and [19]). The AP finally
reconstruct an estimate Ŝ via a Minimum MSE (MMSE)
estimate based on the signals received from the sensors. As
a final remark, it is noted that the sensors could in principle
exchange multiple messages over the inter-sensor links in an
interactive fashion. However, with Gaussian measurements,
it is known that there are no further rate gains that can be
achieved in compressing any sequence Uj by exploiting some
information at the encoder about the correlated sequence Ui

available at the decoder: in the Gaussian case, compression
with and without side information at the transmitter have the
same efficiency [18] [10].
Remark 4: The sketch of the proof above suggests

that choosing parameter a such that the local estimate
U0
i is a (scaled) MMSE estimate of S, that is aM =¡
1 + σ2Q(C)/σ

2
W

¢−1 could be a good design choice for min-
imizing RC(D,C) (6) (Notice that, once a is fixed, µ needs
to be selected so as to satisfy (8)). However, the optimality of
a = aM is not a priori obvious, since a MMSE estimate U0

i

would improve the local SNR but not necessarily the overall
compression efficiency, due to the correlation of the equivalent
observation noises in the local estimatesU0

1 andU0
2. It is clear

that a = aM is the optimal choice for C → ∞ since in this
case, by symmetry, a = 1 is optimal. In [19] it is shown via
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Fig. 2. Achievable rate RC(D,C) (6) with optimal a, along with the upper
bound (no cooperation) RNC(D) (2) and the lower bound (full cooperation)
RFC(D) (3), versus C for D̃ = 0.1, 0.01 and 0.001, σ2S/σ

2
W = 5dB.

numerical simulations that, in practice, a = aM is optimal for
inter-sensor capacity C large enough.

C. Numerical Results
Here we provide some insight into the properties of the

achievable rate RC(D,C) (6), as compared to the upper
bound (no cooperation) RNC(D) (2) and the lower bound (full
cooperation) RFC(D) (3). It is convenient to measure the dis-
tortion D as the excess distortion with respect to the minimum
distortion Do (4), (D −Do), normalized over the maximum
excess distortion (σ2S −Do), as D̃ = (D −Do)/(σ2S −Do).
Fig. 2 shows the achievable rates with optimal a evaluated
numerically for RC(D,C) (6). It can be seen that, as predicted
by the analysis, as the capacity C increases, the achievable
rate RC(D,C) decreases from the upper (RNC(D)) to the
lower (RFC(D)) bound. It is interesting to notice that even
a relatively small capacity is enough for the achievable rate
to approach the performance of full cooperation RFC(D) (3).
Moreover, smaller distortion values call for larger capacities
C: for instance, for normalized distortion D̃ = 0.01, C ' 5 is
enough, while reducing the normalized distortion by an order
of magnitude (D̃ = 0.001) requires C ' 7.

IV. COOPERATIVE SOURCE-CHANNEL CODING

In this section, we turn to the investigation of the system
in Fig. 1-(b), where communications between sensors and AP
occur over a GMAC. Accordingly, the signal received at the
AP for each channel symbol is Y (s) = X1(s)+X2(s)+N(s),
with s = 1, ..., n, where Xi(s) are the channel symbols trans-
mitted by the ith sensor and N(s) is additive white Gaussian
noise with N(s) ∼ N (0, σ2N). The average power constraint
for each sensor is given by Ptot/2 as E[X2

i ] ≤ Ptot/2, so that
the total power available (per channel symbol) is Ptot. Finally,
we define the ratio between the number of channel and source
samples per observation block as b = n/k, which can be



also interpreted as the bandwidth ratio (between channel and
source bandwidths). We are interested in obtaining achievable
distortions D given a channel SNR Ptot/σ2N and an inter-
sensor capacity C (measured, as in the previous section, in
bit/ source symbol).

A. Lower Bound on the Achievable Distortion
We first set a lower bound on the achievable distortion D

following [5].
Proposition 3 [5]. A lower bound on the achievable distor-

tion for the system in Fig. 1-(b) is given by:

DFC(Ptot) = Do +
σ2S −Do³
2Ptot
σ2N

+ 1
´b . (9)

Remark 5: As detailed in [5], this bound follows im-
mediately by cut-set arguments, that is, by assuming full
cooperation (FC) between the two sensors. In fact, with FC,
the system can be studied as a point-to-point link and thus the
source-channel coding separation theorem applies. Distortion
(9) is then achieved by setting RFC(D) = b·rFC(Ptot), where

rFC(Ptot) =
1

2
log

µ
1 +

2Ptot
σ2N

¶
(10)

is the sum-capacity on the GMAC with FC (measured in bit/
channel symbol). It is also noted that bound (9) holds also in
the presence of feedback from the AP since feedback does not
improve capacity of point-to-point links [5].

B. Separate Source-Channel Coding
Here we consider a transmission strategy based on a sep-

aration approach, whereby compression (source coding) and
channel coding are performed separately. It is recalled that
the source-channel coding separation theorem, unlike point-
to-point models, does not hold in general multiuser scenarios,
so that a separation-based approach is generally suboptimal.
We allow the inter-sensor capacity C to be used for a fraction
of time γ to facilitate source coding and for the remaining
fraction 1− γ to enable cooperative channel coding.
Proposition 4. The distortion DSCC(Ptot, C) achievable

with separate cooperative source and channel coding (SCC)
is obtained by solving the following equation for a given
0 < γ < 1:

RC(DSCC , γC) = rCC(Ptot, (1− γ)C), (11)

with

rCC(Ptot, C) =

(
1
2 log

³³
1 + Ptot

σ2N

´
2

1+2−2C/b

´
0 ≤ C < Co

rFC(Ptot) C ≥ Co

(12)
and Co =

b
2rFC(Ptot), where RC(D,C) in (6) is evaluated

for a given value of parameter a.
Proof : The transmission scheme is based on separate

source-channel coding, where source coding is performed as
discussed in Sec. III and cooperative channel coding takes
place following the approach of [6]. See [19] for full proof.

Remark 6: For C → ∞ and any 0 < γ < 1, the SCC
scheme is optimal, that is, DSCC(Ptot, C) tends to the lower
bound (9): DSCC(Ptot, C) → DFC(Ptot). In fact, in this
case, we have RC(D,C) → RFC(D) (see Sec. III) and
rCC(Ptot, C) → rFC(Ptot). In essence, in such scenario,
the two sensors can be considered as a single transmitter
with measurements U1 and U2 and power constraint 2Ptot,
and thus, applying source-channel coding separation theorem,
distortion (9) is achievable (see Remark 5).

C. Joint Source-Channel Coding: Uncoded Transmission

We now turn to a simple joint source-channel coding
approach, which generalizes the uncoded transmission strategy
that has been shown in [5] to be exactly optimal for the non-
cooperative case (C = 0) and b = 1. The latter condition
will be assumed throughout this section, while for the case
b > 1 some brief considerations are provided in [19]. Ac-
cording to the uncoded (or analog) strategy, the two sensors
at first exchange compressed versions of their measurements
via the inter-sensor links as in the strategy outlined in Sec.
III-B and then simply amplify-and-forward the updated local
measurements U0

i (see Sec. III-B) to the AP. The latter finally
reconstructs the source S via MMSE estimation.
Proposition 5. The following distortion is achievable with

uncoded transmission (UT) and b = 1:

DUT (Ptot, C) =
1

1
σ2S
+ 4(1+a)2

2(1+a)2σ2W+2a2σ2Q(C)+σ
2
N/G

2

(13)

with σ2Q(C) in (5),

G2 =
Ptot/2

(1 + a2)σ2W + (1 + a)2σ2S + a2σ2Q(C)
(14)

and any a.
Proof : See [19]
Remark 7: The distortion (13) generalizes the result in [4]

[5], which is obtained for a = 0.
Remark 8: Selection of the optimal a (i.e., minimizing the

distortion) for the uncoded (UT) scheme considered here and
the SC and SCC schemes discussed above follow the general
comments provided in Sec. III. In particular, the MMSE choice
a = aM (see Remark 4) is clearly optimal for C →∞ and can
be seen by numerical results to be optimal also for moderate
C.
Remark 9: It can be shown with some algebra that the

distortion (13) tends to the lower bound (9) corresponding to
FC for C →∞ and b = 1 (by setting a = 1). It follows that for
very large C and b = 1, one can either use the separation-based
approach SCC of Proposition 4 or the simpler uncoded scheme
considered here and achieve minimum distortion DFC . As
recalled above, from [5], we know that uncoded transmission
is also optimal for C = 0 and b = 1. Notice that this result
is shown in [5] using a different lower bound than (9), which
does not appears to be easily extended to the scenario at hand
for any value of C.
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D. Numerical results

In this section, we report some numerical results that
corroborate the analysis of the previous sections for the model
of Fig. 1-(b). As in the previous section, we measure the
achievable distortions D as the normalized excess distortion
D̃ = (D − Do)/(σ

2
S − Do). Fig. 3 shows such achievable

distortions for cooperative source and channel coding DSCC

(11) with different values of γ and uncoded transmission
DUT (13), along with the lower bound DFC (9) versus the
inter-sensor capacity C for b = 1, σ2S/σ

2
W = 3dB and

Ptot/σ
2
N = 3dB and 10dB. We remark that parameter a has

been optimized numerically, and similar conclusions have been
drawn as in Sec. III (not shown). From Fig. 3, it is seen that,
as predicted by the analysis, UT and SCC are both optimal
(i.e., they attain the lower bound) for C large enough. It is
interesting to notice that, as for the case of orthogonal links
of Fig. 1-(a) studied in Sec. III, a relatively small capacity
(here C ' 3 for UT) is sufficient to achieve the lower bound,
and that in general SCC requires a larger capacity C than
UT. Moreover, we see that using only cooperative channel
coding, i.e., γ = 0, generally performs better than using only
cooperative source coding (γ = 1) for low channel SNR
Ptot/σ2N where improving the link quality via cooperation is
crucial, whereas the opposite is true if the channel SNR is
large enough.

V. CONCLUSIONS

The availability of out-of-band finite-capacity channels for
signalling between encoders or decoders has been previously
shown to be an effective means to enable cooperative trans-
mission/ reception techniques. In this paper, we have extended
such considerations to the case of remote and distributed
source coding with two encoders (sensors) in a small sen-

sor network (CEO problem). Transmission techniques that
achieve the optimal performance of full cooperation with
modest values of the inter-sensor capacity have been proposed
for both orthogonal and noiseless channels to the AP and
the corresponding joint source-channel coding problem over
a Gaussian MAC. The analysis is limited to a symmetric
scenario with homogeneous sensors. Further work is need to
characterize optimal transmission strategies for finite-value of
the inter-sensor capacity and extend the results to asymmetric
scenarios.
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